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Abstract: 

Automated quantification of behavior is increasingly prevalent in neuroscience research. Human 

judgments can influence machine-learning-based behavior classification at multiple steps in the 

process, for both supervised and unsupervised approaches. Such steps include the design of 

the algorithm for machine learning, the methods used for animal tracking, the choice of training 

images, and the benchmarking of classification outcomes. However, how these design choices 

contribute to the interpretation of automated behavioral classifications has not been extensively 

characterized. Here, we quantify the effects of experimenter choices on the outputs of auto-

mated classifiers of Drosophila social behaviors. Drosophila behaviors contain a considerable 

degree of variability, which was reflected in the confidence levels associated with both human 

and computer classifications. We found that a diversity of sex combinations and tracking fea-

tures was important for robust performance of the automated classifiers. In particular, features 

concerning the relative position of flies contained useful information for training a machine-learn-

ing algorithm. These observations shed light on the importance of human influence on tracking 

algorithms, the selection of training images, and the quality of annotated sample images used to 

benchmark the performance of a classifier (the ‘ground truth’). Evaluation of these factors is 

necessary for researchers to accurately interpret behavioral data quantified by a machine-learn-

ing algorithm and to further improve automated classifications. 

 

Significance Statement: 

Accurate quantification of animal behaviors is fundamental to neuroscience. Here, we quantita-

tively assess how human choices influence the performance of automated classifiers trained by 

a machine-learning algorithm. We found that human decisions about the computational tracking 

method, the training images, and the images used for performance evaluation impact both the 

classifier outputs and how human observers interpret the results. These factors are sometimes 

overlooked but are critical, especially because animal behavior is itself inherently variable. Auto-

mated quantification of animal behavior is becoming increasingly prevalent: our results provide 

a model for bridging the gap between traditional human annotations and computer-based anno-

tations. Systematic assessment of human choices is important for developing behavior classifi-

ers that perform robustly in a variety of experimental conditions. 
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INTRODUCTION 

Behavior is the ultimate output of the nervous system (1, 2). Accurate and quantitative measure-

ments of behavior are vital for evaluating the effects of genetic, neuronal, pharmacological, or 

environmental perturbations on animals. Traditionally, measurement of behaviors performed by 

freely moving animals has relied on human observations. Recent advances in computational ap-

proaches have transformed this process by replacing human observations with automated com-

putational processes that parameterize animal motions in a high-dimensional space. This infor-

mation can be then used to classify specific actions through either a supervised or an unsuper-

vised machine-learning algorithm (reviewed in 1, 3-7). The obvious strengths of automated be-

havioral classification are the enormous data-processing capacity and the reproducibility of the 

results. A computer can apply the exact same criteria to every image file, in theory eliminating 

the variability that may exist within a human observer or among multiple observers. Moreover, 

an unsupervised machine-learning algorithm may identify new types of behavior that have es-

caped human attention. 

 However, computational measurements of behavior invite an inevitable question: how 

should we evaluate the performance of automated classification? The importance of this ques-

tion is sometimes overlooked because it is rather trivial if the classification task is unambigu-

ously binary. For example, a face recognition task answers a binary question (‘is this person A 

or not A?’). Most behavioral classification tasks implicitly assume that the answer is likewise bi-

nary. However, comparison of the behavioral classifications among multiple observers reveals a 

considerable level of discrepancy (8-12) that challenges this assumption. This inter-observer 

variability is often used to promote the superiority of computer-based classification over human 

observation (4, 6). However, the performance of every machine-learning-based algorithm must 

be benchmarked against a “ground truth”, which is the annotation by human observers (4). This 

means that the human selection of training and ground truth images inherently impact the per-

formance of a computer-based classifier (9, 13); however, these factors have rarely been as-

sessed systematically. The challenges become more significant as the scale of behavioral data 

continues to expand. The amount of actual behavioral data one observer can evaluate imposes 

limitations on the quality of the ground truth data used for performance evaluation and (espe-

cially for supervised learning) on the number of training images, which need to be sufficiently 

diverse to create a reasonably generalizable classifier (9, 14). It is therefore important to quanti-

tatively assess the relationship between human factors and computational measurements under 

a variety of situations, especially for behaviors that are variably annotated by human observers. 
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 In this study, we aim to understand how factors controlled by humans, both during train-

ing and in the evaluation process, influence the performance of computer classifiers for animal 

behaviors (Fig. 1A). To this end, we first quantified the variability of human observations of three 

types of social behavior exhibited by pairs of fruit flies (Drosophila melanogaster) in multiple sex 

combinations. In parallel, we developed a series of supervised automated classifiers for these 

behaviors using a collection of training movies and then quantitatively compared the results of 

human and computer classification of another dataset. Our results show that the probability that 

a given behavior bout is detected as a particular behavior by the classifier correlates with the 

aggregated confidence levels of the human annotators. The performance of the classifiers im-

proved as the diversity of the training files increased, mainly by reducing misclassification of 

types of behavior that were only present in a subset of movies. Each of the motion-related fea-

tures curated by the creator of the tracking program assumed different levels of importance for 

each classifier; features concerning the relative position of the two flies helped improve the clas-

sification accuracy for social behaviors. These results suggest that the variability of human ob-

servations in fact reflects the variability inherent in animal behaviors, which can be quantified 

objectively by the confidence levels of well-trained automated classifiers. However, the noticea-

ble impact of training file diversity on classifier performance indicates that it is vital for classifier 

creators to disclose the nature of the training files before applying the classifier to novel experi-

mental paradigms. 

 

RESULTS 

Consistency and variability of human classifications 

We first wished to quantify the variability in animal-behavior classifications made by human ob-

servers. To this end, we recorded interactions between a number of Drosophila pairs and had 

two trained observers independently annotate the behaviors.  Both male and female flies show 

a variety of stereotypical actions in the context of social interactions. We focused on three types 

of actions: (1) unilateral wing extensions (henceforth referred to as wing extensions), which are 

an important part of male-type courtship behavior toward a female (15, 16), (2) lunges, which 

are a major component of attacks in inter-male aggressive behavior (17, 18), and (3) headbutts, 

which are a major component of attacks in inter-female aggressive behavior (19, 20). These 

three types of actions were chosen because they are frequently observed in specific combina-

tions of the sexes and their motions are relatively unambiguous. We asked the observers to re-

port not only the occurrence of these behaviors but also their subjective confidence level for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.16.153130doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.153130
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

each annotation, from 1 (least confident) to 3 (most confident). These graded annotations al-

lowed us to quantify how conspicuous the given behavior appeared to human observers. 

 In all, movies of 30 pairs of flies with a total length of ~534 minutes were independently 

annotated by two human observers, who were assigned from a pool of four trained scientists 

(see Table 1 and Supplementary Data File for details). Each of the three behaviors was ob-

served primarily for a specific combination of sexes, consistent with previous reports. Wing ex-

tensions were performed primarily by males toward females (a low number of male-to-male 

wing extensions were also observed; Fig. 1B1). Lunges were performed exclusively among pairs 

of male flies (Fig. 1C1), while headbutts were performed predominantly among pairs of female 

flies (Fig. 1D1). Although trained observers generally agreed on classification of behaviors, we 

found that a noticeable number of bouts were annotated by only one of the two observers. For 

wing extensions, 58.6% of the total annotated bouts received a combined confidence score of 4-

6 from the two observers (Fig. 1B2,4). However, 30.1% of the bouts were annotated by only one 

of the two observers (Fig. 1B2,3). Likewise, 66.7% of the total annotated lunge bouts received a 

combined score of 4-6 (Fig. 1C2,4), but 27.6% of the bouts were annotated by only one observer 

(Fig. 1C2,3). Lastly, 34.0% of the headbutt bouts were annotated by only one observer (Fig. 1D3). 

The more subtle nature of headbutt motions possibly accounts for the lower proportion of bouts 

that received a combined score of 4-6 (44.1%) (Fig. 1D2,4). These data suggest that even the 

“stereotypical” social behaviors of Drosophila contain a certain degree of perceived variability. 

 Lunges and headbutts are “ballistic” behaviors of short and relatively constant duration 

(median of 83 ms for lunges (Fig. 2A) and 67 ms for headbutts (Fig. 2B)). On the other hand, 

the duration of wing extensions can vary greatly (Fig. 2C, D). Interestingly, wing extensions of 

longer duration tended to be scored higher by human observers than wing extensions of shorter 

duration (Fig. 2E), suggesting that bout-based analysis of scores may underestimate the con-

sistency of human annotations. Therefore, we analyzed the scores for wing extensions frame by 

frame. This analysis revealed that 70.6% of the frames received a combined score of 4-6 and 

23.4% of frames were annotated by only one observer (Fig. 3). These numbers suggest that 

consistency among observers is indeed higher at the frame level than at the bout level. We 

therefore perform both bout-based and frame-based analyses for wing extensions in the follow-

ing sections. In general, we found that the difference between bout-based and frame-based 

analyses was quantitative rather than qualitative. 

 

Automated classifiers quantitatively reflect the confidence of human judgments 
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Our observations above illuminate a noticeable degree of variability in the annotations of human 

observers. Similar variability has been reported when more than one person annotates the 

same movies of behaving nematodes (8), flies (9, 10), and mice (11, 12). We wondered how 

this seemingly variable “ground truth” for animal behaviors would be reflected when benchmark-

ing computer classification.  To answer this question, we developed a set of well-trained auto-

mated classifiers for the three above-mentioned behaviors (21, 22) using the machine-learning-

based platform JAABA (9). In each frame, parts of the fly body were labeled and parameterized 

using FlyTracker (23), which computes 13 basic feature values related to fly position and mo-

tion. The program then generates the first and second derivatives for each feature, creating 39 

features in total that are subsequently utilized by JAABA. Compared with unannotated frames, 

frames annotated by human observers had distinct z-score distributions (Fig. 4A1, B1, C1) and 

variances (which likely result in distinct derivatives) (Fig. 4A2, B2, C2).  This suggests that Fly-

Tracker features contain information that JAABA can use to differentiate annotated frames from 

non-behavior frames. 

We aimed to develop JAABA classifiers that perform robustly. As training with a diverse 

set of movies is important for developing reliable JAABA classifiers (9, 24), we trained a wing-

extension classifier with 78,482 frames (1,308 seconds in total), a lunge classifier with 11,360 

frames (189 seconds in total), and a headbutt classifier with 10,351 frames (173 seconds in to-

tal) (see Supplementary Table S1 and Supplementary Data File for a complete description of 

the training movies). Note that the fly pairs in the training frames were different from the fly pairs 

in the frames used for testing (i.e., the frames annotated by human observers). We also 

smoothed raw JAABA-detected bouts by eliminating bouts that were shorter than at least 98% 

of manually annotated bouts (Fig. 2A, B, D; see also Supplementary Data File), and by filling 

short gaps sandwiched by frames that received JAABA scores above the detection threshold 

value. These filters corrected for fragmentation of behavioral bouts that were sometimes gener-

ated by frame-based classification in JAABA (see Materials and Methods for details). We used 

recall (the ratio of human annotations detected by the classifier to all human annotations) and 

precision (the ratio of human annotations detected by the classifier to all classifier annotations) 

to evaluate the performance of the classifiers. The set of smoothing parameters that resulted in 

the optimal trade-off between recall and precision with a detection threshold of 0.1 was used for 

subsequent analyses unless otherwise noted (Fig. 5).  

 We then quantitatively compared the classification results from human observers and 

the JAABA classifiers by calculating recall and precision. We found that the JAABA classifiers 

reliably detected behavioral bouts that received high human confidence scores. For bouts that 
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received a score of 4 or higher (Fig. 1B4-D4), recall was 96.0% for the wing-extension classifier, 

95.3% for the lunge classifier, and 87.9% for the headbutt classifier. All three JAABA classifiers 

had almost perfect recall for behavioral bouts that received a score of 6 (Fig. 6B, E, H).  

As expected, the detection threshold was positively correlated with precision (Fig. 6A, D, 

G, Fig. 11A) and inversely correlated with recall (Fig. 6B, E, H, Fig. 11B) for all three behaviors. 

Interestingly, recall steadily decreased for all classifiers as the combined confidence scores 

dropped (Fig. 6B, E, H, Fig. 11B). For bouts that received scores of 3 or lower (Fig. 1B4-D4), re-

call fell to 31.5% for wing extensions, 73.7% for lunges, and 64.3% for headbutts. Moreover, the 

median JAABA score tended to be lower for bouts with lower combined human scores (Fig. 6C, 

F, I, Fig. 11C); this accounts for the lower recall for bouts that received lower confidence scores 

from human observers. These observations indicate that benchmarking values (such as recall) 

can be quantitatively influenced by the ground truth annotation of human observers. 

The apparent correlation between human confidence levels and JAABA scores is intri-

guing given that the JAABA classifiers were trained with binary labels (“true” or “false”) instead 

of graded weights. JAABA scores of true and false for the training frames were largely, if not 

completely, separated (Fig. 6C, F, I, Fig. 11C), suggesting that the behaviors included in the 

training frames were mostly unambiguous. Recall would have no correlation with the combined 

confidence score if human confidence levels were randomly assigned subjective values that had 

no relationship with either the other observer’s confidence levels or JAABA scores, which are 

objective “confidence” levels determined by the algorithm. Indeed, a permutation test confirmed 

that this correlation is highly unlikely to be generated by chance. When we randomized the hu-

man confidence scores to the bouts that JAABA detected in a size-matched manner, the proba-

bility of an uneven distribution of JAABA scores across human confidence scores was very 

small (p < 0.01 by Kruskal-Wallis test; Fig. 6J). The p-values from our experimental data were 

also many orders of magnitude smaller than the smallest p-values obtained with randomized 

samples (Fig. 6J). In addition, the 95% confidence intervals of the expected average recall for 

permutated datasets were lower than the observed values for bouts with high combined confi-

dence scores and higher for bouts with low scores (Fig. 6K). These results suggest that the con-

fidence level of the human observers can be predicted to a certain extent by the JAABA classifi-

ers.  

 We also noticed that false-positive bouts for all three behaviors had low JAABA confi-

dence values (Fig. 6C, F, I, Fig. 11C), indicating that most false positives barely passed the de-

tection threshold. To address whether these false positives stemmed from misclassification of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.16.153130doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.153130
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

certain types of motions, we manually inspected all the false-positive bouts (Tables 2-4). Inter-

estingly, we found that a noticeable number of “false positives” appeared similar to true behav-

iors. These actions likely escaped the observers’ attention. For the wing-extension classifier, 

22% of “false positive” bouts appeared to be actual wing extensions (Table 2). For the lunge 

classifier, 25% appeared to be actual lunges or lunge-like motions that were not completed, and 

another 20% were lunge-like striking actions during high-intensity tussling (Table 3). For the 

headbutt classifier, 7% appeared to be actual headbutts, and another 20% were ambiguous 

“jerking” motions which were difficult to clearly distinguish from headbutts (Table 4). Excluding 

such incidents, the common false positives for the wing-extension classifier involved wing mo-

tions, such as grooming (Table 2). For the lunge and headbutt classifiers, short, quick motions 

(such as when a fly received a lunge or headbutt, or when a fly fell from the wall) were often 

misclassified (Table 3, 4). 

These false positives can be at least partially explained by the types of feature-value de-

viations associated with a given behavior (Fig. 4). For instance, wing-extension frames anno-

tated by human observers had high z-scores for maximum wing angle and high variance for 

minimum wing angle. Annotated lunge and headbutt frames had high z-scores and low variance 

for velocity. Together, these observations suggest that the source of the false positives was not 

necessarily random “noise”. Although we made rigorous efforts to minimize common types of 

false positives during training, it proved difficult to eliminate them without sacrificing recall val-

ues (Fig. 6A, B, D, E, G, H).   

Overall, these quantitative analyses suggest that the perceived variability in Drosophila 

behaviors is not solely due to subjective human artefacts, but is at least partially attributable to 

variability in the motion of the flies themselves. Deviations from “stereotyped” actions can be 

represented by lower confidence both in human observers and in automated behavioral classifi-

ers. Inherent variability in animal behaviors that have historically been regarded as “stereotypi-

cal” is consistent with an emerging view that animal behaviors can be represented as a proba-

bility distribution in a continuous parameter space (6, 7, 25).  

 

Diversity of training samples affects the robustness of automated classifiers 

Whether supervised or unsupervised, automated animal-behavior classifiers are developed with 

training samples, which are usually chosen by humans. These samples likely cover only a por-

tion of the behavioral repertoire that a given animal species can exhibit. We next addressed how 

the choice of training movies affected the performance of our classifiers. 
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 A male fly performs wing extensions vigorously toward female flies, and to a lesser ex-

tent toward other males (see Fig. 1B1). The recall of the wing-extension classifier trained only on 

movies of male–female pairs (48,992 frames) was comparable to the recall of the fully trained 

classifier (Fig. 7C, red). However, the precision was only 64.5%, noticeably lower than that of 

the fully trained classifier (Fig. 7A, red). The lower precision was largely due to a high false-posi-

tive rate with male–male pair movies (Fig. 7B, red). Manual inspection revealed that a large 

number of false positives were fast flicking motions of wings that males often show when paired 

with another male. Addition of female–female (Fig. 7A, B, pink) and male–male (Fig. 7A, B, pur-

ple) training pairs steadily improved the precision. In contrast, the recall remained largely unal-

tered by the increase in the diversity of the training movies (Fig. 7C). (See also Fig. 11D-F for 

frame-based analyses.) 

Lunges are performed predominantly among males. When the lunge classifier was 

trained only on movies of pairs of male flies (7,921 frames in total), its precision was 76.3%, 

again lower than that of the fully trained classifier (Fig. 7D). False-positive bouts from this classi-

fier largely occurred in movies of male–female pairs, while the false-positive rates in movies of 

male–male pairs remained largely the same (Fig. 7E). Manual inspection revealed that the ma-

jority of false positives in male–female pair movies came from misclassification of copulation at-

tempts as lunges. The addition of male–female training pairs, which contained only negative 

training frames (1,927 frames, all labeled as “not lunge”), largely eliminated false positives in 

this condition (Fig 7D, purple), but also decreased the recall for bouts with relatively low com-

bined human scores (1-4) (Fig. 7F, purple). The addition of female–female training pairs (395 

frames) had little impact on precision (Fig. 7D, green), but the addition of both male–female and 

female–female training pairs improved the precision while limiting the decrease in recall (Fig. 

7D-F, brown). 

 Lastly, for the headbutt classifier, both precision (Fig. 7G) and recall (Fig. 7I) increased 

as training movies of male–female pairs and male–male pairs were added. Unlike the wing-ex-

tension and lunge classifiers, the largest source of false positives was female–female pairs for 

all versions of the headbutt classifier trained with an intermediate diversity of training movies 

(Fig. 7H). Nonetheless, the decrease in false positives when male–male and male–female train-

ing movies were added helped improve the precision (Fig. 7G, H). 

 In the experiments above, more frames were added to the training set as the variety of 

training frames increased, raising the possibility that it was the increased number of training 

frames that led to the improvements in classifier performance. To address this, we trained clas-

sifiers on fewer training frames, while maintaining the training-frame diversity. We did this by 
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randomly selecting training frames across all training movies, with the ratio of frames propor-

tional to those used with the fully trained classifier (we call this process “downsampling” of the 

training frames). We found that a downsampling rate of 5% for the lunge classifier (Fig. 8D, E), 

and 25% for the wing-extension (Fig. 8A, B, Fig. 11G, E) and headbutt (Fig. 8G, H) classifiers, 

was sufficient to achieve precision comparable to the fully trained counterparts. Male–female 

pairs accounted for 62.3% of the entire training frames for the fully trained wing-extension clas-

sifier, male–male pairs accounted for 69.7% of the entire training frames for the lunge classifier, 

and female–female pairs accounted for 51.7% of the entire training frames for the headbutt clas-

sifier. When we adjusted the downsampling rate to these values, the precision of all classifiers 

was, predictably, similar to the precision of the fully trained classifiers (Fig. 7A, D, G). Moreover, 

their 95% confidence intervals were well above those of classifiers trained on a single type of fly 

pair. The results from the downsampled training indicate that the low precision of classifiers 

trained on limited types of training movies is not simply due to the reduction in the number of 

training frames relative to the fully trained classifiers. 

For wing extension and lunges, classifiers trained on downsampled training frames and 

fully trained classifiers showed largely comparable recall (Fig. 7C, F, Fig. 11F). By contrast, the 

recall of the fully trained headbutt classifier was sometimes well above the 95% confidence in-

tervals for recall of the downsampled headbutt classifiers (Fig. 7I).  This could mean that the 

current fully trained headbutt classifier may be further improved by adding more training frames. 

It is also possible that the fully trained classifier might be over-fitted to the evaluation movies. 

 These results demonstrate that selecting a variety of training frames is critical for improv-

ing the robustness of the behavior classifiers, even if some of the movies do not contain the be-

havior of interest. Interestingly, classifiers trained solely with a specific type of movie appear 

comparable to the fully trained classifiers only when their performance was evaluated with the 

same type of movie (male–male pair movies for lunges, male–female pair movies for wing ex-

tensions, female–female pairs for headbutts). This suggests that a seemingly well-performing 

behavior classifier that is validated only for a specific combination of sexes may not perform well 

with other combinations. 

 

Robustness of classifiers when tracking information is incomplete 

In machine vision approaches that estimates an animal’s pose (13, 23, 26, 27), animal posture 

is subdivided into a combination of parameters (features) that describe the position of each 

body segment (such as head, limbs, etc.). As previously mentioned, JAABA creates a series of 

rules that use feature and feature derivatives as inputs for its machine-learning algorithm (9). 
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Importantly, these features and rules are defined by the creator of a program. We next exam-

ined whether a small number of features can contain sufficient information for JAABA-based be-

havior classifications, or whether a diversity of features and rules is collectively important for ro-

bust performance of a classifier. 

Differences in the z-score distributions and variance of particular features between anno-

tated and unannotated frames (Fig. 4) suggest that classifiers may utilize these information-rich 

features to distinguish behavior frames. Indeed, we found that each classifier used rules derived 

from each feature with different weights (Table 5). We re-trained classifiers after removing 1 or 3 

of the most highly weighted features, and compared their precision and recall with those of the 

fully trained classifiers. The precision of these classifiers was noticeably lower than the precision 

of the fully trained classifiers. In particular, the bout-based precision of the wing-extension clas-

sifier without its most weighted feature, maximum wing angle, was only 44%, and removal of the 

3 most-weighted features further decreased the precision to 22% (Fig. 9A, dark purple; see also 

Fig. 11J for frame-based statistics). The precision of the lunge and headbutt classifiers showed 

qualitatively similar, but less exaggerated, trends (Fig. 9D, G, dark purple). By contrast, removal 

of the 3 least-weighted rules from the training process did not noticeably affect either precision 

(Fig. 9A, D, G, light gray bars) or recall (Fig. 9C, F, I, broken gray lines). Interestingly, classifiers 

lacking the most-weighted features retained the tendency to detect bouts with higher human 

confidence scores better than bouts with lower human confidence scores (Fig. 9C, F, I). Overall, 

these observations suggest that key features have a large impact on the reliable detection of a 

behavior. 

We wondered whether these highly weighted features alone contain sufficient infor-

mation to create reliable behavior classifiers. To test this possibility, we used only the three 

most highly weighted features when training the classifiers. Wing-extension classifiers trained 

this way performed surprisingly well, showing precision and recall very similar to the fully trained 

classifier (Fig. 9A-C, light purple). By contrast, the lunge and headbutt classifiers that were 

trained this way had 24% and 19% lower precision, respectively, than the corresponding fully 

trained classifiers (Fig. 9D-I, light purple). Together, these results show that information relevant 

for behavior classification can be distributed across many features, even though some features 

contribute more than others to the performance of a classifier. This underscores the value of us-

ing a variety of features when developing a reliable classifier. 

JAABA rules further increase the diversity of information that can be useful for behavior 

classification. A list of the most-weighted rules for each classifier (Supplementary Table S2) in-

dicates that all three classifiers distribute weights to rules derived from a relatively large number 
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of features, suggesting that aggregates of diverse rules can collectively encode information rele-

vant for behavioral classification. Indeed, when we disabled usage of the 3, 5, or 10 most-

weighted rules for fully trained classifiers, both precision (Fig. 10A, B, D, E, G, H) and recall 

(Fig. 10C, F, I) degraded only marginally. Upon removal of these rules, other rules that derived 

from corresponding features often took over as the most-weighted rules (Supplementary Table 

S2), suggesting that rules derived from the same feature may contain redundant information for 

reliable behavioral classification. 

Under natural conditions, social behaviors are expressed largely toward other animals 

and, to a certain extent, are defined in relation to the other animals. This raises the possibility 

that the accurate classification of a social behavior may require information about the relative 

positions of the participating animals, such as the distance between the two individuals, the ori-

entation angle, and so on. We tested this possibility by training the classifier on the same set of 

training frames but without using the features that concern the relative position of the two flies 

(“relative features”). Among the 13 basic features, 9 features were defined solely by the autono-

mous properties of a single fly, whereas the remaining 4 were relative features (Fig. 4) (23). At 

least one relative feature was among the 3 most-weighted features for all three fully trained 

classifiers (Table 5). We found that both the precision and recall of the classifiers trained without 

relative features decreased modestly. The decrease in bout-based precision was 4.3% for the 

wing-extension classifier, 8.5% for the lunge classifier, and 7.5% for the headbutt classifier (Fig. 

9A, D, G, Fig. 11J, dark blue), and was due to an increase in false-positive rates across movie 

types (Fig. 9B, E, H, Fig. 11K, dark blue). Bout-based recall across all human score categories 

was −1.8% for the wing-extension classifier, and −2.7% for the lunge and headbutt classifiers 

(Fig. 9C, F, I, dark blue). These results indicate that classifier accuracy can benefit from infor-

mation about the relative position of the flies.  

 

DISCUSSION 

Measurement of animal behavior is integral to behavioral neuroscience. With technological ad-

vances in recording and movement tracking, many types of automated approaches have been 

applied to quantify animal behaviors (reviewed in 6, 7, 28). However, even automated ap-

proaches involve human choices and judgments, from the design of the algorithm to the choice 

of training and benchmarking samples. Relatively few systematic efforts have been made to 

quantitatively evaluate the impact of human factors at each step, or to reconcile automated re-

sults with results obtained from traditional human observation. Here, we systematically com-

pared the annotation of Drosophila social behaviors by a group of human observers and by 
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JAABA-based automated classifiers under a variety of perturbations. Our results lead to three 

important conclusions. First, the variability of human annotations is correlated with the “confi-

dence” levels of automated classifiers, suggesting that the animal behaviors themselves are the 

source of at least part of the variability. Second, the use of diverse training samples is crucial to 

ensure robust performance of automated classifiers. Lastly, information about the relative posi-

tion of experimental animals can improve the accuracy of automated classifiers.  

 Some classification tasks can assume an unambiguous ground truth. For instance, the 

goal of a human face-recognition task is binary: does a given face belong to the target person or 

not? Behavioral classification can involve more nuanced situations because a degree of variabil-

ity may exist even in what is traditionally regarded as “stereotypical behavior” (7). Animals can 

abort ongoing behavior before completion (29), or can show variability in the execution of a 

learning-dependent motor program during (30, 31) or even after (32) training. We found that hu-

man observers gave different levels of confidence in their classification of Drosophila social be-

haviors. It is possible to argue that such inter-observer variability would disappear with perfectly 

trained observers. However, inconsistencies among human observers have been repeatedly 

noted across the behavior classification of multiple species (8-12). In the absence of a clear def-

inition of a “perfectly trained observer”, these variable human classifications need to be ac-

cepted as the “ground truth” when evaluating the performance of automated classifiers (4). It is 

therefore practically important to assess how the results of automated behavior classification 

should be benchmarked against a variable “ground truth”. We found that the level of human 

confidence and JAABA confidence values correlated when behavioral bouts were aggregated. 

Although we tried to avoid using frames with perceived ambiguous behaviors for both positive 

and negative training), it is possible that some mislabeling of training frames could have caused 

ambiguous classification (9). However, because of the diversity of training frames used in this 

study, we favor an alternative possibility: that the behaviors performed by pairs of flies contain 

inherent variability. This conclusion implies that it may not be possible to define the ground truth 

in a binary fashion. If a behavior – even one originally defined by human observers – is distrib-

uted across confidence-level space, the boundaries defining the behavior are ultimately decided 

by human judgment, much like a critical p-value in statistics. Additionally, our observations rein-

force the idea that “subjective” human confidence levels can reflect statistically defined discrimi-

nability (33), and argue against the notion that variability in human judgments is simply ran-

domly generated noise. We may be forced to reckon with the inherent variability of animal be-

haviors as technology to monitor animal movements continues to improve.  
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 At the same time, it is noteworthy that “high-confidence” behavioral bouts are indeed 

clearly identified by both humans and automated classifiers, which underscores the reported 

stereotypy of some animal behaviors (15, 18). As an operational variable, nomenclature for ste-

reotypical behaviors remains useful for characterizing the nature of behavior and, importantly, 

necessary to bridge human observations from previous studies with data obtained through auto-

mated systems. This is particularly relevant for unsupervised behavioral classification, because 

the resulting clusters of “behaviors” are named by a human observer (34, 35), sometimes with-

out clear descriptions of the nature of the variability within the given cluster. For specific pur-

poses, eliminating low-confidence behavioral bouts from analyses may be justified (9, 36). How-

ever, these bouts may not be equivalent to non-behavior frames. Instead, they may have biolog-

ical consequences in the context of social interactions. One possible solution is to weigh behav-

ioral bouts according to the confidence value each bout receives. A scoring approach has been 

taken for the quantitative evaluation of other biological phenomena, such as dye-based feeding 

amount (37, 38) or aberrations of neuronal morphologies (39, 40). 

 Diverse training images are important for developing a robust automated classifier be-

cause machine-learning algorithms generally assume that the parameter space is the same for 

the training samples and the testing samples (9, 28). However, how automated classifiers per-

form on types of movies that are not a part of the training images has not previously been quan-

titatively analyzed. As expected, we found that classifiers trained with movies that contained 

only one combination of the sexes had lower precision than the fully trained classifier. Interest-

ingly, the precision and recall of these partially trained classifiers were comparable to the values 

of the fully trained classifiers when the training and evaluation movies were of the same type. 

For instance, the wing-extension classifier trained only on male–female pair movies performed 

as well as the fully trained wing extension classifier when evaluating male–female pair movies 

only. While these results are not surprising in light of the nature of machine-learning algorithms, 

they illuminate a source of misinterpretation that may go unnoticed. An experimenter may be 

satisfied with the performance of an automated classifier on the basis of limited evaluation ex-

amples and overlook the errors that the classifier may commit for types of movies that the ex-

perimenter did not include in either the training or evaluation processes. This situation is analo-

gous to gender- and race-dependent classification bias by a face-recognition algorithm that was 

not trained on a diverse dataset of faces. The bias became apparent only after diverse faces 

were used for benchmarking (14). 

The degree of image diversity needed for optimal performance of a given automated 

classifier inherently depends on the type of movies used for the experiment. Since we do not 
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know a priori the parameter space of fly behavior under different genetic and environmental ma-

nipulations, one possible interim solution is to fully disclose the nature of the training and evalu-

ation images so that a new user can be aware of possible limitations for generalization. In the 

long run, a common depository of behavioral movies taken from a variety of genotypes under 

diverse conditions, much like a large dataset for annotating objects (41) and human motions 

(42), may help in the development of a universally applicable behavioral classifier. 

 Accurate tracking of animals is essential for successful automated classification (28). 

The tracking program we used in this study segments fly body parts in two-dimensional images 

(23). This means that the tracking becomes inaccurate when the fly changes body orientation 

along the z-axis. In fact, a certain portion of false positives in all three classifiers were detected 

when a fly was on the wall, which violates the tracking program’s assumptions about the ap-

pearance of the body. One solution is to force an animal to pose in largely expected ways in a 

spatially restrictive arena (25, 26, 43), but it is possible that such environmental constraints can 

put artificial limitations on animal behaviors. Deploying multiple cameras with different angles 

(44), or a depth-sensitive camera (45, 46), enables the three-dimensional posture of animals to 

be visualized and provides more comprehensive information about animal posture. Each of our 

classifiers used different features with different weights (for instance, the wing-extension classi-

fier relied on the maximum wing angle, for an obvious reason), suggesting that certain features 

are critical for accurate detection of behaviors (28). At the same time, our finding that even fea-

tures and rules with relatively low weights contribute to improving the performance of classifiers 

is noteworthy. One interesting question is how multiple pose-estimation packages (13, 27) will 

perform for automated behavior classification and how animal behavioral classification systems 

built on pose estimation compare against pixel-based behavioral classifications that do not as-

sume specific animal postures (25, 46).  

Interestingly, we also found that the automated classifiers for social behaviors give con-

siderable weight to information related to the relative positions of the animals involved. Elimina-

tion of these relative features modestly but noticeably deteriorates the performance of classifi-

ers, suggesting that these features are valuable for accurate behavior classification. Consistent 

with our observation, a recent report shows that relative features distribute distinctively between 

different behaviors and states during male courtship behavior to females (47). For a machine-

vision system that tracks animals, calculation of relative features can become computationally 

expensive as the number of tracked animals increases. As interest in detecting and quantifying 

social behavior grows, it may become necessary to identify a set of relative features that (1) has 

high discriminability (47) and (2) a low computational burden (28). 
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Beyond standardizing behavioral quantification in a reproducible manner, automated be-

havioral classification methods have the potential to reveal motion patterns and behavioral dy-

namics that may escape human attention. It is important to note that it is ultimately human intui-

tion and judgment that allows interpretation of results from often multidimensional automated 

classification. Just like carefully curated expert annotations of select genomic regions greatly fa-

cilitated automated annotation of the entire genome, detailed annotations of example animal 

movies through synthesis of multiple experts’ observations will be foundational to ensuring that 

automated behavioral classification is as informative and objective as possible. 
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MATERIALS AND METHODS 

Experimental Animals 

The complete genotypes of Drosophila are listed in Table 1 and Supplementary Table S1. Tk-

GAL41 (48), P1a split GAL4 (49) (R15A01-p65AD:Zp (in attP40) (RRID:BDSC_68837); R71G01-

Zp:GAL4DBD (in attP2) (RRID:BDSC_69507)), Otd-nls:FLP (48), UAS-dTRPA1 (50), and 

20XUAS-FRT-dSTOP-FRT-CsChrimson:mVenus (in attP2) (51) are gifts from David Anderson 

(California Institute of Technology). 20XUAS-CsChrimson:tdTomato (in VK00022), 20XUAS-

FRT-myr:TopHAT2-FRT-CsChrimson:tdTomato (in VK00022 or in attP2) were created by Barret 

Pfeiffer in the lab of Gerald Rubin (HHMI Janelia Research Campus) and kindly shared by Da-

vid Anderson. NP2631 (52) is a gift from Daisuke Yamamoto (Tohoku University). fruM, 

(RRID:BDSC_66874) and fruF (RRID:BDSC_66873) (53) are gifts from Barry Dickson (HHMI 

Janelia Research Campus). dsxFLP (54) is a gift from Stephen Goodwin (University of Oxford). 

TRH-GAL4 (RRID:BDSC_ 38389) is a gift from Matthew Kayser (University of Pennsylvania). 

NPF-GAL4 (RRID:BDSC_25682), TRH-GAL4 (RRID:BDSC_38388), 20XUAS-

CsChrimson:mVenus (in attP40) (RRID:BDSC_55135), and fru4-40 (RRID:BDSC_66692) were 

obtained from Bloomington Drosophila Resource Center in the University of Indiana. 

 All flies were collected as virgins and were maintained at 25°C, 60% relative humidity. 

Virgin males and females were reared in a vial with standard Drosophila cornmeal media for 6 

days, except flies that carry dsxFLP (see Supplementary Data File for details), which were reared 

for 14 days. For optogenetic experiments, the tester flies were reared on food containing 0.2 

mM all-trans retinal (MilliporeSigma, Cat#R2500, 20 mM stock solution prepared in 95% etha-

nol), and vials were covered with aluminum foil to shield light. Mated wild-type (Canton-S) fe-

males were prepared by allowing wild-type males to mate with 4-day old virgin females for 2 

days. Flies were transferred to vials containing fresh food media every 3 days until the day of 

the experiment. 

 

Behavioral Assays 

Behavioral assays were conducted as described elsewhere (21), although the stimulation para-

digms differed between movies. Thermogenetic neuronal manipulations were conducted as de-

scribed in (48). Briefly, vials that contain testing flies were incubated in a water bath at 28°C for 

20 minutes, and were transferred to a behavioral arena. Recording was started 5 minutes after 

the transfer to allow flies to acclimate. All movies were recorded in .AVI format at 60fps. 

 As explained in more detail in the following section, recorded fly pairs were separated 

into “training” pairs and “evaluation” pairs. Training pairs were used for developing JAABA-
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based behavior-specific classifiers, while evaluation pairs were used for both behavior annota-

tions by human observers and for the evaluation of JAABA classifier performances in compari-

son to human annotations. A fly pair used for one purpose was never used for another. The 

separation of training and evaluation pairs is necessary to prevent “over-fitting” of the learning 

algorithm. 

See Supplementary Table S1 for details of experimental conditions for each movie. 

 

Tracking of Flies 

Acquired movies were first processed by the FlyTracker package version 1.0.5 (23) 

(http://www.vision.caltech.edu/Tools/FlyTracker/), which runs on MATLAB (The Mathworks, 

Inc.). The regions of interest were manually defined as circles or rectangles that correspond to 

the chamber of each arena. Foreground and body thresholds were adjusted for each movie for 

optimal segmentation of body and wing across at least 30 random frames. Note that segmenta-

tion is prone to error when two flies are in proximity or overlapping, or a fly is climbing a wall. 

Some of these cases were discussed in Result section. All tracking parameters can be found in 

the ‘calibration.mat’ file associated with each movie. 

The identities of flies were confirmed for the following cases: 1) a male-female pair, in 

which case the sex was identified by the body size and morphology of the posterior end of the 

abdomen, (2) a male-male pair in which a wing of one of the flies was clipped for identification. 

The switching of two flies (‘identity swap’) was manually corrected using the ‘Identity correction’ 

function of the “visualizer” program in the FlyTracker package. 

 

Human Behavioral Annotations 

Each observer annotated wing extensions, lunges, and headbutts using the “Behavior annota-

tion” function of the “visualizer” program. An observer first determined start and end frames for a 

given behavioral bout. Then, an observer used the “Certainty” section to specify how confident 

the annotation for each bout was with three levels: ‘maybe’ (1), ‘probably’ (2), and ‘definitely’ (3). 

This annotation process created a behavior-specific data structure in which a human confidence 

score of 0 (no label), 1, 2, or 3 is given to each frame for each fly of every evaluation pair. A sin-

gle confidence score is assigned to a bout. In rare cases in which the fly of interest performed a 

behavior continuously with a changing degree of perceived certainty, an observer split the given 

bout into multiple “bouts”, and gave different values of confidence to each bout. While all ob-

servers used all three confidence levels for all three annotated behaviors, the relative frequency 
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of use of these confidence levels was discretionary to each observer. Prior to annotating, ob-

servers watched select frames of training pair movies together to form a general consensus on 

target behaviors. Each observer completed annotation independent of each other. 

A movie of an evaluation pair was annotated by two observers. To create combined hu-

man annotated bouts, Bout-based combined human annotation was created by merging over-

lapping annotations via the union operation. For any given bout, start or end frames annotated 

by the two observers may be shifted, due to subjective judgement regarding which frame the 

start or end of the behavior is called. For wing extensions, we sometimes found cases in which 

two annotators segmented bouts differently, and a bout defined by one observer was divided 

into 2 or more bouts by another observer. These cases were considered as separate bouts, 

even though the union operation creates one combined human annotation in such cases. We 

declared that a bout is annotated by two observers if the bouts from the two observers over-

lapped for one frame (17 ms) or more. For a bout that was annotated by one observer, start and 

end frames recorded by the observer become the combined human annotation. 

The confidence scores given by the two observers to a bout were summed to produce 

the human combined score for this bout (resulting in a 1-to-6 confidence scale). When more 

than one bout annotated by the first observer corresponded to one bout annotated by the sec-

ond observer, we recorded the human combined score for each of the separate bouts. As is de-

tailed below, the highest confidence score among the multiple bouts was used as a representa-

tive score of the first observer when a single human combined score is needed for this type of 

situation. 

Frame-based combined human annotation was created by calculating the sum of confi-

dence scores by the two observers for every frame. 

 

Training of Automated Classifiers 

Frame-by-frame classifiers for wing extensions, lunges, and headbutts were created using the 

machine learning algorithm JAABA (9). As stated above, we only used training pairs for classi-

fier development. For each movie, a JAABA folder was created after the identity correction was 

complete. An .xml file that allows the FlyTracker output to be read in the JAABA platform (‘fea-

tureConfigEyrun.xml’) is available in Supplementary Data File. 

 Details of all training frames for or against each behavior for all training pair movies are 

available in Supplementary Data File. These frames were accumulated through iterative im-

provements of classifiers. First, a few dozen bouts of clear behaviors and a similar number of 

obvious non-behavior frames were labeled as the true behavior and “none”, respectively. After 
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initial training, training pairs were classified, and obvious sources of false positives were marked 

as “none”, while a behavior of interest which did not receive high confidence values by the in-

terim classifier was labeled as a “true” behavior. These processes were repeated until we did 

not observe noticeable improvements of performance, at which point the classifier was consid-

ered fully trained. This definition is operational for this study, and it is not meant that the “fully 

trained” classifier was expected to perform under any experimental conditions or for any geno-

types. 

Classifiers trained by a subset of training pairs were generated by first removing training 

frame labels from the fully trained classifier for the given behavior. The classifier was then re-

trained anew using only the frames from the specific type of training pairs. Classifiers trained 

without specific features or rules were generated from the fully trained classifiers in the following 

steps, except for classifiers trained without relative features. First, features or rules were re-

moved by unchecking the target features or rules in the “Select Features” function in JAABA. 

The classifier was then re-trained using the same training frames and settings, and saved as a 

new classifier. 

A classifier that did not use relative features was created in the following steps. First, a 

new JAABA project, in which relative features were removed a priori using the “Choose per-

frame features” function at the opening window, was created. Movies that contain all training 

pairs along with all training labels were then imported from the corresponding fully trained clas-

sifier using the “Import Exp and Labels from Jab” function. The classifier was then re-trained, 

and saved as a new classifier. 

 For downsampling of the training frames, the number of training frames for each fly, for 

each label (‘behavior’ or ‘non-behavior’), was reduced according to the downsampling ratio by 

randomly choosing the training frames. The precise downsampling rate slightly deviates from 

the labeled rate in figure panels, as downsampling seldom generates integer frame numbers, 

and at least one frame was chosen from each fly for each label regardless of the downsampling 

rate. Ten independent downsampling and training iterations were applied for each downsam-

pling rate to calculate the average and 95% confidence intervals of precision, false positive 

rates, and recall. See Supplementary Table S3 for details of classifiers with downsampled train-

ing frames. 

 

Comparison of human annotation and JAABA classification 

JAABA classifies a behavior by returning a confidence score for each frame. For bout-based 

evaluation, we first defined a JAABA bout as a series of continuous frames that has a JAABA 
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confidence score higher than the threshold value. Since this is a frame-by-frame classification, 

fragmentation of a seemingly single behavioral bout can happen when a bout is relatively short 

(often the case for lunges or headbutts; see Fig. 2A, B), or at the edge of a JAABA-defined bout. 

As was discussed in the main text along with Fig. 4, we applied a maximum gap filling filter and 

minimum bout length filter to smooth the fragmented JAABA bouts. We first converted the non-

JAABA bout frames (with a JAABA score below the threshold) that are sandwiched by frames 

with a JAABA score higher than the threshold to JAABA bout frames, while keeping the JAABA 

score intact. Then, we searched for bouts that had a duration of or above the minimum bout 

length of choice. After this smoothing process, we recorded the start and end frames of each of 

the corrected JAABA bouts. The average JAABA score for a given JAABA bout was calculated 

as (sum of frame-by-frame JAABA score within the JAABA bout)/(total number of JAABA bout 

frames).  

To compare human annotation and JAABA classification on a per-bout-basis, we 

matched JAABA bouts to combined human annotated bouts using the following procedure. A 

combined human annotated bout was declared “matched” if a JAABA bout overlapped with the 

combined human annotated bout for one or more frames (over 17ms). Such a human annotated 

bout is called a true positive bout. In reality, human annotated bouts and JAABA bouts do not 

always match one-to-one. For bout-based evaluation, a human annotated bout was used as a 

reference. Specifically, when one human annotated bout overlapped with multiple JAABA bouts, 

the JAABA bouts were collectively counted as 1 matched bout. When more than one human an-

notated bout overlapped with a single JAABA bout, the number of human annotated bouts was 

the number of matched bouts.  To put it the other way, a true positive bout is a category based 

upon a combined human annotated bout, and not on a JAABA bout. 

A false negative bout was defined as a human annotated bout that did not match to any 

JAABA bout. A false positive bout was defined as a JAABA bout that did not match to any com-

bined human annotation. For a false negative bout, we created a virtual JAABA bout, with length 

equal to the length of the human annotation intersection. The average JAABA score for these 

false negative bouts were calculated for the duration of this virtual JAABA bout. For a false posi-

tive bout, we created a virtual “human annotated” bout with its human combined score of 0. The 

average JAABA score for combined human annotated bouts was first calculated using all 

frames in matching JAABA bouts, which was then associated to a corresponding combined hu-

man annotated bout. We chose to do this because (1) it is difficult to split a combined human 

annotation when an annotation by one observer overlapped with multiple annotations by an-

other observer, and (2) this operation is consistent with our calculation of the average JAABA 
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score for false positive bouts. In the case (1), we used the highest combined human score as 

the representative value for the bout. This means that the total number of bouts present in these 

figure panels are slightly less than the total number of the combined human annotated bouts 

used elsewhere (such as for calculation of precision and recall). When a single combined hu-

man annotated bout was matched by multiple JAABA bouts, the average JAABA score was cal-

culated as an average of all the matched JAABA bouts. When multiple combined human anno-

tated bouts were matched by a single JAABA bout, the single average JAABA score was as-

signed to each of the matched combined human annotated bouts.  

A precision rate represents the ratio of true positive bouts among all positive bouts (true 

or false), and was calculated as follows: 

 

(number of true positive bouts)/[(number of true positive bouts) + (number of false posi-

tive bouts)] 

A recall rate represents the ratio of true positive bouts among the total human annotated 

bouts, and was calculated as follows: 

(number of true positive bouts)/[(number of true positive bouts) + (number of false nega-

tive bouts)] 

 

For frame-based comparison, each frame is declared “matched” if the frame has simulta-

neously 1) a JAABA score that is above threshold, and 2) a combined human score of 1 or 

higher. A frame that has a combined human score of 1 or higher, but a JAABA score below 

threshold is declared false negative, and a frame that has an above-threshold JAABA score but 

no human annotation is declared a false positive. Precision and recall rates were calculated in 

the same manner as for bout-based comparison. 

 

Generation of shuffled dataset 

To address whether the perceived correlation between human combined scores and the aver-

age JAABA scores could be observed by chance, we created a series of shuffled data sets from 

our experimental data set by randomizing a confidence score between 1 and 6 for each human 

annotated bout, at the same time preserving the percentage of each score category as in the 

original data. The false positive bouts were kept as false positives. We created 50 such shuffled 

data sets to evaluate the parameter distributions for statistical analyses. 

 

Statistical analysis 
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The details of results of all statistical tests are shown in Supplementary Data File. Kruskal-Wallis 

one-way ANOVA test was used to address whether distributions of average JAABA scores for 

human annotated bouts are correlated with combined human scores. When the p-value was be-

low the critical value of 0.01, the pairwise Mann-Whitney U-test was used to ask whether the 

median of average JAABA scores for bouts with neighboring combined human scores was sig-

nificantly different. For this test, we combined both true positive bouts and false negative bouts 

that had the given combined human scores. Since a total of 5 tests were performed for each be-

havior, the critical p-value was adjusted with Bonferroni correction to 0.05/5 = 0.01. 

For comparison of shuffled data sets and the experimental data set, the null hypothesis 

was that there was no correlation between human combined scores and the average JAABA 

score for a given human annotated bout. If the null hypothesis was correct, we would expect 

that 1) the observed distribution of average JAABA scores for human annotated bouts would be 

within a variation reasonably expected by the randomized data set, and 2) the observed recall 

rate for each human combined score would fall within the range of fluctuations reasonably ex-

pected from the randomized data sets. To test the first possibility, we performed the Kruskal-

Wallis test for each of 50 shuffled data sets. To test the second possibility, we calculated “recall” 

rates for bouts that belong to each combined human score in each shuffled data set. We then 

calculated the 95% confidence intervals of the “recall” rates for shuffled data sets, for each com-

bined human score, and asked whether the observed recall rate was within the interval. 

In Fig. 6C, 2F, 2I, and Fig. 11C, a violin plot (created by Bastian Bechtold; 

https://github.com/bastibe/Violinplot-Matlab) was used to represent relative abundance of the 

number of JAABA bouts or frames that have each of the 7 human combined scores (including 

false positives, which has a score of 0). For a combined human annotation that had multiple 

overlaps, the highest human combined score among those separate bouts was taken as the 

representative human combined score. Violins were created separately for true positives and 

false negatives. The width of a violins represents the kernel density estimate of the JAABA 

score statistics for all bouts or frames within the violin. Subsequently, the width of violins for a 

given behavior was scaled by the ratio relative to the category with the largest number of bouts 

or frames. Violins for training bouts or frames were created separately, and their width were ad-

justed according to the relative abundance between positive and negative training bouts or 

frames.  

 Ninety-five percent confidence intervals for shuffled datasets (Fig. 6J, K) and classifiers 

with downsampled training frames (Fig. 7, 8, 11D-I) were calculated using t distribution as fol-

lows: 
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 m ± t 0.025(n-1) × s/√n 

 

Where n is the sample number (10 in this case), m is the sample mean, s is the standard error, 

and t 0.025(n-1) is the upper 0.05/2 = 0.025 critical value for the t-distribution with n-1 degrees of 

freedom (9 in this case). 
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Figure 1: Variability of human annotation of Drosophila social behaviors. 

A. Schematic of workflow and evaluations performed in this study. Movies of a pair of Drosoph-
ila adults were annotated both by human observers and by machine-learning-based automated 
classifiers. Inter-observer variability was quantified (B-D) and the performance of human and 
machine annotations were subsequently compared (Fig. 6). The effects of the diversity of train-
ing movies (Fig. 7) and features (Fig. 9) were also quantified. B-D. Summary of human annota-
tions for wing-extension (B), lunge (C), and headbutt (D) behaviors. The total number of anno-
tated behavioral bouts and frequency are categorized according to interaction type in B1-D1. The 
distributions of human score combinations are shown in 4-by-4 grids with pseudocolor  repre-
senting relative abundance (scale bars on the right of each grid) (B2-D2), and are also broken 
down according to whether bouts were counted by one or two observers (B3-D3) and by com-
bined score (B4-D4). 
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Figure 2. Bout duration distributions for each behavior. 

A-D. Histograms of bout duration for lunge (A), headbutt (B), and wing extension (C, D). Green 

is the distribution of human annotated bouts, and gray is the distribution of JAABA bouts. For 

lunges and headbutts, bout duration was binned for every 17 ms (duration of one frame). For C, 

bins are indicated below the plot. D is the magnified histogram for durations between 0 and 250 

ms. Red shades show the durations that are eliminated by the minimum bout length filter (see 

text and Fig. 5). E. Distribution of wing extension bout durations according to human combined 

score. Bins are color-coded as shown on the right.  
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Figure 3. Frame-based statistics of human-annotated wing extensions. 

Frame-based summary of human annotations for wing extension (A1), categorized according to 

interaction types. Distribution of human score combinations are shown in 4-by-4 grid with pseu-

docolor (A2) that represent relative abundance (scale bars on the right of the grid), and the 

breakdown according to whether frames were counted by one or two observers (A3) and com-

bined scores (A4) are also shown. Source data is identical to that used in Fig. 1B.  
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Figure 4. Frame-based z-score distributions and their variances according to behavior 

labels. 

Distribution of frame-based feature z-scores (A1, B1, C1) and variances (A2, B2, C2) according to 

human annotations for wing extension (A), lunge (B), and headbutt (C). Z-score distributions are 

plotted in boxplot, where a thick bar represents median, a box represents 25 and 75 percentiles, 

and whiskers represents 0.5 and 99.5 percentiles. Features calculated from relative positions of 

the 2 flies (relative features) are shown in brown.  
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Figure 5. Choice of filter parameters for JAABA bout smoothing. 

Recall-precision plot of fully trained classifiers for wing extension (A), lunge (B), and headbutt 

(C) when average JAABA score threshold, minimum bout length, and maximum gap to be filled 

are varied as indicated below each plot. Green (arrows and rectangles) indicates the parameter 

combinations chosen for fully annotated classifiers. Dotted lines are inverse proportion functions 

that pass the points indicated by green arrows. These combinations have the near-maximum 

recall X precision values for each behavior.  
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Figure 6. Human confidence and JAABA confidence are correlated. 

A-I. Precision (A, D, G) and recall (B, E, H) of fully trained classifiers for wing extensions (A, B), 
lunges (D, E), and headbutts (G, H) are shown for varied JAABA score thresholds, as indicated 
at the top of the figure. For recall, detected bouts were binned according to human combined 
scores of 1 to 6. In C (wing extensions), F (lunges), and I (headbutts), the distributions of aver-
age JAABA scores for true-positive (green), false-negative (pink), and false-positive (gray) bouts 
are shown as both violin plots (see Materials and Methods for definitions) and box plots. As ref-
erences, distributions of positive (light green) and negative (crimson) training bouts are shown 
at right, and the median values for positive and negative training bouts are shown by even and 
uneven broken lines, respectively. n.s. p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001 by Kruskal-
Wallis one-way ANOVA and post-hoc Mann-Whitney U-test. J. Kruskal-Wallis p-value distribu-
tions of shuffled (open circles) and observed (filled circles) data sets across human combined 
scores. K. Recall rates across human combined scores for shuffled and observed data sets at a 
JAABA score threshold = 0.1 (observed data sets are replotted from B, E, and H). Average and 
95% confidence intervals for shuffled data are shown in light colors.  
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Figure 7. Classifier performance improves as diversity of training frames increases. 

Precision (A, D, G), false-positive rates (B, E, H), and recall (C, F, I) of classifiers for wing ex-
tensions (A-C), lunges (D-F), and headbutts (G-I) are plotted according to the types of training 
movies used (indicated by the circles below A, D, G). False positive rates are shown separately 
for the evaluating movie types indicated on the right. “All other” movies include fruitless mutants 
as indicated in Table S1. Gray bars with broken outlines (A, B, D, E, G, H) and broken lines (C, 
F, I) represent the mean and 95% confidence intervals of the classifiers trained with frames 
downsampled proportional to the ratio of the training frames from a single type of movie (left-
most bars on A, D, G) to the entire number of training frames. Note that the 95% confidence in-
tervals are generally very small. Also, recall for wing-extension and lunge classifiers with 
downsampled training frames are very similar to those for fully trained classifiers. Precision and 
recall for classifiers trained by “all movies” (shown in gray) are replotted from Figure 6. 
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Figure 8. Performance of classifiers with downsampled training frames. 

Mean and 95% confidence intervals (vertical lines) of precision (A, D, G), false positive rates (B, 

E, H) and recall (C, F, I) of classifiers for wing extension (A-C), lunges (D-F), and headbutt (G-I) 

trained with downsampled frames (indicated below precision plots and inside recall plots). False 

positive rates are shown separately for types of movies classified as indicated on the right. Val-

ues for classifiers trained at 100% downsampling rate (all frames used, shown in gray) are 

replots from Fig. 6.  
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Figure 9. Performance of classifiers change when some rules or features are removed. 

Precision (A, D, G), false-positive rates (B, E, H), and recall (C, F, I) of classifiers for wing ex-
tensions (A-C), lunges (D-F), and headbutts (G-I) are plotted according to the features not avail-
able for training on JAABA (shown below A, D, G). False-positive rates are shown separately for 
the evaluating movie types indicated on the right. Precision and recall for classifiers trained with 
all features (shown in gray) are replotted from Fig. 6. 
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Figure 10. Classifier performs robustly when most weighted rules are removed. 

Precision (A, D, G), false positive rates (B, E, H) and recall (C, F, I) of classifiers for wing exten-

sion (A-C), lunges (D-F), and headbutt (G-I) trained without the most weighted JAABA rules (in-

dicated below precision plots). False positive rates are shown separately for classifying movie 

types as indicated on the right. Values for classifiers trained with all rules (shown in gray) are 

replots from Fig. 6.  
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Figure 11. Frame-based analyses of wing extensions classifiers. 

A-C. Frame-based plots for precision (A), recall (B), and average JAABA score distribution for 

each human combined score (C) of the results from the fully trained wing extension classifier 

(corresponding to Fig. 6A-C). D-F Frame-based plots for precision (D), false positive rates (E), 

and recall (F) of the results from the wing extension classifiers trained with the specific types of 

training movies (shown below precision plots) (corresponding to Fig. 7A-C). G-I. Frame-based 

plots for mean and 95% confidence intervals (vertical lines) of precision (G), false positive rates 

(H) and recall (I) of classifiers trained with downsampled frames (rates indicated below precision 

plots and inside recall plots). False positive rates are shown separately for classifying movie 

types as indicated on the right. Frame-based plots for precision (J), false positive rates (K), and 

recall (L) of the results from the wing extension classifiers trained with subsets of features (as 

indicated below precision plots). (corresponding to Fig. 9A-C). For D-L, dark gray plots repre-

sent the value of the fully trained classifier (bars in D, G, J are replots of A, and lines in F, I, L 

are replots of B, respectively, at JAABA score threshold of 0.1). 
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Table 1: Complete descriptions of the movies annotated by human observers. 

• Well # was counted from left to right, top to bottom. 

• A fly that carries 2 X chromosomes and fruM/fru4-40 alleles at the fru locus is called “fruM female”. 
A fly that carries 1 X chromosome and 1 Y chromosome, and fruF/fru4-40 alleles at the fru locus, is 
called “fruF male”. These nomenclatures are adapted from (21, 22). 

 
Movie names Length Well # used 

for training 
Genotypes of flies Genotypes of 

target flies 
(wing 
clipped), if dif-
ferent 

Sex 
combi-
nation 

033015_NPF3-
CsChrimson-
attP40MG-2.avi 

8 min. 30 
sec. 

1, 2, 12 w/Y; 20XUAS-
CsChrimson:mVenus in 
attP40/+; NPF-GAL4/+ 

 ♂ vs. ♂ 

041815_1_m_g_Otd-
FLPoChrimsonmvenu-
sattP2_f2a20.avi 

8 min. 30 
sec. 

4, 9 w, Tk-GAL41/Y; Otd-nls:FLPo 
in attP40/+; 
20XUAS>stop>CsChrimson:m
Venus in attP2/+ 

 ♂ vs. ♂ 

042015_12_m_g_Otd-
FLPo Chrimsonmvenu-
sattP2_f10a10.avi 

8 min. 30 
sec. 

3, 10, 11 w, Tk-GAL41/Y; Otd-nls:FLPo 
in attP40/+; 
20XUAS>stop>CsChrimson:m
Venus in attP2/+ 

 ♂ vs. ♂ 

042415_4_m_g_Otd-
FLPoChrimson TdTo-
mattP2_CsHeis_F2a2
0.avi 

8 min. 30 
sec. 

1, 4, 9 w, Tk-GAL41/Y; Otd-nls:FLPo 
in attP40/+; 
20XUAS>myr:TopHAT2>CsCh
rimson:tdTomato in attP2/+ 

Wild-type 
(Canton-S) ♂ 

♂ vs. ♂ 

042815_assay1.avi 30 min. 6, 7, 9, 12 Wild-type (Canton-S) ♂  ♂ vs. ♂ 

042815_assay4.avi 30 min. 1, 5, 7 Wild-type (Canton-S) ♂ Wild-type 
(Canton-S) ♀ 

♂ vs. ♀ 

050815_assay9.avi 30 min. 9, 11 Wild-type (Canton-S) ♀ Wild-type 
(Canton-S) ♀ 

♀ vs. ♀ 

082615_CSMH_SF.avi 30 min. 1, 3, 5, 7 Wild-type (Canton-S) ♀ Wild-type 
(Canton-S) ♀ 

♀ vs. ♀ 

100815_4.avi 10 min. 1, 4, 10, 12 w, Tk-GAL41/w; Otd-nls:FLPo 
in attP40/+; 
20XUAS>myr:TopHAT2>CsCh
rimson:tdTomato in attP2, fru4-

40/fruM 

+/Y; +; 
fruF/fru4-40 

Other 
(fruM ♀ 

vs fruF 
♂) 

2016_02_15_CsMH_M
_SH2.avi 

5 min. 1 Wild-type (Canton-S) ♂ Wild-type 
(Canton-S) ♂ 

♂ vs. ♂ 

2016_02_15_CsMH_M
_SH3.avi 

5 min. 2 Wild-type (Canton-S) ♂ Wild-type 
(Canton-S) ♂ 

♂ vs. ♂ 
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Table 2: Annotations of false positives by the wing extension classifier: 

• Green categories indicate motions that are similar to actual behaviors. 
 

Types of motions False positive counts 

♂ vs. ♂ ♂ vs. ♀ ♀ vs. ♀ Other (fruM 
♀ vs fruF ♂) 

Total (%) 

Actual wing extensions 5 0 0 6 11 (22.4) 

Wing glooming 6 0 2 4 12 (24.5) 

Incomplete wing closure 8 0 1 3 12 (24.5) 

Wing tracking error (including ac-
tions when flies are on or near the 
wall) 

7 1 0 1 9 (18.4) 

Wing threats 2 0 0 1 3 (6.1) 

Others 1 1 0 0 2 (4.1) 

 

 

 

Table 3: Annotations of false positives by the lunge classifier: 

 

Types of motions False positive counts 
♂ vs. ♂ ♂ vs. ♀ ♀ vs. ♀ Other (fruM 

♀ vs fruF ♂) 
Total (%) 

Actual or incomplete lunges 24 0 0 1 25 (25.3) 

Lunge-like actions during tussling 20 0 0 0 20 (20.2) 

Actions when flies are on or near 
the wall (ex. falling from the wall) 

17 1  2 20 (20.2) 

Receiving lunge or headbutt 13 0 2 0 15 (15.2) 

Fast autonomous motions (jump-
ing, rolling on floor, etc.) 

14 1 0 0 15 (15.2) 

Copulation attempt 0 2 0 0 2 (2.0) 

Reaction to other fly’s fast autono-
mous motions 

0 0 2 0 2 (2.0) 

 

 

 

Table 4: Annotations of false positives by the headbutt classifier: 

 

Types of motions False positive counts 
♂ vs. ♂ ♂ vs. ♀ ♀ vs. ♀ Other (fruM 

♀ vs fruF ♂) 
Total (%) 

Actual headbutt 0 1 7 1 8 (6.6) 

Jerking toward the other fly 1 0 23 0 24 (19.8) 

Walking toward the other fly while 
extending a leg (‘reaching’) 

0 0 24 0 24 (19.8) 

Receiving lunge or headbutt 0 0 22 0 22 (18.2) 

Fast autonomous motions (jump-
ing, rolling on floor, etc.) 

0 0 21 0 21 (17.4) 

Reaction to other fly’s fast autono-
mous motions 

1 0 7 1 9 (7.4) 

Pushing the other fly 0 0 8 0 8 (6.6) 

Actions when flies are on or near 
the wall (ex. falling from the wall) 

1 0 2 0 3 (2.5) 

Lunge 0 0 1 0 1 (0.8) 

Wing threat with fast motion to-
ward the other fly (‘charge’) 

1 0 0 0 1 (0.8) 
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Table 5: Weights given to features in each classifier (ascending order): 

• Features in brown indicate relative features 
 

Wing extension classifier Lunge classifier Headbutt classifier 

Feature Weight Feature Weight Feature Weight 

log_max_wing_ang 5.678 norm_axis_ratio 3.416 log_vel 3.569 

facing_angle 2.690 dist_to_other 1.948 dist_to_other 2.298 

norm_mean_wing_le
ngth 

2.249 norm_mean_wing_le
ngth 

1.870 facing_angle 1.230 

log_min_wing_ang 1.152 facing_angle 1.616 log_ang_vel 1.165 

dist_to_wall 1.118 log_max_wing_ang 0.937 dist_to_wall 1.119 

norm_axis_ratio 0.867 leg_dist 0.899 leg_dist 1.049 

log_fg_body_ratio 0.661 dist_to_wall 0.697 norm_mean_wing_le
ngth 

0.960 

leg_dist 0.650 log_vel 0.625 log_max_wing_ang 0.853 

log_vel 0.498 angle_between 0.539 log_fg_body_ratio 0.842 

dist_to_other 0.342 log_min_wing_ang 0.459 norm_axis_ratio 0.816 

log_ang_vel 0.228 log_fg_body_ratio 0.411 norm_contrast 0.774 

norm_contrast 0.133 norm_contrast 0.406 log_min_wing_ang 0.380 

angle_between 0.110 log_ang_vel 0.246 angle_between 0.334 

 
 

Supplementary Tables and Supplementary Data Files are available in .xlsx format upon request. 
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