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73 ABSTRACT

74 Aim: Modelling African great ape distribution has until now focused on current or past

75  conditions, whilst future scenarios remain scarcely explored. Using an ensemble forecasting
76  approach, we predicted changes in taxon-specific distribution under future scenarios of

77  climate, land-use and human population changes.

78  Location: Sub-Saharan Africa

79  Methods: We compiled occurrence data on African ape populations from the [UCN A.P.E.S.
80  database and extracted relevant human-, climate- and habitat-related predictors representing
81  current and future (2050) conditions to predict taxon-specific distribution under a best- and a
82  worst-case scenario, using ensemble forecasting. Given the large effect on model predictions,
83  we further tested algorithm sensitivity by considering default and non-default modelling

84  options. The latter included interactions between predictors and polynomial terms in

85  correlative algorithms.

86  Results: The future distributions of gorilla and bonobo populations are likely to be directly
87  determined by climate-related variables. In contrast, future chimpanzee distribution is

88 influenced mostly by anthropogenic variables. Both our modelling approaches produced

89  similar model accuracy, although a slight difference in the magnitude of range change was
90 found for Gorilla beringei beringei, G. gorilla diehli, and Pan troglodytes schweinfurthii. On
91  average, a decline of 50% of the geographic range (non-default; or 55% default) is expected
92  under the best scenario if no dispersal occurs (57% non-default or 58% default in worst

93  scenario). However, new areas of suitable habitat are predicted to become available for most
94  taxa if dispersal occurs (81% or 103% best, 93% or 91% worst, non-default and default,

95  respectively), except for G. b. beringei.

96  Main Conclusions: Despite the uncertainty in predicting the precise proportion of suitable

97  habitat by 2050, both modelling approaches predict large range losses for all African apes.

98  Thus, conservation planners urgently need to integrate land-use planning and simultaneously

99  support conservation and climate change mitigation measures at all decision-making levels
100  both in range countries and abroad.

101
102 KEYWORDS:

103  Bonobo, chimpanzee, climate change, configuration option settings, gorilla, great ape, habitat
104  loss, human population scenarios, [IUCN SSC A.P.E.S. database, species distribution
105 modelling
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107 INTRODUCTION

108  Currently, a major conservation challenge is to assess the potential future effects of climate
109 and land-use changes on species distributions, typically through the use of species

110  distribution models (SDMs), and usually under a range of future environmental scenarios.
111 SDMs are widely used to predict and map species’ ecological niches through time and space
112 (Elith & Leathwick, 2009; Guillera-Arroita et al., 2015; Hao, Elith, Guillera-Arroita, &

113 Lahoz-Monfort, 2019). Importantly, SDMs can inform spatial prioritization decisions for
114  conservation and management actions, such as identification of strategic locations for new
115  conservation or survey sites, and predicting future distributions (Aradjo & New, 2007; Elith
116 & Leathwick, 2009; Guillera-Arroita et al., 2015).

117  Changes in climate and land use are among the main global threats to biodiversity, therefore,
118  how the synergistic interactions between these drivers impact species is an important area of
119  research (Oliver & Morecroft, 2014). Newbold et al. (2018) assessed the single and combined
120  effects of future climate and land-use change on local vertebrate biodiversity. They found that
121 climate change is likely to be the principal driver of species distribution change in coming
122 decades, equalling or surpassing the potential effects of land-use change by 2070. Because
123 human population growth is already an extinction threat to many species (McKee, Chambers,
124 & Guseman, 2013), it is important to determine how human distribution will impact future
125  species presence (Jones & O’Neill, 2016).

126  Many primates are facing imminent extinction, due to extensive habitat loss and

127  fragmentation, land-use change, global commodity growth and trade, and hunting (Estrada et
128  al., 2018). Climate change is a delocalised, multi-faceted driver to add to the list. It exposes
129  many species, especially forest-dwelling primates, to climatically unsuitable conditions

130  (Carvalho et al., 2019). Primates have relatively limited dispersal abilities for their body size,
131  slow reproduction, low population densities, dietary requirements and poor thermoregulation,
132 and a predicted reduction of up to 86% of the Neotropical primate ranges with >3°C warming
133 1is likely to constrain their dispersal, resulting in elevated risks of extinction (Carvalho et al.,
134 2019).

135  All African great apes (hereafter African apes) are classified either as Endangered (mountain
136  gorillas G. b. beringei, bonobos Pan paniscus, Nigeria-Cameroon chimpanzees P. t. ellioti,
137  eastern chimpanzees P. t. schweinfurthii and central chimpanzees P. t. troglodytes) or
138  Critically Endangered (Grauer's gorillas G. b. graueri, Cross River gorillas G. g. diehli,
139  western lowland gorillas G. g. gorilla and western chimpanzees P. t. verus) on the [IUCN Red
140  List of Threatened Species (www.iucnredlist.org) and are regarded as flagship species for
141  conservation. African apes have faced dramatic changes in suitable environmental conditions
142 over the past 20 years (Junker et al., 2012) as well as large population losses (Kuehl et al.,
143 2017; Plumptre et al., 2016; Strindberg et al., 2018) caused by human activities and/or
144  infectious epidemics (Walsh et al., 2003). Many African apes live in areas that are suitable
145  for agricultural expansion and 58.7% of oil-palm concessions currently overlap with African
146  ape ranges (Wich et al., 2014). Moreover, massive development corridors (Heinicke et al.,
147 2019) and mining activities (Howard, 2019) in their geographic ranges are projected to
148  expand considerably, and to disrupt ape habitat connectivity and accelerate habitat loss.

149  Most African apes occur outside protected areas (Freeman, Roehrdanz, & Peterson, 2018;
150  Heinicke et al., 2019; Strindberg et al., 2018). Importantly, protected areas will not be exempt
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151  from climate change (Araujo, Alagador, Cabeza, Nogués-Bravo, & Thuiller, 2011), and shifts
152  in species ranges as predicted by future scenarios would certainly determine the degree of
153  species representation within protected areas. Improving the effectiveness of conservation
154  efforts in protected areas as well as habitat connectivity would allow apes to disperse to new
155  climatically suitable areas, and favour ape population survival in the long term.

156 A few studies have examined the future effects of climate change on African apes (Lehmann,
157  Korstjens, & Dunbar, 2010; Thorne et al., 2013). Lehmann et al. (2010) investigated how
158  climate change is likely to influence survival and reported that chimpanzees may lose 10% of
159 their range, and gorillas 75% by year 2100. Given the small range of mountain gorillas and
160 their highly restricted occurrence in mountain refuges as a result of human encroachment and
161 the geographic barrier of the Rift Valley, one would expect them to be particularly
162  susceptible to global warming and extinction (Thorne et al., 2013). However, in general, how
163  future synergetic interactions among climate, land-use and human population changes will
164  affect African apes and their habitat has been largely unexplored.

165 Here we combine data on projected climate, land-use and human population changes to

166  model African ape distribution for the year 2050. We use the most comprehensive database
167  on ape populations available, the IUCN SSC Ape Populations, Environments and Surveys
168  database (A.P.E.S.) to predict the distribution of great apes on the African continent under
169  Dbest- and worst-case scenarios. We subsequently consider an ensemble forecasting approach
170  to reduce the uncertainty among different models and future scenarios (Aradjo & New, 2007;
171 Thuiller, 2004) and estimate the proportional change in range size in 2050 relative to current
172 estimated range sizes for African apes.

173
174 METHODS
175  African ape data

176 We compiled information on African ape occurrence held in the IUCN SSC A.P.E.S.

177  database, a repository that includes a remarkable amount of information on population status,
178  threats and conservation for several hundred sites (Heinicke et al., 2019; Kuehl, Williamson,
179  Sanz, Morgan, & Boesch, 2007). We extracted all occurrence data, which are georeferenced
180  point data of direct sightings and great ape sign (mostly night nests) collected over 20 years
181  (1998-2017, see Appendix S1 in Supporting Information, Table S1.1). We obtained a total of
182 62,469 presence records across all African ape taxa (occurrence data for each species in

183  Table S1.1).

184  Although these data may be spatially biased as sampling effort is unevenly spread over the
185  ape range, presence-only data are commonly the most available and hence most frequently
186  used in SDMs (Phillips et al., 2009). The (sub)species (hereafter taxon) occurrence data we
187  used were collected during systematic site-based wildlife and human impact surveys, which
188  were generally based on some prior knowledge of occurrence, often in or close to protected
189  areas, FSC-certified and other logging concessions, and from habituated populations, factors
190 that can distort an SDM (Phillips et al., 2009). Different approaches have been applied to
191  account for biased datasets: random background, bias background, geographic

192  thinning/filtering, and environmental filtering (Aiello-Lammens, Boria, Radosavljevic,

193  Vilela, & Anderson, 2015; Fourcade, Engler, Rodder, & Secondi, 2014; Phillips et al., 2009;
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194  Varela, Anderson, Garcia-Valdés, & Fernandez-Gonzalez, 2014). Thus, we considered all
195  approaches, and for the bias background distances to roads, protected areas and villages were
196  included. We favoured the approach with the best performance by visually inspecting the

197  greatest overlap between taxon occurrence and each sampling bias (Fig. S1.1). Given that the
198  geographic thinning approach performed best for all taxa, we integrated it into the SDMs for
199  sampling bias correction (Fig. S1.1, Table S1.1).

200  Model algorithms require presence and absence data, so we generated a set of 10,000 pseudo-
201  absence occurrences (Guillera-Arroita et al., 2015; Phillips et al., 2009) in the range of each
202  taxon, except for G. b. beringei. Only 1,000 background occurrences were created for

203  mountain gorillas due to their small range.

204  We delineated taxon-specific study regions to avoid unrealistic geographical predictions
205  (Anderson & Gonzalez, 2011). For this, we created buffers bounding [IUCN range polygons
206  (IUCN, 2018) and included all occurrence data for each taxon (Table S1.1) (Jantz, Pintea,
207  Nackoney, & Hansen, 2016; Junker et al., 2012; Thorne et al., 2013). Whenever the buffer
208  overpassed a known geographic barrier to ape dispersal (e.g. major rivers), we disregarded
209 that area.

210
211  Predictor variables

212 We selected predictor variables based on their importance for African ape ecology, whilst
213 guaranteeing data availability for current and future conditions (2050) under best- and worst-
214  case scenarios and minimizing correlation between variables. We compiled altitude and

215  climatic variables (N=19) for the present and future conditions from Worldclim (periods of
216 1950-2000 and 2050, respectively; Table S1.1, (Hijmans, Cameron, Parra, Jones, & Jarvis,
217 2005)). For future predictions, we chose a best-case scenario (i.e. high mitigation scenario,
218  CCSM4 RCP 4.5) and a worst-case scenario (i.e. low mitigation scenario, H)dGEM-ES RCP
219  8.5) (for more details see (Carvalho et al., 2019)). Land-use/cover data for current conditions
220  and 2050 projections were compiled from the Land-use Harmonization Project (period of
221 1500-2100, Table S1.1, (Chini, Hurtt, & Frolking, 2014; Hurtt et al., 2011)). This dataset

222 represents a set of land-use change and emission scenarios for studies of human impact on the
223 past and future global carbon-climate system. Again, we considered a best-case scenario

224  (MiniCam RCP 4.5) and a worst-case scenario (MESSAGE RCP 8.5) (Carvalho et al., 2019).
225  We focused on the land-use states that best represent biomes where great apes can be found:
226  primary (i.e. natural vegetation (either forest or non-forest) undisturbed by humans),

227  secondary (i.e. natural vegetation previously disturbed by agriculture or wood harvesting),
228  and cropland.

229  We based human population scenarios on a new set of future societal development scenarios,
230  namely Shared Socioeconomic Pathways (SSP) (Table S1.1) (Jones & O’Neill, 2016). These
231  future scenarios are based on both qualitative narratives of future development and

232 quantitative projections of key elements such as human population growth at the national
233 level, educational composition, urbanization and economic growth. These data are available
234 from 2010 to 2100 for urban and rural population. We used two future scenarios, SSP1 and
235  SSP3, given that they represent best- and worst-case scenarios, respectively.


https://doi.org/10.1101/2020.06.25.168815
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.168815; this version posted June 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

236  We also considered distances to roads, villages and rivers as they are known to influence the
237  distribution of African apes (Table S1.1) (Carvalho, Marques, & Vicente, 2013). We

238  extracted data on protected areas in each taxon distribution from the most comprehensive
239  global database on terrestrial and marine protected areas, the World Database on Protected
240  Areas (Table S1.1).

241  Firstly, we extracted all variables for the extent of the range of each taxon, resampled onto a
242 Skm x 5km equal-area grid and projected them into the WGS 1984 geographic coordinate
243 system. Secondly, we used Spearman rank correlations to select a subset of least correlated
244 variables to minimize multicollinearity (Brun et al., 2019). For this, we used a graphical

245  representation of the correlation values between variables to identify five least correlated
246  variables for each species to avoid overfitting in model predictions (Fig. S1.2) (Thorne et al.,
247  2013). We performed data analyses using the software R version 3.6.1 (R Development Core
248  Team, 2019) and ArcMap version 10.4.1 (ESRI, 2011).

249
250 SDM performance and ensemble forecasting

251  We predicted future African ape distributions using an ensemble forecasting approach (i.e.
252 combining predictions from individual models into an ensemble as implemented in the

253  ‘biomod2’ package in R (version 3.3-7)) (Thuiller, Georges, & Engler, 2016). We selected
254  two correlative algorithms, generalised linear model (GLM) and generalised additive model
255  (GAM), and three machine-learning techniques, Maxent, random forest (RF) and artificial
256  neural networks (ANN) to build predictive SDMs for each species. These algorithms have
257  been shown to perform well in previous SDMs (Elith et al., 2006; Thuiller, Lafourcade,

258  Engler, & Araujo, 2009). As the choice of configuration settings of individual modelling
259  algorithms has potentially considerable impacts on predicted distributions (Hallgren, Santana,
260  Low-Choy, Zhao, & Mackey, 2019), we contrasted results under two modelling approaches
261 by 1) using the default tuning options of algorithms (i.e. default), and 2) changing the

262  configuration settings of algorithms (i.e. non-default). The latter included changes in the
263  correlative algorithms, particularly defining interactions between predictors as well as

264  polynomial terms, to better represent assumptions about the ecological niche of each taxon
265  (see R code in Appendix S2).

266  For the present time period only, we assessed the predictive performance of each model

267  through cross validation using a bootstrap approach, i.e. partitioning of the presence data,

268  using 80% of presences, randomly selected, for model calibration and 20% for evaluation,
269  and repeating this procedure 5 times (Thuiller et al., 2009). We evaluated the performance of
270  each model by the ‘true skill statistic’ metric (TSS) (Allouche, Tsoar, & Kadmon, 2006). TSS
271  is an accuracy measure that accounts both for omission errors (i.e. the percentage of true

272 presences predicted as absences are minimised) and commission errors (i.e. the percentage of
273 true absences predicted as presences are minimised), is unaffected by prevalence, and ranges
274  from -1 to 1, with a prediction accuracy considered similar to ‘random’ when <0, ‘poor’ in
275  the range 0.2-0.5, ‘useful’ in the range 0.6-0.8, and ‘good’ to ‘excellent’ when >0.8 (Allouche
276  etal., 2006).

277  Ensemble forecasting has been widely employed to reduce the uncertainties associated with
278  using a single algorithm, and is a useful method to account for uncertainties of extrapolation
279  of species-environment relationships outside the environments sampled by the species data
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280  (Aratdjo & New, 2007; Hao et al., 2019; Thuiller, Guéguen, Renaud, Karger, & Zimmermann,
281  2019; Thuiller et al., 2009). We chose to apply the weighted mean ensemble method, which
282  scales predictions of different models by weights based on some measure of predictive

283  performance (Aradjo & New, 2007; Thuiller et al., 2009). We included only individual

284  models that reached very ‘good’ predictive accuracies (TSS>0.8) in ensemble models to map
285  the current and future habitat suitability predicted for each taxon (Thuiller et al., 2019). For
286  each modelling approach, we repeated the modelling five times (cross-validation) and given
287  the five modelling algorithms and the three repetitions for variable importance (see below),
288  we obtained an ensemble of 75 predicted distributions for each species for each time period
289  (present and 2050) and future scenarios (best- and worst-case scenarios).

290
291  Relative importance of predictors

292 For each taxon and modelling approach, we calculated the importance of each predictor by
293 correlating the fitted values of the full models with those from the model in which the values
294  of the predictor were randomly permuted. We repeated this procedure three times (default
295  settings of ‘biomod2’ were used) and used the average Pearson’s correlation to measure

296  variable importance. A high correlation between the values from the full and permuted

297  models indicates that the variable has a low importance, contributing poorly to the model. We
298  then ranked each variable value based on the correlation coefficients and reversed its relative
299  importance and scaled from O to 1, the more influential variables for the model representing
300 those with a higher relative importance (Thuiller et al., 2009).

301
302  Species range change

303  We estimated the proportional change in range size, in 2050 compared to the present, for
304  each taxon by subtracting the future prediction ensemble output from the SDMs for the best-
305 and worst-case scenarios from that under current conditions. We considered continuous

306  predictive outputs from ensemble models as they provide richer information over outputs
307 classified into binary maps, particularly when the purpose of our study is to inform spatial
308 prioritization decisions for conservation and management actions (Guillera-Arroita et al.,
309 2019).

310 We subsequently identified areas of range loss (i.e. sites where the species is present at the
311  moment but is likely to be absent in the future), gain (i.e., sites where the species is absent at
312  the moment but is likely to be present in the future), and stability (i.e., sites where the species
313  is potentially present at the moment and is likely to be present in the future). For this, we

314  considered range change under two contrasting dispersal scenarios: 1) full dispersal, which
315  assumes that the species can disperse to new suitable areas in the future; and 2) no dispersal,
316  which assumes that the species will be unable to disperse and only the overlap between

317  present and future distributions will be the expected suitable habitat for the species (Thomas
318 etal., 2004).

319

320 RESULTS
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321  In general, both modelling approaches (default and non-default) resulted in similar predictive
322 accuracy of individual and ensemble models and in the relative importance of the variable
323 predictors (Fig. 1, S1.3-4). Predictive accuracy of the individual models based on TSS was
324  ‘useful’ to ‘excellent’, depending on the algorithm (Fig. S1.3). On average, RF models

325  performed best relative to ANN and GLM models which performed worst at predicting

326  species distributions (Fig. S1.3a). Importantly, with TSS scores >0.9 ensemble models had
327  excellent predictive accuracy and clearly outperformed individual models (Fig. S1.3b).
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329 Figure 1. Results for the modelling approach where algorithm settings were changed for each African ape

330 species (i.e. non-default). (a) Variable importance (mean and standard deviation (SD) of the correlation values)
331 for the ensemble models, and (b) Predicted percentage change in African ape ranges by 2050 under the best- and
332 the worst-case scenario, assuming no dispersal (loss) and dispersal (gain) scenarios. Variable predictor

333 abbreviations: biol2 — annual precipitation, biol3 — precipitation of wettest month, biol5 — Seasonal variation
334 of precipitation, biol6 — precipitation of wettest quarter, biol7 — precipitation of driest quarter, biol8 —

335 precipitation of warmest quarter, biol9 — precipitation of coldest quarter, bio2 — mean diurnal range, bio3 —

336 isothermality, bio4 — temperature seasonality, bio7 — temperature annual range, bio8 — mean temperature of
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337 wettest quarter, crop — cropland, distpa — distance to protected areas, distrivers — distances to rivers, distroads—
338 distances to roads, humpop — human population density, pland— primary land, sland — secondary land.

339

340  Our ensemble models indicated that the current distribution of G. b. beringei, P. t. ellioti and
341  P.t troglodytes is strongly determined by anthropogenic variables, in contrast to the greater
342 influence of climate-related variables on the distribution of G. b. graueri, G. g. diehli, G. g.
343 gorilla, P. paniscus, P. t. schweinfurthii and P. t. verus (Fig. 1, S1.4-6). Our models indicate
344  that the future distributions of most gorillas and bonobos will be more heavily influenced by
345  climate-related variables, contrasting with the greater influence of anthropogenic variables in
346  shaping the chimpanzee distribution (Fig. S1.5-6).

347  On average, the same trend in species range change was estimated for both default and non-
348  default modelling approaches (Fig. 2, 3, S1.7-8). However, the non-default approach

349  predicted a slightly lower range loss (50% or 57% under the best and worst scenarios,

350 respectively) and lower range gain (81% or 93% under the best and worst scenarios,

351 respectively) than the default approach (loss: 55% or 58%, gain: 103% or 91%, under the best
352  and worst scenarios, respectively) (Fig. 3, S1.8). Moreover, differences were found in the

353  magnitude of change for some taxa, particularly for G. b. beringei, G. g. diehli and P. t.

354  schweinfurthii. To simplify, only results from the non-default approach are presented below
355  (details for the default approach are provided in Appendix S1).

356
357  Gorilla beringei beringei (mountain gorilla)

358  Annual precipitation contributed most in the correlative models, whereas human population
359  density was the strongest determinant of mountain gorilla distribution in machine-learning
360 and ensemble models (Fig. S1.4). This taxon is confined to artificial ‘island’ areas in a sea of
361  agriculture where annual precipitation (1,200-1,500 mm), diurnal temperature range (11-12
362  °C), human population (3,000-10,000 people/km2), and elevation (1,500-2,200 m) are high,
363  and precipitation in the coldest quarter is low (180-440 mm) (Fig. S1.5-6). Precipitation

364  variables will increase and diurnal temperature range will decrease by 2050 under the best
365  scenario (Fig. S1.5-6). However, the opposite is predicted under the worst scenario. Human
366  population growth is predicted to occur under both future scenarios.

367  Range stability is predicted to occur under the best scenario, but one-third of current suitable
368  habitat is predicted to be lost under the worst scenario (Fig. 3, S1.7). Moreover, both future
369  scenarios agree that dispersal is unlikely given that no new suitable habitat will become

370  available for mountain gorillas.

371  Gorilla beringei graueri (Grauer's gorilla)

372 Seasonal variation in precipitation (precipitation seasonality) was the most important variable
373  in both individual and ensemble models in predicting the distribution of Grauer's gorillas

374  (Fig. S1.4). This taxon is predicted to persist where seasonal variation of precipitation is low
375  (25-40 mm), diurnal temperature range (12-13 °C) and altitude (500-1500 m) are high, close
376  toroads (<6 km) and far from protected areas (<30 km) (Fig. S1.5-6). Both climatic variables
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Figure 2. Ensemble forecasting of the current and future (best- and worst-case scenarios) habitat suitability for Gorilla beringei spp, Gorilla gorilla spp and
Pan spp based on weighted mean and the true skill statistics (TSS) for the non-default approach. Note that only results for the no dispersal scenario are

presented here.
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381  are expected to decrease under the best scenario or increase under the worst scenario (Fig.
382 S1.5-6).

383  If no dispersal occurs, this taxon is predicted to lose half of its current habitat under both
384  scenarios (Fig. 3, S1.7). However, if dispersal occurs, a 97% range gain is predicted under the
385  best scenario, but only 55% under the worst scenario.

386
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388  Figure 3. Predicted percentage change in African ape ranges by 2050 under the best- and the worst-
389  case scenario, assuming either no dispersal (loss) and dispersal (gain) for the non-default approach.

390
391  Gorilla gorilla diehli (Cross River gorilla)

392  Precipitation in the wettest month was the most important predictor of Cross River gorilla
393  distribution in both individual and ensemble models (Fig. S1.4). High precipitation during the
394  wettest month (340-400 mm) and seasonal variation in temperature (9-10 °C), very low

395  human population (<2,500 people/km?), a large distance to main rivers (>400 km) and

396  presence of large tracts of primary land (>95%) are suitable conditions for the distribution of
397  this species (Fig. S1.5-6). Precipitation in the wettest month is predicted to increase and

398  seasonal variation in temperature to decrease under the best scenario, whereas the opposite
399  pattern is predicted under the worst scenario (Fig. S1.5-6). According to both future

22
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400  scenarios, human population is predicted to increase, and primary land is predicted to be
401  completely lost.

402  If no dispersal occurs, more than two-thirds of the current range is predicted to disappear
403  under both future scenarios (Fig. 3, S1.7). In contrast, if Cross River gorillas could disperse,
404  range gains of 40% or 75% are predicted under the best and worst scenarios, respectively.

405  Gorilla gorilla gorilla (western lowland gorilla)

406  All climatic variables were important predictors of western lowland gorilla distribution,

407  particularly seasonal variation of precipitation and diurnal temperature range (Fig. S1.4).

408  Areas characterised by low seasonal variation in precipitation (50-70 °C), high annual

409  precipitation (1,600-1,800 mm) and diurnal temperature range (9-11 °C), absence of cropland
410  and close to roads (0-15 km) harbour suitable conditions for the persistence of this subspecies
411 (Fig. S1.5-6). According to both future scenarios, precipitation variables will not change, but

412 decrease in diurnal temperature is predicted to occur. Cropland is predicted to increase under

413  the worst scenario.

414  Assuming no dispersal, loss of more than half the suitable area is predicted under both future
415  scenarios (Fig. 3, S1.7). With dispersal, however, a large increase in suitable habitat under
416  both future scenarios is predicted (87% best, 69% worst).

417  Pan paniscus (bonobo)

418  Precipitation in the warmest quarter is an important predictor of bonobo distribution in both
419  individual and ensemble models (Fig. S1.4). Favourable environmental conditions shaping
420  this species distribution are high precipitation (450-500 mm) and temperature (24-25 °C) of
421  the warmest quarter and annual precipitation (1,750-1,950 mm), mid altitudes (350-450 m)
422  and close proximity to roads (<6 km) (Fig. S1.5). All climatic variables are predicted to

423  increase in the future (Fig. S1.5-6).

424  Under both future scenarios, more than half of the area of suitable habitat is predicted to be

425  lost if no dispersal occurs (Fig. 3, S1.7). Suitable habitat is predicted to expand to new areas
426  and, if bonobos disperse, range gains of 98% or 84% are predicted under the best and worst
427  scenarios, respectively.

428  Pan troglodytes ellioti (Nigeria-Cameroon chimpanzee)

429  Cropland and primary land were the best predictors in GLM and Maxent models, in contrast
430  to diurnal temperature range, which was the variable with the highest importance in GAM
431  and RF models as well as in the ensemble models (Fig. S1.4). Areas with a low proportion of
432 cropland (<7%), very high proportion of primary land (>90%), high diurnal temperature

433  range (9-11 °C), pronounced seasonal variation of both precipitation (67-75 mm) and

434  temperature (8-11 °C) offer suitable conditions for Nigeria-Cameroon chimpanzees (Fig.

435  S1.5). An increase in cropland and a large reduction in primary land are predicted under the
436  worst scenario. In contrast, no cropland expansion and a smaller decrease in primary land are
437  expected under the best scenario. Under both future scenarios, seasonal variation of

438  precipitation and temperature are predicted to increase and diurnal temperature range to

439  decrease (Fig. S1.5-6).
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440  If no dispersal occurs, almost half of the area of suitable habitat is predicted to be lost under
441  both future scenarios (Fig. 3, S1.7). However, if dispersal occurs, substantial range gains are
442  predicted to occur, particularly under the worst scenario (137% vs. 83% best scenario).

443  Pan troglodytes schweinfurthii (eastern chimpanzee)

444  Precipitation of driest quarter was an important predictor in most individual models, except
445  for GLM and ANN models, where annual precipitation performed best (Fig. S1.4). However,
446  all predictors ranked equally in importance in ensemble models. Eastern chimpanzees

447  encounter suitable conditions where precipitation of the driest quarter is low (30-190 mm),
448  annual precipitation (1,250-1,750 mm), isothermality (7-8 °C) and diurnal temperature range
449  (13-17 °C) are high, and cropland is rare (<5%) (Fig. S1.5-6). Under the best scenario,

450  climatic variables are unlikely to change, but a decrease in isothermality is predicted under
451  the worst scenario. The latter also predicts expansion of cropland by 2050.

452  According to both future scenarios, suitable habitat is predicted to be confined to the core of
453  the species’ current distribution (Fig. 3, S1.7). In terms of range change, half of suitable

454  habitat is predicted to be lost under both future scenarios if no dispersal occurs. In contrast, if
455  dispersal occurs, range expansion of 113% or 199% into new areas is expected under the best
456  and worst scenarios, respectively.

457  Pan troglodytes troglodytes (central chimpanzee)

458  Secondary land and distances to main rivers were the predictors of greatest importance in
459  individual and ensemble models, except for GLM models, where only secondary land was a
460  slightly better predictor (Fig. S1.4). Suitable environmental conditions for central

461  chimpanzees are characterised by a high percentage of secondary land (12.5-75%), large
462  distance to main rivers (>450 km), high annual precipitation (1,600-1,800 mm) and

463  precipitation in the warmest quarter (400-500 mm), and mid-altitudes (300-600 m) (Fig.
464  S1.5-6). According to both future scenarios, climatic variables are predicted to remain

465  unchanged, but expansion of secondary land is expected by 2050.

466 A reduction of half the current area of suitable habitat is expected under both future scenarios
467  if no dispersal occurs (Fig. 3, S1.7). Predictions of range gains for central chimpanzees

468  suggest that 104% or 106% of suitable habitat will become available in new areas under the
469  best and future scenarios, respectively.

470  Pan troglodytes verus (western chimpanzee)

471  Precipitation in the wettest quarter was the most important variable in individual and

472  ensemble models (Fig. S1.4). Current suitable conditions for western chimpanzees are very
473  high precipitation of the wettest quarter (600-900 mm), high seasonal variation of

474  precipitation (60-110 mm) and precipitation of coldest quarter (100-600 mm), low human
475  population (<5,000 people/km?) and low proximity to roads (<2 km) (Fig. S1.5-6). A greater
476  increase in both seasonal variation in precipitation and precipitation of the coldest quarter is
477  predicted under the worst scenario.

478  Western chimpanzees have the widest geographic distribution among African apes, however,
479  loss of more than half their present range is predicted under both future scenarios if no

480  dispersal occurs (Fig. 3, S1.7). On the other hand, high range gains are anticipated under both
481  future scenarios if there is dispersal (best: 139%, worst: 109%).
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482  DISCUSSION

483  This is the first study to combine climate, land-use and human population changes in an

484  ensemble forecasting approach to predict African ape distribution by 2050. Customizing the
485  model specifications relative to the default settings in the correlative algorithms revealed
486  uncertainty in predicting the amount of suitable habitat available by 2050. However, both
487  approaches agreed that all African ape taxa are likely to experience marked range losses
488  (best: 55% default or 50% non-default, worst: 58% default or 57% non-default), and that
489  these reductions may not be as severe if dispersal to new areas of suitable habitat occurs
490  (best: 103% default or 81% non-default; worst: 91% default or 93% non-default).

491 A previous study quantified changes in suitable environmental conditions for African apes
492  between 1990 and 2000, and found that the greatest proportional reductions occurred for

493  gorillas (G. g. diehli, range loss of 59%; G. b. graueri, 52%; G. g. gorilla, 32%) and bonobos
494  (P. paniscus, 29%) compared with chimpanzees (P. t. troglodytes, 17%; P. t. verus, 11%)
495  (Junker et al., 2012). Lehmann and colleagues (2010) employed a mechanistic approach to
496  investigate how climate change under a worst scenario would influence African ape survival
497  and reported that chimpanzees might lose 10% of current range and gorillas 75%. Our study
498  concurs with these results for most gorilla taxa, but more than half of suitable habitat area for
499  chimpanzees is predicted to be lost under both future scenarios if no dispersal occurs.

500 However, our full dispersal scenario predicts gains of suitable conditions in new areas under
501  both future scenarios for all taxa, except mountain gorillas.

502  The variables that best predicted current distribution were taxon-specific: anthropogenic

503  variables were key predictors in most models for mountain gorillas, Nigeria-Cameroon and
504 central chimpanzees, and climate-related variables for Grauer's, Cross River and western

505 lowland gorillas, bonobos, eastern and western chimpanzees. However, future scenarios

506  suggest that the distribution of most gorillas and bonobos is predicted to be determined by
507 changes in climatic variables, and that of chimpanzees by land-use changes. Moreover, the
508 forecast variation in both climatic and human population variables can explain the predicted
509 habitat stability for mountain gorillas. Interestingly, habitat gains predicted for Cross River
510  gorillas, Nigeria-Cameroon and eastern chimpanzees under the worst scenario are likely to be
511  explained by stability of climatic variables and changes in anthropogenic variables by 2050.

512  Despite the importance of climatic variables in determining African ape time budgets, and
513  consequently their effects on distributions, gorillas and chimpanzees are more sensitive to
514  variations in temperature than in precipitation and they persist better in habitats with lower
515  monthly temperature variation (Lehmann et al., 2010). Moreover, gorillas are predicted to be
516  affected more than chimpanzees given the more restricted behavioural flexibility of gorillas
517  to cope with temperature variation (Lehmann et al., 2010). Our study suggests that diurnal
518 and seasonal variability influence the distribution of most gorillas, yet only play a similar role
519  for Nigeria-Cameroon and eastern chimpanzees. Additionally, annual precipitation, and

520 particularly its distribution over the wet and dry seasons, affects the distribution of most

521  gorillas and chimpanzees, as well as bonobos. These results are indirect evidence of the

522  marked influence of temperature and precipitation on species ecological niche with regard to
523  dehydration and thermoregulation (Wessling et al., 2018). The influence of climate change on
524  great ape ecology has been poorly explored compared with anthropogenic disturbance;

525 nonetheless, we can expect temperature extremes to exacerbate habitat loss for African apes
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526  and consequently pose serious threats to species persistence, as they are anticipated to impact
527  other non-primate species (Aratjo et al., 2011; Newbold, 2018). By integrating future climate
528 and land-use changes as well as human population scenarios, our predictions provide strong
529  evidence for synergistic interactions among these global drivers constraining species

530  distributions.

531  Strindberg and colleagues (2018) found that western lowland gorillas and central

532  chimpanzees, two sympatric taxa with 97% range overlap, mostly occur outside protected

533  areas, and argued for ‘reinforcement of anti-poaching efforts both inside and outside

534  protected areas (particularly where habitat quality is high and human impact is low), diligent
535  disease control measures (including training, advocacy, and research into Ebola virus

536  disease), and the preservation of high-quality habitat through integrated land-use planning
537  and implementation of best practices by the extractive and agricultural industries’. Our study
538  suggests that both taxa will find environmentally suitable areas outside their current range, in
539 line with our predictions for most African apes. Thus, outcomes from our SDMs should be
540 integrated with a habitat connectivity analysis to optimize conservation land-use planning and
541 identify priority areas for these species (Freeman et al., 2018; Jones et al., 2018). This is

542  extremely important given that African protected areas are distant from each other (Santini,
543  Saura, & Rondinini, 2016) and particularly because great apes have a low dispersal capacity
544  due to their slow reproduction, low population densities, dietary requirements and poor

545  thermoregulation. It will be important to ensure objective assessments of human pressures
546  and habitat conditions in potential protected areas to avert species extinctions in the long term
547  (Jones et al., 2018).

548  Taxon-specific frameworks of environmental and socio-economic trends (Estrada et al.,

549  2018; Strindberg et al., 2018; Tranquilli et al., 2014) should be considered at all major

550 decision-making levels in range countries and abroad to (1) improve the management and
551  recovery of degraded habitat in protected areas and off-reserve management to increase

552  resilience, (2) increase the size of protected areas, establish additional protected areas and
553  ensure habitat connectivity, (3) incorporate climate change into land-use planning and

554  propose mitigation measures on the conservation agenda for African apes and sympatric

555  wildlife, and (4) implement more effective law enforcement in ape ranges, supplemented by
556  environmental education, community development, tourism programmes and research (IUCN
557 & ICCN, 2012; IUCN, 2014; Tranquilli et al., 2014, 2012). Public-private partnerships have
558  proven highly effective across the forest and savanna zones, where an NGO or other

559  organisation takes on management responsibility for a given site over one or more decades
560  (Scholte et al., 2018).

561
562  Limitations of distribution models

563  Modelling species responses to global environmental changes carries many uncertainties
564  (Araidjo & New, 2007; Thuiller et al., 2019). Using two algorithm approaches, two future
565  scenarios, two dispersal scenarios, an ensemble forecasting and including only a few but
566  highly important predictors of the distribution of African apes, should have reduced

567  uncertainties in our distribution models (Brun et al., 2019; Thorne et al., 2013). A recent
568  study proposed that SDMs include historical records to produce better predictions of range
569  shifts rather than relying on contemporary records alone (Faurby & Aratjo, 2018). This is
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570  important for large vertebrates given the direct effects of anthropogenic disturbances on their
571  distribution, and many ranges being far from equilibrium under current environmental

572  conditions (Faurby & Aratjo, 2018). The species occurrences we used are from field sites
573  and may represent realized niches as currently African apes may be absent from areas of

574  potential distribution, but unfortunately, reliable information about historical ranges is not
575 available. Thus, it is possible that our predictions of current African ape distribution have
576  underestimated the diversity of niches suitable for these species, which consequently may
577  have limited our model predictions under future conditions.

578  Mining concessions and granted mining claims are increasing dramatically across Africa,
579  particularly threatening large ape populations in Guinea, Gabon and Liberia (Howard, 2019).
580 It will be important to model the influence of this threat on future African ape distributions
581  once appropriate spatial data sets become available.

582  Our results corroborate the other recent studies showing that African ape populations and

583 their habitats are declining dramatically (Freeman et al., 2018; Hickey et al., 2013; Kuehl et
584 al., 2017; Lehmann et al., 2010; Plumptre et al., 2016; Strindberg et al., 2018; Thorne et al.,
585  2013), thus our findings should also be used to guide the prioritization of conservation efforts
586  for these flagship species to avoid irreversible losses.

587
588  Conclusions

589  Given that the existing network of protected areas is inadequate for ensuring the long-term
590 conservation of African apes (Strindberg et al., 2018), we support the argument that effective
591  conservation strategies require taxon-specific conservation planning that focuses on existing
592  and proposed protected areas, the creation and/or management of which can be informed by
593  our habitat suitability models. Additionally, efforts to maintain connectivity between the

594  habitats predicted to be suitable in the future will be crucial for the survival of African apes.
595  For a species to shift to new climatically suitable areas, the availability of such habitat will
596  need to be ensured through effective protection by antipoaching teams whether in a protected
597  area or not, the enforcement of industrial extractive industry conservation regulations (for
598  example, as currently practiced in logging concessions under FSC Standards), and by national
599 land-use planning that ensures that the areas of current and future high conservation value are
600  not transformed into agricultural plantations or fragmented by roads. As an example, this

601  country-wide approach has been undertaken in Gabon, where planning for the development
602  of agriculture, road and rail links, and mineral extraction has been informed by wildlife and
603  vegetation data in order to locate these activities in areas that are already degraded, and to
604  avoid closed-canopy old-growth and remote forests (Government of Gabon, 2012; Strindberg
605 etal., 2018). This will be an effective way of promoting habitat connectivity to maintain

606  African ape populations as well as sympatric wildlife.

607
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