

1

2

1 Air and surface measurements of SARS-CoV-2 inside a bus 2 during normal operation

3

4 Piero Di Carlo^{1,2*}, Piero Chiacchiaretta³, Bruna Sinjari⁴, Eleonora Aruffo^{1,2}, Liborio Stuppia^{1,2},

5 Vincenzo De Laurenzi^{2,4}, Pamela Di Tomo², Letizia Pelusi², Francesca Potenza², Angelo

6 Veronese², Jacopo Vecchiet^{5,6}, Katia Falasca^{5,6}, Claudio Ucciferri^{5,6}

7

8¹University "G. d'Annunzio" of Chieti-Pescara, Department of Psychological, Health and

9 Territorial Sciences, Chieti - Italy

10²Center for Advanced Studies and Technology-CAST University "G. d'Annunzio" of Chieti-

11 Pescara, Chieti - Italy

12³University "G. d'Annunzio" of Chieti-Pescara, Department of Neuroscience, Imaging and

13 Clinical Sciences, Chieti - Italy

14⁴University "G. d'Annunzio" of Chieti-Pescara, Department of Medical, Oral and

15 Biotechnological Sciences, Chieti – Italy

16⁵University "G. d'Annunzio" of Chieti-Pescara, Department of Medicine and Aging Sciences,

17 Chieti - Italy

18⁶Clinic of Infectious Diseases S.S. Annunziata Hospital, Chieti - Italy

19

20*Corresponding author

21email: piero.dicarlo@unich.it

22

23

24

3

25Abstract

26Transmission pathways of SARS-CoV-2 are through aerosol, droplet and touching infected
27material. Indoor locations are more likely environments for the diffusion of the virus contagion
28among people, but direct detection of SARS-CoV-2 in air or on surfaces is quite sparse, especially
29regarding public transport. In fact, an important demand is to know how and if it is safe to use
30them. To understand the possible spreading of COVID-19 inside a city bus during normal
31operation and the effectiveness of the protective measures adopted for transportation, we analysed
32the air and the surfaces most usually touched by passengers. The measurements were carried out
33across the last week of the lockdown and the first week when gradually all the travel restrictions
34were removed.

35

36

37Introduction

38The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affected over 100
39countries in a matter of weeks, therefore on January 30th the World Health Organization (WHO)
40announced the COVID-19 epidemic as a Public Health Emergency of International Concern [1].
41Italy has been one of the most affected countries with more than 230000 infected people and more
42that 33000 deaths and became the first country in Europe to proceed with a total lockdown (so
43called phase 1, started on 9 March 2020). The government decided to impose strong restrictions in
44the whole Country closing schools, public places (such as, restaurants or cafés) and shops,
45allowing only the basic necessities stores (such as supermarkets and pharmacies) and relative
46activities to remain open [2]. The huge increase number of infected people resulted, on 13 March,
47in more striking measures including the transport rationalization with a strong reduction of public
48transport, maintaining a minimum level of services [3]. A protocol between the Italian Ministry of

4

2

5

6

49Infrastructure and Transport and the Italian Ministry of Health, together with trade organizations
50and trade union representatives, established anti-contagion rules and actions and promoted
51cleaning and disinfection procedures of public transport services to contain the COVID-19
52spreading. Moreover, it was performed with the aim to ensure the safety of workers and travellers
53in the transport and logistics sectors [4]. One of the main measures recommended was the
54recurrent cleaning and disinfection of frequently touched surfaces such as handles and rails
55because of the potential environmental stability of SARS-CoV-2 that, according to some reports,
56could span from up to three hours in the air post-aerosolisation to about 24 hours on cardboard
57and about three days on plastic and stainless steel [5]. Recent studies shown the possible airborne
58transmission of the virus in public places, which could be spread by asymptomatic people [6, 7].
59In addition, the research findings suggest reducing the number of people in the same ambient and
60carry out control actions to limit the pandemic expansion [6]. Therefore, for buses and trains
61sanitation were recommended to be performed with virucidal licensed products, based on sodium
62hypochlorite, or those based on ethanol (at least 70%), after cleaning with a neutral detergent [8].
63In Italy, the end of the lockdown was planned to finish gradually with different dates for the
64reduction of constrains as function of the infection risks of the different activities. Starting on 18
65May 2020, phase 2 began with a Decree of the President of the Council of Ministers [9] that
66included guidelines for public transport establishing general rules, such us: 1) reduction of the
67number of passengers inside the buses, 2) interpersonal distance of one meter, 3) rear door
68boarding in order to protect drivers, 4) only distanced seats permitted, 5) passengers must
69frequently sanitize hands and 6) obligation to wear facial masks [9]. The local governments,
70following the national guidelines from the DPCM [9], established the exact operational rules for
71local public transportation system. In details, the Abruzzo Region (Central Italy), where this study
72was carried out, defined that: 1) the maximum number of passengers on-board buses must not
73exceed 40% of the total seats and 15% of standing places, if provided; 2) standing places must be

7

8

9

74marked with a signal on the ground 3) by 18 May 2020 at least 50% of the services performed
75before the reduction due to COVID-19 is reactivated, reaching the 70% within and not beyond 31
76May 2020 [10].

77Analysis of the air and surfaces in indoor environments are crucial to better understand the SARS-
78CoV-2 spreading and airborne transmission, to better assess the risks for doctors and health-care
79operators [6]. However, these observations are very limited and mostly confined to hospital
80environments [11, 12]. Results of risk models assessing the airborne transmission of the virus in
81different indoor environments such as restaurants, post offices, pharmacies, supermarkets and
82banks, suggest the key role of air ventilation, but simulations of more confined environments like
83those inside city buses, trolleybuses, trams or trains, are missing [13]. For this reason, we
84analysed both the air and samples taken from the surfaces most frequently touched of a city bus,
85to better understand the possible spreading of SARS-CoV-2 and in order to assess the
86effectiveness of the measures defined for the containment of COVID-19 diffusion.

87

88**Materials and methods**

89The study was conducted from 12 to 22 May 2020 in Chieti, a town in the Abruzzo region that is
90the fifth Italian region for mortality due to COVID-19, with an infection fatality rate (deaths /
91cases) of 12.1% [14]. In Abruzzo, as of 28 May 2020, are reported 3237 cases of infected people,
92820 in the Chieti province, which is 0.213% of the total population [15]. In the present study, the
93environmental inside the trolleybus line number 1 of the local transportation systems was
94monitored. This line is the most important of the town in terms of number of passengers, covering
95a route of 20 km with 50 stops that from downtown reaches the University Campus and the Santa
96Annunziata Hospital and then back to downtown.

97The samples of air inside the bus were carried out every day of the two observational weeks,
98excluding weekends, during one shift (5 routes) of the line 1 that started at 12.00 and finished at

10

11

12

9918:30. The bus was operated following the rules established by the DPCM [9] and the DPRC
100[10]. Two microbiological gelatine membrane sample filters of 80 mm diameter were installed:
101one close to the ticket machine, the other on the rear part of the bus (Fig 1). These filters are the
102proper support, to be analysed with the RT-PCR, for the detection of SARS-CoV-2 virus [11]. In
103fact, the microbiological gelatine membrane filters, employed in this study, were tested at the
104Clinic of Infectious Diseases of the S.S. Annunziata Hospital in Chieti to check their performance
105in detecting the virus in air. It has been found, in some cases, that samples collected in an
106isolation room with patients symptomatic to the SARS-CoV-2 were positive to the virus.

107

108**Fig 1 Sketch of the trolleybus where samples were carried out.** On the left there is a schematic
109 of the inside the trolleybus showing the restrictions in terms of seats and standing places, to
110 follow the protocol to reduce the risk of transmission of the COVID-19 virus. On the right, are
111 shown pictures and places of the surfaces where samples were taken and the position of two
112 filters for air analysis. The number of the pictures correspond to the sample points reported in
113 the trolleybus drawing.

114

115A pump system, fed by the trolleybus electrical power supply, ensured an air flow of 24 l/min to
116each filter. All the air samples were carried out during the 6.5 hours daily operation of the bus.
117One air sample, as a control reference, was taken without passengers overnight, for 21 hours, with
118the bus in the hangar.

119Surface samples were carried out with wet swabs on five points on the bus that are those more
120frequently touched by the passengers, according to the experiences of the bus drivers (Fig 1). The
121samples for each observation day and each surface were taken before the beginning of the bus
122shift, to have a reference, and immediately after the end of the shift. Cleaning and sanitation
123inside the bus are carried out daily using sodium hypochlorite 0.1% and ethanol 70%. Once a

13

14

15

124 week the bus is further sanitised with an electric aerosol applicator that delivers for 1 minute,
125 highly oxidizing, non-foaming acid disinfectant, containing 56 g/l of peracetic acid, 12 g/l of
126 hydrogen peroxide and 56 g/l of acetic acid. Moreover, once a week, the entire trolleybus cabin is
127 ozonized for 10 minutes.

128 Surface and air samples were collected and delivered immediately after gathering them to the
129 Microbiology and Molecular Genetics laboratory of the Center for Advanced Studies and
130 Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara to be analyzed through RT-
131 PCR technique. The collected samples (wet swabs and microbiological gelatine membrane) were
132 inserted on 2 cc of physiologic solution and transported to the laboratory. On arrival at the
133 research lab, specific real-time reverse transcriptase-polymerase chain reaction (RT-PCR)
134 (TaqManTM 2019-nCoV Assay Kit v2; Thermo Fisher Scientific, Italy) targeting RNA-dependent
135 RNA polymerase was used to detect the presence of SARS-CoV-2 [16, 17]. This technique uses 3
136 genes: ORF1ab, N gene and S gene to quantify the viral load with a number of cycles for the
137 fluorescent signal to cross the threshold in RT-PCR. The threshold is 5000, baseline is 5 and cut-
138 off is 37 cycles. Lower values of the number of cycles means higher viral load. Samples are
139 considered "Positive" when at least two genes have a cycle threshold value < 37; if cycle
140 threshold value is 'Undetermined' or >37 for two or all the genes, then the result of the sample is
141 "Negative".

142

143 **Results and discussion**

144 During the whole observation period about 1100 passengers travelled using the trolleybus set up
145 for the observations reported here, with an average of 123 people for each measurement shift as
146 shown in details in Table 1. All the surfaces samples were negative for two or all the genes to RT-
147 PCR analysis for SARS-CoV-2 virus ('undetermined' or >37). Similarly, the same results were
148 obtained for all the air samples during the whole study period.

16

17

150**Table 1** Overview of the observations performed inside the trolleybus, where the columns
151‘Before the bus shit’ are the surfaces sampled before the beginning of bus journey, ‘After the bus
152shift’, are the surfaces sampled after end of the bus journey. Air samples were carried out on two
153sample sites (F1 and F2, see Fig 1) every day, excluding the first two observational days. The
154values reported (>37) for all the samples means that they are ‘negative’ to the presence of the
155SARS-CoV-2 virus since none of them showed at least two of the three genes (ORF1ab, N gene
156and S gene) with a cycle threshold value < 37 (see the text).

		Before the bus shit					After the bus shift					Air Sample		Passengers
Sample point		1	2	3	4	5	1	2	3	4	5	F1	F2	
Tuesday	12/05/2020	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	-	-	202
Wednesday	13/05/2020	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	-	-	60
Thursday	14/05/2020	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	75
Friday	15/05/2020	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	160
Monday	18/05/2020	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	109
Tuesday	19/05/2020	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	106
Wednesday	20/05/2020	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	116
Thursday	21/05/2020	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	141
Friday	22/05/2020	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	>37	138
Total passengers													1107	

159These results mean that none of the samples resulted ‘Positive’ to the SARS-CoV-2 virus, on the
160bus surfaces and indoor air. Unfortunately, we could not test each passenger for SARS-CoV-2,
161therefore we do not know exactly how many infected people travelled on the trolleybus during
162our observations. A recent work, based on the analyses of data from different parts of the world
163(China, Italy, US, Greece) and diverse situations, suggests that the asymptomatic people infected
164by SARS-CoV-2 are between 40% and 45% of the population [18]. Considering a conservative
165estimation of 30% asymptomatic people infected by SARS-CoV-2, since 123 passengers travelled

21

166on average for each bus shift, we estimated that about 37 infected and asymptomatic people
167potentially touched the surfaces that we sampled at the end of the journeys and breathed inside the
168bus while our instrument was sampling the indoor air. Under this hypothesis we can argue that the
169requirements of wearing gloves and cleaning up hands, using a dispenser of alcohol-based
170sanitizer at the bus entrance door, seem to keep the surfaces and the air inside the bus safe and
171free from SARS-CoV-2 virus. At the same time the rules of wearing a facial mask during
172travelling, and the recommendation to keep the windows open during bus riding to allow high air
173ventilation, probably prevent the virus diffusion in the air inside the bus. These results are in
174agreement with different model simulations that recommend facial masks to combat the SARS-
175CoV-2 virus spread in aerosols and droplets by asymptomatic people [19]. Moreover, the air
176ventilation, that model simulations showed to be important to reduce the risk of virus transmission
177in different indoor environments [13], is confirmed to be essential also in a more confined
178location like inside a bus.

179

180Conclusion

181The end of the lockdown imposed to contain the COVID-19 infection outbreak is entailing a
182growing number of people that restart the usual daily activities including travelling on public
183transport. Our observations inside a bus showed that the air and all the surfaces samples were not
184infected by SARS-CoV-2 virus. Even if it was not possible to test the passengers to SARS-CoV-2
185but considering that the asymptomatic people infected could be more than 30% [18], we can
186expect a potential infection inside the bus. Whether or not the number of infected passengers was
187about 30%, our findings confirm that the measures established for public transport in terms of
188sanitation, air ventilation and interpersonal precautions (facial mask, distancing, hands
189hygienisation) are effective, at least during this study, to make healthy and COVID-free the
190environment inside the buses.

22

23

24

191

192 **Author contributions**

193 **Conceptualization:** Piero Di Carlo, Piero Chiacchiarella, Bruna Sinjari, Eleonora Aruffo

194 **Methodology:** Piero Di Carlo, Piero Chiacchiarella, Bruna Sinjari, Eleonora Aruffo

195 **Bus measurements:** Piero Di Carlo, Piero Chiacchiarella

196 **Hospital measurements:** Jacopo Vecchiet, Katia Falasca, Claudio Ucciferri

197 **RT-PCR analysis and data validation:** Liborio Stuppa, Vincenzo De Laurenzi, Pamela Di

198 Tomo, Letizia Pelusi, Francesca Potenza, Angelo Veronese

199 **Writing – original draft:** Piero Di Carlo, Piero Chiacchiarella, Bruna Sinjari, Eleonora Aruffo

200 **Writing – review & editing:** Piero Di Carlo, Piero Chiacchiarella, Bruna Sinjari, Eleonora

201 Aruffo, Liborio Stuppa, Jacopo Vecchiet

202

203 **Declaration of competing interest**

204 The authors declared no conflicts of interests.

205 **Acknowledgments**

206 We want to thank the staff of the La Panoramica Group and the Municipality of Chieti for

207 kindly providing the trolleybus, the technical support, and everything needed to complete this

208 scientific work. We thank Mrs Elvira D'Annunzio, Mrs Maria Di Biase and Mrs Daniela Romano

209 for their administrative support. We thank Mrs Manuela Rastelli for the revision and

210 improvement of English. This work was partially supported by DISPUTER research funds (ex-

211 60%).

25

26

27

212 References

2131. Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, Al-Jabir A, et al.. World Health
214 Organization declares global emergency A review of the 2019 novel coronavirus (COVID-19).
215 Int. J. Surg. 2020; 76: 71–76, <https://doi.org/10.1016/j.ijsu.2020.02.034>

2162. Cheng SO, Khan, S. Europe's response to COVID-19 in March and April 2020 - A letter to the
217 editor on “World Health Organization declares global emergency: A review of the 2019 novel
218 coronavirus (COVID-19)”. Inter. J. of Surgery. 2020; 76: 71-6.

2193. MIT- Minister of infrastructure and transport of the Italian Government. Decree n 114, 13.
220 2020. Available from: March. <http://www.mit.gov.it/comunicazione/news/trasporti-trasporti->
221 non-di-linea-autotrasporto/coronavirus-de-micheli-firma.

2224. MIT- Minister of infrastructure and transport of the Italian Government. Protocol for security
223 in working places and transportation services. 2020. Available from:
224 <http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp?lingua=italiano&menu=notizie&p=dalministero&id=4237>.

2265. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al.
227 Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New Engl. J of
228 Medicine 2020; 382: 1564-1567.

2296. Hadei M, Hopke PK, Jonidi A, Shahsavani A. A Letter about the Airborne Transmission of
230 SARS-CoV-2 Based on the Current Evidence. Aerosol Air Qual. Res. 2020; 20: 911-914.

2317. Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality.
232 Environ. Int. 2020; 139: 105730. <https://doi.org/10.1016/j.envint.2020.105730>.

28

29

30

2338. ECDC - European Centre for Disease prevention and Control. Disinfection of environments in
234 healthcare and nonhealthcare settings potentially contaminated with SARS-CoV-2 Stockholm,
235 2020. Available from:
236 https://www.ecdc.europa.eu/sites/default/files/documents/Environmental-persistence-of-SARS-CoV_2-virus-Options-for-cleaning2020-03-26_0.pdf.

2389. DPCM - Decree of the President of the Council of Ministers. Guidelines for public transport,
239 27 April 2020. <http://www.trovanorme.salute.gov.it/norme/dettaglioAtto?id=73916&articolo=19>,

2410. DPRC - Decree of the President of the Regional Council of Abruzzo, n. 58 of 12 May
242 2020. Available from: <http://www.regione.abruzzo.it/system/files/atti-presidenziali/2020/ordinanza-n-58.pdf>.

24411. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface
245 environmental, and personal protective equipment contamination by Severe Acute Respiratory
246 Syndrome Coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020; 323: 16,
247 doi: 10.1001/jama.2020.3227.

24812. Faridi S, Niazi S, Sadeghi K, Naddafi K, Yavariand J, Shamsipour M, et al. A field indoor
249 air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran. Sci. of the
250 Total Envir. 2020; 725: 138401.

25113. Buonanno G, Stabile L, Morawska L. Estimation of airborne viral emission: Quanta
252 emission rate of SARS-CoV-2 for infection risk assessment. Envir. Internat. 2020; 141:
253 105794.

25414. ISS-Istituto Superiore di Sanità. Epidemiology for public health. 2020. Available from:
255 <https://www.epicentro.iss.it/en/coronavirus/news>.

31

32

33

25615. IHM-Italian Health Ministry. Report on Coronavirus in Italy 2020. Available from: http://www.salute.gov.it/imgs/C_17_notizie_4824_1_file.pdf.

25816. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. 2019.

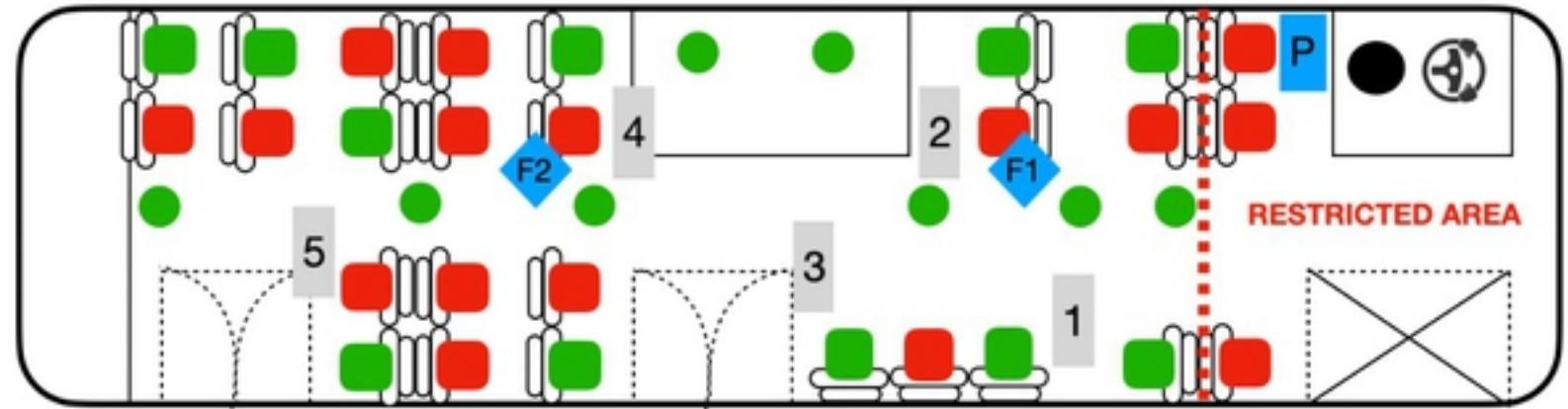
259 Available from: <https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html>.

26117. Vogels CBF, Anderson FB, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, et al. Analytical
262 sensitivity and efficiency comparisons of SARS-CoV-2 qRT PCR assays. medRxiv. 2020;
263 doi:10.1101/2020.03.30.20048108.

26418. Oran DP, Topol EJ. Prevalence of Asymptomatic SARS-CoV-2 Infection. Ann Intern Med.
265 2020; M20: 3012.

26619. Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2. Science 2020;
267 10.1126/science.abc6197.

268


269

270

34

35

12

- P Pump
- F# Air Filters
- # Surface tested
- Seat restricted
- Seat available
- Standing places available

Fig 1