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Optimisation of functional network resources when learning

behavioural strategies for performing complex tasks

Richard E. Daws', Gregory Scott', Eyal Soreq', Robert Leech?, Peter J. Hellyer? & Adam

Hampshire'.

"Department of Brain Sciences, Imperial College London, UK. 2Department of Neuroimaging, Institute of Psychiatry, Psychology

and Neurosciences, King's College London, London, UK.

Abstract

We developed two novel self-ordered switching (SOS) fMRI paradigms to investigate how
human behaviour and underlying network resources are optimised when learning to perform
complex tasks with multiple goals. SOS was performed with detailed feedback and minimal
pretraining (study 1) or with minimal feedback and substantial pretraining (study 2). In study
1, multiple-demand (MD) system activation became less responsive to routine trial demands
but more responsive to the executive switching events with practice. Default Mode Network
(DMN) activation showed the opposite relationship. Concomitantly, reaction time learning
curves correlated with increased connectivity between functional brain networks and
subcortical regions. This ‘fine-tuning’ of network resources correlated with progressively more
routine and lower complexity behavioural structure. Furthermore, overall task performance
was superior for people who applied structured behavioural routines with low algorithmic
complexity. These behavioural and network signatures of learning were less evident in study
2, where task structure was established prior to entering the scanner. Together, these studies
demonstrate how detailed feedback monitoring enables network resources to be progressively

redeployed in order to efficiently manage concurrent demands.

Keywords: Cognitive control, learning, behavioural structure, task-switching, fMRI.
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Highlights

e We examine the optimisation of behaviour and brain-network resources during a novel
“self-ordered switching” (SOS) paradigm.

e Task performance depended on generating behavioural routines with low algorithmic
complexity (i.e., structured behaviours).

e Behaviour became more structured and reaction time decreased as SOS was practised.

e As behaviour became more structured, activation in multiple-demand regions decreased
for simple trial events but increased for executive switching events

e Increases in between-network functional connectivity correlate with reaction time

decreases.
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Introduction

The ability to rapidly learn complex tasks is a definitive feature of human cognition. Studies of
cognitive control suggest that the human brain achieves this by rapidly adapting to encode
behavioural routines (Finc et al., 2020; Khambhati et al., 2018), also known as a ‘task set’,
comprising the combinations of rules, strategies and stimulus-response mappings that enable
optimal performance (Sakai, 2008). This encoding is typically associated with distributed

activation of the multiple-demand (MD) system (Duncan, 2013).

During instruction based learning (IBL), generating and establishing a simple routine imposes
a cognitive demand that rapidly decreases with practise. This learning can be accompanied
by a decay in MD activation, particularly in anterior prefrontal cortex (aPFC), as reaction time
(RT) decreases (Hampshire et al., 2016, 2019). The established behavioural routine can be
robustly identified by task-specific multivariate patterns of the brain’s functional connectivity
(FC) (Soreq et al., 2019, 2021) and these patterns are predictive of behavioural performance
(Rosenberg et al., 2016; Soreq et al., 2021). As individuals learn a task, FC is dynamic and
becomes more stable with increased FC within cortical networks (Hampshire et al., 2016) and

in their connectivity with subcortical regions (Antzoulatos & Miller, 2014; Bassett et al., 2011).

In everyday life, the optimal behavioural routine is often not evident when first performing
tasks. This can be due to a lack of clear instruction, the inherent complexity of the task, or
shifting demands. Consequently, it is necessary to monitor outcomes and progressively
update behavioural routines in order to optimise behaviour (Sharp et al., 2010; Swick &
Turken, 2002). This updating of routines is critical for flexible behaviour (lonescu, 2012);
however, it comes with a cost and is associated with increases in reaction time (RT) and
heightened MD activation (Daws et al., 2020; Hampshire & Owen, 2006). Furthermore, it often
is necessary to juggle multiple concurrent tasks, or to manage sub-routines of complex tasks,
and in the process, to monitor multiple outcomes. Increased task complexity poses a challenge
for flexible cognitive systems due to their intrinsic limitations in capacity (Duncan, 2013). Under
such conditions, humans have a tendency to impose hierarchical structure to their behavioural

routines (Fallon et al., 2013).

This tendency towards self-ordered structure is underpinned by decisions regarding when and
in what order to switch attention between competing tasks. Consequently, switching
paradigms provide a natural choice for studying the cognitive control processes that enable
flexible human behaviour. However, task-switching paradigms typically control when switches

occur (Kiesel et al., 2010), which does not capture the self-ordered nature of real-world human
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behaviour (Hampshire & Owen, 2006). Despite this limitation, there is evidence that cognitive
demand is minimised with learning and by structuring behaviour, where possible. Task-
switching imposes a considerable cognitive demand but switching-costs to RT will decrease
with practise (Yeung & Monsell, 2003), although a residual cost persists in humans even after
tens of thousands of trials (Stoet & Snyder, 2007). Moreover, switching-costs decrease with
preparation time and also when switching events are predictable (Rogers & Monsell, 1995).
During voluntary task-switching (VTS), participants are less likely to switch under high
cognitive load (Demanet et al., 2010) and can exhibit a repetition bias despite being instructed

to evenly and randomly switch between tasks (Arrington & Logan, 2004, 2005).

These findings indicate that both learning and the structuring of behaviour are important
mechanisms for minimising cognitive demand when managing competing task demands.
Here, we investigate this further using functional MRI (fMRI) and two novel “self-ordered
switching” (SOS) paradigms. The SOS paradigm requires participants to learn through a
process of feedback-driven trial and error how to manage their time between two tasks, each
of which has two rules that the participants select. To score maximum points, the participant
must spend time on all four sub-tasks. In two studies, the concurrent optimisation of brain
function and behaviour was examined as participants either actively learnt SOS demands
based on multiple feedback elements (study 1) or, as a control condition, performed SOS with

minimal feedback only and after receiving extensive pre-training (study 2).

We tested the hypothesis that in study 1, where participants were performing the task for the
first time and with detailed feedback, self-ordered behaviour would optimise with practise. It
was predicted that RT would decrease and that behavioural routines would become
increasingly structured. Using fMRI measures of network activation and FC, we hypothesised
that brain function would vary as behaviour optimised. Specifically, we predicted that MD
activation would decrease with practise for the simple trial events, but that these learning
curves would be less rapid for the more demanding switching events. We predicted that FC
increases between functional networks associated with cognition would accompany the
learning of optimal behavioural routines, reflecting more efficient network processing. Finally,
we expected that in study 2, where the task had been pre-trained and feedback was minimal,

that participants would show little or no behavioural learning effects.
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Methods

Participants.

31 healthy right-handed participants were recruited in total: Study 1 - n=16, mean age 24.75
years, range 19-40, 10 female; Study 2 - n=15 mean age 26.47 years, range 19-42, 11 female.
Approval for this study was received by the Cambridge university research ethics committee
and participants gave written informed consent. Participants were reimbursed £20 for their

time.

Self-ordered switch (SOS) paradigms.

We designed two SOS paradigms that required participants to manage their time between two
concurrent tasks that each had two subordinate rules in order to gain maximum points within
20 minutes. There was a matching task (MT) and an odd one out (OOOQ) task, both involving
simple visual discriminations of objects (Figure 1a). The subordinate rules of each task were
differentiated by the requirement to apply the rules to either colour or shape. During each trial,
arrays of simple colour-shape objects were presented, and participants made a visual

discrimination response based on the current task and rule.

Critically, in order to keep gaining points, participants had to organise their time across all four
sub-tasks. This meant that they chose whether to repeat the same condition (repeat-trial) or
to switch between the tasks or the rules (task-switch, rule-switch). Responses were made with
a button positioned under the right hand. Each trial continued until a response was made using
either a left or right button press. The task and rule task did not change between trials unless
the participant opted to task-switch or rule-switch by pressing the up or down button

respectively.

When performing MT trials, a target and two probe objects (each with a shape and colour)
were presented, and the participant indicated via a left or right button press which of the two
probes matched the target given the currently selected shape or colour rule. Similarly, during
00O trials, a 2x2 object grid was presented and the participant indicated with a left or right
button press which side of the display contained the object that differed from the others given

the currently selected colour or shape rule.

The task and rule discrimination criteria were designed to be simple enough that individual
trials could be performed with high accuracy and minimal effort. This ensured that individuals
could focus on the executive requirement to learn how to divide their time across the tasks

and rules in order to gain maximum points (see detailed criteria below). In both studies, SOS
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was continuously performed inside the scanner for 20 minutes with no resting periods. The
studies differed with respect to the training administered and the response feedback received

during the scanning session.

In study 1, participants played a short demo, during which they were required to undertake
each of the four task-rule combinations and each of the switch types once (rule or task switch).
On screen instructions were sequenced to orient the participant towards the feedback
elements (described below) and controls for responding and switching. They then entered the
scanner and undertook the SOS paradigm in a single continuous 20 minute acquisition. Both
tasks were displayed on the screen with the MT at the top and the OOO task at the bottom
(Figure 1c). The currently active task was indicated with a red border, the inactive task had a
grey border (these border colours flipped when the task-switch button was pressed). The
active rule was displayed with a text cue in the centre of the task panel (“COLOUR” or
“SHAPE?”, in yellow) and flipped when the rule-switch button was pressed. On each trial, new
stimuli were displayed, and participants were able to repeat the condition or could task-switch
and/or rule-switch once prior to performing the trial within the selected panel. A feedback array
was then immediately displayed for 1.5 seconds followed by the stimuli for the next trial (Figure
1c).

Participants learnt to optimally sequence their responses based on a hierarchically arranged
set of performance meters (supplemental Figure 1a-b). These meters were as follows. (1) An
overall score meter was located at the centre of the screen alongside (2) two meters indicating
the number of points currently accumulated for each of the two tasks. These were presented
continuously on the screen. Additionally, the feedback array after each trial comprised (3) text
indicating positive or negative feedback for the present trial response (“CORRECT” in green
or “INCORRECT” in red) and (4) four meters, showing points currently accumulated on each

of the sub-task (i.e., colour and shape for MT vs OOO).

These score elements interacted hierarchically. Specifically, sub-task meters would increase
after a correct response to the corresponding condition (e.g., a correct response to a MT colour
trial) and would decrease if an incorrect response was made. All meters ranged between one

to ten and were initialised with five points at the start of the experiment.

Within each MT and OOO task, the aim was to respond to, and switch between, the task’s
colour and shape rules in a sequence that would build up both rule meters to the maximum
level of ten (supplemental Figure 1c-e), at which point, the two subtask meters would reset to

five, and the corresponding high-order task meter and overall score incremented by 1. To
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encourage switching, if one subtask meter got further than two points ahead of the other, then

the other meter decreased by a point (supplemental Figure 1d).

Switching between tasks was encouraged in a similar way to rule switching as the inactive
task meter would decrease if the active task meter was two or more points ahead. Successfully
dividing time between each task would build up both task meters, thereby increasing the
overall score. When both task meters reached the maximum level of ten, both meters would
reset to the initial position and a +10 point bonus was awarded to the overall score

(supplemental Figure 1f).

Given that switching would be costly in terms of both effort and time, and the aim was to score
as many points as possible per unit time, optimal behaviour could be defined as having a
routine that used the minimal number of switches required to ensure sufficient dividing of time
between each task’s sub-rules and between each task. Those who learnt the most efficient
way of doing this, via trial and error, would be expected to score the most points during the
experiment. An example sequence of events that a participant could perform is described in

the supplementary materials.

In study 2, participants performed SOS with the same instructions, stimuli, rules and tasks;
however, there were modifications in the presentation of the tasks, training and feedback.
Most critically, immediately prior to the scanning session, participants received a 20 minute
training session as opposed to a minimal demo. This extensive training session was designed
to enable participants to arrive at a structured routine for performing the task prior to the
scanner session. Additionally, the task and sub-task feedback scales from study 1 were only
present during the training. Therefore, the only feedback available in the scanner was
represented by the overall score number. There also were no bonus points awarded on
increasing both task scales to their limit whilst in the scanner. These modifications were
designed to minimise the information that the participant could use to further optimise their
behavioural routine inside of the scanner whilst ensuring that they had sufficient information
to remain engaged. Finally, as opposed to presenting both tasks simultaneously (study 1),
only the currently selected MT or OOO task was presented on the screen (Figure 1e). This
modification was intended to further control for activity related to switching between spatial

locations as opposed to tasks.
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Figure 1. Self-ordered switching (SOS) experiments. a) Schematic of the two tasks (MT -
Matching task, OOO - Odd one out) and the two rules (colour, shape) of the SOS paradigm.
Grey arrows represent repeat-trials where the same condition was repeated. Task-switching
and rule-switching are represented by the blue and orange arrows, respectively. b) In study 1,
SOS was performed after minimal training with a short demo. c) Both tasks were
simultaneously displayed on the screen and hierarchical response feedback was presented
with progress meters on each task overall as well as each of the task’s subordinate rules. d)
In study 2, SOS was performed after extensive training with full hierarchical feedback and then

performed in the scanner with minimal feedback involving the overall score only (e).
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Behaviour

The RTs from correct trials were separated into three categories: Repeat-trials, rule-switch
and task-switch. Repeat-trial RT was the time between the stimuli presentation and the L/R
response being made. Rule-switch or task-switch RT was the time between the corresponding
switch button being pressed and the subsequent L/R response. For each participant, RTs for
each category were summarised using the median from correct trials. The number of trials
completed would naturally vary across participants and response accuracy was summarised
for each RT category as the percentage of correct responses made. Separate one-way
repeated-measures analysis of variance (RM-ANOVA) models were independently conducted

for the RT and accuracy measures

Trial conditions could be repeated or switched between as each participant saw fit (Figure 1a).
To quantify the extent to which participants structured their behaviour, we estimated the
algorithmic complexity (Zenil et al., 2018) of each behavioural timecourse. Algorithmic
complexity estimates the size of the smallest algorithm that could generate a given sequence

and tends to be smaller for sequences with consistent structures vs. random sequences.

Here, we use the framework, outlined by Zenil et al. (2018), which combines a block
decomposition method (BDM) and the coding theorem method (CTM) (Lempel & Ziv, 1976) to
provide a reasonable estimate of Kolmorogov-Chaitin complexity (K) (Chaitin, 1966;
Kolmogorov, 1968) for large strings in a computationally tractable way. The advantage of BDM
is that it provides an estimate of K that not only considers statistical regularities, (e.g., as is

captured by Shannon entropy), but it is also sensitive to segments of an algorithmic nature.

Timecourse length naturally varied across individuals, and to account for this, we normalised
an individual's algorithmic complexity by the mean algorithmic complexity calculated from 100
randomly shuffled versions of the individual’s data (qualitatively similar results were obtained
without normalisation). NB:- As expected, the shuffled data exhibited significantly greater
algorithmic complexity (paired t-test: Study 1 - t15=-9.775, p<0.001, d=3.54; Study 2 - ti4=-
35.329, p<0.001, d=14.29).

A more focused behavioural analysis was conducted to examine how RT and algorithmic
complexity varied over the course of the 20 minute experiment. Here, the behavioural
timecourses were split into three non-overlapping time-windows (6.67 minutes of data), or

“Learning stages”. The median RT for each category (correct trials) as well as the normalised
algorithmic complexity (using the same procedure outlined above) were extracted from each

learning stage.

10
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fMRI acquisition and preprocessing

Whole-brain blood oxygenation level dependent (BOLD) fMRI recordings were acquired using
the same Siemens 3T Trim Trio scanner and following parameters in both studies: TR=2s,
TE=30ms, FA=78°, 3mm® voxels, 3.75mm slice-gap, 32 axial slices. 630 volumes were
acquired during the 20-minute SOS task run. A T1-weighted magnetization prepared rapid
acquisition gradient echo (MPRAGE) sequence was also acquired using the following
parameters: TR=2250ms, TE=2.99ms, IT=900ms, FA=9°, 1mm? voxels, 256 axial slices.

fMRI pre-processing was conducted using standard parameters with the Statistical Parametric
Mapping 12 (SPM)" toolbox in Matlab 2018b?. The first 10 volumes were discarded to account
for T1-equilibrium effects. The remaining images were slice-time and motion-corrected, and
the mean echo planar image (EPI) co-registered to the tissue segmented T1 image,
normalised to 2mm?® MNI space and spatially smoothed (full half width maximum = 8 mm

kernel).

fMRI activation modelling

Participant’s voxelwise fMRI data was modelled using General Linear Models (GLM) with the
psychological events defined by responses to one of the four trial conditions (MT colour, MT
shape, OOO colour, OO0 shape) and when one of the two task-switches (MT to OO0, OO0
to MT) or four rule-switches (MT colour to MT shape, MT shape to colour, OOO colour to
shape, OOO shape to colour) occurred. Errors were infrequent but were captured in an
additional predictor. Models in study 1 included an additional set of feedback events for when
the rule or task bars def/incremented and when bonus points were awarded. These
psychological predictors were convolved with the canonical haemodynamic response function
(HRF) with the durations set to Os.

Head motion and nuisance variables were modelled using the rigid-body realignment
parameters, the mean timecourses from the white matter and cerebrospinal fluid tissue
segmentations, alongwith their 1st order temporal derivatives. This resulted in 16 parameters.
Additional spike regressors were included where framewise displacement (Power et al., 2012)

exceeded the voxel acquisition size (3mm).

1
"SPM12 - Wellcome Trust Centre for Neuroimaging - UCL." Accessed July 30, 2019. https://www fil.ion.ucl.ac.uk/spm/software/spm12/.

2
"MATLAB - MathWorks - MATLAB & Simulink." Accessed July 30, 2019. https://www.mathworks.com/products/matlab.html.

11


https://doi.org/10.1101/2020.06.17.156570
http://creativecommons.org/licenses/by-nc-nd/4.0/

0 N OO o B~ WO N -

N N DN N N DN A A ma ama aAa a a a a
a A WO N ~ O © 0N OO o WO N ~ O ©

26

27
28
29
30
31
32
33
34
35

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.156570; this version posted July 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

The 1st-level beta maps were estimated for each psychological predictor reactive to the model
intercept (as there were no resting periods). Modelling against this “implicit baseline” results

in significant activation differences being relative to the average activation across time.

Additional 1st-level models were created to examine how activation varied over time.
Specifically, the psychological predictors were segmented by the three learning stages defined
in the behavioural analysis. The trial response events were collapsed into a single predictor,
and switching events were collapsed into a single task-switch and a single rule-switch

predictor. The same nuisance predictors were used in these models.

The group-level modelling of activation associated with switching involved a voxelwise one-
way RM-ANOVA of the beta maps representing the two task-switch and four rule-switch
conditions. To examine how switching activation varied over time, switch>repeat contrasts
were generated from each learning stage and modelled with a group-level two-way RM-
ANOVA with learning stage (3 levels) as the within-subject factor and study (2 levels) as a
covariate. All group-level activation maps were initially thresholded at an uncorrected p<0.01,

followed by a p<0.05 false discovery rate (FDR) cluster correction.

fMRI connectivity modelling

Generalised psychophysiological interaction (gPPIl) models (Friston et al., 1997; McLaren et
al., 2012) were used to examine how connectivity varied as SOS was performed. Specifically,
gPPIs were fitted between pairs of mean timecourses from 274 ROIls defined by external
atlases that parcelated the cortex, subcortex and cerebellum (Buckner et al., 2011; Fan et al.,
2016; Schaefer et al., 2018). gPPI's were simultaneously estimated for the psychological

events in each learning stage and pair of ROls using the following:

YT = Bo+ [V« HX)]Bs + [V, HX),E]B +e,

where, X, is the matrix of psychological timecourses and, H(X), its HRF convolution. YT is the
target ROI timecourse and, Y5, the seed ROI timecourse. E is the matrix of motion & tissue
signal timecourses. S; are the gPPI betas weights, g, the beta weights of no-interest, f,, is
the model intercept and, e, the residual. The resulting betas from each pair of ROIs were
averaged ([model A->B + model B->A]/ 2) and z-scored across learning stage. Subsequently,

each dFC estimate represented the change in FC relative to that connection’s baseline FC.

To estimate how gPPlIs varied over the learning stages, generalised linear mixed effect (gime)

models were fitted to each connection. This mass-univariate approach modelled each

12
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connection with the three learning stages as a fixed effect and participants as a random effect.

The resulting model set was corrected for multiple-comparisons at a p<0.05 FDR threshold.
Results

SOS costs to reaction time decrease with practise

As expected, trials were performed with near-ceiling accuracy (Study 1 - mean=94.87%,
SD=4.18; Study 2 - mean=94.69%, SD=4.04). Response accuracy did not vary across the
repeat-trials, rule-switch or task-switch trials (one-way rm-anova: Study 1 - F230=1.218,
p=0.310, n;=0.08; Study 2 - F22s=1.867, p=0.173, n;=0.12).

In contrast, RT varied substantially between the repeat-trials, rule-switch and task-switch trials
in both studies (one-way rm-anova: Study 1 - F230=48.588, p<0.001, ;=0.76; Study 2 -
F228=52.886, p<0.001, n5=0.79). At a finer grain, in study 1 (Figure 2a), task-switching slowed
response speed on average by 883ms (SD=538) (paired t-test: t15=6.573, p<0.001, confidence
interval 95% (C1)=0.60 to 1.17, Cohen’s d=1.64), and rule-switches were 179ms (SD=273)
faster (t15=-2.630, p=0.019, CI=0.03 to 0.33, d=0.66), relative to repeat-trials (FDR corrected).
In study 2 (Figure 2b), response speed slowed by 267ms (SD=143) after rule-switching (paired
t-test: t14=7.214, p<0.001, CI=0.19 to 0.35, d=1.86), and by a further 362ms (SD=268) after
task-switching (t14=5.227, p<0.001, CI=0.21 to 0.51, d=1.35) (FDR corrected).

In order to examine changes in switching-costs with learning, the trials were segmented by
the three time-windows, or “learning stages”. Switching-costs for each learning stage were
calculated by subtracting the mean repeat-trial RTs from the task-switch or rule-switch trial
RTs. Task-switching costs varied over learning stages in both studies (one-way RM-ANOVA:
Study 1 - F230=3.579, p=0.040, 1;=0.19; Study 2 - F22:=5.413, p=0.010, ;=0.28), reducing
between the 1st and last stage by 369ms (SD=607) in study 1 (paired t-test: t15=-2.433,
p=0.028, CI=0.05 to 0.69, d=0.61), and by 278ms (SD=418) in study 2 (t14=-2.570, p=0.022,
CI=-0.51 to -0.05, d=0.66). Rule-switching costs did not vary significantly across learning
stages in study 1 (F230=0.128, p=0.881, n5=0.01), but did in study 2 (F22s=5.543, p=0.009,
1n3=0.28) and reduced by 217ms (SD=286) between the 1st and last learning stage (t14=-2.945,
p=0.011, CI=-0.38 to -0.06, d=0.76).

Individual differences in switching costs were examined further by correlating mean switch-

trial RTs with the total number of switches performed across participants (supplemental Figure

2a-b). There was a significant negative correlation (Pearson: Study 1 - r1s=-0.557, CI=-0.83
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to -0.09, p=0.025; Study 2 - r14=-0.658, CI=-0.88 to -0.22, p=0.008). Therefore, even when
self-ordered, there were substantial switching RT costs, the switching RT costs were optimised

over time with learning, and individuals who made more switches had lower switch RT costs.

Repeat-trial RT varied between studies and with practise in a manner that indicated learning
effects. A two-way rm-anova of repeat-trial RT showed main effects of study (F1,20=16.866,
p<0.001, n5=0.37), learning stage (F120=309.770, p<0.001, 7;=0.91) and a significant study *
learning stage interaction (F1,20=14.516, p<0.001, ;=0.33). Repeat-trial RT was significantly
slower in study 1 (two-sample t-test: t20=4.119, Cl = 0.29 to 0.85, p<0.001, d=1.20) but
decreased at a greater rate between the first and last learning stages (two-sample t-test: tog=-
2.878, Cl =-0.37 to -0.06, p=0.007, d=0.93).

Task performance relates to structured behavioural strategies

Notably, the number of points scored did not relate in a trivial manner to the total switches
made. This was also the case when controlling for the number of trials completed (see
supplemental materials for more details). However, the algorithmic complexity of individuals’
behaviour (Figure 2c-d) had a significant negative correlation with points scored (partial
Pearson: Study 1 - r15=-0.646, CI=-0.87 to -0.22, p=0.017; Study 2 - r14=-0.805, CI=-0.93 to -
0.50, p=0.002) and the number of response errors made (partial Pearson: Study 1 - ris=-
0.695, CI=-0.89 to -0.31, p=0.004; Study 2 - r14=-0.785, CIl=-0.93 to -0.46, p<0.001). NB:-
These partial correlations control for the number of events completed. That is, people whose
behavioural routines were more structured and whose trial-responses were more accurate
achieved higher scores. Exemplar behavioural timecourses from each study are rendered in

Figure 2e-f.

As predicted, algorithmic complexity was significantly lower in study 2, compared to study 1
(two-sample t-test: t20=-4.500, CI=-0.36 to -0.14, p<0.001, d=1.26). Moreover, study 2
exhibited a significantly greater repetition bias than study 1 (two-sample t-test: 120=6.643,
CI=0.19 to 0.36, p<0.001, d=1.53).

Furthermore, within-subject behaviour became increasingly structured as the SOS was
practiced. Algorithmic complexity in the first behavioural learning stage negatively correlated
with the sum of change across all three learning stages (partial Pearson Study 1 - ris=-0.515,
CI=-0.81 t0 -0.03, p=0.0496; Study 2 - r14=-0.899, p<0.001, CI=-0.97 to -0.72). This indicates
that increases in behavioural structure were greater for those who were initially behaving in a

less structured manner.
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Therefore, individuals developed more structured behaviour with practice, being characterised
by ‘chunks’ of repeat-trials that were consistently punctuated by switches between rules and
tasks, and behaviour in study 2 began at a more structured level, due to structured routines

developed during the extensive pre-training.
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Figure 2. SOS switching costs and behavioural structuring. Switching-costs to reaction
time (RT) decreased with practise in study 1 and 2 (a/b). Reaction times (RT) for each
condition were summarised within each ~7 minute learning stage (L). Each point represents a
participant’'s median RT for a condition. Boxplots represent the group median (central line),
and the 25-75th percentiles (boxes). c/d) Normalised algorithmic complexity (y-axis) of
participants’ SOS behaviour against overall task performance, in terms of points scored (x-
axis). The residuals are plotted from a partial correlation controlling for the number of trials
completed. For each study, three participants are highlighted and their behavioural
timecourses are displayed in e/f. Of those, participant 1 (P1) generated the most complex SOS

behaviour and P3 the least.
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SOS activates multiple-demand cortex and reduces default mode network activation

We sought to identify brain regions where activation increased when individuals opted to
switch between tasks or rules. Collapsing across switch-type, the cluster-corrected group-level
t-contrast associated SOS with activation increases in the dorsolateral frontoparietal cortices,
cerebellum, insula, putamen, and thalamus (Figure 3a). This pattern was consistent across
studies (dice similarity = 0.58). The inverse t-contrast associated SOS with activation
reductions in regions associated with the DMN (Figure 3b) and this pattern was consistent

across studies (dice similarity = 0.56).

Multiple-demand and default mode network activation changes with learning

Previous studies have examined activation changes when simple tasks are established
through practise (Hampshire et al., 2016, 2019; Petersen et al., 1998; Ruge et al., 2019). To
expand on this, voxelwise activation was compared across time during SOS. For each of the
three learning stages, a 1st-level contrast was estimated for switching minus trial event
activation. These contrasts were examined using group level random effects analyses with a
3 * 2 RM-ANOVA design where the learning stage was the within-subject factor and study was

the between-subiject factor.

The main effect of learning stage contrast rendered six bilateral regions where the difference
between switching and trial activation significantly differed between the learning stages. For
each cluster, a paired t-test determined the direction of the activation change using the mean
bilateral activation from the 1st and last learning stages. Each cluster showed significant
differences that survived Bonferroni correction (alpha=0.0083=0.05/6, see supplemental
results). We combined those regions whose activation increased (Figure 3c) into a composite
MD region of interest (ROI) of the anterior cingulate, dorsolateral parietal cortex and occipital
cortex clusters. The MD ROI activation was significantly increased in the last learning stage,
compared to the first (paired t-test: t30=7.230, CI=0.75 to 1.34, p<0.001, d=0.68). Those
regions where activation decreased were combined into a composite DMN ROI and included
the posterior cingulate, putamen and temporal lobe (Figure 3d). The DMN ROI activation was
significantly decreased in the last learning stage, compared to the first (paired t-test: t30=7.432,
ClI=0.49 to 0.85, p<0.001, d=1.15).

Notably, MD activation increasing and DMN activation decreasing with learning is the exact
opposite direction to what has been observed during simple stimulus-response learning tasks
(Hampshire et al., 2019). To understand why this learning effect appeared to be inverted, we
independently examined trial response activation and switching activation in the MD ROI

across the learning stages (Figure 3e). The trial response events are more comparable to

17


https://doi.org/10.1101/2020.06.17.156570
http://creativecommons.org/licenses/by-nc-nd/4.0/

0o N o 0o~ WN =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.156570; this version posted July 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

simple learning curve paradigms. Directly replicating these studies, activation in the MD ROI
varied across the learning stages for trial responses (one-way RM-ANOVA: F;6=16.043,
p<0.001, n5=0.35) and was significantly decreased in the last learning stage, compared to the
first (paired t-test: t3p=-4.573, CI=-0.99 to -0.38, p<0.001, d=0.82). Conversely, MD ROI
switching activation also varied across learning stage (one-way RM-ANOVA: Task-switch -
F260=3.329, p=0.043, n;=0.09; Rule-Switch - F2=6.313, p=0.003, 77=0.17) but was
significantly increased in the last learning stage, compared to the first (paired t-test: Task-
switch - t30=2.224, CI=0.03 to 0.67, p=0.034, d=0.40; Rule-switch - t3,=2.669, CI=0.09 to
0.66, p=0.012, d=0.48).

The opposite pattern was evident for the DMN ROI activation (Figure 3f). Specifically,
activation varied across the learning stages for trial responses (one-way RM-ANOVA:
F260=10.119, p<0.001, n;=0.25) but was significantly increased in the last learning stage
compared to the first (paired t-test: 130=3.595, CI=0.11 to 0.40, p=0.001). Conversely, DMN
ROI switching activation also varied across learning stages (one-way RM-ANOVA: Task-
switch - F260=16.544, p<0.001, 1;=0.36; Rule-switch - F26=15.080, p<0.001, n;=0.34) but
was significantly decreased in the last learning stage, compared to the first (paired t-test:
Task-switch - t30=-4.398, CI=-0.73 to -0.27, p<0.001, d=0.79; Rule-switch - t3=-5.112, Cl=-
0.46 to -0.20, p<0.001, d=0.92).

The sum of differences in mean MD activation over learning stage negatively correlated with
individuals normalised algorithmic complexity (pearson, r15=-0.499, p=0.049, CI=-0.798 to -
0.004) in study 1 (Figure 3g) but not in study 2 (r14=-0.240, p=0.932, CI=-0.53 to 0.49). The
equivalent analysis of the DMN ROI activation (Figure 3h) did not correlate with algorithmic
complexity (pearson, Study 1 - r5=0.295, p=0.268, Cl=-0.24 to 0.69; Study 2 - r14=0.290,
p=0.294, Cl=-0.26 to 0.70).
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Functional connectivity between frontoparietal networks and subcortical regions
increases with learning.

In accordance with the behavioural results showing that repeat-trial RT varied between studies
and with practise (Figure 4a), the FC predicted by trial responses varied across learning
stages in a manner that was largely specific to study 1. The mass-univariate gime modelling
of the gPPI weighs across the learning stages identified connections whose FC significantly
varied across learning stages. In study 1, the models that survived FDR correction for multiple
comparisons were predominantly for connections between networks (Figure 4b) associated
with cognition, such as the DMN, networks associated with MD (frontoparietal and attention
networks), as well as with subcortical regions (Figure 4c). The gime models’ t-statistic was
used to determine whether the FC increased or decreased across the learning stages. This
indicated that FC increased as the SOS task was practised in study 1. Notably, these effects
were largely absent in study 2 (Figure 4d).

Finally, we estimated the relationship between the decreases in RT and FC over the learning
stages. A mass univariate approach was taken where a partial correlation was calculated for
each connection using the difference in gPPI and repeat-trial RT between the 1st and last
learning stages. The partial correlation allowed this relationship to be estimated whilst
controlling for the number of trials an individual completed. The resulting set of correlation
coefficients were FDR-corrected for multiple comparisons. This unconstrained analysis
showed significant correlations between the same systems identified in the previous analysis,
demonstrating that a greater decrease in RT with learning correlated with a greater increase
in FC. Again, these effects were specific to study 1 (Figure 4e) and largely absent in study 2
(Figure 4f).
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Figure 4. Increased between-network functional connectivity with learning. a) Reaction
time (RT) decreased at a greater rate between the three windows (W) in study 1. The mean
repeat-trial RT was plotted for each window with the standard error of the mean. b) Task-
dependent functional connectivity (FC) changes for trial responses were estimated between
brain regions and these were ordered by nine networks for visualisation purposes. c/d)
Generalised linear mixed effects models identified connections whose strength significantly
varied over the learning stages for study 1 and 2. The model t-statistic was used to render the
connections in red or blue for positive or negative change, respectively. e/f) Partial correlations
were used to estimate the relationship between changes in RT and FC over time for study 1
and 2 (controlling for the number of trials completed). Here, a positive correlation indicates an
increase in response speed and FC. Each set of connectivities were FDR corrected and the
surviving weights were rendered in the schemball and in the accompanying density distribution
plot that was within-set normalised. CB=Cerebellum, DM=Default Mode, DA=Dorsal Attention,
FP=Frontoparietal, LIl=Limbic, SM=Somatomotor, SC=subcortical, VA=Ventral Attention,
VS=Visual.
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Discussion

The novel self-ordered switching paradigm developed here enabled new insights to be derived
into the processes by which people learn complex multi-component tasks. In this executively
challenging context, the learning process was characterised by the concurrent optimisation of
behavioural and functional-network deployment; specifically, hierarchically structured
behavioural routines that minimised switching costs were optimised based on the monitoring
of multiple outcomes. Concurrently, functional-network resources were redeployed towards

the executive switching points around which those routines were organised.

In everyday life we often are confronted with situations where multiple concurrent tasks must
be performed. Furthermore, real-world tasks are often intrinsically hierarchical in their
demands, requiring sub-goals to be completed in order to achieve overarching goals (Poljac
et al., 2018). The maijority of experimental paradigms that have been used to study cognitive
control processes enforce careful control of the flow of events, for example, specifying when
the participant must switch between sub-tasks (Kiesel et al., 2010; Koch et al., 2018). These
types of design facilitate the careful balancing of conditions, but they lack ecological validity
insofar as they do not provide the participant with the opportunity to apply their executive
abilities in order to organise their own behaviour (Goldberg & Podell, 2000). This is important,
because structured routines are a defining characteristic of human behaviour with
disorganisation being symptomatic across prominent neurological and psychiatric populations
(Averbeck et al., 2011; Collins & Koechlin, 2012; Fallon et al., 2013).

Moreover, the majority of cognitive control studies do not take into account the shifting role
that brain systems play as a task is learnt. We argue that this is a critical oversight because
the purpose of cognitive control systems is not just to support complex behaviour, but more to

enable the learning of such behaviours in order that they can be performed with minimal effort.

Indeed, we and others have previously reported that the changes in brain activity and
connectivity that are associated with learning during commonly applied cognitive control
paradigms can dwarf the control processes that those paradigms were designed to examine
(Badre et al., 2010; Erika-Florence et al., 2014). More specifically, in a recent sequence of
articles, we and others reported that the learning of simple stimulus-response mappings from
either instruction or feedback was accompanied by an ongoing reduction in event-related
activity within frontoparietal networks associated with effortful cognition and a reduction in
default mode network activity (Hampshire et al., 2016, 2019; Ruge et al., 2018, 2019; Ruge &
Wolfensteller, 2010). This likely reflected a steady transition from deliberate to automated

modes of behaviour.
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The results of the current study extended that work by examining the shifting role of brain
networks during the learning of tasks that are more ecologically valid insofar as they require
multiple sub-tasks to be efficiently self-organised. When this learning process was supported
by detailed ongoing feedback in study 1, the behavioural routines that participants tended to
develop had several notable characteristics, these being the minimisation of number of
switches performed, the hierarchical sequencing of task and rule switches, and the tendency
towards algorithmically simpler sequences with practice. Interestingly, all three of these
characteristics correlated with overall task performance, as quantified in number of points
awarded across learning stages or in terms of individual differences in behavioural routines;
however, from a simple computational perspective this would not necessarily have been the

case.

For example, task switches could have been performed at the same frequency, or subordinate
to rule switches whilst producing the same number of points per trial completed. However,
participants in study 1 tended to organise the rule switches subordinate to the task switches,
a structure that was implicitly encouraged by the structure of the feedback elements. Notably,
task switches were more effortful, as evidenced by greater response time costs; therefore, the
bias towards more rule than task switches, and fewer switches overall, was adaptive insofar
as it reduced overall executive costs. Relatedly, the application of algorithmically simpler
routines was demonstrably less effortful, being accompanied by reduced switching costs and
the achievement of higher overall scores. From this perspective, the development of
hierarchically structured behaviour can be seen to reflect a tendency to optimise towards a

mode of behaviour that requires minimal switching effort to produce maximum reward.

Indeed, evidence of a tendency to self-order behaviour in a structured manner even when
such structure is not a task requirement has been seen previously in some previous studies.
A prominent example is voluntary task-switching (VTS) paradigms, which instruct participants
to randomly choose between two tasks on each trial. Interestingly, the original VTS reports
imply that participants did not fully adhere to this instruction and exhibited a significant
repetition bias (Arrington & Logan, 2004, 2005). This is evidence of the behavioural self-
ordering that reduced the frequency of task-switching that may have resulted in an
advantageous reduction in cognitive demand. Similarly, here, participants who were better
practised at SOS (study 2) exhibited a significantly greater trial repetition bias, and also

behaved with a more structured routine.
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Relatedly, we have also observed that when identifying targets during a novel self-ordered
intradimensional-extradimensional switching paradigm, participants tend to hierarchically
order their search behaviour between stimuli of different dimensions, this in a context where
there is no intrinsic computational advantage to sequencing the search by stimulus dimension
but switching between dimensions nonetheless incurs a greater response time costs
(Hampshire & Owen, 2006).

Perhaps the most striking result of the current study pertains to how the underlying network
resources associated with repeat and switch trials changed as the behavioural routine was
established. More specifically, the optimisation of a structured behavioural routine was
concomitant with a progressive ‘fine-tuning’ of the brain’s functional activation that was more
complex in its dynamics than that which has previously been observed during simple stimulus-
response learning (Hampshire et al., 2016, 2019; Ruge et al., 2019; Ruge & Wolfensteller,
2010). In accordance with those past findings, frontoparietal activation in response to the trials
was observed to decrease as they were practised whilst the degree of default mode network
deactivation was also seen to reduce. Unexpectedly though, we also observed the opposite
pattern of change for switching events, with frontoparietal activation increasing and DMN
activation decreasing as a function of learning. These executive switching events were effortful
and critical for guiding behaviour and had to be conducted in a strategic manner. This

distinguishes the SOS from most other task-switching and VTS paradigms.

Furthermore, the ACC and DLPFC regions identified here are part of the MD system and
generally activate in response to increasing cognitive effort (Crittenden & Duncan, 2014).
Therefore, this pattern of results likely reflects a redeployment of flexible and limited capacity
network resources towards the executive switching events that enable structured behaviour
as the simple stimulus-response mappings that constitute individual trials become automatic
through practice. One intriguing possibility is that frontoparietal systems operate at the leading
edge of the automatisation process, enabling progressively more complex hierarchical
behaviours to be developed. A testable prediction of this is that the switching activation would
also decrease with enough practise. This would make an interesting prediction that could be
tested across multiple SOS scanning sessions, perhaps with paradigms that have scope for

deeper hierarchies that limited capacity resources can progressively develop.

In terms of individual differences, it is interesting to note that in study 1, the scale of change
in trial vs switch activation over learning stages related to the complexity of the behavioural
routine. Those participants who could establish an optimal balance between repeating a

condition and making the costly switches behaved in a more structured manner, scored the
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most points and exhibited a greater ‘fine-tuning’ of frontoparietal activation away from simple
trials to the executive switching events. This indicates that optimal structured routines may

also help accelerate the learning process.

The key difference between study 1 and study 2 was that the latter had more substantial
training prior to entering the scanner and only minimal feedback within the scanner. These
modifications were intended to provide a control condition where the potential for further
optimisation of the behavioural routine was greatly reduced, with participants in study 2 being
likely further along the ‘learning curve’. The behavioural results supported this view, as in
study 2, SOS was performed faster and with routines that had low algorithmic complexity. In
this context, the changes in behaviour across time also were both less pronounced. RT
dropped at a lower rate and the algorithmic complexity progressed towards a more

stereotyped pattern that expressed more consistently repeating structures.

Intriguingly, the differences across studies in behavioural and network activity signatures of
learning was also evident in the connectivity analyses. More specifically, in study 1 we
observed widespread increases in FC between functional networks in the brain that have been
associated with cognition and their connections with subcortical regions. A similar increase in
network coherence was evident in the individual differences analysis, where greater
reductions in RT were associated with a greater increase in network functional connectivity
with learning. In contrast, FC changes with practise were largely absent in study 2. These
findings accord with the notion that cognitive behaviours can through practice be supported
by higher efficiency network states that are characterised by lower activity but increased
connectivity (Hampshire et al., 2016; Soreq et al., 2019, 2021; Stokes, 2015).

More broadly, we believe that paradigms such as the SOS that enable participants the
freedom to self-organise their behaviour have untapped potential for understanding normal
and pathological cognitive control functions. The natural variation in the behavioural efficiency
of healthy adults suggests that there is a potential to examine self-ordered behaviours in
patient populations that suffer from cognitive impairments. Indeed, high activity-low
connectivity states have been reported in some dysexcutive populations when perfoming tasks
that require cognitive control (Hampshire et al., 2013; Sheffield et al., 2021). Furthermore, it
could be predicted that patients may take longer to generate a stable behavioural routine and
that this routine would be more complex, inefficient and refined at a slower rate, compared to
healthy controls. These features may dissociate across patient populations for example,
Parkinson’s patients show difficulty in updating strategies during set-shifting and can show a

reduced tendency towards structured dimensional switching routines (Fallon et al., 2013),
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whereas patients with schizophrenia may prematurely implement a strategy before sufficiently
exploring the options (Averbeck et al., 2011). Future work also should focus on the learning of
structured routines over longer time frames and within paradigms that provide even greater
potential for hierarchical self-organisation and should examine how the responsiveness of

functional networks evolves as deeper hierarchical behaviours are established.
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