

1 **Title:**
2 Maternal cortisol is associated with neonatal amygdala microstructure and connectivity in a sexually
3 dimorphic manner
4

5 **Authors names:**
6 David Q Stoye^a, Manuel Blesa^a, Gemma Sullivan^a, Paola Galdi^a, Gillian J Lamb^a, Gill S Black^a,
7 Alan J Quigley^b, Michael J Thrippleton^c, Mark E Bastin^c, Rebecca M Reynolds^{d,*}, James P
8 Boardman^{a,c,*}
9

10 **Author affiliations:**
11 ^a MRC Centre for Reproductive Health, University of Edinburgh, UK
12 ^b Department of Radiology, Royal Hospital for Sick Children, Edinburgh, UK
13 ^c Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
14 ^d Centre for Cardiovascular Science, University of Edinburgh, UK
15 *Equal contributions
16

17 **Corresponding author:**
18 Professor James P Boardman
19 MRC Centre for Reproductive Health
20 W1.26 Queen's Medical Research Institute,
21 47 Little France Crescent,
22 Edinburgh, EH16 4TJ, UK.
23 E: james.boardman@ed.ac.uk
24 T: +44 131 242 2567

25 **Abstract**

26

27 The mechanisms linking maternal stress in pregnancy with infant neurodevelopment in a sexually
28 dimorphic manner are poorly understood. We tested the hypothesis that maternal hypothalamic-
29 pituitary-adrenal axis activity, measured by hair cortisol concentration, is associated with
30 microstructure, structural connectivity and volume of the infant amygdala. In 78 human mother-
31 infant dyads, maternal hair was sampled postnatally, and infants underwent magnetic resonance
32 imaging at term-equivalent age. Higher hair cortisol concentration was associated with higher left
33 amygdala fractional anisotropy ($\beta=0.677$, $p=0.010$), lower left amygdala orientation dispersion
34 index ($\beta=-0.597$, $p=0.034$), and higher fractional anisotropy in connections between the right
35 amygdala and putamen ($\beta=0.475$, $p=0.007$) in girls compared to boys. Maternal cortisol during
36 pregnancy is related to newborn amygdala architecture and connectivity in a sexually dimorphic
37 manner. Given the fundamental role of the amygdala in the emergence of emotion regulation, these
38 findings offer new insights into mechanisms linking maternal stress with adverse neuropsychiatric
39 outcomes of children.

40

41 **Impact Statement**

42

43 Prenatal stress is transmitted to infant development through cortisol, which imparts sex-specific
44 effects on the development and connectivity of the amygdala.

45 **Main Text**

46

47 **Introduction**

48

49 Prenatal exposure to maternal stress is estimated to affect 10-35% of children worldwide, which is
50 a major concern because early life stress is linked to impaired cognitive development, negative
51 affectivity, autism spectrum disorder (ASD), and psychiatric diagnoses including attention deficit
52 hyperactivity disorder (ADHD), addiction, depression and schizophrenia(1). Neural correlates of
53 prenatally stressed children include alterations in brain structural and functional connectivity,
54 especially in networks involving the amygdala and prefrontal cortex(2).

55

56 Adaptation of the maternal hypothalamic-pituitary-adrenal (HPA) axis is a key mechanism by which
57 maternal stress modulates offspring neurodevelopment(3), and there is evidence that this
58 mechanism operates in a sexually dimorphic manner(4). For, example, higher waking maternal
59 salivary cortisol in pregnancy is associated with increased internalizing behaviours in female infants
60 and reduced internalizing behaviours in males(5, 6). Higher maternal salivary cortisol in pregnancy
61 is also associated with stronger amygdala functional connectivity with networks involved in sensory
62 processing and integration in newborn girls, with weaker connectivity to these brain regions in
63 boys(7); and in childhood, with larger amygdala(8) and reduced segregation of structural networks
64 in girls but not boys(9). The amygdala is further implicated as a neural target of prenatal stress
65 exposure by observations from studies that have characterised maternal stress by symptomatology
66 of depression and / or anxiety, which report alterations in amygdala volume(10), microstructure(11),
67 and functional and structural connectivity among offspring(12)

68

69 Candidacy of the amygdala as an important neural target of prenatal stress exposure comes from
70 the following observations in pre-clinical and clinical studies. First, the amygdala develops early in
71 embryonic life(13) and contains a high concentration of glucocorticoid receptors(14); second,
72 increased maternal glucocorticoids modulate amygdala development and anxiety-like behaviours
73 in experimental models(15, 16); third, lesion studies in non-human primates support its critical role
74 in early development of emotion regulation(17); fourth, newborn amygdala functional connectivity
75 is consistently linked with internalizing behaviours in children up to the age of two years(7, 18); fifth,
76 early disruption to cell composition of the amygdala is reported in a model of early life stress(19),
77 and in children with autism(20); and sixth, in pre-clinical models, stress and glucocorticoid exposure
78 induce dendritic arborization, amygdala hypertrophy and induce anxiety-like behaviours(21, 22).

79

80 Neonatal magnetic resonance imaging (MRI) serves as an intermediate phenotype for investigating
81 the impact of early life exposures on brain and health because it is distal to the aetiological process,

82 in this case prenatal stress, and is also more proximal to cognitive, behavioural and disease
83 outcomes. Structural and diffusion MRI (dMRI) have been used to characterise brain structural
84 maturation and emerging network connectivity during the perinatal period, and to investigate
85 pathways to atypical development(23, 24). It is a suitable tool to investigate the impact of prenatal
86 stress exposure on the amygdala because age-specific templates enable accurate parcellation of
87 the amygdala and associated structures(25); and diffusion tensor imaging and neurite orientation
88 and dispersion density imaging (NODDI) support inference about tissue microstructure and network
89 connectivity, modelled by fractional anisotropy (FA), mean diffusivity (MD), orientation dispersion
90 index (ODI) and neurite density index (NDI)(26).

91

92 Hair cortisol concentration (HCC) measured in 3cm hair samples collected from close to the scalp
93 reflects basal HPA axis activity over the 3 months prior to sampling, and in contrast to single
94 measures from saliva or blood, it is not influenced by short-term activation of the HPA axis in
95 response to acute stressors(27). Studies in pregnant women have shown HCC to be an efficient
96 method of retrospective assessment of long-term cortisol secretion, and thus long-term HPA axis
97 activity(28, 29).

98

99 Previous studies have reported sex-specific differences between maternal stress and amygdala
100 functional connectivity and behavioural outcomes among children(5-9), but study designs leave
101 uncertainty about the mechanism linking maternal stress with amygdala development, the potential
102 confounding role of events and environmental exposures during childhood, and the impact of stress
103 on structural connectivity. Resolving these uncertainties is necessary for developing strategies
104 designed to improve socio-emotional development of children born to women who are stressed
105 during pregnancy. Based on studies of the imaging, biochemical and clinical phenotype of prenatal
106 stress exposure, we hypothesised that higher levels of maternal HPA activity in the final months of
107 pregnancy ascertained from maternal HCC would impact amygdala development and structural
108 connectivity of offspring infants in a sexually-dimorphic manner, and that these effects would be
109 apparent around the time of birth.

110

111 **Results**

112

113 ***Participant characteristics***

114

115 The parents of 102 infants consented to take part. Of these, 2 preterm infants died before term
116 equivalent age, 12 did not complete the MRI protocol or images were not amenable processing
117 due to movement artefact; 1 had an incidental structural anomaly detected at MRI; and 9 withdrew
118 before MRI scan. This left data from 78 mother-infant dyads for analysis, the maternal and infant

119 characteristics for whom are shown in Table 1. Maternal hair was sampled at mean 3.5 ± 2.5 days
120 after delivery, and the median HCC concentration was 5.6 pg/mg (0.5-107.1). Maternal HCC was
121 not associated with gestational age (GA) at birth ($r=0.200$, $p=0.094$). HCC did not differ between
122 mothers of male and female infants ($p=0.997$). MRI was carried out at term-equivalent age: median
123 41.9 weeks' GA (range 38.6-45.9).

124

125 **Table 1. Maternal and neonatal characteristics**

126

Maternal characteristics, n = 71	
Age (years)	33.1 \pm 5.2
BMI (kg/m ²)	25.2 \pm 4.2
Primiparous (%)	41 (58%)
Multiparous (%)	30 (42%)
SIMD 2016 quintile n (%) [†]	
1	4 (6%)
2	14 (20%)
3	10 (14%)
4	14 (20%)
5	29 (41%)
Tobacco smoked during pregnancy, n (%)	5 (7%)
No tobacco smoked during pregnancy, n (%)	66 (93%)
Gestational diabetes (%)	1 (1%)
Preeclampsia (%)	4 (6%)
Receiving pharmacological treatment for depression	3 (4%)
Infant characteristics, n = 78	
Birthweight (grams)	2895 (454-4248)
Birth weight z-score [‡]	0.2 \pm 1.1
Birth gestation (weeks)	38.4 (24.0-42.0)
Male n (%)	44 (56%)
Female	34 (44%)
European ancestry n (%)	68 (87%)
Other	10 (13%)
Singleton n (%)	63 (81%)
Twin	15 (19%)

127 *Normally distributed data is presented as mean \pm SD. Non-normally distributed data is presented*

128 *as median (range). [†]Scottish Index of Multiple Deprivation (SIMD) 2016 quintile. First quintile*

129 *indicates most deprived, and fifth quintile the least deprived. [‡]Calculated according to*

130 *INTERGROWTH-21st standards*

131

132 **Amygdala microstructure**

133

134 In univariate analysis, there were moderately strong correlations between both FA and MD, and
135 GA at birth and age at scan ($r=0.41-0.64$), and weak correlations with birth weight z-score and
136 Scottish 2016 quintile ($r=0.24-0.30$). There were no significant correlations between FA and MD in
137 amygdala and ethnicity or infant sex, or maternal parity, age or BMI. There were moderate to
138 strong correlations between NDI in the amygdala and GA at birth and age at scan ($r=0.43-0.74$),
139 and a weak correlation with Scottish Index of Multiple Deprivation (SIMD) 2016 quintile ($r=0.23-$
140 0.26). Weak to moderate correlations were observed between ODI in amygdala with GA at birth
141 and age at scan ($r=0.28-0.42$), (Supplementary Table 1).

142

143 In multiple linear regression models, there was a significant interaction effect between maternal
144 HCC and infant sex in left amygdala FA ($p=0.010$) and ODI ($p=0.034$), with higher maternal HCC
145 being associated with higher left amygdala FA and lower ODI in girls compared to boys (Table 2).
146 When we stratified by sex, there were associations between maternal HCC and infant amygdala
147 microstructure in boys, but not girls. Table 3 shows that in boys, higher maternal HCC was
148 associated with lower left amygdala FA ($\beta=-0.339$), lower right amygdala FA ($\beta=-0.287$) and NDI
149 ($\beta=-0.215$), and higher right amygdala MD ($\beta=0.264$) and ODI ($\beta=0.309$), after FDR correction.

150

151 **Table 2. Associations of maternal hair cortisol concentration (HCC) and its interaction with**
152 **infant sex on amygdala microstructure**

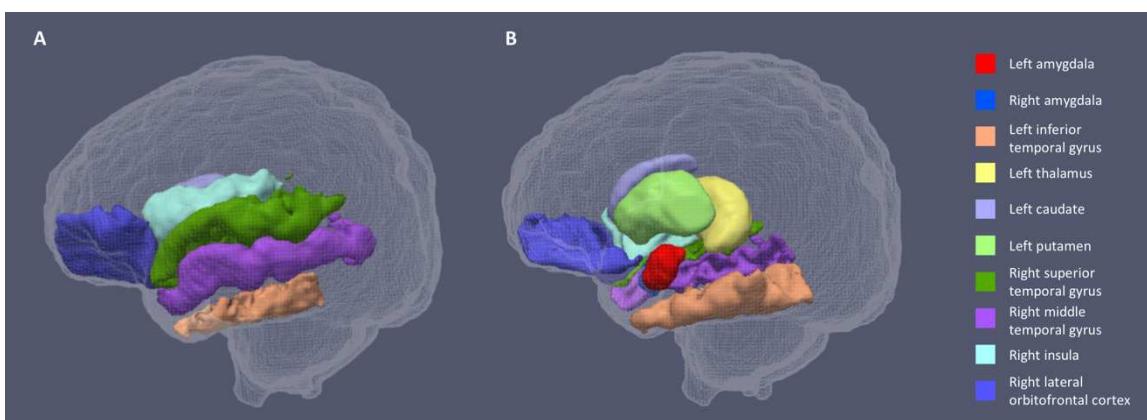
153

		Model 1	Model 2			Model 3		
Side tested	Image metric	R^2	R^2	HCC β	HCC p-value	R^2	'HCC x sex' β	'HCC x sex' p-value
Left	FA	.267	.269	-.048	.858	.359	.677	.010
	MD	.405	.405	.018	.858	.413	-.191	.358
	ODI	.105	.111	.082	.858	.181	-.597	.034
	NDI	.530	.534	-.064	.858	.561	.375	.052
Right	FA	.289	.308	-.148	.269	.342	.415	.083
	MD	.492	.523	.189	.143	.530	-.183	.326
	ODI	.214	.228	.128	.269	.283	-.527	.083
	NDI	.554	.562	-.094	.269	.583	.330	.083

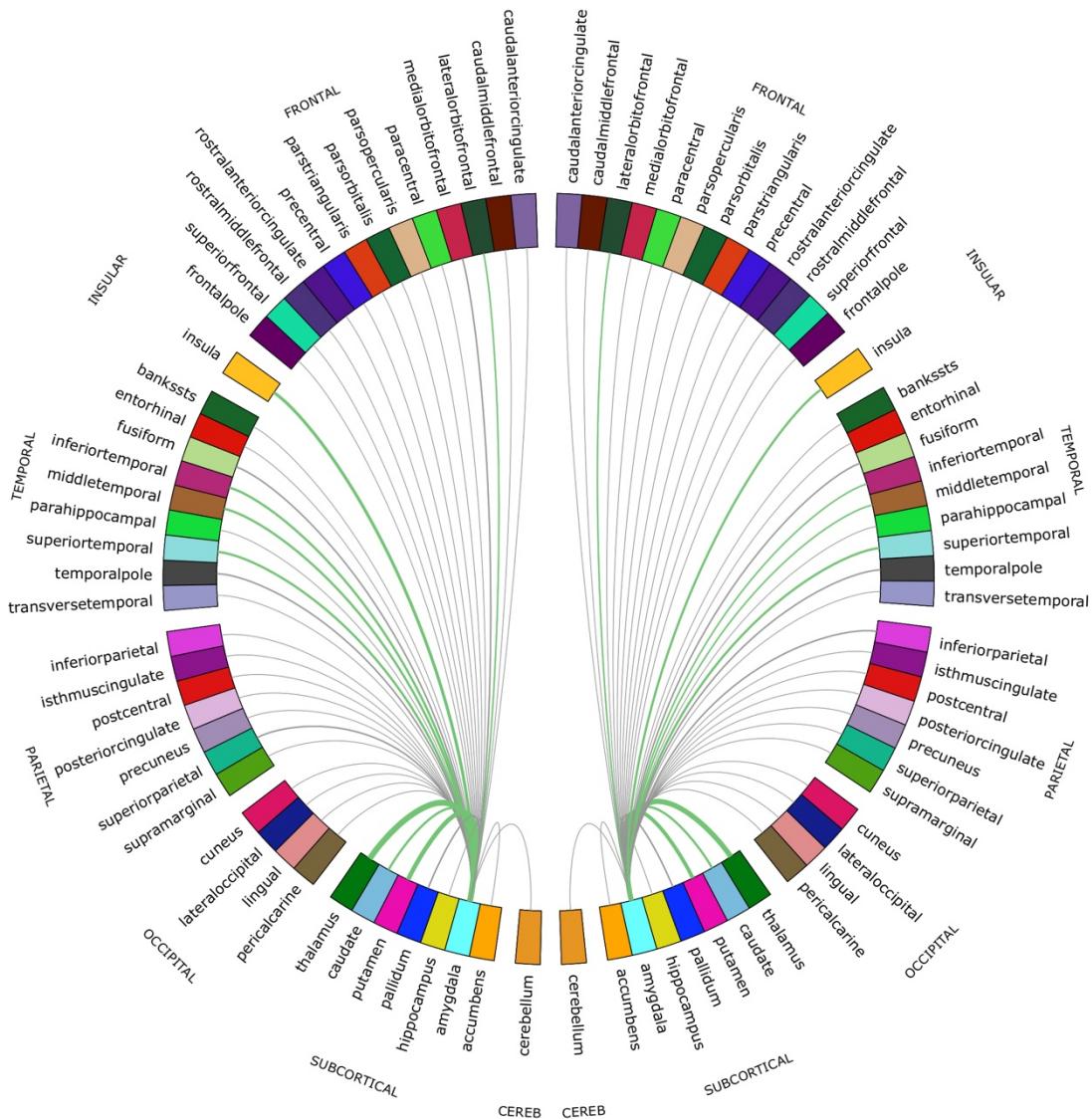
154 Model 1: Age at MRI, gestational age at birth, birth weight z-score, Scottish Index of Multiple
155 Deprivation 2016 quintile, infant sex. Model 2: Model 1 + (maternal HCC). Model 3: Model 2 +
156 (maternal HCC x infant sex interaction). p-values are FDR adjusted.

157 Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; ODI, orientation dispersion index;
158 NDI, neurite density index; HCC, hair cortisol concentration, R^2 , coefficient of determination; β ,
159 standardised beta coefficient; p-value, FDR adjusted probability value

160


161 **Table 3. Associations of maternal hair cortisol concentration (HCC) with amygdala**
162 **microstructural parameters assessed separately in boys and girls**

		Boys				Girls			
		Model 1	Model 2			Model 1	Model 2		
Side tested	Image metric	R ²	R ²	HCC β	HCC p-value	R ²	R ²	HCC β	HCC p-value
Left	FA	.433	.537	-.339	.023	.157	.239	.340	.372
	MD	.489	.497	.090	.462	.445	.449	-.072	.667
	ODI	.124	.215	.317	.085	.132	.159	-.194	.648
	NDI	.622	.654	-.189	.089	.522	.530	.109	.648
Right	FA	.368	.443	-.287	.047	.301	.306	.091	.736
	MD	.508	.571	.264	.047	.497	.506	.111	.736
	ODI	.149	.236	.309	.047	.362	.378	-.149	.736
	NDI	.581	.623	-.215	.047	.571	.573	.050	.736


163 *Model 1: Gestational age at MRI, gestational age at birth, birth weight z-score, Scottish Index of
164 Multiple Deprivation 2016 quintile. Model 2: Model 1 + (maternal HCC). p-values are FDR adjusted.*
165 *Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; ODI, orientation dispersion index;*
166 *NDI, neurite density index; HCC, hair cortisol concentration; R², coefficient of determination; β ,*
167 *standardised beta coefficient; p-value, FDR adjusted probability value*

168
169 **Structural connectivity of the amygdala**

170
171 For both hemispheres, the networks with the top 20% number of streamlines were connected to
172 eight structures: thalamus, putamen, insula, superior temporal gyrus, inferior temporal gyrus,
173 middle temporal gyrus, caudate and lateral orbitofrontal cortex, Figure 1. Quantification of
174 streamline counts is given in Supplementary Table 2 and illustrated in Figure 2. Maternal HCC was
175 not associated with streamline counts of the left and right amygdala with these regions.
176

177
178 **Figure 1. Segmentations of the amygdalae and connected regions defined by the top 20%**
179 **streamline counts.** Figure 1a shows the lateral view of the sagittal plane and 1b the medial view.
180 The same eight regions had the highest streamline counts to the amygdalae bilaterally.

181

182 **Figure 2. Chord diagram of the streamline counts between the amygdala and unilateral**
 183 **regions of interest (ROIs).** The number of streamlines between ROIs are demonstrated by the
 184 corresponding arcs thickness. ROIs connected by the top 20% of streamlines are shown in green.

185

186 In fully adjusted analyses, the interaction between maternal HCC and infant sex was significant for
187 mean FA of connections between the right amygdala and putamen. Higher maternal HCC was
188 associated with higher FA for amygdala-putamen connectivity in girls compared with boys
189 ($p=0.007$). The interaction was also seen for connections to left thalamus, putamen and insula, but
190 the interaction term did not remain after correction for multiple tests (Supplementary Table 3). In
191 sex-stratified analysis, girls had higher FA values in association with high maternal HCC in
192 connections between left amygdala with thalamus, putamen and inferior temporal gyrus, and the

193 right amygdala with putamen and inferior temporal gyrus, but these were not significant after
194 correction for multiple tests (Supplementary Table 4).

195

196 ***Amygdala volume***

197

198 Mean volumes of the left and right amygdala were $877 \pm 111 \text{ mm}^3$ and $823 \pm 91 \text{ mm}^3$, respectively.
199 In univariate analysis, there were weak associations ($r=0.24-0.3$) between amygdala volume and
200 GA at birth and birth weight z-score, but not with age at scan, SIMD 2016 quintile, sex, ethnicity, or
201 maternal BMI, parity or age (Supplementary Table 1). Maternal HCC was not associated with
202 infant right or left amygdala volume in regression models adjusted for potential covariates, and
203 interaction terms between maternal HCC and infant sex were not significant (Supplementary Table
204 5).

205

206 ***Sensitivity and sub-group analyses***

207

208 There were seven twin sets in the whole sample. When we repeated analyses including only
209 singletons and the first born of twin pairs, significant associations between maternal HCC, sex and
210 image feature remained, with little change to the value of regression coefficients (Supplementary
211 Table 6).

212

213 In subgroup analysis of preterm and term infants, the direction and magnitude of interaction effects
214 for both groups were similar to those of the whole sample. Specifically, when tested in term and
215 preterm infants, respectively, higher maternal hair cortisol concentration is associated with higher
216 left amygdala fractional anisotropy ($\beta=0.735$ and 0.640), lower left amygdala orientation dispersion
217 index ($\beta=-0.710$ and -0.614), and higher fractional anisotropy in connections between the right
218 amygdala and putamen ($\beta=0.733$ and 0.426) in girls compared to boys (see Supplementary Table
219 6).

220

221 ***Discussion***

222

223 We report a mechanism that could explain the impact of maternal stress on infant brain
224 development. We found that maternal HCC, a stable marker of chronic maternal HPA axis activity
225 in pregnancy, is associated with microstructure and structural connectivity of the newborn
226 amygdala, a region of functional importance for early social development and emotion regulation.
227 Specifically, HCC interacts with infant sex to modify amygdala FA, ODI and NDI, which supports
228 the inference that maternal chronic HPA activity has an impact on dendritic structure, axonal
229 configuration, and the packing density of neurites, in a sexually dimorphic manner (30-33).

230

231 The findings are consistent with recent reports from the GUSTO (Growing Up in Singapore Towards
232 Health Outcomes) cohort that describe associations between prenatal depression and alterations
233 in offspring amygdala development(10, 11). That study highlighted the role of maternal mental
234 health on newborn brain development, and focussed attention on the amygdala. Here, we provide
235 mechanistic insights into the relationship between maternal stress and amygdala development with
236 the use of maternal HCC to characterise chronic HPA activity, and the NODDI model for enhanced
237 inference about tissue microstructure. We chose to measure NODDI parameters for assessing
238 microstructure because ODI and NDI in grey matter appear to be functionally tractable. For
239 example, diffusion markers of dendritic density and arborization in grey matter predict differences
240 in intelligence(34), reduced ODI in grey matter is reported in psychosis and in neurodegenerative
241 disease, and reduced grey matter NDI is reported in Parkinson's disease, Alzheimer's disease,
242 autism spectrum disorder, and temporal lobe epilepsy (for review see (33)).

243

244 Maternal HCC was also related to structural connectivity of the amygdala in a sex-discordant
245 manner. Higher maternal HCC was associated with higher FA in girls than boys in tracts between
246 right amygdala and putamen. These observations were not explained by differences in streamline
247 counts in relation to maternal HCC. Furthermore, in sex-stratified analysis, there were consistent
248 trends for girls born to women with higher HCC to have higher mean FA between the left amygdala
249 and left thalamus, putamen and inferior temporal gyrus, and between right amygdala and right
250 putamen and right inferior temporal gyrus, although these did not survive FDR correction. During
251 the neonatal period, higher FA in white matter tracts is typically taken to imply microstructural
252 maturation, through increased axon diameter, density or myelination. Therefore, increased mean
253 FA demonstrated in connections between the amygdala and putamen, in girls exposed to higher
254 cortisol, could be interpreted as increased maturation of these connections.

255

256 The mechanisms underpinning differences in the relationship between maternal cortisol and
257 neurodevelopment of male and female infants are unknown but could occur due to sex differences
258 in the placental metabolism of glucocorticoids(35), regulation of glucocorticoid receptors(36) and
259 secretion and actions of corticotropin-releasing hormone (CRH)(37).

260

261 Strengths of this study are the use of biophysical tissue modelling (NODDI) to enable inference
262 about neurite density and organisation in the amygdala; and use of a data driven approach to
263 investigate amygdala structural connectivity. A second strength is use of maternal HCC to
264 operationalise stress because it is a quantitative stable marker of cortisol secretion that represents
265 HPA activity over 3 months; as such HCC is unlikely to reflect transient stresses that can occur in
266 pregnancy, and it overcomes the problems of diurnal variation that occur with plasma and saliva

267 measurements. To our knowledge this is the first study to investigate a physiological measure of
268 chronic maternal HPA activity with quantitative biomarkers of brain development, and to include
269 infants born very preterm. This was important because preterm birth is associated with both
270 exposure to maternal HPA axis dysregulation(38), and an increased risk of inattention and affective
271 disorders(39). The relationships we describe appear to apply across the whole GA range because
272 GA at birth was included in all regression models that were used to investigate association between
273 maternal HCC and image metrics, and in sub-group analyses the magnitude and direction of 'HCC
274 x sex' interaction effects were maintained between term and preterm groups. The study has some
275 limitations: first it was not powered to detect both sex and birth gestation interactions, but this should
276 be considered in future study design. Second, follow-up studies that include measures of socio-
277 emotional development are needed to understand functional consequences of these findings.
278 Finally, the newborn amygdala are relatively small anatomical regions so could be susceptible to
279 partial volume effects influencing microstructural characteristics. To mitigate this risk, we used an
280 age-specific atlas for segmentation, and excluded voxels with a uiso <0.5.

281
282 In conclusion, dMRI and HCC were used to investigate mechanisms underlying the transmission
283 of prenatal stressors on infant development. Maternal HCC in pregnancy is associated with
284 newborn amygdala microstructure and structural connectivity, in a sex-dimorphic manner. These
285 findings reveal that the amygdala, a structure of known importance for child development, is
286 susceptible to variations in the prenatal stress environment, and that cortisol imparts sex specific
287 effects on human fetal neurodevelopment.

288

289 **Materials and Methods**

290

291 **Participants**

292

293 The 'Stress Response Systems in Mothers and Infants' cohort recruited mother-infant dyads from
294 the Royal Infirmary, Edinburgh, between March 2018 and August 2019. It prospectively tests
295 associations of perinatal glucocorticoid exposure with brain development, and early life exposures
296 including preterm birth with infant HPA axis regulation. This study recruited mother-infant dyads
297 with birth at ≤ 32 completed weeks of gestation, and dyads with birth ≥ 37 weeks' gestation.
298 Exclusion criteria were congenital fetal abnormality, chromosomal abnormality or regular maternal
299 corticosteroid use. All women gave written informed consent. Ethical approval was granted by
300 South East Scotland 01 Regional Ethics Committee (18/SS/0006).

301

302 **Maternal hair cortisol concentrations (HCC)**

303

304 Maternal hair was sampled within 10 days of delivery. Hair was cut close to the scalp, at the
305 posterior vertex, and stored in aluminium foil at -20°C. The proximal 3cm of hair were analysed by
306 liquid chromatography-tandem mass spectrometry (LC-MS/MS), at Dresden Lab Service GmbH
307 (Dresden, Germany), using an established protocol(40). Adult hair commonly grows at
308 1cm/month(41) and thus hair segments represented maternal HPA axis activity over the last three
309 months of pregnancy.

310

311 ***Demographic and clinical information***

312

313 Participant demographic information was collected through maternal questionnaire and review of
314 medical records. Collected maternal information included: age at delivery (years), parity
315 (primiparous/multiparous), clinical diagnosis of gestational diabetes, pre-eclampsia,
316 pharmacological treatment for depression during pregnancy, antenatal corticosteroid exposure for
317 threatened preterm birth; body mass index (BMI) calculated at antenatal booking; smoking status
318 defined as having smoked any tobacco in pregnancy; SIMD 2016 quintile rank, a score generated
319 by the Scottish government which measures localities' deprivation according to local income,
320 employment, health, education, geographic access to services, crime and housing. Infant
321 demographics included whether participants were a singleton or twin, ethnicity, GA at birth (weeks),
322 and birth weight z-score calculated according to intergrowth standards(42).

323

324 ***Magnetic Resonance Imaging***

325

326 ***Image Acquisition***

327

328 Infants underwent MRI at term-equivalent age, at the Edinburgh Imaging Facility, RIE. Infants were
329 fed, wrapped and allowed to sleep naturally in the scanner. Flexible earplugs and neonatal earmuffs
330 (MiniMuffs, Natus) were used for acoustic protection. Scans were supervised by a doctor, or nurse
331 trained in neonatal resuscitation.

332

333 A Siemens MAGNETOM Prisma 3 T MRI clinical scanner (Siemens Healthcare Erlangen,
334 Germany) and 16-channel phased-array paediatric head and neck coil were used for
335 acquisition(43). In brief, we acquired 3D T1-weighted MPRAGE (T1w) (acquired voxel size = 1mm
336 isotropic) with TI 1100 ms, TE 4.69 ms and TR 1970 ms; 3D T2-weighted SPACE (T2w) (voxel size
337 = 1mm isotropic) with TE 409 ms and TR 3200 ms; and axial dMRI. dMRI was acquired in two
338 separate acquisitions to reduce the time needed to re-acquire any data lost to motion artefact: the
339 first acquisition consisted of 8 baseline volumes ($b = 0 \text{ s/mm}^2$ [b0]) and 64 volumes with $b = 750$
340 s/mm^2 , the second consisted of 8 b0, 3 volumes with $b = 200 \text{ s/mm}^2$, 6 volumes with $b = 500 \text{ s/mm}^2$

341 and 64 volumes with $b = 2500 \text{ s/mm}^2$; an optimal angular coverage for the sampling scheme was
342 applied(44). In addition, an acquisition of 3 b0 volumes with an inverse phase encoding direction
343 was performed. All dMRI images were acquired using single-shot spin-echo echo planar imaging
344 (EPI) with 2-fold simultaneous multislice and 2-fold in-plane parallel imaging acceleration and 2
345 mm isotropic voxels; except where stated above, all three diffusion acquisitions had the same
346 parameters (TR/TE 3400/78.0 ms).

347

348 Conventional images were reported by an experienced paediatric radiologist (A.J.Q.) using a
349 structured system(45). Images with focal parenchymal injury (defined as posthaemorrhagic
350 ventricular dilatation, porencephalic cyst or cystic periventricular leukomalacia) were not included
351 in the final sample.

352

353 ***Image Pre-processing***

354

355 Diffusion MRI processing was performed as follows: for each subject the two dMRI acquisitions
356 were first concatenated and then denoised using a Marchenko-Pastur-PCA-based algorithm(46);
357 the eddy current, head movement and EPI geometric distortions were corrected using outlier
358 replacement and slice-to-volume registration(47-50); bias field inhomogeneity correction was
359 performed by calculating the bias field of the mean b0 volume and applying the correction to all the
360 volumes(51).

361

362 The T2w images were processed using the minimal processing pipeline of the developing human
363 connectome project (dHCP) to obtain the bias field corrected T2w, the brain masks and the different
364 tissue probability maps(52). The mean b0 EPI volume of each subject was co-registered to their
365 structural T2w volume using boundary-based registration(53).

366

367 ***Tissue segmentation and parcellation***

368

369 The ten manually labelled subjects of the M-CRIB atlas(25) were registered to the bias field
370 corrected T2w using rigid, affine and symmetric normalization (SyN)(54). Next, the registered labels
371 of the ten atlases were merged using joint label fusion(55), resulting in a parcellation containing 84
372 regions of interest (ROIs).

373

374 ***Microstructure and volumetric assessments***

375

376 Volumes were calculated from ROIs derived in the structural images. ROIs were propagated to the
377 diffusion native space using the previously computed transformation.

378

379 To calculate the tensor derived metric, only the first shell was used. NODDI metrics were calculated
380 using the recommended values for neonatal grey-matter of the parallel intrinsic diffusivity (1.25
381 $\mu\text{m}^2\cdot\text{ms}^{-1}$)(56). The obtained metrics are: neurite density index (NDI), isotropic volume fraction
382 (uiso) and orientation dispersion index (ODI). The mean FA, MD, ODI and NDI were calculated for
383 the left and right amygdalae M-CRIB ROIs, after exclusion of voxels with a uiso <0.5. Voxels with
384 a uiso <0.5 were excluded, in order to minimise partial volume effects(57).

385

386 ***Network construction and analysis***

387

388 Tractography was performed using constrained spherical deconvolution(CSD) and anatomically-
389 constrained tractography(58, 59) The required 5-tissue type file, was generated by combining the
390 tissue probability maps obtained from the dHCP pipeline with the subcortical structures derived
391 from the parcellation process. Multi-tissue response function was calculated, with a FA threshold
392 of 0.1. The average response functions were calculated. Then, the multi-tissue fiber orientation
393 distribution (FOD) was calculated(60), and global intensity normalization on the FODs images was
394 performed. Finally, the tractogram was created, generating 10 million streamlines, with a minimum
395 length of 20 mm and a maximum of 200 mm and a cut-off of 0.05 (default), using backtrack and a
396 dynamic seeding(61). To be able to quantitatively assess connectivity, spherical-deconvolution
397 informed filtering of tractograms two (SIFT2) was applied to the resulting tractograms(61). The
398 connectivity matrix was constructed using a robust approach, a 2-mm radial search at the end of
399 the streamline was performed to allow the tracts to reach the GM parcellation(62). The final
400 connectivity matrices were multiplied by the μ coefficient obtained during the SIFT2 process.

401

402 These connectomes gave a quantification of the SIFT2 weights (referred to as the streamline
403 counts), and the mean FA of connections, between both the left and right amygdala to 41 unilateral
404 regions of interest defined through M-CRIB parcellation. In order to focus analysis on to amygdala's
405 most structurally connected areas, these 82 ROIs were thresholded according to the number of
406 streamlines connecting them to the left or right amygdala, with the top 20% (N=16) of connections
407 taken forward for further analysis testing relationships with maternal HCC.

408

409 ***Statistical analysis***

410

411 Analyses were performed using IBM SPSS Statistics Version 25 Armonk, NY: IBM Corp.
412 Continuous data are summarised as mean \pm SD if they had a normal distribution, and median
413 (range) if skewed. Maternal HCC was positively skewed, and log-10 transformed for analysis. The
414 relationship between maternal HCC with infant characteristics was tested using independent t-test

415 and Pearson's correlation for categorical and continuous variables, respectively. Associations
416 between maternal HCC with i) left and right amygdala microstructure (FA, MD, NDI, ODI), ii)
417 structural connectivity (number of streamlines and mean FA of connections), iii) amygdalae
418 volumes were tested using multiple linear regression. In all models, image feature was the
419 dependent variable and maternal HCC was an independent variable. Covariates included infant
420 sex and clinical or demographic factors that were correlated with either left or right amygdala
421 microstructure or volume using Pearson's correlation. Associations with the following were tested:
422 GA at birth, age at scan, birth weight z-score, SIMD2016 quintile, infant ethnicity, infant sex, and
423 maternal parity, BMI and age. Antenatal corticosteroid treatment for threatened preterm birth was
424 not included as a covariate because it was given to n=36 (100%) women in the preterm group, was
425 highly correlated with GA at birth ($r=0.958$, $p<0.001$), so its inclusion as a covariate would have
426 introduced multicollinearity in regression analysis. For descriptive purposes correlations of infant
427 and maternal factors considered as potential covariates are described as weak if $r< 0.3$, moderate
428 if $r=0.3-0.7$, and strong if $r>0.7$.

429

430 Sex differences in the relationship between maternal HCC and newborn imaging features were
431 assessed by adding an interaction term between maternal HCC and infant sex in the whole group
432 regression model. If a significant interaction was present, sex stratified analysis was conducted
433 independently in boys and girls. Benjamini and Hochberg false discovery rate (FDR) correction was
434 used to adjust p-values for multiple testing. FDR corrections were conducted separately for
435 assessments of left amygdala microstructure (n=4), right amygdala microstructure (n=4), left
436 amygdala connectivity (n=8) and right amygdala connectivity (n=8).

437

438 One sensitivity analysis was carried out to assess whether associations between maternal HCC
439 and image features might be enhanced by inclusion of twins. We repeated analysis of features with
440 a significant 'HCC x sex' interaction in the whole sample, using only singleton pregnancies and the
441 first-born infant of twin pairs. One sub-group analysis of preterm (GA at birth ≤ 32 weeks) and term
442 infants (GA at birth ≥ 37 weeks) was carried out because the relationship between maternal HCC
443 and infant brain development may be gestation specific.

444

445 **Materials and Data Availability**

446

447 All data generated or analysed during this study are included in the manuscript and supporting files.

448

449 **Acknowledgments**

450

451 The work was funded by Theirworld (www.theirworld.org) and was undertaken in the MRC Centre
452 for Reproductive Health, which is funded by MRC Centre Grant ([MRC G1002033](#)). RMR
453 acknowledges the support of the British Heart Foundation (RE/18/5/34216). Participants were
454 scanned in the University of Edinburgh Imaging Research MRI Facility at the Royal Infirmary of
455 Edinburgh which was established with funding from The Wellcome Trust, Dunhill Medical Trust,
456 Edinburgh and Lothians Research Foundation, Theirworld, The Muir Maxwell Trust and many other
457 sources; we thank the University's imaging research staff for providing the infant scanning.

458

459

460 **Competing interests**

461

462 The authors have no competing interests to declare.

463

464 **References**

465

- 466 1. B. R. H. Van den Bergh *et al.*, Prenatal developmental origins of behavior and mental
467 health: The influence of maternal stress in pregnancy. *Neuroscience and biobehavioral*
468 *reviews* 10.1016/j.neubiorev.2017.07.003 (2017).
- 469 2. D. Scheinost *et al.*, Does prenatal stress alter the developing connectome? *Pediatr Res*
470 **81**, 214-226 (2017).
- 471 3. V. G. Moisiadis, S. G. Matthews, Glucocorticoids and fetal programming part 1:
472 *Outcomes*. *Nat Rev Endocrinol* **10**, 391-402 (2014).
- 473 4. S. Sutherland, S. M. Brunwasser, Sex Differences in Vulnerability to Prenatal Stress: a
474 Review of the Recent Literature. *Curr Psychiatry Rep* **20**, 102 (2018).
- 475 5. E. C. Braithwaite, S. E. Murphy, P. G. Ramchandani, J. Hill, Associations between
476 biological markers of prenatal stress and infant negative emotionality are specific to sex.
477 *Psychoneuroendocrinology* **86**, 1-7 (2017).
- 478 6. E. C. Braithwaite *et al.*, Maternal prenatal cortisol predicts infant negative emotionality in
479 a sex-dependent manner. *Physiology & behavior* **175**, 31-36 (2017).
- 480 7. A. M. Graham *et al.*, Maternal Cortisol Concentrations During Pregnancy and Sex-
481 Specific Associations With Neonatal Amygdala Connectivity and Emerging Internalizing
482 Behaviors. *Biol Psychiatry* **85**, 172-181 (2019).
- 483 8. C. Buss *et al.*, Maternal cortisol over the course of pregnancy and subsequent child
484 amygdala and hippocampus volumes and affective problems. *Proc Natl Acad Sci U S A*
485 **109**, E1312-1319 (2012).
- 486 9. D. J. Kim *et al.*, Prenatal Maternal Cortisol Has Sex-Specific Associations with Child
487 Brain Network Properties. *Cereb Cortex* 10.1093/cercor/bhw303 (2016).

488 10. D. J. Wen *et al.*, Influences of prenatal and postnatal maternal depression on amygdala
489 volume and microstructure in young children. *Transl psychiatry* **7**, e1103-e1103 (2017).

490 11. A. Rifkin-Graboi *et al.*, Prenatal maternal depression associates with microstructure of
491 right amygdala in neonates at birth. *Biological psychiatry* **74**, 837-844 (2013).

492 12. J. Posner *et al.*, Alterations in amygdala-prefrontal circuits in infants exposed to prenatal
493 maternal depression. *Transl Psychiatry* **6**, e935 (2016).

494 13. T. Humphrey, The development of the human amygdala during early embryonic life. *J
495 Comp Neurol* **132**, 135-165 (1968).

496 14. Q. Wang *et al.*, Distribution of the glucocorticoid receptor in the human amygdala;
497 changes in mood disorder patients. *Brain Struct Funct* **219**, 1615-1626 (2014).

498 15. L. A. Welberg, J. R. Seckl, M. C. Holmes, Inhibition of 11beta-hydroxysteroid
499 dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently
500 programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring.
501 *The European journal of neuroscience* **12**, 1047-1054 (2000).

502 16. A. Barbazanges, P. V. Piazza, M. Le Moal, S. Maccari, Maternal glucocorticoid secretion
503 mediates long-term effects of prenatal stress. *J Neurosci* **16**, 3943-3949 (1996).

504 17. C. M. Schumann, M. D. Bauman, D. G. Amaral, Abnormal structure or function of the
505 amygdala is a common component of neurodevelopmental disorders. *Neuropsychologia*
506 **49**, 745-759 (2011).

507 18. C. E. Rogers *et al.*, Neonatal Amygdala Functional Connectivity at Rest in Healthy and
508 Preterm Infants and Early Internalizing Symptoms. *J Am Acad Child Adolesc Psychiatry*
509 **56**, 157-166 (2017).

510 19. M. Kraszpulski, P. A. Dickerson, A. K. Salm, Prenatal stress affects the developmental
511 trajectory of the rat amygdala. *Stress* **9**, 85-95 (2006).

512 20. T. A. Avino *et al.*, Neuron numbers increase in the human amygdala from birth to
513 adulthood, but not in autism. *Proc Natl Acad Sci U S A* **115**, 3710-3715 (2018).

514 21. A. Vyas, S. Bernal, S. Chattarji, Effects of chronic stress on dendritic arborization in the
515 central and extended amygdala. *Brain Res* **965**, 290-294 (2003).

516 22. R. Mitra, R. M. Sapolsky, Acute corticosterone treatment is sufficient to induce anxiety
517 and amygdaloid dendritic hypertrophy. *Proc Natl Acad Sci U S A* **105**, 5573-5578 (2008).

518 23. D. Batalle, A. D. Edwards, J. O'Muircheartaigh, Annual Research Review: Not just a
519 small adult brain: understanding later neurodevelopment through imaging the neonatal
520 brain. *J Child Psychol Psychiatry* **59**, 350-371 (2018).

521 24. J. P. Boardman, S. J. Counsell, Invited Review: Factors associated with atypical brain
522 development in preterm infants: insights from magnetic resonance imaging. *Neuropathol
523 Appl Neurobiol* **10.1111/nan.12589** (2019).

524 25. B. Alexander *et al.*, A new neonatal cortical and subcortical brain atlas: the Melbourne
525 Children's Regional Infant Brain (M-CRIB) atlas. *Neuroimage* **147**, 841-851 (2017).

526 26. P. Galdi *et al.*, Neonatal morphometric similarity mapping for predicting brain age and
527 characterizing neuroanatomic variation associated with preterm birth. *Neuroimage Clin*
528 **25**, 102195 (2020).

529 27. S. M. Staufenbiel, B. W. Penninx, A. T. Spijker, B. M. Elzinga, E. F. van Rossum, Hair
530 cortisol, stress exposure, and mental health in humans: a systematic review.
531 *Psychoneuroendocrinology* **38**, 1220-1235 (2013).

532 28. C. Kirschbaum, A. Tietze, N. Skoluda, L. Dettenborn, Hair as a retrospective calendar of
533 cortisol production-Increased cortisol incorporation into hair in the third trimester of
534 pregnancy. *Psychoneuroendocrinology* **34**, 32-37 (2009).

535 29. K. L. D'Anna-Hernandez, R. G. Ross, C. L. Natvig, M. L. Laudenslager, Hair cortisol
536 levels as a retrospective marker of hypothalamic-pituitary axis activity throughout
537 pregnancy: comparison to salivary cortisol. *Physiology & behavior* **104**, 348-353 (2011).

538 30. S. N. Jespersen, L. A. Leigland, A. Cornea, C. D. Kroenke, Determination of Axonal and
539 Dendritic Orientation Distributions Within the Developing Cerebral Cortex by Diffusion
540 Tensor Imaging. *IEEE Transactions on Medical Imaging* **31**, 16-32 (2012).

541 31. F. Grussu *et al.*, Neurite dispersion: a new marker of multiple sclerosis spinal cord
542 pathology? *Annals of clinical and translational neurology* **4**, 663-679 (2017).

543 32. K. Sato *et al.*, Understanding microstructure of the brain by comparison of neurite
544 orientation dispersion and density imaging (NODDI) with transparent mouse brain. *Acta
545 radiologica open* **6**, 2058460117703816 (2017).

546 33. A. Nazeri, C. Schifani, J. A. E. Anderson, S. H. Ameis, A. N. Voineskos, In Vivo Imaging
547 of Gray Matter Microstructure in Major Psychiatric Disorders: Opportunities for Clinical
548 Translation. *Biol Psychiatry Cogn Neurosci Neuroimaging* 10.1016/j.bpsc.2020.03.003
549 (2020).

550 34. E. Genç *et al.*, Diffusion markers of dendritic density and arborization in gray matter
551 predict differences in intelligence. *Nature Communications* **9**, 1905 (2018).

552 35. C. S. Rosenfeld, Sex-Specific Placental Responses in Fetal Development. *Endocrinology*
553 **156**, 3422-3434 (2015).

554 36. C. H. Bourke, C. S. Harrell, G. N. Neigh, Stress-induced sex differences: adaptations
555 mediated by the glucocorticoid receptor. *Horm Behav* **62** (2012).

556 37. D. A. Bangasser, K. R. Wiersielis, Sex differences in stress responses: a critical role for
557 corticotropin-releasing factor. *Hormones (Athens)* **17**, 5-13 (2018).

558 38. L. Duthie, R. M. Reynolds, Changes in the maternal hypothalamic-pituitary-adrenal axis
559 in pregnancy and postpartum: influences on maternal and fetal outcomes.
560 *Neuroendocrinology* **98**, 106-115 (2013).

561 39. S. Johnson, Cognitive and behavioural outcomes following very preterm birth. *Seminars*
562 *in fetal & neonatal medicine* **12**, 363-373 (2007).

563 40. W. Gao *et al.*, Quantitative analysis of steroid hormones in human hair using a column-
564 switching LC-APCI-MS/MS assay. *J Chromatogr B Analyt Technol Biomed Life Sci* **928**,
565 1-8 (2013).

566 41. R. Wennig, Potential problems with the interpretation of hair analysis results. *Forensic Sci*
567 *Int* **107**, 5-12 (2000).

568 42. J. Villar *et al.*, International standards for newborn weight, length, and head
569 circumference by gestational age and sex: the Newborn Cross-Sectional Study of the
570 INTERGROWTH-21st Project. *The Lancet* **384**, 857-868 (2014).

571 43. J. P. Boardman *et al.*, Impact of preterm birth on brain development and long-term
572 outcome: protocol for a cohort study in Scotland. *BMJ Open* **10**, e035854 (2020).

573 44. E. Caruyer, C. Lenglet, G. Sapiro, R. Deriche, Design of multishell sampling schemes
574 with uniform coverage in diffusion MRI. *Magn Reson Med* **69**, 1534-1540 (2013).

575 45. L. J. Woodward, P. J. Anderson, N. C. Austin, K. Howard, T. E. Inder, Neonatal MRI to
576 predict neurodevelopmental outcomes in preterm infants. *N Engl J Med* **355**, 685-694
577 (2006).

578 46. J. Veraart *et al.*, Denoising of diffusion MRI using random matrix theory. *Neuroimage*
579 **142**, 394-406 (2016).

580 47. S. M. Smith *et al.*, Advances in functional and structural MR image analysis and
581 implementation as FSL. *Neuroimage* **23 Suppl 1**, S208-219 (2004).

582 48. J. L. R. Andersson, S. Skare, J. Ashburner, How to correct susceptibility distortions in
583 spin-echo echo-planar images: application to diffusion tensor imaging. *Neuroimage* **20**,
584 870-888 (2003).

585 49. J. L. R. Andersson, S. N. Sotropoulos, An integrated approach to correction for off-
586 resonance effects and subject movement in diffusion MR imaging. *Neuroimage* **125**,
587 1063-1078 (2016).

588 50. J. L. R. Andersson *et al.*, Towards a comprehensive framework for movement and
589 distortion correction of diffusion MR images: Within volume movement. *Neuroimage* **152**,
590 450-466 (2017).

591 51. N. J. Tustison *et al.*, N4ITK: improved N3 bias correction. *IEEE Trans Med Imaging* **29**,
592 1310-1320 (2010).

593 52. A. Makropoulos *et al.*, The developing human connectome project: A minimal processing
594 pipeline for neonatal cortical surface reconstruction. *Neuroimage* **173**, 88-112 (2018).

595 53. D. N. Greve, B. Fischl, Accurate and robust brain image alignment using boundary-based
596 registration. *Neuroimage* **48**, 63-72 (2009).

597 54. B. B. Avants, C. L. Epstein, M. Grossman, J. C. Gee, Symmetric diffeomorphic image
598 registration with cross-correlation: evaluating automated labeling of elderly and
599 neurodegenerative brain. *Med Image Anal* **12**, 26-41 (2008).

600 55. H. Wang *et al.*, Multi-Atlas Segmentation with Joint Label Fusion. *IEEE Trans Pattern
601 Anal Mach Intell* **35**, 611-623 (2013).

602 56. J. M. Guerrero *et al.*, Optimizing the intrinsic parallel diffusivity in NODDI: An extensive
603 empirical evaluation. *PLoS One* **14**, e0217118 (2019).

604 57. D. Batalle *et al.*, Different patterns of cortical maturation before and after 38 weeks
605 gestational age demonstrated by diffusion MRI in vivo. *NeuroImage* **185**, 764-775 (2019).

606 58. J. D. Tournier *et al.*, MRtrix3: A fast, flexible and open software framework for medical
607 image processing and visualisation. *Neuroimage* **202**, 116137 (2019).

608 59. R. E. Smith, J. D. Tournier, F. Calamante, A. Connelly, Anatomically-constrained
609 tractography: improved diffusion MRI streamlines tractography through effective use of
610 anatomical information. *Neuroimage* **62**, 1924-1938 (2012).

611 60. B. Jeurissen, J. D. Tournier, T. Dhollander, A. Connelly, J. Sijbers, Multi-tissue
612 constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI
613 data. *Neuroimage* **103**, 411-426 (2014).

614 61. R. E. Smith, J. D. Tournier, F. Calamante, A. Connelly, SIFT2: Enabling dense
615 quantitative assessment of brain white matter connectivity using streamlines
616 tractography. *Neuroimage* **119**, 338-351 (2015).

617 62. R. E. Smith, J. D. Tournier, F. Calamante, A. Connelly, The effects of SIFT on the
618 reproducibility and biological accuracy of the structural connectome. *Neuroimage* **104**,
619 253-265 (2015).

620