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Abstract 

 A collection of programs is presented to analyze the thermodynamics of folding of 

linear repeat proteins using a 1D Ising model to determine intrinsic folding and interfacial 

coupling free energies.  Expressions for folding transitions are generated for a series of 

constructs with different repeat numbers and are globally fitted to transitions for these 

constructs.  These programs are designed to analyze Ising parameters for capped 

homopolymeric consensus repeat constructs as well as heteropolymeric constructs that 

contain point substitutions, providing a rigorous framework for analysis of the effects of 

mutation on intrinsic and directional (i.e., N- versus C-terminal) interfacial coupling free-

energies.  A bootstrap analysis is provided to estimate parameter uncertainty as well as 

correlations among fitted parameters.  Rigorous statistical analysis is essential for 

interpreting fits using the complex models required for Ising analysis of repeat proteins, 

especially heteropolymeric repeat proteins.  Programs described here are available at 

https://github.com/barricklab-at-jhu/Ising_programs. 
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1.  INTRODUCTION 

 One of the goals of protein folding studies is to quantify the contributions of specific 

structural features within the native state to the overall free energy of folding.  As a result 

of the high level of cooperativity in protein folding, the relative contributions of such 

structural features cannot easily be determined because they are hidden in an all-or-none, 

or "two-state" transition.  Though two-state behavior makes overall protein folding 

energetics easy to quantify, it prevents an energetic dissection of the whole into its parts. 

 Over the last 15 years, a class of proteins with rough translational symmetry, 

termed “linear repeat proteins”, has been recognized as having an architecture that 

permits quantification of local stabilities, long-range coupling energies, and cooperativity 

(Mello and Barrick, 2004; Kajander et al., 2005; Wetzel et al., 2008; Aksel et al., 2011; 

Marold et al., 2015; Geiger-Schuller and Barrick, 2016). Much like the helix-coil transitions 

of simple polypeptides, the unfolding of linear repeat proteins can be analyzed using a 

one-dimensional Ising model, where the overall folding free energy can be broken down 

into intrinsic folding energies of individual repeats (DGi) and coupling energies between 

folded nearest-neighbor repeats (DGi-1,i). 

 To quantify cooperativity in linear repeat proteins, a series of equilibrium unfolding 

transitions (often from chemical denaturation) are obtained for proteins containing 

different numbers of repeats, and the transitions are globally fitted using a model that 

relates the extent of folding to DGi and DGi-1,i.  Varying the number of repeats is essential 

to resolve the values of DGi and DGi-1,i (Aksel and Barrick, 2009).  Although this analysis 

is simplest when applied to arrays with identical repeat sequence, solubility 

considerations usually require sequence modification to one or both terminal repeats 

(Figure 1A).  The effects of these terminal modifications on stability need to be accounted 

for by including intrinsic folding energy parameters for the substituted terminal repeat 

(DGN and DGC). 

In addition, by combining point mutation and length variation, Ising analysis of 

linear repeat proteins can be extended to analyze the effects of sequence substitutions 

on the underlying parameters (Figure 1B).  Although these sequence perturbations 

increase the complexity of the fitting model, Ising analysis of constructs containing 
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sequence substitutions along with the capped homopolymer constructs in Figure 1A 

allows the energetics of specific structural features to be resolved into intrinsic and 

interfacial stabilities (Aksel et al., 2011; Cortajarena et al., 2011). 

 

 
Figure 1.  Schematic of a series of tandem repeat constructs for Ising analysis.  Each repeat 
is indicated by a rectangle. (A) A capped homopolymeric series.  Identical repeats (R) are colored 
green; to maintain solubility, these repeats are flanked on the N- or C-terminus (or both) by polar 
capping repeats (N, blue and C, red, respectively).  (B) A capped heteropolymeric series, in which 
repeats harboring a sequence substitution (X, yellow) are combined with R, N, and C repeats.  

Each repeat has an associated intrinsic folding energy (DGi), depending on its type (N, R, X, or 

C).  Folded repeats couple with their neighbors through an interaction energy (DGi-1,i) that is 
assumed to the same for NR, RR, and RC interfaces.  The equations on the right give the free 
energy difference between the fully folded and fully unfolded states as a sum of these intrinsic 
and interfacial terms.  Global Ising analysis of the series in (A) allows the N, R, and C intrinsic 
and interfacial parameters to be determined.  By combining the series in (A) and (B), the effects 
of mutation (X) on Ising parameters can be determined (see Table 1). 

 

 Here we present a collection of programs that perform 1D-Ising analysis on repeat 

protein arrays.  The programs return fitted parameter values for DGi and DGi-1,i, and their 

denaturant dependences.  In addition, bootstrap analysis (Efron, 1979; Johnson, 2008) 
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is used to determine confidence intervals for each parameter and their correlations with 

each other.  We use these programs to analyze a series of unfolding transitions of 

homopolymeric repeat arrays with modified caps, and to analyze a larger data set that 

includes point substitutions in internal repeats.  Analysis of point substitutions allows the 

energetics associated with atomic-level structural features to be resolved into intrinsic and 

coupling energies.  Moreover, by creating asymmetric interfaces, the coupling 

contributions of these structural features can be apportioned into the N- (i-1, i) and C-

terminal (i, i+1) interfaces.  This suite of programs, which is available on github 

(https://github.com/barricklab-at-jhu/Ising_programs) as a set of python programs and 

Jupyter notebooks, significantly extends an earlier analysis suite of programs (Lowe et 

al., 2018) by providing analysis of mutational data, bootstrapped confidence intervals, 

and full and partial parameter correlation analysis. 

 

2.  REPRESENTATION OF FOLDING TRANSITIONS OF REPEAT 

PROTEINS USING AN ISING MODEL 

To determine DGi and DGi, i-1 from Ising analysis, equilibrium folding transitions 

(colloquially, "melts") need to be acquired for a series of constructs of varying repeat 

number (e.g., Figure 1).  These melts are most easily obtained using chemical 

denaturation with urea or guanidine hydrochloride.  Although thermal unfolding provides 

access to important quantities such as enthalpy and entropy, thermal denaturation is 

much less likely to be reversible than chemical denaturation, preventing the determination 

of true equilibrium thermodynamic parameters.  Folding is often monitored by circular 

dichroism (CD) spectroscopy, which is well suited for a-helical repeats.  Other 

spectroscopic signals, such as intrinsic tryptophan fluorescence, may also be suitable for 

monitoring unfolding.  Typically, multiple melts are measured for each type of construct.  

The resulting data set, which contains M melts for all constructs, is globally fitted to 

estimate Ising parameters using the equations below. 
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2.1  A matrix approach to computing partition functions for linear 

repeat proteins 

 Unlike equilibrium two-state models for protein folding, the Ising model includes 

intermediate states where some repeats are folded and others are unfolded.  Analysis of 

unfolding transitions using this model requires an expression for folding that includes all 

 conformations (where  is the number of repeats in a particular construct).  Such an 

expression can be obtained from a partition function in which folding is represented at the 

level of individual repeats using two-by-two correlation matrices (W).  For a general 

heteropolymer with  repeats, 

 

      (1) 

 

where 

    (2) 

 

The top and bottom rows correspond to repeat i-1 being folded and unfolded.  The left 

and right columns correspond to repeat i being folded and unfolded. The quantities ki and 

ti-1, i are equilibrium constants for intrinsic folding of repeat i, and for interface formation 

between repeats i-1 and i.  The n and c terms in equation 1 are vectors that convert the 

W matrix product (itself a two-by-two matrix) into a scalar: 
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The zero in equation 3A eliminates terms that include a folded ghost repeat1 at position 0 

(corresponding to the top row of the matrix product in equation 1). 

 

2.2  Simplification of the partition function for capped homopolymeric 

repeat proteins 

The product of the Wi matrices can be simplified considerably if repeats are 

identical.  For constructs with  identical internal R repeats and terminal N- and C-

caps (see the capped homopolymeric series, Figure 1A), the partition function can be 

written 

 

     (4) 

 

Although the same number of matrix multiplications are needed to compute the 

homopolymeric and the general partition function (equations 4 and 1, respectively), the 

homopolymeric version involves many fewer free energy terms.  Here we refer to a model 

used to analyze capped homopolymeric repeat proteins as "model 1" (Table 1). Since the 

solubilizing substitutions on the capping repeats are likely to affect the intrinsic free 

energy, separate free energy terms (DGN, DGR, and DGC) are included in the model.  

However, since these solubilizing substitutions are distant from the interfaces with the 

internal R repeats, a single interfacial free energy is used to model all interfaces (NR, RR, 

and RC interfaces), which we will represent as DGR-1,R. 

 

2.3  Modification of the partition function for capped heteropolymeric 

repeat proteins 

For several decades, point substitutions have been used in protein folding studies 

to determine how specific interactions contribute to protein stability (Alber and Matthews, 

1987) and to the kinetics of folding (Matthews and Hurle, 1987; Fersht et al., 1992).  

 
1 As with ghosts, there is no such thing as a zeroth repeat. 

3 2 2

q = n ×WN ×WR
322
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Combining targeted sequence substitutions with Ising analysis of repeat proteins permits 

the effects of structural perturbation on stability to be resolved into intrinsic and interfacial 

free energies.  One way to quantify the effects of point substitution on intrinsic and 

interfacial stability is to prepare and analyze capped homopolymeric sequences with the 

same substitution in each repeat, and compare fitted Ising parameters to those 

determined from unsubstituted repeats.  In this approach, DGR and DGR-1,R values are 

fitted separately for each series using the capped homopolymer partition function 

(equation 4).  Comparing these values reveals the effects of substitution on intrinsic 

folding and interfacial coupling.  This approach was used to determine the effects of 

surface substitution within the helices of consensus TPR arrays (Cortajarena et al., 2011); 

substitutions were found to perturb DGR (although DGR-1,1 was not varied in fits of the 

substituted arrays). 

A more informative approach to quantify the effects of point substitution on Ising 

parameters involves constructing arrays in which unsubstituted and substituted repeats 

are combined in the same constructs (Figure 1B).  In this heteropolymeric variation, the 

partition function contains different W matrices for unsubstituted versus unsubstituted 

repeats (which we will refer to as X and R repeats), which differ in their intrinsic folding 

free energy parameters (DGX and DGR).  Because the heteropolymer approach creates 

asymmetric interfaces (RX, XR, and XX, in addition to RR; see Figure 1B), these W 

matrices are further subdivided depending on the identity (X versus R) of their i-1 repeat, 

which differ in their interfacial coupling energies (DGR-1,X, DGX-1,R, DGX-1,X, and DGR-1,R).  

Although this approach increases the complexity of the model (compare model 2 with 

model 1 in Table 1), additional structural information is accessible using this approach.  

Specifically, comparing DGR-1,X and DGX-1,R values to DGR-1,R resolves whether the 

substitution in the X repeat at position i affects the stability of the i-1 interface or the i+1 

interface.  Moreover, comparing DGX-1,X with the sum of DGR-1,X and DGX-1,R provides a 

measure of thermodynamic coupling between adjacent interfaces. 
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2.4.  Using the partition function to model denaturant-induced 

unfolding transitions 

Unfolding transitions can be modeled using the fraction of repeats that are folded 

as a function of denaturant concentration.  The fraction of repeats that are folded (ff = 

nf/(nf + nu)) can be calculated by partial differentiation of the partition function with respect 

to intrinsic equilibrium constants of each type.  For model 1 (Table 1), 

 

    (5) 

 

For model 2, equation 5 contains an additional partial derivative (with respect to kx).  

Denaturant dependencies are typically built into the intrinsic (ki) but not the interfacial (ti, 

i-1) terms,2 assuming a linear dependence of free energy on denaturant concentration,  

 

    (6) 

 

where [x] is the molar denaturant concentration, and DGi,H2O and mi are constants 

determined from the fit.  The H2O subscript associated with the free energy on the right-

hand side of equation 6, which indicates an extrapolated free energy in the absence of 

denaturant (Greene and Pace, 1974), will be omitted below for brevity.  For analysis of 

heteropolymeric repeat arrays, a denaturant dependence for both types of repeats can 

be treated separately (mR and mX; model 2). 

Using ff, the observed signal for each of the M melts can be calculated as a 

population-weighted average: 

 

 
2 In principle, denaturant dependence of the interfaces could be included by introducing an interfacial m-
value through an equation analogous to (6), although in practice, mi and mi-1,i are strongly coupled. 
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     (7) 

 

where  and  are spectroscopic signals of the fully folded and fully unfolded 

states (see equation 9 below) for the kth of M melts3.  Note that equation 7 assumes equal 

spectroscopic contributions of all repeats, which is likely to be the case for a signal such 

as CD, which measures secondary structure in each repeat.  Equation 7 can be modified 

to account for site-specific signals such as tryptophan fluorescence (see Aksel and 

Barrick, 2014). 

 

3.  PROGRAMS FOR ISING ANALYSIS OF FOLDING TRANSITIONS OF 

REPEAT PROTEINS 

The overall workflow for our 1D-Ising analysis programs is shown in Figure 2A.  

Analysis is performed using three sequential python programs: (1) a program that 

converts data files to files containing numpy arrays, (2) a program that generates 

expressions for partition functions (equations 1-4) and fractional folding (equation 5) for 

each construct, and (3) a program that fits the converted data from the first program with 

a normalized expression based on fractional folding expressions generated from the 

second program.  The third program also plots fitted data, performs bootstrap analysis, 

and analyzes parameter correlation.  Each program is available on github (barricklab-at-

jhu/Ising_programs) as a .py file that can be run directly in a terminal command line or in 

an IDE such as Anaconda (2016).  In addition, the programs are combined in an 

interactive python notebook (.ipynb; Perez and Granger, 2007) that can be run in Jupyter 

(Randles et al., 2017). 

 

 
3 In subsequent expressions, it will be assumed that the kth melt belongs to the set of M total melts, e.g., 

. 

Ycalc , k*M = ffYn, k*M + (12 ff )Yd , k*M

Yn, k*M Yd , k*M

Ycalc , k*M ³Ycalc , k
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Figure 2.  Flow-chart for 1D-Ising analysis of tandem-repeat unfolding transitions. Here, 

analysis of a capped homopolymeric series with three .py programs is illustrated.  (A) Python 

programs are shown in white boxes along with required control parameters, input and output files 

are shown in grey boxes.  (B) The format of input and output files.  The first program 

(data_preprocessing_Aviv.py) converts data files to files containing numpy arrays and generates 

outputs lists of constructs and melts.  The second program (generate_fitting_equations.py) uses 

the list of constructs to generate and output a dictionary of expressions for fraction folded 

(equation 5) for each construct.  The third program (ising_fitter.py) uses these fraction-folded 

expressions, along with the melt and construct lists, to fit the expressions to the melt.npy data 

using nonlinear least squares.  ising_fitter.py outputs fitted parameters to a csv file, as well as 

plots of raw and transformed data with fitted curves (see Figure 3).  Following the fit, the user can 

run BI iterations of bootstrap analysis, which returns parameter values for each bootstrap iteration, 

statistics for bootstrap parameter distributions, a correlation matrix for bootstraped parameters, 

and plots of bootstrap histograms and parameter correlation (see Figure 4).  Alternatively, all three 

programs can be run from a single combined Jupyter notebook. 

 

data_conversion_Aviv.py

Specify project name (e.g., cANK)

cANK_constructs.json

generate_fitting_eqns.py

Specify project 

cANK_frac_folded_dict.json

ising_fitter.py

Specify project, number bootstrap iterations (BI) 

cANK_fitted_Ising_params.csv

cANK_bootstrap_params.csv

cANK_plot_normalized_by_melt.png

cANK_plot_normalized_by_construct.png

cANK_plot_frac_folded_by_melt.png

cANK_plot_frac_folded_by_construct.png

If BI > 0 

cANK_melts.json

N_R_C_1.dat
N_R_C_2.dat
…
R_R_R_R_C_2.dat

N_R_C_1.npy

N_R_C_2.npy
…
R_R_R_R_C_2.npy

A

¥

data_conversion_csv.py

Specify project name (e.g., cANK)

data_file.csv

cANK_constructs.json

cANK_frac_folded_dict.json cANK_fitted_Ising_params.csv

cANK_bootstrap_params.csv

If BI > 0 

cANK_melts.json

["N_R_C", "N_R_R_C", ... , ”R_R_R_R_C"]

["N_R_C_1", "N_R_C_2 ", ... , ”R_R_R_R_C_2"]

N_R_C_1.npy
N_R_C_2.npy
…
R_R_R_R_C_2.npy

{    ‘N_R_C_frac_folded’:   'NRC eqn',

‘N_R_R_C_frac_folded’:  'NRRC eqn’,

...

‘R_R_R_R_C_frac_folded': ‘RRRRC eqn'}

dGN, 5.45

dGi, 4.57

dGC, 7.05

dGi-1,i,  -11.63

mi, -0.78

Chi**2, 0.0811

RedChi,    0.000192

[[0.000, 1.000,   ‘R_R_R_R_C’,  18],

[0.338, 0.997,   ‘R_R_R_R_C’,  18],

...

[5.313, 0.000,   ‘R_R_R_R_C’,  18]]

[[0.000, 1.000,   'N_R_C',   1],

[0.313, 0.998,   'N_R_C',   1],

...

[6.200, 0.001,   'N_R_C',   1]]

[[0.000, 1.000,   'N_R_C',   2],

[0.313, 0.998,   'N_R_C',   2],

...

[6.200, 0.001,   'N_R_C',   2]]

...

Denat n_sig construct melt

BI dGN dGi dGC dGi,i-1  mi chi**2    redchi**2

1     5.40   4.55   7.00  -11.57    0.776   0.05440   0.0001289

2 5.49   4.61   7.12  -11.73    0.786   0.06354   0.0001506

... 

1000  5.39   4.55   6.99  -11.56    0.774   0.06355   0.0001506

B cANK_data.csv

0.000, 1.000,    N_R_C,    1

0.313, 0.998,    N_R_C,    1

...

5.313, 0.000,   ‘R_R_R_R_C’, 18

Denat n_sig construct melt

cANK_fitted_baseline_params.csv

cANK_bootstrap_stats.csv

cANK_bootstrap_corr_coefs.csv

cANK_bootstrap_corr_plots.pdf

Param     mean    median  stdev 2.5%CI  16.6%CI 83.7%CI 97.5%CI

dGN 5.404   5.405   0.0623   5.280   5.344   5.465   5.524

dGR 4.544   4.546   0.0598   4.428   4.483   4.601   4.657

dGC 7.014   7.013   0.0745   6.867   6.943   7.088   7.157

dGi,i-1 -11.581 -11.581   0.1210 -11.814 -11.701 -11.464 -11.338

mi        0.778   0.778   0.0073   0.764   0.773   0.785   0.791

cANK_bootstrap_stats.csv

cANK_bootstrap_corr_coefs.csv

dGN dGR dGC dGi,i-1   mi

dGN 1.0      0.941    0.949   -0.967     0.826

dGR 0.940    1.0      0.917   -0.944     0.721

dGC 0.949    0.917    1.0     -0.981     0.891

dGi,i-1 -0.967   -0.944   -0.981    1.0      -0.909

mi       0.826    0.721    0.890   -0.907     1.0

cANK_data.csv
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3.1 Preprocessing data: data_preprocessing.py 

The data preprocessing program generates a series of numpy arrays for each of 

the M melts and saves each to an npy file.  In the process, this program writes out a list 

of constructs and a list of melts, which are used by the subsequent programs.  To help 

identify output files, a “project” name should be specified in the data preprocessing 

program.  This project name is used to name output files.  It is convenient to use the name 

of the series to which the repeat constructs belong (such as “cANK” in the example in 

Figure 2). 

There are two programs for data preprocessing that can be used for different types 

of input data.  data_preprocessing_csv.py takes data in .csv format, which often requires 

some manual pre-processing, whereas data_preprocessing_AVIV.py takes input data in 

.dat format generated by Aviv spectrometers (the format of most of our denaturation data).  

In addition, data_preprocessing_AVIV.py outputs a single data csv file containing all 

melts, which can be combined with other csv data sets. 

Input data files should be placed in the same folder as the jupyter notebook or the 

preprossessing program (and subsequent programs).  For Aviv data files, each unfolding 

transition is in a separate file identified by the .dat extension.  The root of each file name 

should give the structure of the repeat array for that melt, followed by an integer used to 

distinguish multiple melts of the same construct.  For example, N_R_R_C_1.dat is the 

“first” melt for the construct NR2C (two internal R repeats flanked by N- and a C- capping 

repeats; Figure 1A).  Likewise, R_X_R_C_2.dat is the “second” melt for the construct 

RXRC.  For unfolding transitions in other formats, melts should be manually combined 

into a single .csv file containing four columns.  The first column contains the denaturant 

concentrations for each melt, the second column contains spectroscopic values, the third 

column gives the construct in the format described above (e.g., N_R_R_C), and the fourth 

column gives an ID number identifying the data set, ranging from 1 to M (Figure 2B). 

In the conversion process, data are normalized such that for each of the M melts 

the point with the largest signal intensity4 in each melt (Ymax, k) is set to one, and the point 

 
4 For CD measurements in the far-UV, this is typically the largest negative value. 
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with smallest intensity (Ymin, k) is set to zero.  The other data points in the kth melt are 

scaled to these values: 

 

     (8) 

 

This normalization ensures that each melt has a similar influence in the fit (assuming each 

melt has the same number of points), which is important in cases where different melts 

have very different Y values.  One potential pitfall is that if the starting Y values vary 

significantly from melt to melt, this scaling may produce significant differences in the 

absolute uncertainties in the normalized Y values of different melts.  Such differences in 

uncertainties should be accounted for using weighting terms in the fitting program. 

 

3.2.  Generating fitting equations: generate_fitting_equations.py 

Using the construct list generated by the data preprocessing program, the second 

program (generate_fitting_equations.py) builds a dictionary of partition functions 

(equation 4).  From these partition functions, a dictionary of fraction folded expressions 

(equations 5 and 7) is built using the python SymPy module (which enables symbolic 

math manipulations, Meurer et al., 2017).  A final and very important step in generating 

fraction folded expressions is the use of the SymPy command “simplify”, which 

significantly shortens the resulting expressions.  For example, the simplify command 

reduces the expression for the fraction of folded NR3C from 467 to 227 characters.  This 

reduction provides a significant speed-up during nonlinear least squares, which is 

especially important for bootstrap analysis (requiring hundreds to thousands of nonlinear-

least squares optimizations).  The dictionary of fraction folded expressions is output as a 

.json file for nonlinear least-squares fitting in the third program.  Another feature built into 

generate_fitting_equations.py is a calculation of the rank of the coefficient matrix, which 

is useful evaluating whether the series of constructs being analyzed provides adequate 

constraints to fit the thermodynamic parameters (see Appendix 2).  Results from the rank 

analysis are outputted to the screen, alerting the user to potential problems with the fit.  

Ynorm, j  =
Ymax, k 2Yobs , j

Ymax, k 2Ymin, k
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3.3.  Fitting with an Ising model: ising_fitter.py 

Using the converted data, construct list, and melt list generated by the data 

preprocessing program along with the fitting equations generated by the fitting equation 

program, the third program (ising_fitter.py) globally fits all of the folding transitions using 

nonlinear least-squares, by minimizing the sum of the squares of the residuals between 

normalized experimental Ynorm, j values from each of the M melts (equation 8) and the 

calculated values Ycalc,k (equations 5 and 7): 

 

 (10) 

 

The terms in parentheses are the parameters to be optimized; in equation 10, they are 

those of model 1 (Table 1).  The outer sum in equation 10 is over each of the M melts, 

and the inner sum is over each of the nk denaturant concentrations in each melt.  The fit 

is performed with the python lmfit module (Newville et al., 2019), which provides a number 

of useful fitting options including setting bounds for adjustable parameters. 

The parameters that are optimized in equation 10 include global thermodynamic 

parameters, which apply to all melts and all constructs,5 and local baseline parameters, 

which apply individually to each melt (Table 1).  For model 1, the thermodynamic 

parameters include intrinsic free energies for the N, internal R, and C repeats ( , 

, and ), an interaction free energy between adjacent repeats ( ), and a 

denaturant dependence for each repeat (mR, eq 5).  The local parameters model a total 

of 2M baselines (a native and denatured baseline for each melt; Yn, k  and Yd, k in equation 

7).  Each baseline is assumed to vary linearly with denaturant concentration; thus, each 

baseline requires two locally fitted parameters: 

 

 
5 An exception is the intrinsic free energies of folding of the capping repeats (  and ), which 

apply to all repeats that contain N- and C-terminal caps. 

SSR = Ynorm, j , k 2Ycalc , k [x ] j ;  �GN , �GR , �GC , �GR21,R , mR , Yn, k , Yd , k( ){ }
2

j =1

nk

3
k =1

M  melts

3

�GN �GR

�GC �GR21,R

�GN �GC
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     (11A) 

     (11B) 

 

As is typical of nonlinear least-squares optimizations, initial guesses must be 

supplied to begin the search for optimal parameters.  Finding satisfactory initial guesses 

for the thermodynamic parameters may require some care so that unfolding midpoints 

and slopes are reasonably approximated at the start of the search.  Initial guesses for the 

baseline parameters are easily determined due to the normalization provided by the data 

preprocessing program: fitted values of an, k and ad, k should be close to one and zero, 

respectively, and baseline slopes are often quite similar for all normalized melts.  Thus, 

guesses for the 4m baseline parameters can usually be provided with just four parameters 

(an, bn, ad, and bd). 

 From these initial guesses, lmfit uses the Marquardt-Levenberg algorithm to 

optimize the local and global parameters.  The parameter set that minimizes the sum of 

the square of the residuals is then returned to the user as are plots of fitted data in various 

formats.  Fitted thermodynamic and baseline parameters are also written to csv files, as 

are plots of data and fits (Figure 2). 

 

3.4. Bootstrap analysis 

To estimate uncertainties on fitted parameters and to explore parameter 

correlations, bootstrap analysis can be performed after the data have been fit.  Bootstrap 

analysis is a resampling method in which sets of synthetic, or "bootstrapped", data are 

generated with errors derived from the original data set (Efron, 1979; Johnson, 2008).  

Here we apply the bootstrap to the residuals of the fit, generating bootstrapped data sets 

by (1) using the best fitted parameters to estimate "true" values for each melt at each 

measured denaturant concentration (the  values in equation 10, using best-fitted 

parameters), (2) calculating residuals based on these  values (the expression in 

Yn, k = an, k +bn, k x[ ]

Yd , k = ad , k +bd , k x[ ]

Ycalc , j , k

Ycalc , j , k
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curly braces in equation 10), and (3) adding randomly selected residuals6 from step 2 to 

the true  values.  Assuming the fitted Ising model provides a good description of 

the measured  values (specifically, that the  provides an good estimate of 

the error-free value of the measured Y value at denaturant concentration j, melt k, and 

that the errors in  are independent of j and k), these bootstrap data sets are an 

adequate approximation of independently determined data sets with the same structure 

as the observed data.  Fitting each bootstrapped data set and comparing fitted parameter 

values provides an estimate of uncertainties for each fitted parameter. 

 One important parameter in bootstrap analysis is the number of bootstrap 

iterations performed.  Ideally, thousands of iterations are performed, although for large 

data sets and complex models, performing thousands of bootstrap iterations may require 

more CPU time than is practical, especially on a desktop computer.7  The length of time 

required for bootstrap analysis can be significantly shortened by using parallel 

processing, either running on multiple cores within a laptop or desktop computer, or 

through shared processors within a cluster.  We have created a version of the 

ising_fitter.py that runs bootstrapping in parallel using the python "multiprocessing" 

module (ising_fitter_parallel.py, also available on github).  To help estimate the amount 

of time a given bootstrap analysis will take, the time required for the fit of the observed 

data is provided by ising_fitter.py, which is a good approximation of the time required for 

a single bootstrap iteration. 

Upon completion of the fit of the data, ising_fitter.py prompts the user for the 

number of bootstrap iterations to perform.  The fitter then performs the specified number 

of fits of bootstrap data, using the same initial guesses that were used for the initial fit.  

Thermodynamic parameters from each bootstrap iteration are written to a 

bootstrap_params.csv file, and a statistical summary of bootstrapped thermodynamic 

 
6 Random selection with replacement. 
7 Factors that increase the amount of bootstrap CPU time are the number of melts, which determines the 
number of fitted baseline parameters), the number of thermodynamic parameters (e.g., compare Mode 2 
with Model 1, Table 1), and the extent of parameter correlation. 

Ycalc , j , k

Ynorm, j , k Ycalc , j , k

Ynorm, j , k
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parameter values, including averages and measures of variation, are written to a 

bootstrap_stats.csv file (Figure 2).8 

 

3.5. Correlation analysis 

One advantage of the bootstrap method is that it permits visual inspection of 

parameter correlation.  Analysis of parameter correlation reveals not only how much 

uncertainty is associated with fitted parameters, but the origins of that uncertainty.  After 

the bootstrap analysis is completed, a grid of correlation plots is generated for all pairs of 

bootstrapped parameters along with a histogram of bootstrap values for each selected 

parameter.  Linear Pearson correlation coefficients are calculated from each plot and are 

written to a bootstrap_corr_coef.csv file.  Comparing the correlation plots for each 

parameter to the histogram of bootstrapped values emphasizes the important point that 

although parameter correlation increases parameter uncertainty, the uncertainty values 

reported from the bootstrap analysis include uncertainties resulting from correlation with 

all other parameters.  Though a particular pair of parameters may show strong correlation, 

as long as the confidence intervals estimated from bootstrap analysis are tolerably low 

(i.e., the parameter histogram is suitably narrow), the correlation can be considered 

acceptable. 

Rather, it is when fitted parameter values have intolerably large confidence 

intervals that correlation analysis is useful.  In such cases, identifying the underlying 

correlations (in particular, pairs of parameters with large partial correlation coefficients; 

see below) that lead to large parameter uncertainties can be used to modify the model to 

avoid high correlation, or to include parameter constraints that are informed by 

independent information. 

Although the correlation analysis described above reveals the extent to which pairs 

of parameters covary, these absolute correlations are sometimes indirect.  Such indirect 

 
8 Although all fitted parameters (thermodynamic and baseline parameters) are optimized in each 
bootstrap iteration, we are typically interested in uncertainties and correlations among the thermodynamic 
parameters.  If the uncertainties in fitted baseline parameters are desired, the bootstrap portion of 
ising_fitter.py can easily be modified to include these values for statistical analysis. 
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correlations result when each variable in a pair is each strongly correlated with a third.  

As a result, the two parameters in the pair show correlation with each other.  To reveal 

the direct correlation among parameter pairs, "partial" correlation coefficients can be 

calculated in which correlation between a pair of parameters is calculated after correlation 

to all the other variable are accounted for.  For a pair of variables X and Y in a data set 

with n+2 total variables, partial correlation coefficients are calculated by performing linear 

regressions separately for each variable X and Y with the n other variables Z = {Z1, Z2, … 

, Zn}, where , determining the residuals for these two regressions (rX,Z and rY,Z), 

and determining the correlation coefficients for the residuals rX,Z and rY,Z (referred to as 

rX,Y•Z): 

     (12) 

 

Using the values of bootstrapped thermodynamic Ising parameters in 

boostrap_params.csv, partial correlation coefficients are calculated using the program 

"partial_correlation.py".  This program uses the Pingouin statistical package (Vallat, 2018) 

to calculate partial correlation coefficients, and outputs them to the file 

bootstrap_partial_corr.csv. 

 

4.  A FIVE-PARAMETER (MODEL 1) FIT OF A CAPPED HOMOPOLYMER 

SERIES 

 Using the fitting programs above, we have performed Ising fitting and bootstrap 

analysis on unfolding transitions of a series of capped homopolymeric consensus ankyrin 

repeat constructs described previously (Aksel and Barrick, 2009).  The constructs in this 

series match those in Figure 1A (model 1, Table 1), ranging in length from three to five 

repeats, and containing either N-terminal caps, C-terminal caps, or both.  For each 

construct, there are two melts (technical replicates), such that each construct has a similar 

impact on the fit.  Likewise, for each capping pattern (NRx, RxC, NRxC), there are three 
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constructs of different length (x=3, 4, 5), so that the two caps have a similar impact on the 

fit.  As a whole, the data set comprises 18 melts with a total of 499 observations.  There 

are five fitted global thermodynamic parameters (DGN, DGR, DGC, DGR-1,R, and mR), and 

72 local baseline parameters (four for each melt).  Thus, there are 499–5–72 = 422 

degrees of freedom (DOF).  The fit took about 5 seconds of wall time on a MacBook Pro 

using a single 2.3 GHz Intel Core i9 processor (although this time depends on values of 

the initial guesses). 

 

 

Figure 3.  Fitted unfolding transitions for capped homopolymeric ankyrin arrays.  Data are 
from (Aksel et al., 2011) and are fitted with model 1 (Table 1).  Plots are direct outputs from the 
plotting section of the fitter.  Data and fitted curves are plotted both as normalized signal (A and 
B, the space in which least-squares minimization is carried out) and as fraction folded (C and D).  
In the fraction folded representation, fitted curves for different melts of the same construct are 
identical (because a single set of thermodynamic parameters is fitted globally), but the data are 
not (due to random errors).  In contrast, fitted curves to normalized data differ, since each curve 
has its own baseline parameters.  Plots (A) and (C) show all fitted melts; plots (B) and (D) show 
one representative melt from each construct. 

 

A B

C D

Guanidine HCl (Molar) Guanidine HCl (Molar)

Guanidine HCl (Molar) Guanidine HCl (Molar)
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 Overall, the fit of model 1 to the data is quite good.  This can be seen in Figure 3A 

and B, where the normalized data and fitted curves are in good agreement.  Inspection 

of normalized curves is important because this is the space in which the fit is performed.  

Highly sloped baselines, which are often a result of inadequate baseline sampling (and 

which often increase uncertainties on fitted thermodynamic parameters), are apparent 

upon inspection of normalized fits.  In contrast, baseline slopes are hidden in fraction 

folded curves (Figure 3C and D).  For melts in which fitted baseline slopes are 

unreasonably high, limits can be imposed on baseline slopes using the lmfit module by 

providing min and max values during initial parameter assignments.9  The quality of the 

fit in Figure 3 is also indicated by the reduced sum of squares of the residuals (RSSR = 

SSR/DOF = 0.00019 in Figure 3A).  Since the normalized unfolding transitions span one 

unit of signal change, this RSSR value reflects an average squared residual of about 

0.019 percent, or an average residual of about 1.4 percent.  This residual is within the 

error resulting from the circular dichroism measurements from which the normalized 

signal is derived. 

 To estimate uncertainties on the fitted thermodynamic parameters, 1000 bootstrap 

iterations were performed.  In absolute terms, uncertainties on the thermodynamic 

parameters are quite small for the fit in Figure 3: 95 percent confidence intervals10 of 

bootstrapped free energies are about 0.2 kcal mol-1 (Table 2).  Bootstrap estimates for all 

thermodynamic parameters have unimodal and roughly normal distributions (diagonal 

histograms, Figure 4), consistent with a single well-defined minimum in SSR over the 

fitted parameter space.  For each parameter, uncertainties can be estimated from the 

standard deviation of bootstrap values or from locating the parameter values that 

separate the low and high tails of the bootstrap distribution at 67 or 95 percent (Table 2).  

An advantage of the latter approach is that no assumptions made on the symmetry of the 

error.  For the five thermodynamic parameters in model 1, the 67 and 95 percent 

 
9 In most cases, a preferable remedy for a poor baseline is to collect a melt with a better baseline.  
However, this is not always possible for marginally or highly stable constructs. 
10 Given that the bootstrap approach misses some sources of error, such as systematic variations among 
different data sets, 95% confidence intervals seem a safer and more appropriate estimate of uncertainties 
in fitted parameters than the more common 67% limits. 
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confidence intervals are within 0.1 percent of the mean plus or minus one or two standard 

deviations, as is expected for normally distributed parameter estimates.  Large 

differences between the standard deviation and confidence intervals may reflect fitting 

pathologies such as one-sided parameter bounds, and multiple least-squares minima in 

parameter space (Johnson, 1983), which should be apparent in bootstrap parameter 

histograms.  Identifying such pathologies is important, since it almost certainly indicates 

that the model is not adequately constrained by the constructs being fitted, and that either 

the model or the data set should be modified. 

 As described above, parameter correlation can be a significant source of 

uncertainties in fitted parameters.  Even for the simplest types of fits, strong correlations 

are common, such as the fitted slope and intercept parameters in linear regression 

against a single independent variable (Johnson, 1983), and the DG° and m-values 

describing simple two-state folding (see Appendix 1).  The bootstrap analysis allows 

correlations between pairs of parameters to be clearly visualized in a scatter plot in which 

each point represents a pair of parameter values from the same bootstrap iteration 

(Figure 4).  Correlations between bootstrap parameter pairs can also be seen in the 

correlation coefficient matrix that is generated by ising_fitter.py (as 

bootstrap_corr_coef.csv, Table 3). 
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Figure 4.  Bootstrap histograms and correlation plots of fitted thermodynamic parameters 

for capped homopolymeric ankyrin arrays.  Capped consensus ankyrin homopolymer data 
from Figure 3 was used along with best-fitted parameters from Model 1 to generate 1000 
bootstrap fits.  The lower diagonal panels show histograms for bootstrapped thermodynamic 
parameters.  The upper triangular panels show correlations among pairs of thermodynamic 
parameters, along with a best-fitted line to bootstrapped pairs. 

 

For the capped homopolymer fit (Figure 3), the strongest correlations are between 

the interfacial free energy (DGR-1,R) and the three intrinsic free energies (DGN, DGR, and 

DGC; Table 3); these correlations are negative (Figure 4).   

This negative correlation between intrinsic and interfacial free energies is expected—an 

increase in DGR-1,R (i.e., a decrease in the interfacial free energy), which would decrease 

midpoints of unfolding transitions, can be compensated by decreasing DGN, DGC, and 

especially DGR (since this term contributes three times as much, on average, to the 

stabilities of the constructs in Figure 1 as DGN and DGC). 

In addition, there appear to be significant positive correlations among DGN, DGR, 

and DGC (Table 3, Figure 4).  These correlations are unexpected—if one intrinsic free 

energy parameter increases, the others would be expected to decrease to maintain the 



 23 

midpoint of the folding transition.  Thus, it seems likely that these apparent correlations 

are indirect—since each intrinsic free energy is negatively correlated with DGR-1,R, each 

may end up positively correlated with the other two.  To test for indirect correlation, we 

calculated partial correlation coefficients among the thermodynamic bootstrap parameter 

values, which reveal the correlation between two parameters when correlations to the 

other parameters are factored out (Table 3, lower triangle).  Based on partial coefficients, 

the negative correlation between DGR-1,R and DGR remains high (  is 

actually more negative than the total correlation coefficient between these two 

parameters; Table 3), but the correlations between DGR-1,R and DGN and DGC are 

decreased.  Moreover, the correlations among the intrinsic free energies (DGN, DGR, and 

DGC) are also decreased, and the signs of the partial correlation coefficients are negative, 

matching expectations. 

Partial correlation analysis reveals a similar indirect correlation between the 

bootstrapped mR-values and the three bootstrapped intrinsic free energy parameters.  

Though the total correlation coefficients of all four free energy bootstrapped parameters 

with mR are large (Figure 4), only DGR-1,R shows the expected negative correlation 

(negative correlation is expected since an increase in mR should increase the stability in 

the absence of denaturant, decreasing DG values; see Appendix I).  The three intrinsic 

free energy parameters show unexpected positive total correlations with mR, with slightly 

larger correlation coefficients for DGN and DGC than for DGR.  The partial correlation 

coefficients for these three parameter pairs ( ) have reversed sign, 

with the strongest negative correlation between mR and DGR, suggesting the positive total 

correlation is indirect.  In contrast, the correlation between mR and DGR,R-1 remains large 

and negative. 

Overall, the picture that emerges is that there is a strong negative direct correlation 

between DGR and DGR-1,R, and also between those two parameters and mR.  DGN and 

DGC have weaker direct negative correlations to these three parameters, and weaker 

correlations to each other.  Again, it is worth pointing out that despite these correlations, 

DGR and DGR-1,R are determined within 0.2 kcal mol-1.  As we have previously described, 
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fitted values of  DGR and DGR-1,R are consistent with a strong positive cooperativity in 

which intrinsically unstable repeats are driven to fold by strongly stabilizing interfaces with 

folded neighbor repeats (Aksel and Barrick, 2014; Aksel et al., 2011). 

 

6.  A TEN-PARAMETER (MODEL 2) FIT OF A CAPPED 

HETEROPOLYMER SERIES 

 To illustrate how the Ising fitting programs perform with a more complex 

heteropolymeric model and to examine the effects of a mutation on intrinsic and interfacial 

stabilities, we performed Ising fitting and bootstrap analysis on folding transitions of a 

series of capped consensus ankyrin repeats in which a conserved threonine from one or 

two R repeats is substituted with a valine at position 7 in the ankyrin TPLH motif (referred 

to here as T7V).  The T7V substitution has previously been shown to destabilize a four-

repeat NXRC construct (where repeat X is an R-type repeat that harbors the point 

substitution) by 2.6 kcal mol-1 using a simple two-state model (Preimesberger et al., 

2015).  By combining the X-substitution series (Figure 1B) with the homopolymeric 

capped constructs analyzed with model 1 above,11 we were able to fit a model for 

heteropolymeric capped repeats containing ten thermodynamic parameters (model 2). 

To accurately determine the intrinsic and interfacial free energies, it is essential 

that the constructs being analyzed provide adequate constraints on these quantities 

during the fit.  For capped homopolymer series, having the sufficient constructs to 

constrain DGN, DGR, DGC, and DGR-1,R is fairly intuitive12, but for capped heteropolymeric 

series, the complexity of the model and the number of thermodynamic parameters can 

obscure this sufficiency.  To check whether or not the intrinsic and interfacial free energy 

parameters of the model are adequately determined by the constructs in the data set, the 

rank of the coefficient matrix defined by the series of constructs is evaluated by 

generate_fitting_equations.py.  If the coefficient matrix has full column rank, the 

 
11 For the combined data set, we included three melts for each of the six heteropolymer constructs in 
Figure 1B, and two melts for each of the nine homopolymer constructs in Figure 1A.  With this 
combination there are an equal number of homopolymer and heteropolymer melts in the fit, giving equal 
weight to each. 
12 Each cap must be removed one at a time, and the length must be varied (see Figure 1A). 
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constructs adequately define the thermodynamic parameters (Appendix 2).  Indeed, the 

combined constructs from Figure 1A and B pass the rank test for the parameters in model 

2 (Table 1), permitting us to determine four intrinsic free energies (DGN, DGR, DGX, and 

DGC) and four interfacial free energies (DGR-1,R, DGX-1,X,DGR-1,X, and DGX-1,R).  As a whole, 

the data set comprises 36 melts with a total of 1057 observations.  In addition to the eight 

global thermodynamic parameters above, there are two m-values that give the denaturant 

dependences of DGR and DGX (mR and mX; equation 6), and 144 baseline parameters.  

Thus, there are 1057–10–144 = 903 degrees of freedom.  The fit took about 10 seconds 

of wall-time, about twice that for model 1, which involves half the number of melts. 

Overall, the heteropolymeric capped repeat data set is reasonably well-fitted by 

model 2 (Figure S1).  Fitted values for thermodynamic parameters shared between 

models 1 and 2 are within about 0.5 kcal mol-1 for intrinsic folding energies and 1 kcal 

mol-1 for the interfacial energy.  The reduced sum of squares of the residuals is 0.00038, 

corresponding to an average residual of about 2 percent per point.  Uncertainties in fitted 

thermodynamic parameters for the model 2 fit are quite similar to those from model 1, 

both for parameters that are shared by the two models and for the parameters that are 

unique to model 2 (Table 2).  An exception is mX, which has about three times the 

uncertainty as mR.  This is not unexpected since there are significantly fewer repeats in 

the fitted data set that have an mX-denaturant dependence (the X repeats) than repeats 

that have an mR dependences (N, R, and C repeats). 

Although model 2 contains more fitted parameters than model 1, correlations 

among fitted bootstrap parameters seem to be somewhat reduced.  There are modest 

decreases in both total and partial correlation coefficients for most of the parameter pairs 

that are shared by both models (compare Tables S1 and 3).  This difference is borne out 

visually in a comparison of the two sets of correlation plots (Figures S2, 4).  The weakest 

correlations involve the two parameters in model 2 that are least well determined: mx and 

in particular, DGX.  This relationship between parameter correlation and uncertainty 

underscores the point made above that strong parameter correlation is not a direct proxy 

for high parameter uncertainty.  Rather, at least in the examples shown here, high 
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parameter uncertainty appears to mask correlation, whereas low parameter uncertainty 

reveals correlation. 

 

Figure 5.  Threonine 7, histidine 10 and their hydrogen bonding patterns within and 

between ankyrin repeats. (A) Hydrogen bonding pattern in a consensus ankyrin array from 
Mosavi et al. (1N0R.pdb, Mosavi et al., 2002); note that the histidine ring has been flipped by 180° 

around c2 to match the bonding pattern determined by Preimesberger et al., 2015).  Threonine at 

position 7 (yellow) forms a bifurcated hydrogen bond to the Nd1 of histidine 10 via its main-chain 
NH and side-chain OH within the same repeat.  In turn, histidine 10 hydrogen bonds to a main-
chain CO in the C-terminal neighboring repeat.  (B) Thermodynamic cycle involving changes to 

interfacial interaction energies ( ) in response to T7V substitution in adjacent repeats.  For 

each arrow, the DDG value is the difference between the interaction energies in the substituted 
(arrowhead) and unsubstituted interfaces (arrowtail).  For example, for the top arrow, 

.  The difference between DDG values on the top and bottom (and 

equivalently, left and right) arrows gives the interaction energy between the two substitutions, 
here -0.4 kcal mol-1. 

 

The additional parameters in model 2 provide a quantitative measure of how the 

point-substitution affects intrinsic and interfacial stability.  Comparing DGX with DGR 

reveals that intrinsic stability is decreased by 1.6 kcal mol-1.  This is consistent with the 

loss of an internal hydrogen bond between the threonine (Og)H and the i+3 histidine side-

chain Nd1 (Preimesberger et al., 2015).  This hydrogen bond is part of a hydrogen bond 

network that includes a second, bifurcated hydrogen bond from the i+3 histidine Nd1 to 

the threonine main-chain (N)H, and from the i+3 histidine Ne2 (N)H to the main-chain C=O 

from the residue preceding the threonine in the next repeat (asparagine i+32; Figure 5A). 
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��G = �GX 21,R 2 �GR21,R



 27 

 Comparing DGX-1,X with DGR-1,R provides one measure of how interfacial stability is 

affected by point substitution.  This comparison indicates that the interface may be weakly 

destabilized by valine substitution in adjacent repeats by 0.3 kcal mol-1, although this 

value is only slightly beyond the 95% confidence intervals (0.12 kcal mol-1 for each free 

energy).  However, by combining substitutions to R-repeats (X) with unsubstituted N, R, 

and C repeats as in Figure 1B, we can also determine interfacial free energies between 

an N-terminal R repeat and an adjacent X repeat (DGR-1,X), and an N-terminal X repeat 

and an adjacent R repeat (DGX-1,R).  In other words, we can compare the energetic effects 

of single point substitution in the N- (i, i-1) and C-terminal (i, i+1) directions.  Comparison 

of DGR-1,X and DGX-1,R with DGR-1,R shows that the N-terminal interface is destabilized by 

valine substitution by +1.0 kcal mol-1, but that this stabilization is partly compensated by 

a stabilization of the C-terminal interface by -0.4 kcal mol-1 (Figure 5A).  The modest 

stabilization of the C-terminal interface may reflect a re-orientation of the i+3 histidine 

side-chain in the substituted repeat to optimize the two remaining hydrogen bonds 

(Preimesberger et al., 2015). 

Finally, the fact that the two interfacial free energy perturbations do not sum to the 

perturbation resulting from a tandem substitution identifies a thermodynamic coupling 

between adjacent repeats.  This coupling can be represented in a thermodynamic cycle 

(Figure 5B).  Although the magnitude of the coupling is moderate (~0.4 kcal mol-1), the 

sign of the coupling favors interfaces with the same residue at repeat position 7 of 

adjacent repeats.  Pairs of threonine residues at repeat position seven result in the most 

stable interface; although pairs of valines at position seven result in a destabilized 

interface, a valine pair is more stable than would be expected based on the interfacial 

energy perturbations from single-repeat substitutions.  In other words, pairs of valines at 

position seven are mutually stabilizing.  This type of long-range sequence coupling should 

serve to reinforce the repetitive nature of ankyrin sequence motif.  The approach 

described here provides a means to identify other positions in the 33-residue ankyrin motif 

that are similarly coupled. 

 

7.  SUMMARY 
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Understanding cooperativity in protein folding, which is determined by the 

distribution of local and long-range stabilities, is likely to have important functional 

consequences in terms of avoiding misfolding and in allosteric functional transitions.  The 

analysis of tandem repeat protein arrays with a 1D Ising model provides a unique 

approach to quantifying cooperativity in terms of local stabilities and long-range coupling 

free energies.  The collection of programs presented here, which are available on github, 

provide a robust platform for data processing, fitting, plotting, and analysis of parameter 

uncertainties and correlations.  Given the complexity of the models, careful inspection of 

fitted parameter uncertainties is an essential part of the analysis.  Models can easily be 

adapted to evaluate the effects of point-substitutions in intrinsic and interfacial energies, 

providing insights into the structural basis of cooperativity. 
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Table 1. Adjustable parameters for capped homopolymer 

and heteropolymer models 

 

Global parameters 

 

Model 1: capped homopolymeric repeat protein 

Parameter Description Number 

DGN,H2O Intrinsic folding energy, repeat N      1 

DGR,H2O Intrinsic folding energy, repeat R      1 

DGC,H2O Intrinsic folding energy, repeat C      1 

DGR-1,R Interfacial coupling energy      1 

mR Intrinsic denaturant dependence      1 

 

Model 2: capped heteropolymeric repeat protein 

Parameter Description Number 

DGN,H2O Intrinsic folding energy, repeat N      1 

DGR,H2O Intrinsic folding energy, repeat R      1 

DGX,H2O Intrinsic folding energy, repeat X      1 

DGC,H2O Intrinsic folding energy, repeat C      1 

DGR-1,R Interfacial coupling energy (R, R)      1 

DGX-1,X Interfacial coupling energy (X, X)      1 

DGR-1,X Interfacial coupling energy (R, X)      1 

DGX-1,R Interfacial coupling energy (X, R)      1 

mR Intrinsic denaturant dependence (R)      1 

mX Intrinsic denaturant dependence (X)      1 

 

Local parameters (both models) 

an,q Native baseline intercept      q 

bn,q Native baseline slope      q 

ad,q Denatured baseline intercept      q 

bd,q Denatured baseline slope      q 

Model 1 total parameters    5+4M 

Model 2 total parameters  10+4M 
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Table 2.  Fitted global thermodynamic parameters and bootstrap statistics 

  Bootstrap statistics b 

Parametera 
Best fit 

value 
Mean 

Standard 

deviation 

lower 95% 

CI c 

lower 67% 

CI c 

upper 67% 

CI c 

upper 95% 

CI c 

 

Model 1 

DGN 5.47 5.41 0.062 5.28 5.34 5.46 5.52 

DGR 4.57 4.54 0.060 4.43 4.48 4.60 4.66 

DGC 7.06 7.01 0.075 6.87 6.94 7.09 7.16 

DGR-1,R -11.63 -11.58 0.12 -11.81 -11.70 -11.46 -11.34 

mR -0.78 -0.78 0.0073 -0.764 -0.773 -0.785 -0.791 

 

Model 2 

DGN 4.89 4.89 0.064 4.77 4.82 4.95 5.01 

DGR 4.08 4.08 0.065 3.96 4.02 4.14 4.22 

DGX 5.64 5.64 0.091 5.46 5.55 5.73 5.82 

DGC 6.34 6.34 0.073 6.20 6.27 6.41 6.49 

DGR-1,R -10.46 -10.46 0.12 -10.71 -10.58 -10.36 -10.25 

DGX-1,X -10.16 -10.17 0.12 -10.39 -10.29 -10.05 -9.94 

DGR-1,X -9.42 -9.42 0.11 -9.64 -9.52 -9.33 -9.22 

DGX-1,R -10.82 -10.83 0.12 -11.07 -10.95 -10.72 -10.59 

mR 0.71 0.708 0.0071 0.69 0.70 0.71 0.72 

mX 0.97 0.98 0.021 0.93 0.95 0.10 1.02 

a DG values in kcal mol-1; m-values in kcal mol-1 M denaturant-1. b Values from 1000 bootstrap 
iterations.  c CI, confidence intervals. 
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Table 3.  Bootstrap parameter correlation coefficients for Model 1 a 

Parameters DGN DGR DGC DGR-1,R mi 

DGN 1 0.941 0.949 -0.967 0.826 

DGR -0.710 1 0.917 -0.947 0.721 

DGC -0.485 -0.699 1 -0.981 0.891 

DGR-1,R -0.782 -0.986 -0.766 1 -0.909 

mR -0.753 -0.988 -0.689 -0.989 1 

a Values from 1000 bootstrap iterations.  Values above the diagonal are Pearson correlation coefficients between 
pairs of variables.  Values below the diagonal (in red) are Pearson partial correlation coefficients between pairs of 
variables, where the effects of the other variables in the table are factored out (see text). 
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Appendix I.  Correlation between fitted parameters in simple two-state unfolding 

analysis 

 The Ising analysis of repeat protein folding transitions above shows that there are 

significant correlations between fitted parameters, based on bootstrap analysis.  For 

example, in the homopolymer fit using model 1, there are strong direct correlations 

between DGR and DGR-1,R (Table 3).  Here we will use the Ising programs outlined in 

Figure 1 along with melts from a single construct to demonstrate that this type of 

correlation is not unique to multiparameter Ising fits, but is also endemic (but perhaps 

often overlooked) in fitting of simple two-state unfolding transitions. 

 To directly investigate correlation using a two-state model, the Ising fitting 

procedure outlined in Figure 1 was performed using two melts from just one construct, 

NRC.  To fit with a two-state model, the Aviv .dat files were renamed R_1.dat and R_2.dat.  

As a result, generate_fitting_equations.py builds a single partition function of the form  

 

   (A.1) 

 

Differentiating with respect to kR and converting the result to an expression for Ycalc 

(equations 5 and 7) gives a simple two-state model that can be fitted to the renamed NRC 

melts and subjected to two-parameter (DGR and mR) bootstrap analysis (Figure A.1). 

 

Figure A.1.  Parameter correlation in a simple two-state fit.  NRC (Figure 1A) was fitted with 
a two-state model (deriving from equation A.1) using the Ising programs described here.  (A) The 
NRC folding transition is well-fitted by the two-state model.  (B) Bootstrap analysis (1000 
iterations) shows that the two fitted thermodynamic parameters are determined with narrow 
confidence intervals, but they are tightly correlated. 

 

q = 1+»R = 1+e
2 �GR +mR [x ]( ) RT

A B



 35 

The fits are excellent (Figure A.1A), and bootstrapped DGR and mR-values are determined 

with narrow confidence intervals (within 1 to 2 percent).  However, these bootstrapped 

parameters are very strongly correlated (Figure A.1B): the correlation coefficient between 

DGR and mR is -0.993.  Note that because there are just two thermodynamic parameters 

in the correlation analysis, partial and total correlation coefficients are equivalent. 

 

Appendix II.  Rank analysis of the thermodynamic parameters in model 2 

 To accurately determine intrinsic and interfacial free energies from Ising analysis 

of repeat protein folding, the constructs being analyzed must present enough structural 

variation to accurately determine the model's parameters.  For example, model 2 has 

eight free energies (four intrinsic folding energies and four interfacial energies).  To 

accurately determine these parameters, the set of constructs analyzed (the combined 

constructs in Figure 1A and B for the analysis described here) must provide uncorrelated 

variations in structural features that determine each parameter.  For complex models and 

large data sets, it is not always obvious that a given data set is adequate to determine 

the parameters in a given model. 

Here we present a simple method to check whether a data set provides enough 

structural variation to adequately constrain the parameters for a specific model.  Since 

the folding free energy for each construct is expressed as a sum of Ising parameters, the 

compatibility of a thermodynamic model can be tested by evaluating the set of linear free 

energy equations defined by the model for each of the constructs being analyzed (Aksel 

and Barrick, 2009).  The constructs analyzed using model 2 define 15 linear free energy 

equations (Figure A.2).  If the system of equations has an empty null space, then the 

system of equations has a unique solution.  An easy way to test whether the null space 

of a system of equations is empty is to compute the matrix rank.  If the rank of a coefficient 

matrix is equal to the number of columns in the matrix, the null space is empty and a 

unique solution to the system of equations exists.  The generate_fitting_equations 

program performs this rank analysis, and reports the rank (and its 

sufficiency/insufficiency) during run time.  In Figure A.2, which gives the free energy 

equations for the constructs used for Ising analysis with model 2 in matrix form, the 
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coefficient matrix has a full column rank of 8.  Thus, this set of constructs adequately 

defines the unknown parameters in model 2. 

 

 

Figure A.2.  A matrix representation of the equations for repeat protein stability with the 

Ising model.  The constructs that are used to fit the parameters from model 2 are shown on 
the left.  These constructs define a set of 15 linear equations in which the free energies of the 
fully folded state relative to the unfolded state (the vector on the right-hand side) can be 
represented as a sum of intrinsic and interfacial free energies (the 8 by 1 vector on the left-
hand side), weighted by the number of times each term is represented in a given construct (the 
8 by 15 coefficient matrix).  To have a unique solution, each column in the coefficient matrix 
must be independent of the others, that is, the matrix must have full column rank (eight in the 
example here). 

 

 In contrast, a model that treats interfaces between X-repeats and capping repeats 

as unique (with terms DGNX and DGXC) cannot be uniquely fitted by the data set in Figure 

A.2.  The corresponding coefficient matrix has ten columns, but the rank remains eight.  

Although the Ising fitter converges on a least-squares solution for the ten-repeat model, 

the fitted parameter values differ significantly from values from simpler models, and the 

confidence intervals on many of the parameters are extremely broad.  Such cases require 

either simplification of the model (to model 2, for example), or in favorable cases, inclusion 

of additional constructs that provide the missing structural variation. 

R2C

NRC

NR3C

NR2C

NR2

NR3

NR4

R3C

R4C

XRC

NXC

NRXC

NRX

NXRC

NX2C

�GNRC

�GNR
2
C

�GNR
3
C

�GNR
2

�GNR
3

�GNR
4

�GR
2
C

�GR
3
C

�GR
4
C

�GNXC

�GNRXC

�GNXRC

�GNX
2
C

�GNRX

�GXRC

£

£

£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£

§

§

§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§

1 1 0 1 2 0 0 0

1 2 0 1 3 0 0 0

1 3 0 1 4 0 0 0

1 2 0 0 2 0 0 0

1 3 0 0 3 0 0 0

1 4 0 0 4 0 0 0

0 2 0 1 2 0 0 0

0 3 0 1 3 0 0 0

0 4 0 1 4 0 0 0

1 0 1 1 0 0 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 0 1 1

1 0 2 1 0 1 1 1

1 1 1 0 1 0 1 0

0 1 1 1 1 0 0 1

£

£

£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£

§

§

§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§

�GN

�GR

�GX

�GC

�GR21,R

�GX 21,X

�GR21,X

�GX 21,R

£

£

£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£

§

§

§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§
§

=


