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Abstract

A collection of programs is presented to analyze the thermodynamics of folding of
linear repeat proteins using a 1D Ising model to determine intrinsic folding and interfacial
coupling free energies. Expressions for folding transitions are generated for a series of
constructs with different repeat numbers and are globally fitted to transitions for these
constructs. These programs are designed to analyze Ising parameters for capped
homopolymeric consensus repeat constructs as well as heteropolymeric constructs that
contain point substitutions, providing a rigorous framework for analysis of the effects of
mutation on intrinsic and directional (i.e., N- versus C-terminal) interfacial coupling free-
energies. A bootstrap analysis is provided to estimate parameter uncertainty as well as
correlations among fitted parameters. Rigorous statistical analysis is essential for
interpreting fits using the complex models required for Ising analysis of repeat proteins,
especially heteropolymeric repeat proteins. Programs described here are available at

https://github.com/barricklab-at-jhu/lIsing programs.



https://doi.org/10.1101/2020.06.27.175224
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.27.175224; this version posted June 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1. INTRODUCTION

One of the goals of protein folding studies is to quantify the contributions of specific
structural features within the native state to the overall free energy of folding. As a result
of the high level of cooperativity in protein folding, the relative contributions of such
structural features cannot easily be determined because they are hidden in an all-or-none,
or "two-state" transition. Though two-state behavior makes overall protein folding
energetics easy to quantify, it prevents an energetic dissection of the whole into its parts.

Over the last 15 years, a class of proteins with rough translational symmetry,
termed “linear repeat proteins”, has been recognized as having an architecture that
permits quantification of local stabilities, long-range coupling energies, and cooperativity
(Mello and Barrick, 2004; Kajander et al., 2005; Wetzel et al., 2008; Aksel et al., 2011;
Marold et al., 2015; Geiger-Schuller and Barrick, 2016). Much like the helix-coil transitions
of simple polypeptides, the unfolding of linear repeat proteins can be analyzed using a
one-dimensional Ising model, where the overall folding free energy can be broken down
into intrinsic folding energies of individual repeats (4Gj) and coupling energies between
folded nearest-neighbor repeats (4Gi-1,).

To quantify cooperativity in linear repeat proteins, a series of equilibrium unfolding
transitions (often from chemical denaturation) are obtained for proteins containing
different numbers of repeats, and the transitions are globally fitted using a model that
relates the extent of folding to AGiand AGi-1,.. Varying the number of repeats is essential
to resolve the values of AGi and AGi.1,i (Aksel and Barrick, 2009). Although this analysis
is simplest when applied to arrays with identical repeat sequence, solubility
considerations usually require sequence modification to one or both terminal repeats
(Figure 1A). The effects of these terminal modifications on stability need to be accounted
for by including intrinsic folding energy parameters for the substituted terminal repeat
(AGnvand AGo).

In addition, by combining point mutation and length variation, Ising analysis of
linear repeat proteins can be extended to analyze the effects of sequence substitutions
on the underlying parameters (Figure 1B). Although these sequence perturbations

increase the complexity of the fitting model, Ising analysis of constructs containing
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sequence substitutions along with the capped homopolymer constructs in Figure 1A
allows the energetics of specific structural features to be resolved into intrinsic and

interfacial stabilities (Aksel et al., 2011; Cortajarena et al., 2011).
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Figure 1. Schematic of a series of tandem repeat constructs for Ising analysis. Each repeat
is indicated by a rectangle. (A) A capped homopolymeric series. ldentical repeats (R) are colored
green; to maintain solubility, these repeats are flanked on the N- or C-terminus (or both) by polar
capping repeats (N, blue and C, red, respectively). (B) A capped heteropolymeric series, in which
repeats harboring a sequence substitution (X, yellow) are combined with R, N, and C repeats.
Each repeat has an associated intrinsic folding energy (AGi), depending on its type (N, R, X, or
C). Folded repeats couple with their neighbors through an interaction energy (AGi+,) that is
assumed to the same for NR, RR, and RC interfaces. The equations on the right give the free
energy difference between the fully folded and fully unfolded states as a sum of these intrinsic
and interfacial terms. Global Ising analysis of the series in (A) allows the N, R, and C intrinsic
and interfacial parameters to be determined. By combining the series in (A) and (B), the effects
of mutation (X) on Ising parameters can be determined (see Table 1).

Here we present a collection of programs that perform 1D-Ising analysis on repeat
protein arrays. The programs return fitted parameter values for AGi and 4Gi-1,i, and their

denaturant dependences. In addition, bootstrap analysis (Efron, 1979; Johnson, 2008)
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is used to determine confidence intervals for each parameter and their correlations with
each other. We use these programs to analyze a series of unfolding transitions of
homopolymeric repeat arrays with modified caps, and to analyze a larger data set that
includes point substitutions in internal repeats. Analysis of point substitutions allows the
energetics associated with atomic-level structural features to be resolved into intrinsic and
coupling energies. Moreover, by creating asymmetric interfaces, the coupling
contributions of these structural features can be apportioned into the N- (i-1, /) and C-
terminal (i, i+1) interfaces. This suite of programs, which is available on github

(https://github.com/barricklab-at-jhu/lsing_programs) as a set of python programs and

Jupyter notebooks, significantly extends an earlier analysis suite of programs (Lowe et
al., 2018) by providing analysis of mutational data, bootstrapped confidence intervals,

and full and partial parameter correlation analysis.

2. REPRESENTATION OF FOLDING TRANSITIONS OF REPEAT
PROTEINS USING AN ISING MODEL

To determine AGi and AG; i+ from Ising analysis, equilibrium folding transitions
(colloquially, "melts") need to be acquired for a series of constructs of varying repeat
number (e.g., Figure 1). These melts are most easily obtained using chemical
denaturation with urea or guanidine hydrochloride. Although thermal unfolding provides
access to important quantities such as enthalpy and entropy, thermal denaturation is
much less likely to be reversible than chemical denaturation, preventing the determination
of true equilibrium thermodynamic parameters. Folding is often monitored by circular
dichroism (CD) spectroscopy, which is well suited for o-helical repeats. Other
spectroscopic signals, such as intrinsic tryptophan fluorescence, may also be suitable for
monitoring unfolding. Typically, multiple melts are measured for each type of construct.
The resulting data set, which contains M melts for all constructs, is globally fitted to

estimate Ising parameters using the equations below.
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2.1 A matrix approach to computing partition functions for linear

repeat proteins
Unlike equilibrium two-state models for protein folding, the Ising model includes
intermediate states where some repeats are folded and others are unfolded. Analysis of

unfolding transitions using this model requires an expression for folding that includes all

2" conformations (where ¢ is the number of repeats in a particular construct). Such an
expression can be obtained from a partition function in which folding is represented at the
level of individual repeats using two-by-two correlation matrices (W). For a general

heteropolymer with ¢ repeats,
g=nxW,xW, x..xW, xc (1)

where

—(AG+AG., ;)/RT KiT: 1
I/V,- _ e_ 1 _ ivi-1,1 (2)
e AG,/RT 1 K; 1

The top and bottom rows correspond to repeat i-1 being folded and unfolded. The left
and right columns correspond to repeat i being folded and unfolded. The quantities i and
7i-1, i are equilibrium constants for intrinsic folding of repeat i, and for interface formation
between repeats i-71 and i. The n and c terms in equation 1 are vectors that convert the

W matrix product (itself a two-by-two matrix) into a scalar:
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The zero in equation 3A eliminates terms that include a folded ghost repeat! at position 0

(corresponding to the top row of the matrix product in equation 1).

2.2 Simplification of the partition function for capped homopolymeric

repeat proteins

The product of the Wi matrices can be simplified considerably if repeats are
identical. For constructs with /-2 identical internal R repeats and terminal N- and C-
caps (see the capped homopolymeric series, Figure 1A), the partition function can be

written

q=nxWyxWg2xW,xc (4)

Although the same number of matrix multiplications are needed to compute the
homopolymeric and the general partition function (equations 4 and 1, respectively), the
homopolymeric version involves many fewer free energy terms. Here we refer to a model
used to analyze capped homopolymeric repeat proteins as "model 1" (Table 1). Since the
solubilizing substitutions on the capping repeats are likely to affect the intrinsic free
energy, separate free energy terms (AGn, AGr, and AGc) are included in the model.
However, since these solubilizing substitutions are distant from the interfaces with the
internal R repeats, a single interfacial free energy is used to model all interfaces (NR, RR,

and RC interfaces), which we will represent as AGr-1,Rr.

2.3 Modification of the partition function for capped heteropolymeric

repeat proteins
For several decades, point substitutions have been used in protein folding studies

to determine how specific interactions contribute to protein stability (Alber and Matthews,
1987) and to the kinetics of folding (Matthews and Hurle, 1987; Fersht et al., 1992).

1 As with ghosts, there is no such thing as a zeroth repeat.
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Combining targeted sequence substitutions with Ising analysis of repeat proteins permits
the effects of structural perturbation on stability to be resolved into intrinsic and interfacial
free energies. One way to quantify the effects of point substitution on intrinsic and
interfacial stability is to prepare and analyze capped homopolymeric sequences with the
same substitution in each repeat, and compare fitted Ising parameters to those
determined from unsubstituted repeats. In this approach, AGr and AGr-1,r values are
fitted separately for each series using the capped homopolymer partition function
(equation 4). Comparing these values reveals the effects of substitution on intrinsic
folding and interfacial coupling. This approach was used to determine the effects of
surface substitution within the helices of consensus TPR arrays (Cortajarena et al., 2011);
substitutions were found to perturb AGr (although AGg-1,1 was not varied in fits of the
substituted arrays).

A more informative approach to quantify the effects of point substitution on Ising
parameters involves constructing arrays in which unsubstituted and substituted repeats
are combined in the same constructs (Figure 1B). In this heteropolymeric variation, the
partition function contains different W matrices for unsubstituted versus unsubstituted
repeats (which we will refer to as X and R repeats), which differ in their intrinsic folding
free energy parameters (AGx and AGr). Because the heteropolymer approach creates
asymmetric interfaces (RX, XR, and XX, in addition to RR; see Figure 1B), these W
matrices are further subdivided depending on the identity (X versus R) of their i-1 repeat,
which differ in their interfacial coupling energies (AGr-1,x, AGx-1,r, AGx-1x, and AGR-1,R).
Although this approach increases the complexity of the model (compare model 2 with
model 1 in Table 1), additional structural information is accessible using this approach.
Specifically, comparing AGgr-1x and AGx-1r values to AGgr-1,r resolves whether the
substitution in the X repeat at position i affects the stability of the i-1 interface or the i+1
interface. Moreover, comparing AGx-1,x with the sum of AGgr-1,x and AGx-1,r provides a

measure of thermodynamic coupling between adjacent interfaces.
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2.4. Using the partition function to model denaturant-induced

unfolding transitions

Unfolding transitions can be modeled using the fraction of repeats that are folded
as a function of denaturant concentration. The fraction of repeats that are folded (fr =
n#/(ns + nu)) can be calculated by partial differentiation of the partition function with respect

to intrinsic equilibrium constants of each type. For model 1 (Table 1),

1 aq
f=— 94
f KquZK/ oK ;

_ e [299 99 99
ol e el

For model 2, equation 5 contains an additional partial derivative (with respect to «x).
Denaturant dependencies are typically built into the intrinsic (xj) but not the interfacial (z;

i-1) terms,? assuming a linear dependence of free energy on denaturant concentration,

AG,(X)=_HTInK1 =AG,’HZO+ITI,[X] (6)

where [x] is the molar denaturant concentration, and AGiH20 and m; are constants
determined from the fit. The H20 subscript associated with the free energy on the right-
hand side of equation 6, which indicates an extrapolated free energy in the absence of
denaturant (Greene and Pace, 1974), will be omitted below for brevity. For analysis of
heteropolymeric repeat arrays, a denaturant dependence for both types of repeats can
be treated separately (mr and mx; model 2).

Using f;, the observed signal for each of the M melts can be calculated as a

population-weighted average:

2 |n principle, denaturant dependence of the interfaces could be included by introducing an interfacial m-
value through an equation analogous to (6), although in practice, m;and m.s,; are strongly coupled.
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Yeaic, kem = ffYn, kem + (1= ff)Yd, keM (7)

where Y, (v and Y, .y are spectroscopic signals of the fully folded and fully unfolded

states (see equation 9 below) for the k" of M melts3. Note that equation 7 assumes equal
spectroscopic contributions of all repeats, which is likely to be the case for a signal such
as CD, which measures secondary structure in each repeat. Equation 7 can be modified
to account for site-specific signals such as tryptophan fluorescence (see Aksel and
Barrick, 2014).

3. PROGRAMS FOR ISING ANALYSIS OF FOLDING TRANSITIONS OF
REPEAT PROTEINS

The overall workflow for our 1D-Ising analysis programs is shown in Figure 2A.
Analysis is performed using three sequential python programs: (1) a program that
converts data files to files containing numpy arrays, (2) a program that generates
expressions for partition functions (equations 1-4) and fractional folding (equation 5) for
each construct, and (3) a program that fits the converted data from the first program with
a normalized expression based on fractional folding expressions generated from the
second program. The third program also plots fitted data, performs bootstrap analysis,
and analyzes parameter correlation. Each program is available on github (barricklab-at-
jhu/lsing_programs) as a .py file that can be run directly in a terminal command line or in
an IDE such as Anaconda (2016). In addition, the programs are combined in an
interactive python notebook (.ipynb; Perez and Granger, 2007) that can be run in Jupyter
(Randles et al., 2017).

3 In subsequent expressions, it will be assumed that the k" melt belongs to the set of M total melts, e.g.,

Ycalc, keM - Ycalc, k-

10
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A N_R_C_1.dat B CANK_data.csv Denat n_sig construct melt
N_R_C_2.dat 0.000, 1.000, NR.C, 1
R_R_R_R_C_2.dat data_file.csv 0.313, 0.998,  NRC, !

5.313, 0.000, ‘R RRRC’, 18
data_conversion_Aviv.py data_conversion_csv.py CANK_constructs.json
["N_R C", "N.RRC", ... , "R R R R C"]
Specify project name (e.g., CANK) Specify project name (e.g., cCANK)
CcANK_melts.json
['"NRC1", "NRC2", ... , "R_.R_RRC 2"]
CcANK_data.csv N_R_C_1.npy N_R_C_1.npy Denat n_sig construct melt
N_R_C_2.npy N_R_C_2.npy [[0.000, 1.000, 'NRC', 1],
[0.313, 0.998, 'N_RC', 1],
R_R_R_R_C 2npy R_R_R_R_C_2.npy e
[6.200, 0.001, 'NRC', 1]]
cANK_melts.json
- [[0.000, 1.000, 'NRC', 2],
cANK_constructs.json [0.313, 0.998, 'NR C', 2],
[6.200, 0.001, 'NRC', 2]]
generate_fitting_eqns.py
- - [[0.000, 1.000, ‘R RRRC’, 18],
Specify project [0.338, 0.997, ‘RRRRC’, 18],
[5.313, 0.000, ‘R R RRC’, 18]]
‘ CANK_frac_folded_dict.json CcANK_frac_folded_dict.json CcANK_fitted_Ising_params.csv
{ ‘N_R_C_frac_folded': 'NRC eqn', dGN, 5.45
‘N_R_R_C_frac_folded’: 'NRRC eqn’, dGi, 4.57
ising_fitter.py dec, 7.05
‘R_R R R C frac_folded': ‘RRRRC eqn'} dGi-1,i, -11.63
Specify project, number bootstrap iterations (BI) le— ‘“i{ -0.78
Chi**2, 0.0811
l IfBI>0 RedChi, 0.000192
‘ CANK_fitted_Ising_params.csv ‘ CANK_bootstrap_params.csv
BI dGN dGi dGc dGi,i-1 mi chi**2 redchi*#*2
‘ cANK_fitted_baseline_params.csv ‘ 1 5.40 4.55 7.00 -11.57 0.776 0.05440 0.0001289

2 5.49 4.61 7.12 -11.73 0.786 0.06354 0.0001506

CANK_plot_normalized_by_melt.png e
CcANK_plot_normalized_by._construct.png 1000 5.39 4.55 6.99 -11.56 0.774 0.06355 0.0001506
cANK_plot_frac_folded_by_melt.png

CcANK_plot_frac_folded_by_construct.png CcANK_bootstrap_stats.csv

Param mean median stdev 2.5%CI 16.6%CI 83.7%CI 97.5%CI

1t BI>0 deN 5.404 5.405 0.0623 5.280 5.344 5.465 5.524
‘CANbeOO‘S”aPJ’a’amS-CSV ‘ dGR 4.544  4.546  0.0598 4.428  4.483  4.601  4.657

dec 7.014 7.013 0.0745 6.867 6.943 7.088  7.157

‘CANbeOOfS?fapfsfafS-CSV ‘ dGi,i-1 -11.581 -11.581  0.1210 -11.814 -11.701 -11.464 -11.338

mi 0.778 0.778  0.0073  0.764 0.773 0.785 0.791

— ‘cANK,bootstrap,corr,coefs.csv ‘

cANK_bootstrap_corr_coefs.csv

‘cANK_bootstrap_corr_plots.pd/ ‘

dGN dGR dGc dGi,i-1 mi

dGN 1.0 0.941 0.949 -0.967 0.826
dGR 0.940 1.0 0.917 -0.944 0.721
dec 0.949 0.917 1.0 -0.981 0.891
dGi,i-1 -0.967 -0.944 -0.981 1.0 -0.909
mi 0.826 0.721 0.890 -0.907 1.0

Figure 2. Flow-chart for 1D-Ising analysis of tandem-repeat unfolding transitions. Here,
analysis of a capped homopolymeric series with three .py programs is illustrated. (A) Python
programs are shown in white boxes along with required control parameters, input and output files
are shown in grey boxes. (B) The format of input and output files. The first program
(data_preprocessing_Aviv.py) converts data files to files containing numpy arrays and generates
outputs lists of constructs and melts. The second program (generate_fitting_equations.py) uses
the list of constructs to generate and output a dictionary of expressions for fraction folded
(equation 5) for each construct. The third program (ising_fitter.py) uses these fraction-folded
expressions, along with the melt and construct lists, to fit the expressions to the melt.npy data
using nonlinear least squares. ising_fitter.py outputs fitted parameters to a csv file, as well as
plots of raw and transformed data with fitted curves (see Figure 3). Following the fit, the user can
run Bliterations of bootstrap analysis, which returns parameter values for each bootstrap iteration,
statistics for bootstrap parameter distributions, a correlation matrix for bootstraped parameters,
and plots of bootstrap histograms and parameter correlation (see Figure 4). Alternatively, all three
programs can be run from a single combined Jupyter notebook.
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3.1 Preprocessing data: data_preprocessing.py

The data preprocessing program generates a series of numpy arrays for each of
the M melts and saves each to an npy file. In the process, this program writes out a list
of constructs and a list of melts, which are used by the subsequent programs. To help
identify output files, a “project” name should be specified in the data preprocessing
program. This project name is used to name output files. Itis convenient to use the name
of the series to which the repeat constructs belong (such as “cANK” in the example in
Figure 2).

There are two programs for data preprocessing that can be used for different types
of input data. data_preprocessing_csv.py takes data in .csv format, which often requires
some manual pre-processing, whereas data_preprocessing_AVIV.py takes input data in
.dat format generated by Aviv spectrometers (the format of most of our denaturation data).
In addition, data_preprocessing_AVIV.py outputs a single data csv file containing all
melts, which can be combined with other csv data sets.

Input data files should be placed in the same folder as the jupyter notebook or the
preprossessing program (and subsequent programs). For Aviv data files, each unfolding
transition is in a separate file identified by the .dat extension. The root of each file name
should give the structure of the repeat array for that melt, followed by an integer used to
distinguish multiple melts of the same construct. For example, N_R_R_C_1.dat is the
“first” melt for the construct NR2C (two internal R repeats flanked by N- and a C- capping
repeats; Figure 1A). Likewise, R_X_R_C_2.dat is the “second” melt for the construct
RXRC. For unfolding transitions in other formats, melts should be manually combined
into a single .csv file containing four columns. The first column contains the denaturant
concentrations for each melt, the second column contains spectroscopic values, the third
column gives the construct in the format described above (e.g., N_R_R_C), and the fourth
column gives an ID number identifying the data set, ranging from 1 to M (Figure 2B).

In the conversion process, data are normalized such that for each of the M melts

the point with the largest signal intensity* in each melt ( Ymax, «) is set to one, and the point

4 For CD measurements in the far-UV, this is typically the largest negative value.
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with smallest intensity (Ymin, ) is set to zero. The other data points in the k' melt are

scaled to these values:

Y =Y i/
Yy | — _max, k obs, j (8)
nemm. 1 Ymax, kK~ Ymin, k

This normalization ensures that each melt has a similar influence in the fit (assuming each
melt has the same number of points), which is important in cases where different melts
have very different Y values. One potential pitfall is that if the starting Y values vary
significantly from melt to melt, this scaling may produce significant differences in the
absolute uncertainties in the normalized Y values of different melts. Such differences in

uncertainties should be accounted for using weighting terms in the fitting program.

3.2. Generating fitting equations: generate_fitting_equations.py

Using the construct list generated by the data preprocessing program, the second
program (generate_fitting_equations.py) builds a dictionary of partition functions
(equation 4). From these partition functions, a dictionary of fraction folded expressions
(equations 5 and 7) is built using the python SymPy module (which enables symbolic
math manipulations, Meurer et al., 2017). A final and very important step in generating
fraction folded expressions is the use of the SymPy command “simplify”, which
significantly shortens the resulting expressions. For example, the simplify command
reduces the expression for the fraction of folded NRsC from 467 to 227 characters. This
reduction provides a significant speed-up during nonlinear least squares, which is
especially important for bootstrap analysis (requiring hundreds to thousands of nonlinear-
least squares optimizations). The dictionary of fraction folded expressions is output as a
Jjson file for nonlinear least-squares fitting in the third program. Another feature built into
generate_fitting_equations.py is a calculation of the rank of the coefficient matrix, which
is useful evaluating whether the series of constructs being analyzed provides adequate
constraints to fit the thermodynamic parameters (see Appendix 2). Results from the rank

analysis are outputted to the screen, alerting the user to potential problems with the fit.
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3.3. Fitting with an Ising model: ising_ fitter.py

Using the converted data, construct list, and melt list generated by the data
preprocessing program along with the fitting equations generated by the fitting equation
program, the third program (ising_fitter.py) globally fits all of the folding transitions using
nonlinear least-squares, by minimizing the sum of the squares of the residuals between
normalized experimental Ynorm, j values from each of the M melts (equation 8) and the

calculated values Ycaick (equations 5 and 7):

M melts n,

SSA = z Z{Ynorm,j,k _Yca/c, k([X]/; AGN’ AGH’ AG‘C’ AGFI‘*IR’ Mg, Y”vk’ Yd! k)}z (1 O)

The terms in parentheses are the parameters to be optimized; in equation 10, they are
those of model 1 (Table 1). The outer sum in equation 10 is over each of the M melts,
and the inner sum is over each of the nkx denaturant concentrations in each melt. The fit
is performed with the python Imfit module (Newville et al., 2019), which provides a number
of useful fitting options including setting bounds for adjustable parameters.

The parameters that are optimized in equation 10 include global thermodynamic
parameters, which apply to all melts and all constructs,® and local baseline parameters,
which apply individually to each melt (Table 1). For model 1, the thermodynamic
parameters include intrinsic free energies for the N, internal R, and C repeats (AG,, , AGr
, and AGg), an interaction free energy between adjacent repeats (AGg_15), and a
denaturant dependence for each repeat (mr, eq 5). The local parameters model a total
of 2M baselines (a native and denatured baseline for each melt; Yn, « and Y4, «in equation

7). Each baseline is assumed to vary linearly with denaturant concentration; thus, each

baseline requires two locally fitted parameters:

5 An exception is the intrinsic free energies of folding of the capping repeats (AG, and AG.), which
apply to all repeats that contain N- and C-terminal caps.

14



Yn,k:an,k+bn,k[x] (11A)

Yd,k:ad,k+bd,k[x] (11B)

As is typical of nonlinear least-squares optimizations, initial guesses must be
supplied to begin the search for optimal parameters. Finding satisfactory initial guesses
for the thermodynamic parameters may require some care so that unfolding midpoints
and slopes are reasonably approximated at the start of the search. Initial guesses for the
baseline parameters are easily determined due to the normalization provided by the data
preprocessing program: fitted values of an, x and aq, « should be close to one and zero,
respectively, and baseline slopes are often quite similar for all normalized melts. Thus,
guesses for the 4mbaseline parameters can usually be provided with just four parameters
(an, bn, aq, and ba).

From these initial guesses, Imfit uses the Marquardt-Levenberg algorithm to
optimize the local and global parameters. The parameter set that minimizes the sum of
the square of the residuals is then returned to the user as are plots of fitted data in various
formats. Fitted thermodynamic and baseline parameters are also written to csv files, as

are plots of data and fits (Figure 2).

3.4. Bootstrap analysis

To estimate uncertainties on fitted parameters and to explore parameter
correlations, bootstrap analysis can be performed after the data have been fit. Bootstrap
analysis is a resampling method in which sets of synthetic, or "bootstrapped", data are
generated with errors derived from the original data set (Efron, 1979; Johnson, 2008).
Here we apply the bootstrap to the residuals of the fit, generating bootstrapped data sets
by (1) using the best fitted parameters to estimate "true" values for each melt at each

measured denaturant concentration (the Y, ; x values in equation 10, using best-fitted

parameters), (2) calculating residuals based on these Y, ; . values (the expression in
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curly braces in equation 10), and (3) adding randomly selected residuals® from step 2 to

the true Y., ; « values. Assuming the fitted Ising model provides a good description of
the measured Y, ; « values (specifically, that the Y, ; » provides an good estimate of

the error-free value of the measured Y value at denaturant concentration j, melt k, and

that the errors in Y., ; , are independent of j and k), these bootstrap data sets are an

adequate approximation of independently determined data sets with the same structure
as the observed data. Fitting each bootstrapped data set and comparing fitted parameter
values provides an estimate of uncertainties for each fitted parameter.

One important parameter in bootstrap analysis is the number of bootstrap
iterations performed. Ideally, thousands of iterations are performed, although for large
data sets and complex models, performing thousands of bootstrap iterations may require
more CPU time than is practical, especially on a desktop computer.” The length of time
required for bootstrap analysis can be significantly shortened by using parallel
processing, either running on multiple cores within a laptop or desktop computer, or
through shared processors within a cluster. We have created a version of the
ising_fitter.py that runs bootstrapping in parallel using the python "multiprocessing"
module (ising_fitter_parallel.py, also available on github). To help estimate the amount
of time a given bootstrap analysis will take, the time required for the fit of the observed
data is provided by ising_fitter.py, which is a good approximation of the time required for
a single bootstrap iteration.

Upon completion of the fit of the data, ising_fitter.py prompts the user for the
number of bootstrap iterations to perform. The fitter then performs the specified number
of fits of bootstrap data, using the same initial guesses that were used for the initial fit.
Thermodynamic parameters from each bootstrap iteration are written to a

bootstrap_params.csv file, and a statistical summary of bootstrapped thermodynamic

6 Random selection with replacement.

7 Factors that increase the amount of bootstrap CPU time are the number of melts, which determines the
number of fitted baseline parameters), the number of thermodynamic parameters (e.g., compare Mode 2
with Model 1, Table 1), and the extent of parameter correlation.
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parameter values, including averages and measures of variation, are written to a

bootstrap_stats.csv file (Figure 2).8

3.5. Correlation analysis

One advantage of the bootstrap method is that it permits visual inspection of
parameter correlation. Analysis of parameter correlation reveals not only how much
uncertainty is associated with fitted parameters, but the origins of that uncertainty. After
the bootstrap analysis is completed, a grid of correlation plots is generated for all pairs of
bootstrapped parameters along with a histogram of bootstrap values for each selected
parameter. Linear Pearson correlation coefficients are calculated from each plot and are
written to a bootstrap_corr_coef.csv file. Comparing the correlation plots for each
parameter to the histogram of bootstrapped values emphasizes the important point that
although parameter correlation increases parameter uncertainty, the uncertainty values
reported from the bootstrap analysis include uncertainties resulting from correlation with
all other parameters. Though a particular pair of parameters may show strong correlation,
as long as the confidence intervals estimated from bootstrap analysis are tolerably low
(i.e., the parameter histogram is suitably narrow), the correlation can be considered
acceptable.

Rather, it is when fitted parameter values have intolerably large confidence
intervals that correlation analysis is useful. In such cases, identifying the underlying
correlations (in particular, pairs of parameters with large partial correlation coefficients;
see below) that lead to large parameter uncertainties can be used to modify the model to
avoid high correlation, or to include parameter constraints that are informed by
independent information.

Although the correlation analysis described above reveals the extent to which pairs

of parameters covary, these absolute correlations are sometimes indirect. Such indirect

8 Although all fitted parameters (thermodynamic and baseline parameters) are optimized in each
bootstrap iteration, we are typically interested in uncertainties and correlations among the thermodynamic
parameters. If the uncertainties in fitted baseline parameters are desired, the bootstrap portion of
ising_fitter.py can easily be modified to include these values for statistical analysis.
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correlations result when each variable in a pair is each strongly correlated with a third.
As a result, the two parameters in the pair show correlation with each other. To reveal
the direct correlation among parameter pairs, "partial" correlation coefficients can be
calculated in which correlation between a pair of parameters is calculated after correlation
to all the other variable are accounted for. For a pair of variables X and Y in a data set
with n+2 total variables, partial correlation coefficients are calculated by performing linear
regressions separately for each variable X and Y with the n other variables Z = {Z1, Z, ...

, Zn}, Wwhere {X,Y} & Z, determining the residuals for these two regressions (rx.zand ry,z),

and determining the correlation coefficients for the residuals rxz and rv,z (referred to as

PX,Y-2):

N
Z(fxz,/‘ rYZ,i)

= (12)

Pxy.z = N N
2 2
Z Iz 2 Kz

i=1 i=1

Using the values of bootstrapped thermodynamic Ising parameters in
boostrap_params.csv, partial correlation coefficients are calculated using the program
"partial_correlation.py". This program uses the Pingouin statistical package (Vallat, 2018)
to calculate partial correlation coefficients, and outputs them to the file

bootstrap_partial_corr.csv.

4. A FIVE-PARAMETER (MODEL 1) FIT OF A CAPPED HOMOPOLYMER
SERIES

Using the fitting programs above, we have performed Ising fitting and bootstrap
analysis on unfolding transitions of a series of capped homopolymeric consensus ankyrin
repeat constructs described previously (Aksel and Barrick, 2009). The constructs in this
series match those in Figure 1A (model 1, Table 1), ranging in length from three to five
repeats, and containing either N-terminal caps, C-terminal caps, or both. For each
construct, there are two melts (technical replicates), such that each construct has a similar

impact on the fit. Likewise, for each capping pattern (NRx, RxC, NRxC), there are three
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constructs of different length (x=3, 4, 5), so that the two caps have a similar impact on the
fit. As a whole, the data set comprises 18 melts with a total of 499 observations. There
are five fitted global thermodynamic parameters (AGn, AGr, AGc, AGr-1,r, and mg), and
72 local baseline parameters (four for each melt). Thus, there are 499-5-72 = 422
degrees of freedom (DOF). The fit took about 5 seconds of wall time on a MacBook Pro
using a single 2.3 GHz Intel Core i9 processor (although this time depends on values of

the initial guesses).
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Figure 3. Fitted unfolding transitions for capped homopolymeric ankyrin arrays. Data are
from (Aksel et al., 2011) and are fitted with model 1 (Table 1). Plots are direct outputs from the
plotting section of the fitter. Data and fitted curves are plotted both as normalized signal (A and
B, the space in which least-squares minimization is carried out) and as fraction folded (C and D).
In the fraction folded representation, fitted curves for different melts of the same construct are
identical (because a single set of thermodynamic parameters is fitted globally), but the data are
not (due to random errors). In contrast, fitted curves to normalized data differ, since each curve
has its own baseline parameters. Plots (A) and (C) show all fitted melts; plots (B) and (D) show
one representative melt from each construct.
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Overall, the fit of model 1 to the data is quite good. This can be seen in Figure 3A
and B, where the normalized data and fitted curves are in good agreement. Inspection
of normalized curves is important because this is the space in which the fit is performed.
Highly sloped baselines, which are often a result of inadequate baseline sampling (and
which often increase uncertainties on fitted thermodynamic parameters), are apparent
upon inspection of normalized fits. In contrast, baseline slopes are hidden in fraction
folded curves (Figure 3C and D). For melts in which fitted baseline slopes are
unreasonably high, limits can be imposed on baseline slopes using the Imfit module by
providing min and max values during initial parameter assignments.® The quality of the
fit in Figure 3 is also indicated by the reduced sum of squares of the residuals (RSSR =
SSR/DOF = 0.00019 in Figure 3A). Since the normalized unfolding transitions span one
unit of signal change, this RSSR value reflects an average squared residual of about
0.019 percent, or an average residual of about 1.4 percent. This residual is within the
error resulting from the circular dichroism measurements from which the normalized
signal is derived.

To estimate uncertainties on the fitted thermodynamic parameters, 1000 bootstrap
iterations were performed. In absolute terms, uncertainties on the thermodynamic
parameters are quite small for the fit in Figure 3: 95 percent confidence intervals™ of
bootstrapped free energies are about 0.2 kcal mol! (Table 2). Bootstrap estimates for all
thermodynamic parameters have unimodal and roughly normal distributions (diagonal
histograms, Figure 4), consistent with a single well-defined minimum in SSR over the
fitted parameter space. For each parameter, uncertainties can be estimated from the
standard deviation of bootstrap values or from locating the parameter values that
separate the low and high tails of the bootstrap distribution at 67 or 95 percent (Table 2).
An advantage of the latter approach is that no assumptions made on the symmetry of the

error. For the five thermodynamic parameters in model 1, the 67 and 95 percent

9 In most cases, a preferable remedy for a poor baseline is to collect a melt with a better baseline.
However, this is not always possible for marginally or highly stable constructs.

10 Given that the bootstrap approach misses some sources of error, such as systematic variations among
different data sets, 95% confidence intervals seem a safer and more appropriate estimate of uncertainties
in fitted parameters than the more common 67% limits.
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confidence intervals are within 0.1 percent of the mean plus or minus one or two standard
deviations, as is expected for normally distributed parameter estimates. Large
differences between the standard deviation and confidence intervals may reflect fitting
pathologies such as one-sided parameter bounds, and multiple least-squares minima in
parameter space (Johnson, 1983), which should be apparent in bootstrap parameter
histograms. Identifying such pathologies is important, since it almost certainly indicates
that the model is not adequately constrained by the constructs being fitted, and that either
the model or the data set should be modified.

As described above, parameter correlation can be a significant source of
uncertainties in fitted parameters. Even for the simplest types of fits, strong correlations
are common, such as the fitted slope and intercept parameters in linear regression
against a single independent variable (Johnson, 1983), and the AG° and m-values
describing simple two-state folding (see Appendix 1). The bootstrap analysis allows
correlations between pairs of parameters to be clearly visualized in a scatter plot in which
each point represents a pair of parameter values from the same bootstrap iteration
(Figure 4). Correlations between bootstrap parameter pairs can also be seen in the
correlation  coefficient matrix that is generated by ising_fitter.py (as

bootstrap_corr_coef.csv, Table 3).
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Figure 4. Bootstrap histograms and correlation plots of fitted thermodynamic parameters
for capped homopolymeric ankyrin arrays. Capped consensus ankyrin homopolymer data
from Figure 3 was used along with best-fitted parameters from Model 1 to generate 1000
bootstrap fits. The lower diagonal panels show histograms for bootstrapped thermodynamic
parameters. The upper triangular panels show correlations among pairs of thermodynamic
parameters, along with a best-fitted line to bootstrapped pairs.

For the capped homopolymer fit (Figure 3), the strongest correlations are between

the interfacial free energy (AGg-1,r) and the three intrinsic free energies (AGn, AGr, and
AGc; Table 3); these correlations are negative (Figure 4).
This negative correlation between intrinsic and interfacial free energies is expected—an
increase in AGr-1.r (i.e., a decrease in the interfacial free energy), which would decrease
midpoints of unfolding transitions, can be compensated by decreasing AGn, AGc, and
especially AGr (since this term contributes three times as much, on average, to the
stabilities of the constructs in Figure 1 as AGn and AGc).

In addition, there appear to be significant positive correlations among AGn, AGr,
and AGc (Table 3, Figure 4). These correlations are unexpected—if one intrinsic free

energy parameter increases, the others would be expected to decrease to maintain the
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midpoint of the folding transition. Thus, it seems likely that these apparent correlations
are indirect—since each intrinsic free energy is negatively correlated with AGr-1,r, each
may end up positively correlated with the other two. To test for indirect correlation, we
calculated partial correlation coefficients among the thermodynamic bootstrap parameter
values, which reveal the correlation between two parameters when correlations to the
other parameters are factored out (Table 3, lower triangle). Based on partial coefficients,

the negative correlation between AGr-1,r and AGr remains high ( pac. aG, -(aG,, oG, m,} 1S

actually more negative than the total correlation coefficient between these two
parameters; Table 3), but the correlations between AGr-1r and AGn and AGc are
decreased. Moreover, the correlations among the intrinsic free energies (AGn, AGr, and
AGc) are also decreased, and the signs of the partial correlation coefficients are negative,
matching expectations.

Partial correlation analysis reveals a similar indirect correlation between the
bootstrapped mg-values and the three bootstrapped intrinsic free energy parameters.
Though the total correlation coefficients of all four free energy bootstrapped parameters
with mr are large (Figure 4), only AGr-1,r shows the expected negative correlation
(negative correlation is expected since an increase in mgr should increase the stability in
the absence of denaturant, decreasing AG values; see Appendix I). The three intrinsic
free energy parameters show unexpected positive total correlations with mg, with slightly
larger correlation coefficients for AGn and AGc than for AGr. The partial correlation

coefficients for these three parameter pairs (p,, AGH{AG;, AG,, AG,.,}) have reversed sign,

with the strongest negative correlation between mr and AGr, suggesting the positive total
correlation is indirect. In contrast, the correlation between mr and AGr,g-1 remains large
and negative.

Overall, the picture that emerges is that there is a strong negative direct correlation
between AGr and AGRr-1,r, and also between those two parameters and mr. AGn and
AGc have weaker direct negative correlations to these three parameters, and weaker
correlations to each other. Again, it is worth pointing out that despite these correlations,

AGRr and AGr-1,r are determined within 0.2 kcal mol-'. As we have previously described,
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fitted values of AGr and AGg-1,r are consistent with a strong positive cooperativity in
which intrinsically unstable repeats are driven to fold by strongly stabilizing interfaces with
folded neighbor repeats (Aksel and Barrick, 2014; Aksel et al., 2011).

6. A TEN-PARAMETER (MODEL 2) FIT OF A CAPPED
HETEROPOLYMER SERIES

To illustrate how the Ising fitting programs perform with a more complex
heteropolymeric model and to examine the effects of a mutation on intrinsic and interfacial
stabilities, we performed Ising fitting and bootstrap analysis on folding transitions of a
series of capped consensus ankyrin repeats in which a conserved threonine from one or
two R repeats is substituted with a valine at position 7 in the ankyrin TPLH motif (referred
to here as T7V). The T7V substitution has previously been shown to destabilize a four-
repeat NXRC construct (where repeat X is an R-type repeat that harbors the point
substitution) by 2.6 kcal mol! using a simple two-state model (Preimesberger et al.,
2015). By combining the X-substitution series (Figure 1B) with the homopolymeric
capped constructs analyzed with model 1 above,'” we were able to fit a model for
heteropolymeric capped repeats containing ten thermodynamic parameters (model 2).

To accurately determine the intrinsic and interfacial free energies, it is essential
that the constructs being analyzed provide adequate constraints on these quantities
during the fit. For capped homopolymer series, having the sufficient constructs to
constrain AGn, AGRr, AGc, and AGr-1,r is fairly intuitive'?, but for capped heteropolymeric
series, the complexity of the model and the number of thermodynamic parameters can
obscure this sufficiency. To check whether or not the intrinsic and interfacial free energy
parameters of the model are adequately determined by the constructs in the data set, the
rank of the coefficient matrix defined by the series of constructs is evaluated by

generate_fitting_equations.py. If the coefficient matrix has full column rank, the

11 For the combined data set, we included three melts for each of the six heteropolymer constructs in
Figure 1B, and two melts for each of the nine homopolymer constructs in Figure 1A. With this
combination there are an equal number of homopolymer and heteropolymer melts in the fit, giving equal
weight to each.

12 Each cap must be removed one at a time, and the length must be varied (see Figure 1A).
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constructs adequately define the thermodynamic parameters (Appendix 2). Indeed, the
combined constructs from Figure 1A and B pass the rank test for the parameters in model
2 (Table 1), permitting us to determine four intrinsic free energies (AGn, AGr, AGx, and
AGc) and four interfacial free energies (AGg-1,r, AGx-1x,AGr-1x, and AGx-1,r). As a whole,
the data set comprises 36 melts with a total of 1057 observations. In addition to the eight
global thermodynamic parameters above, there are two m-values that give the denaturant
dependences of AGr and AGx (mr and mx; equation 6), and 144 baseline parameters.
Thus, there are 1057-10—-144 = 903 degrees of freedom. The fit took about 10 seconds
of wall-time, about twice that for model 1, which involves half the number of melts.

Overall, the heteropolymeric capped repeat data set is reasonably well-fitted by
model 2 (Figure S1). Fitted values for thermodynamic parameters shared between
models 1 and 2 are within about 0.5 kcal mol* for intrinsic folding energies and 1 kcal
mol- for the interfacial energy. The reduced sum of squares of the residuals is 0.00038,
corresponding to an average residual of about 2 percent per point. Uncertainties in fitted
thermodynamic parameters for the model 2 fit are quite similar to those from model 1,
both for parameters that are shared by the two models and for the parameters that are
unigue to model 2 (Table 2). An exception is mx, which has about three times the
uncertainty as ms. This is not unexpected since there are significantly fewer repeats in
the fitted data set that have an mx-denaturant dependence (the X repeats) than repeats
that have an mr dependences (N, R, and C repeats).

Although model 2 contains more fitted parameters than model 1, correlations
among fitted bootstrap parameters seem to be somewhat reduced. There are modest
decreases in both total and partial correlation coefficients for most of the parameter pairs
that are shared by both models (compare Tables S1 and 3). This difference is borne out
visually in a comparison of the two sets of correlation plots (Figures S2, 4). The weakest
correlations involve the two parameters in model 2 that are least well determined: mx and
in particular, AGx. This relationship between parameter correlation and uncertainty
underscores the point made above that strong parameter correlation is not a direct proxy

for high parameter uncertainty. Rather, at least in the examples shown here, high
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parameter uncertainty appears to mask correlation, whereas low parameter uncertainty

reveals correlation.

B
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Figure 5. Threonine 7, histidine 10 and their hydrogen bonding patterns within and
between ankyrin repeats. (A) Hydrogen bonding pattern in a consensus ankyrin array from
Mosavi et al. (1NOR.pdb, Mosavi et al., 2002); note that the histidine ring has been flipped by 180°
around y2 to match the bonding pattern determined by Preimesberger et al., 2015). Threonine at
position 7 (yellow) forms a bifurcated hydrogen bond to the N&; of histidine 10 via its main-chain
NH and side-chain OH within the same repeat. In turn, histidine 10 hydrogen bonds to a main-
chain CO in the C-terminal neighboring repeat. (B) Thermodynamic cycle involving changes to
interfacial interaction energies (AG,-_1,,-) in response to T7V substitution in adjacent repeats. For

each arrow, the AAG value is the difference between the interaction energies in the substituted
(arrowhead) and unsubstituted interfaces (arrowtail). For example, for the top arrow,
AAG=AGy_ 15— AGg 1z The difference between AAG values on the top and bottom (and

equivalently, left and right) arrows gives the interaction energy between the two substitutions,
here -0.4 kcal mol-'.

The additional parameters in model 2 provide a quantitative measure of how the
point-substitution affects intrinsic and interfacial stability. Comparing AGx with AGRr
reveals that intrinsic stability is decreased by 1.6 kcal mol-'. This is consistent with the
loss of an internal hydrogen bond between the threonine (O,)H and the i+3 histidine side-
chain Ns1 (Preimesberger et al., 2015). This hydrogen bond is part of a hydrogen bond
network that includes a second, bifurcated hydrogen bond from the i+3 histidine Ns1 to
the threonine main-chain (N)H, and from the i+3 histidine N:2 (N)H to the main-chain C=0

from the residue preceding the threonine in the next repeat (asparagine i+32; Figure 5A).
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Comparing AGx-1,x with AGRr-1,r provides one measure of how interfacial stability is
affected by point substitution. This comparison indicates that the interface may be weakly
destabilized by valine substitution in adjacent repeats by 0.3 kcal mol, although this
value is only slightly beyond the 95% confidence intervals (0.12 kcal mol-! for each free
energy). However, by combining substitutions to R-repeats (X) with unsubstituted N, R,
and C repeats as in Figure 1B, we can also determine interfacial free energies between
an N-terminal R repeat and an adjacent X repeat (AGr-1,x), and an N-terminal X repeat
and an adjacent R repeat (AGx-1,r). In other words, we can compare the energetic effects
of single point substitution in the N- (j, i-7) and C-terminal (i, i+1) directions. Comparison
of AGr-1,x and AGx-1,r with AGr-1,r shows that the N-terminal interface is destabilized by
valine substitution by +1.0 kcal mol', but that this stabilization is partly compensated by
a stabilization of the C-terminal interface by -0.4 kcal mol! (Figure 5A). The modest
stabilization of the C-terminal interface may reflect a re-orientation of the i+3 histidine
side-chain in the substituted repeat to optimize the two remaining hydrogen bonds
(Preimesberger et al., 2015).

Finally, the fact that the two interfacial free energy perturbations do not sum to the
perturbation resulting from a tandem substitution identifies a thermodynamic coupling
between adjacent repeats. This coupling can be represented in a thermodynamic cycle
(Figure 5B). Although the magnitude of the coupling is moderate (~0.4 kcal mol'), the
sign of the coupling favors interfaces with the same residue at repeat position 7 of
adjacent repeats. Pairs of threonine residues at repeat position seven result in the most
stable interface; although pairs of valines at position seven result in a destabilized
interface, a valine pair is more stable than would be expected based on the interfacial
energy perturbations from single-repeat substitutions. In other words, pairs of valines at
position seven are mutually stabilizing. This type of long-range sequence coupling should
serve to reinforce the repetitive nature of ankyrin sequence motif. The approach
described here provides a means to identify other positions in the 33-residue ankyrin motif

that are similarly coupled.

7. SUMMARY
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Understanding cooperativity in protein folding, which is determined by the
distribution of local and long-range stabilities, is likely to have important functional
consequences in terms of avoiding misfolding and in allosteric functional transitions. The
analysis of tandem repeat protein arrays with a 1D Ising model provides a unique
approach to quantifying cooperativity in terms of local stabilities and long-range coupling
free energies. The collection of programs presented here, which are available on github,
provide a robust platform for data processing, fitting, plotting, and analysis of parameter
uncertainties and correlations. Given the complexity of the models, careful inspection of
fitted parameter uncertainties is an essential part of the analysis. Models can easily be
adapted to evaluate the effects of point-substitutions in intrinsic and interfacial energies,

providing insights into the structural basis of cooperativity.
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Table 1. Adjustable parameters for capped homopolymer
and heteropolymer models

Global parameters

Model 1: capped homopolymeric repeat protein

Parameter Description Number
AG 120 Intrinsic folding energy, repeat N 1
AGR 20 Intrinsic folding energy, repeat R 1
AGc 20 Intrinsic folding energy, repeat C 1
AGR.1 Interfacial coupling energy 1
mg Intrinsic denaturant dependence 1

Model 2: capped heteropolymeric repeat protein

Parameter Description Number
AGN 20 Intrinsic folding energy, repeat N 1
AGR 20 Intrinsic folding energy, repeat R 1
AGix 20 Intrinsic folding energy, repeat X 1
AGc 20 Intrinsic folding energy, repeat C 1
AGRp.1gr Interfacial coupling energy (R, R) 1
AGx-1,x Interfacial coupling energy (X, X) 1
AGR.1x Interfacial coupling energy (R, X) 1
AGx.1 R Interfacial coupling energy (X, R) 1
mg Intrinsic denaturant dependence (R) 1
mx Intrinsic denaturant dependence (X) 1

Local parameters (both models)

ang Native baseline intercept q

bng Native baseline slope q

Adq Denatured baseline intercept q

by q Denatured baseline slope q
Model 1 total parameters 5+4M

Model 2 total parameters 10+4M
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Table 2. Fitted global thermodynamic parameters and bootstrap statistics

Bootstrap statistics

Parametera Ef/(:::lsutJ (f-;it Mean 3;?,?;?;: IoweCrI 25% IowsérI 627% uppgrl 6037% uppgrl SC)S%
Model 1
AGy 5.47 5.41 0.062 5.28 5.34 5.46 5.52
AGg 4.57 4.54 0.060 4.43 4.48 4.60 4.66
AGc 7.06 7.01 0.075 6.87 6.94 7.09 7.16
AGRg1 R -11.63 -11.58 0.12 -11.81 -11.70 -11.46 -11.34
Mg -0.78 -0.78 0.0073 -0.764 -0.773 -0.785 -0.791
Model 2
AGy 4.89 4.89 0.064 4.77 4.82 4.95 5.01
AGgr 4.08 4.08 0.065 3.96 4.02 414 4.22
AGx 5.64 5.64 0.091 5.46 5.55 5.73 5.82
AGc 6.34 6.34 0.073 6.20 6.27 6.41 6.49
AGRg1 R -10.46 -10.46 0.12 -10.71 -10.58 -10.36 -10.25
AGix-1.x -10.16 -10.17 0.12 -10.39 -10.29 -10.05 -9.94
AGR-1x -9.42 -9.42 0.11 -9.64 -9.52 -9.33 -9.22
AGx-1 R -10.82 -10.83 0.12 -11.07 -10.95 -10.72 -10.59
mg 0.71 0.708 0.0071 0.69 0.70 0.71 0.72
myx 0.97 0.98 0.021 0.93 0.95 0.10 1.02

a AG values in kcal mol-'; m-values in kcal mol-' M denaturant-'. ® Values from 1000 bootstrap
iterations. ¢Cl, confidence intervals.
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Table 3. Bootstrap parameter correlation coefficients for Model 1 2

Parameters AGy AGRg AGc AGg.1 R m;
AGN 1 0.941 0.949 -0.967 0.826
AGgr -0.710 1 0.917 -0.947 0.721
AGc -0.485 -0.699 1 -0.981 0.891
AGR1p -0.782 -0.986 -0.766 1 -0.909

Mg -0.753 -0.988 -0.689 -0.989 1

aValues from 1000 bootstrap iterations. Values above the diagonal are Pearson correlation coefficients between
pairs of variables. Values below the diagonal (in red) are Pearson partial correlation coefficients between pairs of
variables, where the effects of the other variables in the table are factored out (see text).
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Appendix I. Correlation between fitted parameters in simple two-state unfolding
analysis

The Ising analysis of repeat protein folding transitions above shows that there are
significant correlations between fitted parameters, based on bootstrap analysis. For
example, in the homopolymer fit using model 1, there are strong direct correlations
between AGr and AGr-1,r (Table 3). Here we will use the Ising programs outlined in
Figure 1 along with melts from a single construct to demonstrate that this type of
correlation is not unique to multiparameter Ising fits, but is also endemic (but perhaps
often overlooked) in fitting of simple two-state unfolding transitions.

To directly investigate correlation using a two-state model, the Ising fitting
procedure outlined in Figure 1 was performed using two melts from just one construct,
NRC. To fit with a two-state model, the Aviv .dat files were renamed R_1.dat and R_2.dat.

As a result, generate_fitting_equations.py builds a single partition function of the form

g=1+Kkp=1+ e—(AGH+mR[x])/F?T

(A.1)
Differentiating with respect to xr and converting the result to an expression for Ycarc
(equations 5 and 7) gives a simple two-state model that can be fitted to the renamed NRC

melts and subjected to two-parameter (AGr and mg) bootstrap analysis (Figure A.1).
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Figure A.1. Parameter correlation in a simple two-state fit. NRC (Figure 1A) was fitted with
a two-state model (deriving from equation A.1) using the Ising programs described here. (A) The
NRC folding transition is well-fitted by the two-state model. (B) Bootstrap analysis (1000
iterations) shows that the two fitted thermodynamic parameters are determined with narrow
confidence intervals, but they are tightly correlated.
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The fits are excellent (Figure A.1A), and bootstrapped AGr and mg-values are determined
with narrow confidence intervals (within 1 to 2 percent). However, these bootstrapped
parameters are very strongly correlated (Figure A.1B): the correlation coefficient between
AGRr and mr is -0.993. Note that because there are just two thermodynamic parameters

in the correlation analysis, partial and total correlation coefficients are equivalent.

Appendix ll. Rank analysis of the thermodynamic parameters in model 2

To accurately determine intrinsic and interfacial free energies from Ising analysis
of repeat protein folding, the constructs being analyzed must present enough structural
variation to accurately determine the model's parameters. For example, model 2 has
eight free energies (four intrinsic folding energies and four interfacial energies). To
accurately determine these parameters, the set of constructs analyzed (the combined
constructs in Figure 1A and B for the analysis described here) must provide uncorrelated
variations in structural features that determine each parameter. For complex models and
large data sets, it is not always obvious that a given data set is adequate to determine
the parameters in a given model.

Here we present a simple method to check whether a data set provides enough
structural variation to adequately constrain the parameters for a specific model. Since
the folding free energy for each construct is expressed as a sum of Ising parameters, the
compatibility of a thermodynamic model can be tested by evaluating the set of linear free
energy equations defined by the model for each of the constructs being analyzed (Aksel
and Barrick, 2009). The constructs analyzed using model 2 define 15 linear free energy
equations (Figure A.2). If the system of equations has an empty null space, then the
system of equations has a unique solution. An easy way to test whether the null space
of a system of equations is empty is to compute the matrix rank. If the rank of a coefficient
matrix is equal to the number of columns in the matrix, the null space is empty and a
unigque solution to the system of equations exists. The generate_fitting_equations
program performs this rank analysis, and reports the rank (and its
sufficiency/insufficiency) during run time. In Figure A.2, which gives the free energy

equations for the constructs used for Ising analysis with model 2 in matrix form, the
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coefficient matrix has a full column rank of 8. Thus, this set of constructs adequately

defines the unknown parameters in model 2.

nee [T 11012000 AGpge
wve.c [ 12013000 AGpgc
v [IEIRININ 13014000 |- L | AGuac
v [N 12002000 AGy AGis,
ve, (I 13003000 AGy AGp,
v R 1400 4000 AGy AGyp,
re [ 02012000 AG, AGre
re (NI 03013000 N N
e I | 0 401400 0 || 20w N
e [T 101100 1 1 AGy_ix AGryc
weoce [T 1111101 1 MG ix AGuysxc
NXRCD]]] 111110 1 1 AGpnxae
we [T 10210111 |[%% | | AGue
weoc [T 11101010 AGiyay
xeo [0 0111100 1 AGyge

Figure A.2. A matrix representation of the equations for repeat protein stability with the
Ising model. The constructs that are used to fit the parameters from model 2 are shown on
the left. These constructs define a set of 15 linear equations in which the free energies of the
fully folded state relative to the unfolded state (the vector on the right-hand side) can be
represented as a sum of intrinsic and interfacial free energies (the 8 by 1 vector on the left-
hand side), weighted by the number of times each term is represented in a given construct (the
8 by 15 coefficient matrix). To have a unique solution, each column in the coefficient matrix
must be independent of the others, that is, the matrix must have full column rank (eight in the
example here).

In contrast, a model that treats interfaces between X-repeats and capping repeats
as unique (with terms AGnx and AGxc) cannot be uniquely fitted by the data set in Figure
A.2. The corresponding coefficient matrix has ten columns, but the rank remains eight.
Although the Ising fitter converges on a least-squares solution for the ten-repeat model,
the fitted parameter values differ significantly from values from simpler models, and the
confidence intervals on many of the parameters are extremely broad. Such cases require
either simplification of the model (to model 2, for example), or in favorable cases, inclusion

of additional constructs that provide the missing structural variation.
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