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ABSTRACT 73 

Aim: Modelling African great ape distribution has until now focused on current or past 74 

conditions, whilst future scenarios remain scarcely explored. Using an ensemble forecasting 75 

approach, we predicted changes in taxon-specific distribution under future scenarios of 76 

climate, land-use and human population changes. 77 

Location: Sub-Saharan Africa 78 

Methods: We compiled occurrence data on African ape populations from the IUCN A.P.E.S. 79 

database and extracted relevant human-, climate- and habitat-related predictors representing 80 

current and future (2050) conditions to predict taxon-specific distribution under a best- and a 81 

worst-case scenario, using ensemble forecasting. Given the large effect on model predictions, 82 

we further tested algorithm sensitivity by considering default and non-default modelling 83 

options. The latter included interactions between predictors and polynomial terms in 84 

correlative algorithms. 85 

Results: The future distributions of gorilla and bonobo populations are likely to be directly 86 

determined by climate-related variables. In contrast, future chimpanzee distribution is 87 

influenced mostly by anthropogenic variables. Both our modelling approaches produced 88 

similar model accuracy, although a slight difference in the magnitude of range change was 89 

found for Gorilla beringei beringei, G. gorilla diehli, and Pan troglodytes schweinfurthii. On 90 

average, a decline of 50% of the geographic range (non-default; or 55% default) is expected 91 

under the best scenario if no dispersal occurs (57% non-default or 58% default in worst 92 

scenario). However, new areas of suitable habitat are predicted to become available for most 93 

taxa if dispersal occurs (81% or 103% best, 93% or 91% worst, non-default and default, 94 

respectively), except for G. b. beringei. 95 

Main Conclusions: Despite the uncertainty in predicting the precise proportion of suitable 96 

habitat by 2050, both modelling approaches predict large range losses for all African apes. 97 

Thus, conservation planners urgently need to integrate land-use planning and simultaneously 98 

support conservation and climate change mitigation measures at all decision-making levels 99 

both in range countries and abroad. 100 

 101 

KEYWORDS: 102 

Bonobo, chimpanzee, climate change, configuration option settings, gorilla, great ape, habitat 103 

loss, human population scenarios, IUCN SSC A.P.E.S. database, species distribution 104 
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INTRODUCTION 107 

Currently, a major conservation challenge is to assess the potential future effects of climate 108 

and land-use changes on species distributions, typically through the use of species 109 

distribution models (SDMs), and usually under a range of future environmental scenarios. 110 

SDMs are widely used to predict and map species9 ecological niches through time and space 111 

(Elith & Leathwick, 2009; Guillera-Arroita et al., 2015; Hao, Elith, Guillera‐Arroita, & 112 

Lahoz‐Monfort, 2019). Importantly, SDMs can inform spatial prioritization decisions for 113 

conservation and management actions, such as identification of strategic locations for new 114 

conservation or survey sites, and predicting future distributions (Araújo & New, 2007; Elith 115 

& Leathwick, 2009; Guillera-Arroita et al., 2015). 116 

Changes in climate and land use are among the main global threats to biodiversity, therefore, 117 

how the synergistic interactions between these drivers impact species is an important area of 118 

research (Oliver & Morecroft, 2014). Newbold et al. (2018) assessed the single and combined 119 

effects of future climate and land-use change on local vertebrate biodiversity. They found that 120 

climate change is likely to be the principal driver of species distribution change in coming 121 

decades, equalling or surpassing the potential effects of land-use change by 2070. Because 122 

human population growth is already an extinction threat to many species (McKee, Chambers, 123 

& Guseman, 2013), it is important to determine how human distribution will impact future 124 

species presence (Jones & O9Neill, 2016). 125 

Many primates are facing imminent extinction, due to extensive habitat loss and 126 

fragmentation, land-use change, global commodity growth and trade, and hunting (Estrada et 127 

al., 2018). Climate change is a delocalised, multi-faceted driver to add to the list. It exposes 128 

many species, especially forest-dwelling primates, to climatically unsuitable conditions 129 

(Carvalho et al., 2019). Primates have relatively limited dispersal abilities for their body size, 130 

slow reproduction, low population densities, dietary requirements and poor thermoregulation, 131 

and a predicted reduction of up to 86% of the Neotropical primate ranges with >3ºC warming 132 

is likely to constrain their dispersal, resulting in elevated risks of extinction (Carvalho et al., 133 

2019). 134 

All African great apes (hereafter African apes) are classified either as Endangered (mountain 135 

gorillas G. b. beringei, bonobos Pan paniscus, Nigeria-Cameroon chimpanzees P. t. ellioti, 136 

eastern chimpanzees P. t. schweinfurthii and central chimpanzees P. t. troglodytes) or 137 

Critically Endangered (Grauer's gorillas G. b. graueri, Cross River gorillas G. g. diehli, 138 

western lowland gorillas G. g. gorilla and western chimpanzees P. t. verus) on the IUCN Red 139 

List of Threatened Species (www.iucnredlist.org) and are regarded as flagship species for 140 

conservation. African apes have faced dramatic changes in suitable environmental conditions 141 

over the past 20 years (Junker et al., 2012) as well as large population losses (Kuehl et al., 142 

2017; Plumptre et al., 2016; Strindberg et al., 2018) caused by human activities and/or 143 

infectious epidemics (Walsh et al., 2003). Many African apes live in areas that are suitable 144 

for agricultural expansion and 58.7% of oil-palm concessions currently overlap with African 145 

ape ranges (Wich et al., 2014). Moreover, massive development corridors (Heinicke et al., 146 

2019) and mining activities (Howard, 2019) in their geographic ranges are projected to 147 

expand considerably, and to disrupt ape habitat connectivity and accelerate habitat loss. 148 

Most African apes occur outside protected areas (Freeman, Roehrdanz, & Peterson, 2018; 149 

Heinicke et al., 2019; Strindberg et al., 2018). Importantly, protected areas will not be exempt 150 
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from climate change (Araújo, Alagador, Cabeza, Nogués-Bravo, & Thuiller, 2011), and shifts 151 

in species ranges as predicted by future scenarios would certainly determine the degree of 152 

species representation within protected areas. Improving the effectiveness of conservation 153 

efforts in protected areas as well as habitat connectivity would allow apes to disperse to new 154 

climatically suitable areas, and favour ape population survival in the long term. 155 

A few studies have examined the future effects of climate change on African apes (Lehmann, 156 

Korstjens, & Dunbar, 2010; Thorne et al., 2013). Lehmann et al. (2010) investigated how 157 

climate change is likely to influence survival and reported that chimpanzees may lose 10% of 158 

their range, and gorillas 75% by year 2100. Given the small range of mountain gorillas and 159 

their highly restricted occurrence in mountain refuges as a result of human encroachment and 160 

the geographic barrier of the Rift Valley, one would expect them to be particularly 161 

susceptible to global warming and extinction (Thorne et al., 2013). However, in general, how 162 

future synergetic interactions among climate, land-use and human population changes will 163 

affect African apes and their habitat has been largely unexplored. 164 

Here we combine data on projected climate, land-use and human population changes to 165 

model African ape distribution for the year 2050. We use the most comprehensive database 166 

on ape populations available, the IUCN SSC Ape Populations, Environments and Surveys 167 

database (A.P.E.S.) to predict the distribution of great apes on the African continent under 168 

best- and worst-case scenarios. We subsequently consider an ensemble forecasting approach 169 

to reduce the uncertainty among different models and future scenarios (Araújo & New, 2007; 170 

Thuiller, 2004) and estimate the proportional change in range size in 2050 relative to current 171 

estimated range sizes for African apes. 172 

 173 

METHODS 174 

African ape data 175 

We compiled information on African ape occurrence held in the IUCN SSC A.P.E.S. 176 

database, a repository that includes a remarkable amount of information on population status, 177 

threats and conservation for several hundred sites (Heinicke et al., 2019; Kuehl, Williamson, 178 

Sanz, Morgan, & Boesch, 2007). We extracted all occurrence data, which are georeferenced 179 

point data of direct sightings and great ape sign (mostly night nests) collected over 20 years 180 

(1998-2017, see Appendix S1 in Supporting Information, Table S1.1). We obtained a total of 181 

62,469 presence records across all African ape taxa (occurrence data for each species in 182 

Table S1.1). 183 

Although these data may be spatially biased as sampling effort is unevenly spread over the 184 

ape range, presence-only data are commonly the most available and hence most frequently 185 

used in SDMs (Phillips et al., 2009). The (sub)species (hereafter taxon) occurrence data we 186 

used were collected during systematic site-based wildlife and human impact surveys, which 187 

were generally based on some prior knowledge of occurrence, often in or close to protected 188 

areas, FSC-certified and other logging concessions, and from habituated populations, factors 189 

that can distort an SDM (Phillips et al., 2009). Different approaches have been applied to 190 

account for biased datasets: random background, bias background, geographic 191 

thinning/filtering, and environmental filtering (Aiello-Lammens, Boria, Radosavljevic, 192 

Vilela, & Anderson, 2015; Fourcade, Engler, Rödder, & Secondi, 2014; Phillips et al., 2009; 193 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.168815doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.168815
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

Varela, Anderson, García-Valdés, & Fernández-González, 2014). Thus, we considered all 194 

approaches, and for the bias background distances to roads, protected areas and villages were 195 

included. We favoured the approach with the best performance by visually inspecting the 196 

greatest overlap between taxon occurrence and each sampling bias (Fig. S1.1). Given that the 197 

geographic thinning approach performed best for all taxa, we integrated it into the SDMs for 198 

sampling bias correction (Fig. S1.1, Table S1.1). 199 

Model algorithms require presence and absence data, so we generated a set of 10,000 pseudo-200 

absence occurrences (Guillera-Arroita et al., 2015; Phillips et al., 2009) in the range of each 201 

taxon, except for G. b. beringei. Only 1,000 background occurrences were created for 202 

mountain gorillas due to their small range. 203 

We delineated taxon-specific study regions to avoid unrealistic geographical predictions 204 

(Anderson & Gonzalez, 2011). For this, we created buffers bounding IUCN range polygons 205 

(IUCN, 2018) and included all occurrence data for each taxon (Table S1.1) (Jantz, Pintea, 206 

Nackoney, & Hansen, 2016; Junker et al., 2012; Thorne et al., 2013). Whenever the buffer 207 

overpassed a known geographic barrier to ape dispersal (e.g. major rivers), we disregarded 208 

that area. 209 

 210 

Predictor variables 211 

We selected predictor variables based on their importance for African ape ecology, whilst 212 

guaranteeing data availability for current and future conditions (2050) under best- and worst-213 

case scenarios and minimizing correlation between variables. We compiled altitude and 214 

climatic variables (N=19) for the present and future conditions from Worldclim (periods of 215 

1950-2000 and 2050, respectively; Table S1.1, (Hijmans, Cameron, Parra, Jones, & Jarvis, 216 

2005)). For future predictions, we chose a best-case scenario (i.e. high mitigation scenario, 217 

CCSM4 RCP 4.5) and a worst-case scenario (i.e. low mitigation scenario, HadGEM-ES RCP 218 

8.5) (for more details see (Carvalho et al., 2019)). Land-use/cover data for current conditions 219 

and 2050 projections were compiled from the Land-use Harmonization Project (period of 220 

1500-2100, Table S1.1, (Chini, Hurtt, & Frolking, 2014; Hurtt et al., 2011)). This dataset 221 

represents a set of land-use change and emission scenarios for studies of human impact on the 222 

past and future global carbon-climate system. Again, we considered a best-case scenario 223 

(MiniCam RCP 4.5) and a worst-case scenario (MESSAGE RCP 8.5) (Carvalho et al., 2019). 224 

We focused on the land-use states that best represent biomes where great apes can be found: 225 

primary (i.e. natural vegetation (either forest or non-forest) undisturbed by humans), 226 

secondary (i.e. natural vegetation previously disturbed by agriculture or wood harvesting), 227 

and cropland. 228 

We based human population scenarios on a new set of future societal development scenarios, 229 

namely Shared Socioeconomic Pathways (SSP) (Table S1.1) (Jones & O9Neill, 2016). These 230 

future scenarios are based on both qualitative narratives of future development and 231 

quantitative projections of key elements such as human population growth at the national 232 

level, educational composition, urbanization and economic growth. These data are available 233 

from 2010 to 2100 for urban and rural population. We used two future scenarios, SSP1 and 234 

SSP3, given that they represent best- and worst-case scenarios, respectively. 235 
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We also considered distances to roads, villages and rivers as they are known to influence the 236 

distribution of African apes (Table S1.1) (Carvalho, Marques, & Vicente, 2013). We 237 

extracted data on protected areas in each taxon distribution from the most comprehensive 238 

global database on terrestrial and marine protected areas, the World Database on Protected 239 

Areas (Table S1.1). 240 

Firstly, we extracted all variables for the extent of the range of each taxon, resampled onto a 241 

5km x 5km equal-area grid and projected them into the WGS 1984 geographic coordinate 242 

system. Secondly, we used Spearman rank correlations to select a subset of least correlated 243 

variables to minimize multicollinearity (Brun et al., 2019). For this, we used a graphical 244 

representation of the correlation values between variables to identify five least correlated 245 

variables for each species to avoid overfitting in model predictions (Fig. S1.2) (Thorne et al., 246 

2013). We performed data analyses using the software R version 3.6.1 (R Development Core 247 

Team, 2019) and ArcMap version 10.4.1 (ESRI, 2011). 248 

 249 

SDM performance and ensemble forecasting 250 

We predicted future African ape distributions using an ensemble forecasting approach (i.e. 251 

combining predictions from individual models into an ensemble as implemented in the 252 

8biomod29 package in R (version 3.3-7)) (Thuiller, Georges, & Engler, 2016). We selected 253 

two correlative algorithms, generalised linear model (GLM) and generalised additive model 254 

(GAM), and three machine-learning techniques, Maxent, random forest (RF) and artificial 255 

neural networks (ANN) to build predictive SDMs for each species. These algorithms have 256 

been shown to perform well in previous SDMs (Elith et al., 2006; Thuiller, Lafourcade, 257 

Engler, & Araújo, 2009). As the choice of configuration settings of individual modelling 258 

algorithms has potentially considerable impacts on predicted distributions (Hallgren, Santana, 259 

Low-Choy, Zhao, & Mackey, 2019), we contrasted results under two modelling approaches 260 

by 1) using the default tuning options of algorithms (i.e. default), and 2) changing the 261 

configuration settings of algorithms (i.e. non-default). The latter included changes in the 262 

correlative algorithms, particularly defining interactions between predictors as well as 263 

polynomial terms, to better represent assumptions about the ecological niche of each taxon 264 

(see R code in Appendix S2). 265 

For the present time period only, we assessed the predictive performance of each model 266 

through cross validation using a bootstrap approach, i.e. partitioning of the presence data, 267 

using 80% of presences, randomly selected, for model calibration and 20% for evaluation, 268 

and repeating this procedure 5 times (Thuiller et al., 2009). We evaluated the performance of 269 

each model by the 8true skill statistic9 metric (TSS) (Allouche, Tsoar, & Kadmon, 2006). TSS 270 

is an accuracy measure that accounts both for omission errors (i.e. the percentage of true 271 

presences predicted as absences are minimised) and commission errors (i.e. the percentage of 272 

true absences predicted as presences are minimised), is unaffected by prevalence, and ranges 273 

from -1 to 1, with a prediction accuracy considered similar to 8random9 when ≤0, 8poor9 in 274 

the range 0.2-0.5, 8useful9 in the range 0.6-0.8, and 8good9 to 8excellent9 when >0.8 (Allouche 275 

et al., 2006). 276 

Ensemble forecasting has been widely employed to reduce the uncertainties associated with 277 

using a single algorithm, and is a useful method to account for uncertainties of extrapolation 278 

of species-environment relationships outside the environments sampled by the species data 279 
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(Araújo & New, 2007; Hao et al., 2019; Thuiller, Guéguen, Renaud, Karger, & Zimmermann, 280 

2019; Thuiller et al., 2009). We chose to apply the weighted mean ensemble method, which 281 

scales predictions of different models by weights based on some measure of predictive 282 

performance (Araújo & New, 2007; Thuiller et al., 2009). We included only individual 283 

models that reached very 8good9 predictive accuracies (TSS>0.8) in ensemble models to map 284 

the current and future habitat suitability predicted for each taxon (Thuiller et al., 2019). For 285 

each modelling approach, we repeated the modelling five times (cross-validation) and given 286 

the five modelling algorithms and the three repetitions for variable importance (see below), 287 

we obtained an ensemble of 75 predicted distributions for each species for each time period 288 

(present and 2050) and future scenarios (best- and worst-case scenarios). 289 

 290 

Relative importance of predictors 291 

For each taxon and modelling approach, we calculated the importance of each predictor by 292 

correlating the fitted values of the full models with those from the model in which the values 293 

of the predictor were randomly permuted. We repeated this procedure three times (default 294 

settings of 8biomod29 were used) and used the average Pearson9s correlation to measure 295 

variable importance. A high correlation between the values from the full and permuted 296 

models indicates that the variable has a low importance, contributing poorly to the model. We 297 

then ranked each variable value based on the correlation coefficients and reversed its relative 298 

importance and scaled from 0 to 1, the more influential variables for the model representing 299 

those with a higher relative importance (Thuiller et al., 2009). 300 

 301 

Species range change 302 

We estimated the proportional change in range size, in 2050 compared to the present, for 303 

each taxon by subtracting the future prediction ensemble output from the SDMs for the best- 304 

and worst-case scenarios from that under current conditions. We considered continuous 305 

predictive outputs from ensemble models as they provide richer information over outputs 306 

classified into binary maps, particularly when the purpose of our study is to inform spatial 307 

prioritization decisions for conservation and management actions (Guillera-Arroita et al., 308 

2015). 309 

We subsequently identified areas of range loss (i.e. sites where the species is present at the 310 

moment but is likely to be absent in the future), gain (i.e., sites where the species is absent at 311 

the moment but is likely to be present in the future), and stability (i.e., sites where the species 312 

is potentially present at the moment and is likely to be present in the future). For this, we 313 

considered range change under two contrasting dispersal scenarios: 1) full dispersal, which 314 

assumes that the species can disperse to new suitable areas in the future; and 2) no dispersal, 315 

which assumes that the species will be unable to disperse and only the overlap between 316 

present and future distributions will be the expected suitable habitat for the species (Thomas 317 

et al., 2004). 318 

 319 

RESULTS 320 
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In general, both modelling approaches (default and non-default) resulted in similar predictive 321 

accuracy of individual and ensemble models and in the relative importance of the variable 322 

predictors (Fig. 1, S1.3-4). Predictive accuracy of the individual models based on TSS was 323 

8useful9 to 8excellent9, depending on the algorithm (Fig. S1.3). On average, RF models 324 

performed best relative to ANN and GLM models which performed worst at predicting 325 

species distributions (Fig. S1.3a). Importantly, with TSS scores >0.9 ensemble models had 326 

excellent predictive accuracy and clearly outperformed individual models (Fig. S1.3b). 327 

 328 

Figure 1. Results for the modelling approach where algorithm settings were changed for each African ape 329 

species (i.e. non-default). (a) Variable importance (mean and standard deviation (SD) of the correlation values) 330 

for the ensemble models, and (b) Predicted percentage change in African ape ranges by 2050 under the best- and 331 

the worst-case scenario, assuming no dispersal (loss) and dispersal (gain) scenarios. Variable predictor 332 

abbreviations: bio12 – annual precipitation, bio13 – precipitation of wettest month, bio15 – Seasonal variation 333 

of precipitation, bio16 – precipitation of wettest quarter, bio17 – precipitation of driest quarter, bio18 – 334 

precipitation of warmest quarter, bio19 – precipitation of coldest quarter, bio2 – mean diurnal range, bio3 – 335 

isothermality, bio4 – temperature seasonality, bio7 – temperature annual range, bio8 – mean temperature of 336 
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wettest quarter, crop – cropland, distpa – distance to protected areas, distrivers – distances to rivers, distroads– 337 

distances to roads, humpop – human population density, pland– primary land, sland – secondary land. 338 

 339 

Our ensemble models indicated that the current distribution of G. b. beringei, P. t. ellioti and 340 

P. t. troglodytes is strongly determined by anthropogenic variables, in contrast to the greater 341 

influence of climate-related variables on the distribution of G. b. graueri, G. g. diehli, G. g. 342 

gorilla, P. paniscus, P. t. schweinfurthii and P. t. verus (Fig. 1, S1.4-6). Our models indicate 343 

that the future distributions of most gorillas and bonobos will be more heavily influenced by 344 

climate-related variables, contrasting with the greater influence of anthropogenic variables in 345 

shaping the chimpanzee distribution (Fig. S1.5-6). 346 

On average, the same trend in species range change was estimated for both default and non-347 

default modelling approaches (Fig. 2, 3, S1.7-8). However, the non-default approach 348 

predicted a slightly lower range loss (50% or 57% under the best and worst scenarios, 349 

respectively) and lower range gain (81% or 93% under the best and worst scenarios, 350 

respectively) than the default approach (loss: 55% or 58%, gain: 103% or 91%, under the best 351 

and worst scenarios, respectively) (Fig. 3, S1.8). Moreover, differences were found in the 352 

magnitude of change for some taxa, particularly for G. b. beringei, G. g. diehli and P. t. 353 

schweinfurthii. To simplify, only results from the non-default approach are presented below 354 

(details for the default approach are provided in Appendix S1). 355 

 356 

Gorilla beringei beringei (mountain gorilla) 357 

Annual precipitation contributed most in the correlative models, whereas human population 358 

density was the strongest determinant of mountain gorilla distribution in machine-learning 359 

and ensemble models (Fig. S1.4). This taxon is confined to artificial 8island9 areas in a sea of 360 

agriculture where annual precipitation (1,200-1,500 mm), diurnal temperature range (11-12 361 

⁰C), human population (3,000-10,000 people/km2), and elevation (1,500-2,200 m) are high, 362 

and precipitation in the coldest quarter is low (180-440 mm) (Fig. S1.5-6). Precipitation 363 

variables will increase and diurnal temperature range will decrease by 2050 under the best 364 

scenario (Fig. S1.5-6). However, the opposite is predicted under the worst scenario. Human 365 

population growth is predicted to occur under both future scenarios. 366 

Range stability is predicted to occur under the best scenario, but one-third of current suitable 367 

habitat is predicted to be lost under the worst scenario (Fig. 3, S1.7). Moreover, both future 368 

scenarios agree that dispersal is unlikely given that no new suitable habitat will become 369 

available for mountain gorillas. 370 

Gorilla beringei graueri (Grauer's gorilla) 371 

Seasonal variation in precipitation (precipitation seasonality) was the most important variable 372 

in both individual and ensemble models in predicting the distribution of Grauer's gorillas 373 

(Fig. S1.4). This taxon is predicted to persist where seasonal variation of precipitation is low 374 

(25-40 mm), diurnal temperature range (12-13 ⁰C) and altitude (500-1500 m) are high, close 375 

to roads (<6 km) and far from protected areas (<30 km) (Fig. S1.5-6). Both climatic variables 376 
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 377 

Figure 2. Ensemble forecasting of the current and future (best- and worst-case scenarios) habitat suitability for Gorilla beringei spp, Gorilla gorilla spp and 378 

Pan spp based on weighted mean and the true skill statistics (TSS) for the non-default approach. Note that only results for the no dispersal scenario are 379 

presented here. 380 
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are expected to decrease under the best scenario or increase under the worst scenario (Fig. 381 

S1.5-6). 382 

If no dispersal occurs, this taxon is predicted to lose half of its current habitat under both 383 

scenarios (Fig. 3, S1.7). However, if dispersal occurs, a 97% range gain is predicted under the 384 

best scenario, but only 55% under the worst scenario. 385 

 386 

387 

Figure 3. Predicted percentage change in African ape ranges by 2050 under the best- and the worst-388 

case scenario, assuming either no dispersal (loss) and dispersal (gain) for the non-default approach. 389 

 390 

Gorilla gorilla diehli (Cross River gorilla) 391 

Precipitation in the wettest month was the most important predictor of Cross River gorilla 392 

distribution in both individual and ensemble models (Fig. S1.4). High precipitation during the 393 

wettest month (340-400 mm) and seasonal variation in temperature (9-10 ⁰C), very low 394 

human population (<2,500 people/km2), a large distance to main rivers (>400 km) and 395 

presence of large tracts of primary land (>95%) are suitable conditions for the distribution of 396 

this species (Fig. S1.5-6). Precipitation in the wettest month is predicted to increase and 397 

seasonal variation in temperature to decrease under the best scenario, whereas the opposite 398 

pattern is predicted under the worst scenario (Fig. S1.5-6). According to both future 399 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2020. ; https://doi.org/10.1101/2020.06.25.168815doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.168815
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

scenarios, human population is predicted to increase, and primary land is predicted to be 400 

completely lost. 401 

If no dispersal occurs, more than two-thirds of the current range is predicted to disappear 402 

under both future scenarios (Fig. 3, S1.7). In contrast, if Cross River gorillas could disperse, 403 

range gains of 40% or 75% are predicted under the best and worst scenarios, respectively. 404 

Gorilla gorilla gorilla (western lowland gorilla) 405 

All climatic variables were important predictors of western lowland gorilla distribution, 406 

particularly seasonal variation of precipitation and diurnal temperature range (Fig. S1.4). 407 

Areas characterised by low seasonal variation in precipitation (50-70 ⁰C), high annual 408 

precipitation (1,600-1,800 mm) and diurnal temperature range (9-11 ⁰C), absence of cropland 409 

and close to roads (0-15 km) harbour suitable conditions for the persistence of this subspecies 410 

(Fig. S1.5-6). According to both future scenarios, precipitation variables will not change, but 411 

decrease in diurnal temperature is predicted to occur. Cropland is predicted to increase under 412 

the worst scenario. 413 

Assuming no dispersal, loss of more than half the suitable area is predicted under both future 414 

scenarios (Fig. 3, S1.7). With dispersal, however, a large increase in suitable habitat under 415 

both future scenarios is predicted (87% best, 69% worst). 416 

Pan paniscus (bonobo) 417 

Precipitation in the warmest quarter is an important predictor of bonobo distribution in both 418 

individual and ensemble models (Fig. S1.4). Favourable environmental conditions shaping 419 

this species distribution are high precipitation (450-500 mm) and temperature (24-25 ⁰C) of 420 

the warmest quarter and annual precipitation (1,750-1,950 mm), mid altitudes (350-450 m) 421 

and close proximity to roads (<6 km) (Fig. S1.5). All climatic variables are predicted to 422 

increase in the future (Fig. S1.5-6). 423 

Under both future scenarios, more than half of the area of suitable habitat is predicted to be 424 

lost if no dispersal occurs (Fig. 3, S1.7). Suitable habitat is predicted to expand to new areas 425 

and, if bonobos disperse, range gains of 98% or 84% are predicted under the best and worst 426 

scenarios, respectively. 427 

Pan troglodytes ellioti (Nigeria-Cameroon chimpanzee) 428 

Cropland and primary land were the best predictors in GLM and Maxent models, in contrast 429 

to diurnal temperature range, which was the variable with the highest importance in GAM 430 

and RF models as well as in the ensemble models (Fig. S1.4). Areas with a low proportion of 431 

cropland (<7%), very high proportion of primary land (>90%), high diurnal temperature 432 

range (9-11 ⁰C), pronounced seasonal variation of both precipitation (67-75 mm) and 433 

temperature (8-11 ⁰C) offer suitable conditions for Nigeria-Cameroon chimpanzees (Fig. 434 

S1.5). An increase in cropland and a large reduction in primary land are predicted under the 435 

worst scenario. In contrast, no cropland expansion and a smaller decrease in primary land are 436 

expected under the best scenario. Under both future scenarios, seasonal variation of 437 

precipitation and temperature are predicted to increase and diurnal temperature range to 438 

decrease (Fig. S1.5-6). 439 
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If no dispersal occurs, almost half of the area of suitable habitat is predicted to be lost under 440 

both future scenarios (Fig. 3, S1.7). However, if dispersal occurs, substantial range gains are 441 

predicted to occur, particularly under the worst scenario (137% vs. 83% best scenario). 442 

Pan troglodytes schweinfurthii (eastern chimpanzee) 443 

Precipitation of driest quarter was an important predictor in most individual models, except 444 

for GLM and ANN models, where annual precipitation performed best (Fig. S1.4). However, 445 

all predictors ranked equally in importance in ensemble models. Eastern chimpanzees 446 

encounter suitable conditions where precipitation of the driest quarter is low (30-190 mm), 447 

annual precipitation (1,250-1,750 mm), isothermality (7-8 ⁰C) and diurnal temperature range 448 

(13-17 ⁰C) are high, and cropland is rare (<5%) (Fig. S1.5-6). Under the best scenario, 449 

climatic variables are unlikely to change, but a decrease in isothermality is predicted under 450 

the worst scenario. The latter also predicts expansion of cropland by 2050. 451 

According to both future scenarios, suitable habitat is predicted to be confined to the core of 452 

the species9 current distribution (Fig. 3, S1.7). In terms of range change, half of suitable 453 

habitat is predicted to be lost under both future scenarios if no dispersal occurs. In contrast, if 454 

dispersal occurs, range expansion of 113% or 199% into new areas is expected under the best 455 

and worst scenarios, respectively. 456 

Pan troglodytes troglodytes (central chimpanzee) 457 

Secondary land and distances to main rivers were the predictors of greatest importance in 458 

individual and ensemble models, except for GLM models, where only secondary land was a 459 

slightly better predictor (Fig. S1.4). Suitable environmental conditions for central 460 

chimpanzees are characterised by a high percentage of secondary land (12.5-75%), large 461 

distance to main rivers (>450 km), high annual precipitation (1,600-1,800 mm) and 462 

precipitation in the warmest quarter (400-500 mm), and mid-altitudes (300-600 m) (Fig. 463 

S1.5-6). According to both future scenarios, climatic variables are predicted to remain 464 

unchanged, but expansion of secondary land is expected by 2050. 465 

A reduction of half the current area of suitable habitat is expected under both future scenarios 466 

if no dispersal occurs (Fig. 3, S1.7). Predictions of range gains for central chimpanzees 467 

suggest that 104% or 106% of suitable habitat will become available in new areas under the 468 

best and future scenarios, respectively. 469 

Pan troglodytes verus (western chimpanzee) 470 

Precipitation in the wettest quarter was the most important variable in individual and 471 

ensemble models (Fig. S1.4). Current suitable conditions for western chimpanzees are very 472 

high precipitation of the wettest quarter (600-900 mm), high seasonal variation of 473 

precipitation (60-110 mm) and precipitation of coldest quarter (100-600 mm), low human 474 

population (<5,000 people/km2) and low proximity to roads (<2 km) (Fig. S1.5-6). A greater 475 

increase in both seasonal variation in precipitation and precipitation of the coldest quarter is 476 

predicted under the worst scenario. 477 

Western chimpanzees have the widest geographic distribution among African apes, however, 478 

loss of more than half their present range is predicted under both future scenarios if no 479 

dispersal occurs (Fig. 3, S1.7). On the other hand, high range gains are anticipated under both 480 

future scenarios if there is dispersal (best: 139%, worst: 109%). 481 
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DISCUSSION 482 

This is the first study to combine climate, land-use and human population changes in an 483 

ensemble forecasting approach to predict African ape distribution by 2050. Customizing the 484 

model specifications relative to the default settings in the correlative algorithms revealed 485 

uncertainty in predicting the amount of suitable habitat available by 2050. However, both 486 

approaches agreed that all African ape taxa are likely to experience marked range losses 487 

(best: 55% default or 50% non-default; worst: 58% default or 57% non-default), and that 488 

these reductions may not be as severe if dispersal to new areas of suitable habitat occurs 489 

(best: 103% default or 81% non-default; worst: 91% default or 93% non-default). 490 

A previous study quantified changes in suitable environmental conditions for African apes 491 

between 1990 and 2000, and found that the greatest proportional reductions occurred for 492 

gorillas (G. g. diehli, range loss of 59%; G. b. graueri, 52%; G. g. gorilla, 32%) and bonobos 493 

(P. paniscus, 29%) compared with chimpanzees (P. t. troglodytes, 17%; P. t. verus, 11%) 494 

(Junker et al., 2012). Lehmann and colleagues (2010) employed a mechanistic approach to 495 

investigate how climate change under a worst scenario would influence African ape survival 496 

and reported that chimpanzees might lose 10% of current range and gorillas 75%. Our study 497 

concurs with these results for most gorilla taxa, but more than half of suitable habitat area for 498 

chimpanzees is predicted to be lost under both future scenarios if no dispersal occurs. 499 

However, our full dispersal scenario predicts gains of suitable conditions in new areas under 500 

both future scenarios for all taxa, except mountain gorillas.  501 

The variables that best predicted current distribution were taxon-specific: anthropogenic 502 

variables were key predictors in most models for mountain gorillas, Nigeria-Cameroon and 503 

central chimpanzees, and climate-related variables for Grauer's, Cross River and western 504 

lowland gorillas, bonobos, eastern and western chimpanzees. However, future scenarios 505 

suggest that the distribution of most gorillas and bonobos is predicted to be determined by 506 

changes in climatic variables, and that of chimpanzees by land-use changes. Moreover, the 507 

forecast variation in both climatic and human population variables can explain the predicted 508 

habitat stability for mountain gorillas. Interestingly, habitat gains predicted for Cross River 509 

gorillas, Nigeria-Cameroon and eastern chimpanzees under the worst scenario are likely to be 510 

explained by stability of climatic variables and changes in anthropogenic variables by 2050. 511 

Despite the importance of climatic variables in determining African ape time budgets, and 512 

consequently their effects on distributions, gorillas and chimpanzees are more sensitive to 513 

variations in temperature than in precipitation and they persist better in habitats with lower 514 

monthly temperature variation (Lehmann et al., 2010). Moreover, gorillas are predicted to be 515 

affected more than chimpanzees given the more restricted behavioural flexibility of gorillas 516 

to cope with temperature variation (Lehmann et al., 2010). Our study suggests that diurnal 517 

and seasonal variability influence the distribution of most gorillas, yet only play a similar role 518 

for Nigeria-Cameroon and eastern chimpanzees. Additionally, annual precipitation, and 519 

particularly its distribution over the wet and dry seasons, affects the distribution of most 520 

gorillas and chimpanzees, as well as bonobos. These results are indirect evidence of the 521 

marked influence of temperature and precipitation on species ecological niche with regard to 522 

dehydration and thermoregulation (Wessling et al., 2018). The influence of climate change on 523 

great ape ecology has been poorly explored compared with anthropogenic disturbance; 524 

nonetheless, we can expect temperature extremes to exacerbate habitat loss for African apes 525 
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and consequently pose serious threats to species persistence, as they are anticipated to impact 526 

other non-primate species (Araújo et al., 2011; Newbold, 2018). By integrating future climate 527 

and land-use changes as well as human population scenarios, our predictions provide strong 528 

evidence for synergistic interactions among these global drivers constraining species 529 

distributions. 530 

Strindberg and colleagues (2018) found that western lowland gorillas and central 531 

chimpanzees, two sympatric taxa with 97% range overlap, mostly occur outside protected 532 

areas, and argued for 8reinforcement of anti-poaching efforts both inside and outside 533 

protected areas (particularly where habitat quality is high and human impact is low), diligent 534 

disease control measures (including training, advocacy, and research into Ebola virus 535 

disease), and the preservation of high-quality habitat through integrated land-use planning 536 

and implementation of best practices by the extractive and agricultural industries9. Our study 537 

suggests that both taxa will find environmentally suitable areas outside their current range, in 538 

line with our predictions for most African apes. Thus, outcomes from our SDMs should be 539 

integrated with a habitat connectivity analysis to optimize conservation land-use planning and 540 

identify priority areas for these species (Freeman et al., 2018; Jones et al., 2018). This is 541 

extremely important given that African protected areas are distant from each other (Santini, 542 

Saura, & Rondinini, 2016) and particularly because great apes have a low dispersal capacity 543 

due to their slow reproduction, low population densities, dietary requirements and poor 544 

thermoregulation. It will be important to ensure objective assessments of human pressures 545 

and habitat conditions in potential protected areas to avert species extinctions in the long term 546 

(Jones et al., 2018). 547 

Taxon-specific frameworks of environmental and socio-economic trends (Estrada et al., 548 

2018; Strindberg et al., 2018; Tranquilli et al., 2014) should be considered at all major 549 

decision-making levels in range countries and abroad to (1) improve the management and 550 

recovery of degraded habitat in protected areas and off-reserve management to increase 551 

resilience, (2) increase the size of protected areas, establish additional protected areas and 552 

ensure habitat connectivity, (3) incorporate climate change into land-use planning and 553 

propose mitigation measures on the conservation agenda for African apes and sympatric 554 

wildlife, and (4) implement more effective law enforcement in ape ranges, supplemented by 555 

environmental education, community development, tourism programmes and research (IUCN 556 

& ICCN, 2012; IUCN, 2014; Tranquilli et al., 2014, 2012). Public-private partnerships have 557 

proven highly effective across the forest and savanna zones, where an NGO or other 558 

organisation takes on management responsibility for a given site over one or more decades 559 

(Scholte et al., 2018). 560 

 561 

Limitations of distribution models 562 

Modelling species responses to global environmental changes carries many uncertainties 563 

(Araújo & New, 2007; Thuiller et al., 2019). Using two algorithm approaches, two future 564 

scenarios, two dispersal scenarios, an ensemble forecasting and including only a few but 565 

highly important predictors of the distribution of African apes, should have reduced 566 

uncertainties in our distribution models (Brun et al., 2019; Thorne et al., 2013). A recent 567 

study proposed that SDMs include historical records to produce better predictions of range 568 

shifts rather than relying on contemporary records alone (Faurby & Araújo, 2018). This is 569 
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important for large vertebrates given the direct effects of anthropogenic disturbances on their 570 

distribution, and many ranges being far from equilibrium under current environmental 571 

conditions (Faurby & Araújo, 2018). The species occurrences we used are from field sites 572 

and may represent realized niches as currently African apes may be absent from areas of 573 

potential distribution, but unfortunately, reliable information about historical ranges is not 574 

available. Thus, it is possible that our predictions of current African ape distribution have 575 

underestimated the diversity of niches suitable for these species, which consequently may 576 

have limited our model predictions under future conditions. 577 

Mining concessions and granted mining claims are increasing dramatically across Africa, 578 

particularly threatening large ape populations in Guinea, Gabon and Liberia (Howard, 2019). 579 

It will be important to model the influence of this threat on future African ape distributions 580 

once appropriate spatial data sets become available.  581 

Our results corroborate the other recent studies showing that African ape populations and 582 

their habitats are declining dramatically (Freeman et al., 2018; Hickey et al., 2013; Kuehl et 583 

al., 2017; Lehmann et al., 2010; Plumptre et al., 2016; Strindberg et al., 2018; Thorne et al., 584 

2013), thus our findings should also be used to guide the prioritization of conservation efforts 585 

for these flagship species to avoid irreversible losses. 586 

 587 

Conclusions 588 

Given that the existing network of protected areas is inadequate for ensuring the long-term 589 

conservation of African apes (Strindberg et al., 2018), we support the argument that effective 590 

conservation strategies require taxon-specific conservation planning that focuses on existing 591 

and proposed protected areas, the creation and/or management of which can be informed by 592 

our habitat suitability models. Additionally, efforts to maintain connectivity between the 593 

habitats predicted to be suitable in the future will be crucial for the survival of African apes. 594 

For a species to shift to new climatically suitable areas, the availability of such habitat will 595 

need to be ensured through effective protection by antipoaching teams whether in a protected 596 

area or not, the enforcement of industrial extractive industry conservation regulations (for 597 

example, as currently practiced in logging concessions under FSC Standards), and by national 598 

land-use planning that ensures that the areas of current and future high conservation value are 599 

not transformed into agricultural plantations or fragmented by roads. As an example, this 600 

country-wide approach has been undertaken in Gabon, where planning for the development 601 

of agriculture, road and rail links, and mineral extraction has been informed by wildlife and 602 

vegetation data in order to locate these activities in areas that are already degraded, and to 603 

avoid closed-canopy old-growth and remote forests (Government of Gabon, 2012; Strindberg 604 

et al., 2018). This will be an effective way of promoting habitat connectivity to maintain 605 

African ape populations as well as sympatric wildlife. 606 
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