

1 Predicting Mean Ribosome Load for 2 5'UTR of any length using Deep 3 Learning

4 Authors

5 Alexander Karollus¹, Žiga Avsec^{1,2} and Julien Gagneur^{1*}

6

7 **1** Department of Informatics, Technical University of Munich, Garching, Germany, **2**
8 Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität
9 München, Munich, Germany

10

11 *Corresponding Author

12 Email: gagneur@in.tum.de

13 Abstract

14 The 5' untranslated region plays a key role in regulating mRNA translation and consequently
15 protein abundance. Therefore, accurate modeling of 5'UTR regulatory sequences shall
16 provide insights into translational control mechanisms and help interpret genetic variants.
17 Recently, a model was trained on a massively parallel reporter assay to predict mean
18 ribosome load (MRL) - a proxy for translation rate - directly from 5'UTR sequence with a high
19 degree of accuracy. However, this model is restricted to sequence lengths investigated in
20 the reporter assay and therefore cannot be applied to the majority of human sequences
21 without a substantial loss of information. Here, we introduced frame pooling, a novel neural
22 network operation that enabled the development of an MRL prediction model for 5'UTRs of
23 any length. Our model shows state-of-the-art performance on fixed length randomized
24 sequences, while offering better generalization performance on longer sequences and on a
25 variety of translation-related genome-wide datasets. Variant interpretation is demonstrated
26 on a 5'UTR variant of the gene HBB associated with beta-thalassemia. Frame pooling could
27 find applications in other bioinformatics predictive tasks. Moreover, our model, released
28 open source, could help pinpoint pathogenic genetic variants.
29

30 Keywords

31 Translation, UTR, Variant effect, Deep learning

32

33

34

35 Background

36 Eukaryotic cells make use of complex regulatory mechanisms, which allow precise control of
37 the conversion of genetic information into functional proteins. Understanding how these
38 mechanisms are encoded in regulatory sequences is therefore essential to both understand
39 how healthy cells function and which mutations can predispose them to disease. Much
40 progress has been made in understanding the control of transcription. However, mRNA
41 abundance, while very helpful, is often not sufficient to accurately predict protein abundance
42 [1–5]. This suggests an active role for regulatory mechanisms that act after transcription,
43 such as those controlling translation.

44

45 The 5' untranslated regions (UTR) of RNA transcripts plays a key role in the translation
46 process [6]. According to the standard scanning model of translation initiation, the ribosome
47 binds to the 5' cap of the mRNA and scans along the 5'UTR until it finds a suitable
48 translation initiation site (TIS), at which point it will begin the process of protein assembly
49 [7,8]. This process is generally described as leaky, as the ribosome can skip a TIS. The
50 ribosome is more likely to skip weaker TIS, i.e. TIS with an unfavourable sequence context,
51 as opposed to strong TIS [9]. A strong TIS will usually be composed of the AUG start codon
52 flanked by a sequence similar to the Kozak consensus GCC(A/G)CCAUGG [10], although
53 other features such as secondary structure will also play a role [11,12]. Once a TIS has been
54 selected by the ribosome, it will continue translating until encountering an in-frame stop
55 codon. Approximately 50% of human transcripts have a TIS and corresponding stop codon
56 upstream of the canonical coding sequence, a structure commonly referred to as upstream
57 open reading frame (uORF) [13].

58

59 The scanning process has important implications for the regulation of translation. For one,
60 regulatory motifs can increase or reduce overall protein production by aiding or impeding the
61 scanning ribosome. For instance, single nucleotide variants (SNV) affecting the Kozak
62 sequence or uORFs have been shown to cause significant variation in protein abundance
63 between humans, even if mRNA abundance is unaffected [14]. Differences in translation
64 efficiency due to such variants have also been observed in a mouse hybrid system [15].
65 Additionally, mutations that introduce new TIS upstream of the canonical start codon (uTIS)
66 can cause the ribosome to translate an altered protein. This may either correspond to a
67 lengthened version of the canonical protein, or, if the new TIS is out of frame with respect to
68 the canonical start, an entirely new, and likely dysfunctional, protein. As a result, variants in
69 the 5'UTR can contribute to or even cause diseases and thus the analysis of such variation
70 has clinical significance [13,16–18].

71

72 Much of the computational literature studying translation and the 5'UTR has focused on
73 developing methods to classify whether a particular input sequence segment acts as a TIS
74 or not [19–23]. Some studies also directly report which of several TIS in a sequence is most
75 likely to be chosen [24], although in theory all tools in this category could be used for this
76 purpose after slight modification. Generally, these computational methods provide accurate
77 predictions for their chosen task. However, as their goal is to classify TIS they are not
78 designed to provide a comprehensive estimate for the overall impact of a particular 5'UTR
79 sequence on translation.

80

81 Recently a massively parallel reporter assay (MPRA) has been developed which provided a

82 more complete quantification of the impact of the entire 5'UTR sequence on translation [25].
83 Specifically more than 200,000 entirely random 5'UTR sequences were generated, each 50
84 nucleotides long, and fused with an egfp coding sequence. Using the polysome profiling
85 technique, the mean ribosome load (MRL), a metric of the average number of ribosomes
86 associated to a given RNA and a proxy for translation efficiency, was measured for each
87 sequence. This experimental setup thus allowed measuring the combined impact of a large
88 variety of 5'UTR motifs on MRL, without any bias due to differences in the coding sequence
89 or 3'UTR. The same experiment was additionally performed for a library of about 80,000
90 random 5'UTRs with lengths ranging from 25 to 100 nucleotides.

91
92 Using this data, convolutional neural network models predicting the MRL directly from the
93 5'UTR sequence were trained, including one model using the 50 nt long MPRA sequences
94 and one model using the variable length MPRA data. Henceforth, they will be referred to as
95 Optimus50 and Optimus100 respectively. These models are very accurate on their
96 respective test sets and they are undoubtedly valuable tools to study the impact of different
97 5'UTR sequence features. However, as a result of the specific architecture used, the
98 Optimus models learn position-specific weights (where the position is defined relative to the
99 canonical start codon). As a result, neither model can yield predictions for sequences longer
100 than the longest sequence in their training data. Longer 5'UTR sequences need to be
101 truncated before they can be fed to the model, and thus any information contained in the
102 truncated segments are lost. Unfortunately, the average human 5'UTR contains about 200
103 nt, and thus many annotated human 5'UTR are significantly longer than 50 or 100
104 nucleotides [26]. As a result, Optimus MRL predictions may be incomplete and thus
105 unreliable for a large number of human transcripts. Moreover, the effects of variants
106 disrupting motifs further than 100 nt from the canonical start cannot be quantified, making it
107 difficult to apply the Optimus models to real human variant data. This is unfortunate
108 because, as the authors have shown, the Optimus models do provide reasonable variant
109 effect predictions for sequences which do not violate its length restrictions.

110
111 Here we develop a model which bridges this gap and extends the capabilities of the Optimus
112 models to 5'UTR of any length. Such a model would then allow, in principle, to quantify the
113 impact on MRL of any kind of variant, mutation or indel, anywhere in a 5'UTR, thus making
114 the rich knowledge encoded in the MPRA data easily accessible to practitioners.

115

116 Results

117 Modelling 5'UTR of any length using frame pooling

118 To investigate the extent to which 5'UTR length varies across human transcripts, we
119 computed the empirical cumulative distribution function of length for the 5'UTR annotated in
120 Genecode v19 (Fig 1A). It was found that only 30% of 5'UTR are 100 nt or shorter.
121 Therefore, around 70% of human 5'UTR need to be truncated before they can be analysed
122 by an Optimus model. If only Optimus50 is used, this number rises to 85%. Furthermore, as
123 the median sequence has about 200 nt, it means that truncation will usually lead to a
124 substantial loss of information. In the majority of cases, more than half of the sequence must
125 be thrown away before an Optimus model can be used.

126

127 To create a model which provides mean ribosome load predictions for any 5'UTR,
128 regardless of length, care must be taken to not introduce position-specific weights while
129 nevertheless capturing and quantifying the regulatory motifs found in the sequence. One
130 approach, which had been successfully used for this purpose in the past, is to combine
131 convolutional layers with a global pooling operation ([27,28], reviewed in [29]). In such a
132 setup, convolutional layers specialize on detecting the presence and strength of regulatory
133 motifs, whereas the pooling layers aggregate this information across the sequence.
134 However, as noted previously, the impact of upstream start codons (uAUG), depends heavily
135 on whether they are located in-frame or out-of-frame with respect to the canonical start
136 codon. As a result, simple global pooling will not generalize well to arbitrary length
137 sequences since this operation loses the frame information.

138

139 To overcome this problem, we propose instead to first separate the convolutional output
140 according to the underlying biological reading frame and then perform global pooling for
141 each frame separately. This method ensures that the frame information is preserved and
142 thus the network can differentiate between regulatory motifs located in-frame or out-of-frame
143 with the coding sequence. We call this operation framewise pooling, or frame pooling for
144 short.

145

146 The resulting model consists of three convolutional layers, followed by frame pooling, a fully
147 connected layer and a linear layer to assemble the final MRL prediction (Fig 1B). Two global
148 pooling operations are performed: global max pooling and global average pooling. Max
149 pooling indicates whether a particular motif is strongly present in a particular frame, whereas
150 average pooling roughly indicates how often a particular motif is present in each frame.

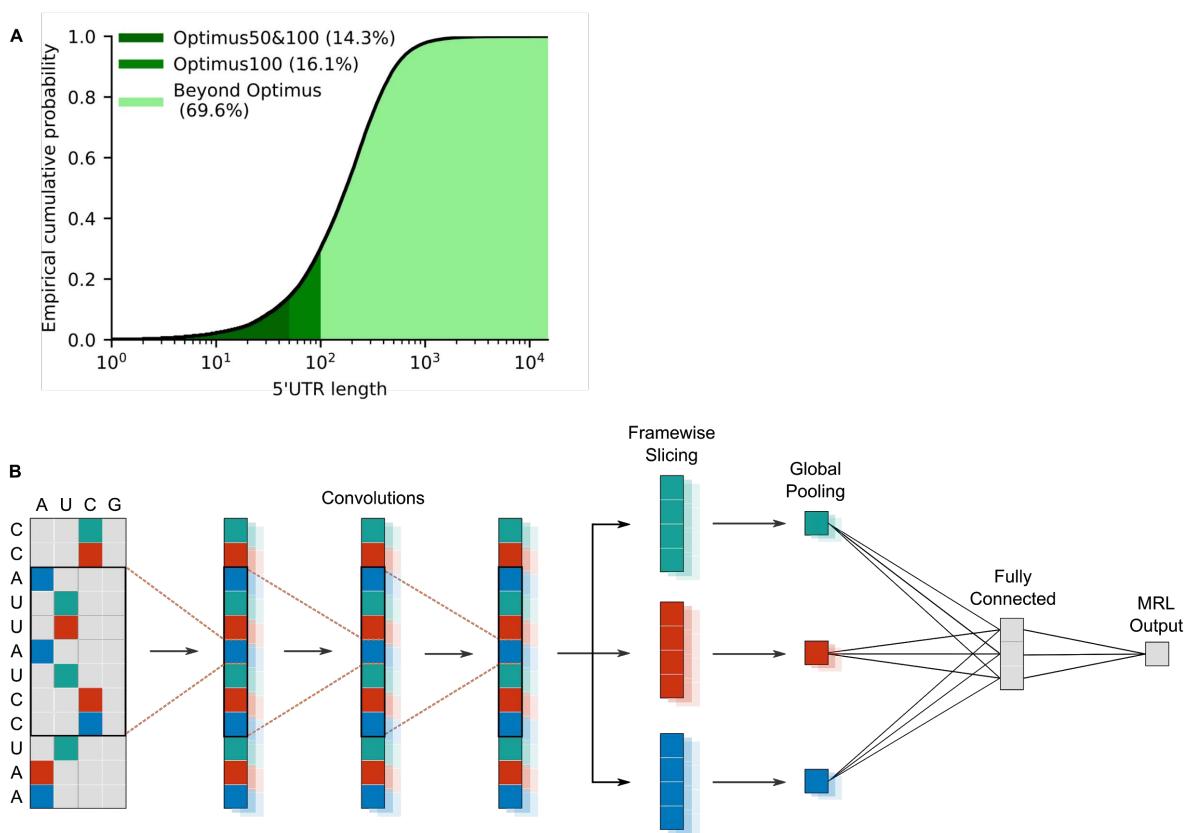
151

152 The model was trained three times: using the 50 nt MPRA sequences to allow comparison
153 with Optimus50, using the 25-100 nt MPRA sequences to allow comparison with
154 Optimus100 and using both datasets, to create a combined model. Since these datasets
155 measure MRL on a slightly different scale, the combined model has an additional regression
156 layer before the final output that learns a library-specific scaling. Henceforth the models will
157 be referred to as FramePool50, FramePool100 and FramePoolCombined respectively.

158

159 These models have been integrated into the Kipoi API [30], allowing them to be applied with
160 very little overhead to a VCF file containing human variant data (see also Figure 6). As a
161 result the models are easy to use and straightforward to integrate into existing variant
162 annotation pipelines.

163



164
165 **Fig 1: Modelling 5'UTR of any length. A)** Empirical cumulative distribution of human 5'UTR
166 lengths, according to Genecode v19: only 14% (for Optimus50), or 30% (for Optimus100) of
167 human 5'UTR sequences can be quantified by an Optimus model without information being
168 lost due to truncation. **B)** Schematic of a frame pooling model: a one-hot-encoded 5'UTR is
169 fed through 3 convolutional layers. For ease of visualization, the biological frame is indicated
170 by colour. Then the convolution output is sliced according to the frame, and each frame is
171 pooled separately, using global average and max pooling. The frame-specific information is
172 then aggregated by a dense layer and a final linear layer assembles the mean ribosome load
173 prediction.

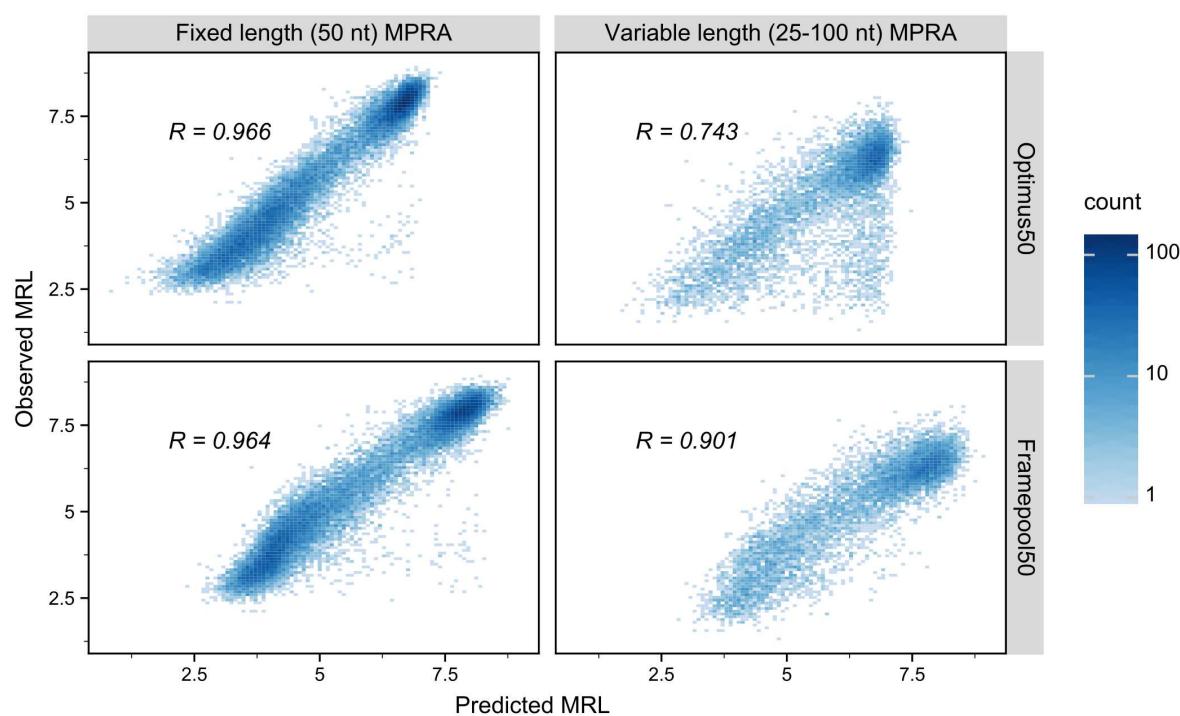
174 Evaluating frame pooling on MPRA data

175 To ascertain that a model based on frame pooling still yields accurate predictions, despite no
176 longer having detailed position information, it was tested on the same held-out test set as in
177 the original Optimus study [25]. On these 20,000 sequences, the predictions of the frame
178 pooling model (FramePool50) show a Pearson correlation of 0.964 with the observed MRL
179 values, whereas Optimus50 had a correlation of 0.966 (Fig 2). Hence, despite having
180 considerably fewer weights overall, and no position-specific weights in particular,
181 FramePool50 still performs almost as well as Optimus50 on MPRA sequences. This
182 demonstrates that frame pooling is sufficient to capture almost all the signal present in
183 MPRA data, with the distinct advantage of not needing to introduce constraints on the
184 sequence length.

185
186 This advantage becomes apparent when applying the model to the other MPRA test set,
187 consisting of 7,600 sequences, with lengths ranging from 25 to 100 nt (with 100 sequences
188 for each length). Optimus50, due to its position-specific weights, cannot identify motifs

189 located further than 50 nucleotides from the canonical start codon. As a result, it generalizes
190 poorly to this variable-length test set, and the correlation drops to 0.743. FramePool50,
191 despite being trained on the same data, does not face this restriction and generalizes much
192 better, with a correlation of 0.901(Fig 2). Note that this result compares well even with
193 Optimus100, which was trained on the variable-length MPRA data, and has a correlation of
194 0.915 with the observed values of this test set (Table S1). A similar pattern can be observed
195 on (truncated) human sequences measured in the MPRA experiments (Fig S2). Optimus50
196 and FramePool50 perform very similarly on human 5'UTR truncated to 50 nt (corr: 0.889 vs
197 0.882), but frame pooling again generalizes better: for 25-100 nt sequences the correlation
198 for Optimus50 drops to 0.7, whereas FramePool50 remains at 0.871. These results show
199 that, despite the relative simplicity of the frame pooling operation, it provides an effective
200 method of generalizing the model to 5'UTR sequences considerably longer than those it has
201 been trained on.

202
203



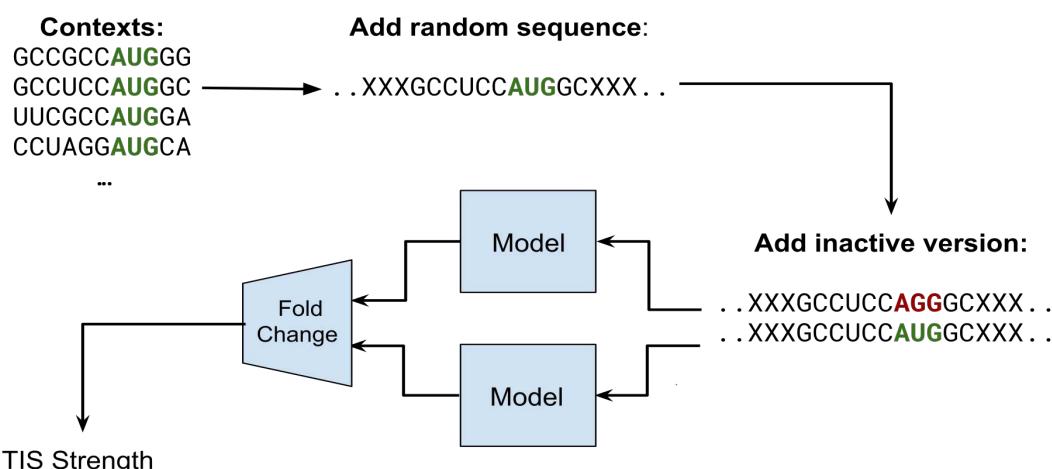
205 **Fig 2: Performance of Optimus50 and FramePool50 on MPRA test-sets.** Observed
206 mean ribosome load (MRL< y-axis) against predicted MRL for Optimus50 (top row) and
207 FramePool50 (bottom row) on the 50 nt fixed-length MPRA dataset (left column) and the
208 variable-length MPRA dataset (right column). Optimus50 performs very well when evaluated
209 on a test set of 20,000 random 50 nt long 5'UTR sequences. However, its performance
210 drops strongly when evaluated on a test-set of 7,600 random 5'UTR sequences which vary
211 in length from 25 to 100 nt. This is because sequences longer than 50 nt need to be
212 truncated to fit the model. Despite not having position-specific weights, the frame pooling
213 model captures almost as much signal as Optimus on the short MPRA sequences.
214 Additionally, it generalizes very well to the variable-length MPRA data, strongly
215 outperforming Optimus50. This shows the ability of the frame pooling approach to capture
216 predictive signals even in sequences considerably longer than those it has been trained on.
217

218 FramePool quantitatively predicts effects of uTIS motifs

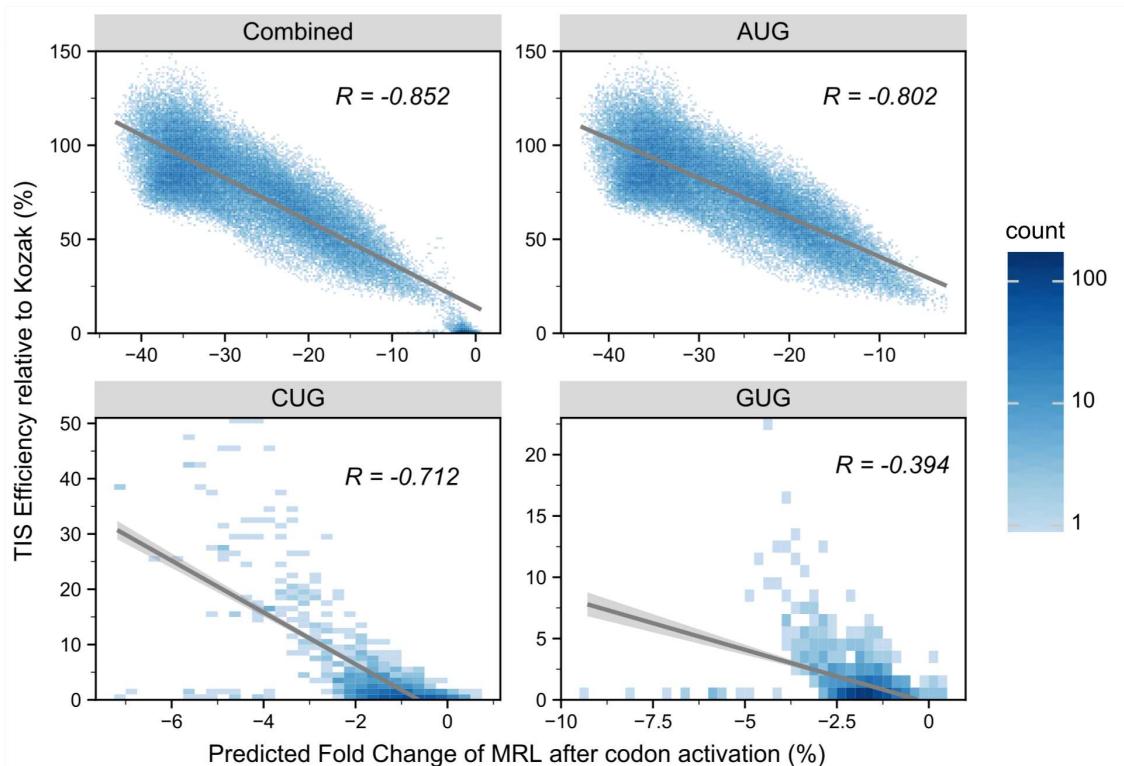
219 To evaluate the predictive power of a frame pooling model on an independent data set, we
220 applied it to large-scale perturbation assays probing upstream translation initiation site
221 contexts. Noderer et al. [9] investigated every possible -6 to +5 context of a AUG site,
222 whereas Diaz de Arce et al. [31] performed a similar analysis for every -3 to +4 context for
223 selected alternative start codons, such as CUG and GUG. We evaluated the extent to which
224 our model (FramePoolCombined) agrees with these estimates. This was achieved by
225 injecting each of these uTIS motifs out-of-frame into a random sequence and then feeding
226 them to the model twice: once with the central start codon “deactivated” (e.g. AUG replaced
227 with AGG) and once in an “active form”. The difference, in terms of fold change of the
228 predicted MRL, between the active and inactive version was recorded (Fig 3A). The resulting
229 scores were correlated with the relative strengths of the respective motifs (Fig 3B). We
230 expect these correlations to be significantly negative, since stronger uTIS motifs should also
231 lead to stronger reductions in predicted MRL if they are activated. For uAUG contexts we
232 indeed measured a strong, negative Pearson correlation of -0.802. Hence, despite not
233 having been trained explicitly for this task, the model has learnt to effectively distinguish
234 between weak and strong uTIS motifs with high accuracy. For uCUG and especially uGUG,
235 the correlations are weaker (-0.712 and -0.394 respectively) but still significant. Likely the
236 training data was not sufficient to learn the full regulatory code of such non-canonical TIS, as
237 they generally are much weaker than uAUG, and thus more difficult to detect in MPRA data.
238 Nevertheless, even here the model clearly makes some correct distinctions between
239 stronger and weaker alternative start codon motifs. In summary, these results on
240 independent perturbation data show that our model captured important components of the
241 5'UTR code regulating translation, and can be used to quantify the impact of variants on
242 translation control.

243

A



B



244

245

246 **Fig 3: Framepool predicts the strength of upstream transcription initiation sites. A)**

247 The model was used to predict the effect of upstream TIS contexts by injecting them into
248 random sequences and comparing predicted MRL fold change associated with upstream
249 start codon activation (mutation AGG → AUG). **B)** These predictions (x-axis) were
250 correlated with independent experimental measurements of the relative strength of these
251 contexts (y-axis). Overall, a negative correlation is observed (top right) as expected because
252 upstream TISs compete with canonical TISs. For AUG start codon data [9], the model
253 correlates well with the strength estimates (top right, Pearson correlation of -0.802), with
254 more efficient contexts causing a larger predicted effect on MRL. Negative correlations were
255 also observed for the alternative start codons CUG (bottom left) and GUG (bottom right) data
256 [31]. The correlations are weaker, particularly for GUG, likely reflecting the difficulty of
257 detecting more subtle motifs in MPRA data. Nevertheless, the model has still learned to

258 distinguish between strong and weak CUG/GUG motifs to some extent.
259

260 Evaluating frame pooling on endogenous genes

261 Having evaluated the performance of frame pooling on MPRA data, we next analysed
262 whether it could also deliver meaningful predictions for endogenous genes.

263

264 Many experimental protocols exist to measure different aspects of translation efficiency for
265 human transcripts, such as ribosome footprinting (Ribo-Seq, [32]) or using Mass-Spec to
266 determine Protein-to-mRNA ratios (PTR, [33]) which all relate to mean ribosome load.
267 Hence, such measures should correlate with the MRL predictions provided by our models.
268 The correlations are expected to be lower though, because these measurements are not
269 direct measurement of ribosome load and because in endogenous data, as compared to
270 MPRA data, the coding sequence and the 3'UTR are not constants, but also vary between
271 transcripts. Both of these features have been shown to considerably affect the ribosome load
272 and the PTR [3,34]. Moreover, PTR is also dependent on protein degradation rates, which
273 are not captured by MRL.

274

275 Nevertheless, we correlated the predictions of our models with such measures gathered
276 from six different previously published studies. These include two Ribo-Seq studies
277 performed on HEK293 cells [35,36] and one on PC3 cells [37]. In these three studies, RNA
278 sequencing (RNA-Seq) and Ribo-Seq data are combined to compute a measure of
279 translation efficiency comparable to ribosome load. Two studies measure PTR across
280 human tissues [3,38]. As our model is not tissue specific, we used the median PTR across
281 tissues. Lastly, Floor et al. [34] computed a mean ribosome load measure using a technique
282 called Trip-Seq for all transcripts in HEK293 cells. This involves polysome profiling and is
283 similar to the MRL measured in the MPRA experiments. Note that most of these studies
284 compare several conditions but we only used data for control group cells.

285

286 For each of these datasets, the correlations were positive and statistically significant, albeit
287 small, ranging from 0.11 to 0.25 (Tables S2-3). Thus, despite the bias introduced by other
288 sequence features and despite our models only being trained on purely random sequences,
289 they nevertheless captured biologically relevant signals related to translational regulation.

290

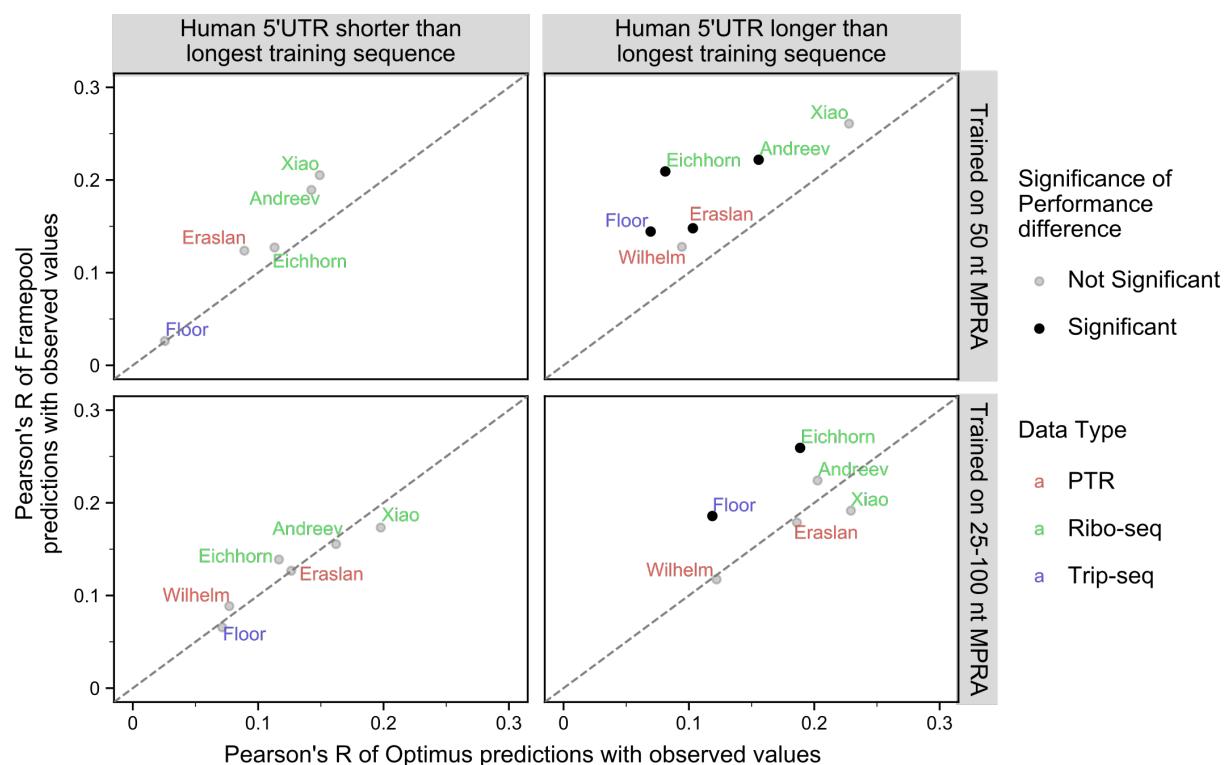
291 Moreover, the MRL predictions of the frame pooling model correlated better with these
292 various datasets than the Optimus predictions did (Fig 4). For example, on sequences longer
293 than 50 nt, FramePool50 shows significantly better correlation on endogenous data than
294 Optimus50 on 4 of 6 datasets, with the last two showing no significant difference (Fig 4).
295 Meanwhile, on sequences longer than 100 nt, FramePool100 significantly outperforms
296 Optimus100 on 2 datasets, with the other 4 showing no significant difference. These results
297 provide further evidence that frame pooling allows to generalize and provide meaningful
298 predictions beyond the range of 5'UTR sequences used in training. Moreover, these results
299 indicate that the ability to generalize to longer sequences is not restricted to synthetic MPRA
300 sequences, but extends to human transcripts.

301

302 Eraslan et al. [3] identified a number of 5'UTR motifs which are not captured by our models,
303 likely because their effects are too subtle or context-specific to be detected in MPRA data. A

304 linear model which includes these motifs as additional predictors can explain more of the
305 signal in PTR data than the MRL predictions of a frame pooling model alone, although the
306 difference is modest (using FramePoolCombined as the basis, the Pearson correlation rises
307 from 0.171 to 0.199 when including the additional motifs). In further studies of translation
308 efficiency, predictions from a frame pooling model could be used as an informative input
309 feature to models trained on endogenous data.

310



311

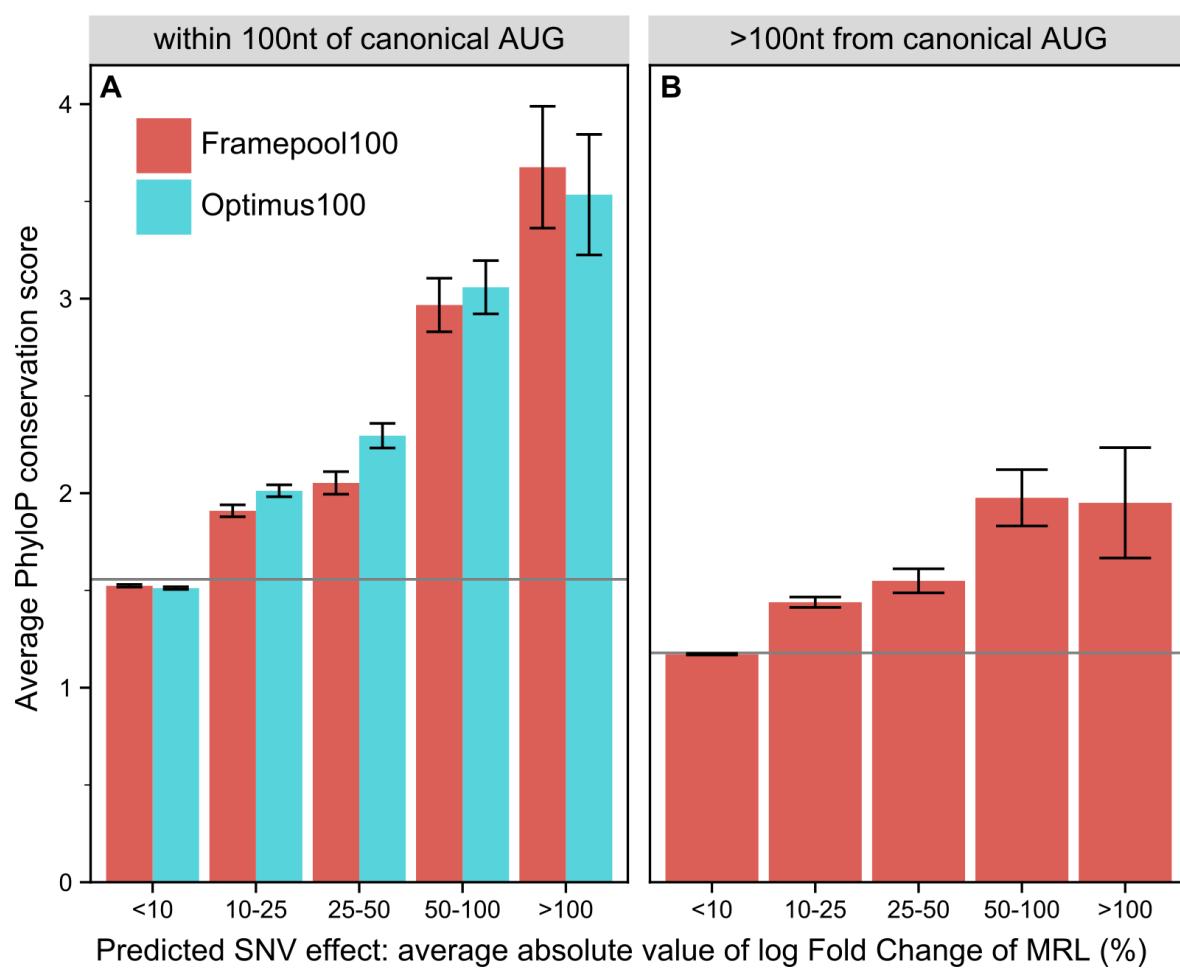
312 **Fig 4: Correlating Optimus and Framepool MRL predictions with a variety of**
313 **translation-efficiency related measurements for human transcripts.** Pearson's
314 correlation between MRL predictions and various published translation-efficiency related
315 measurements for Framepool (y-axis) against Optimus (x-axis) for human 5'UTR sequences
316 shorter than the longest training sequence (left column) or larger (right column) and when
317 the model is trained on 50 nt MPRA (top row) or the variable-length MPRA (bottom row).
318 Dataset labels are colour-coded by measurement type: Protein-to-mRNA ratio (red), Ribo-
319 Seq (green), and TripSeq (blue). For 5'UTR sequences shorter than 50 nt, no significant
320 difference can be observed between FramePool50 and Optimus50 (the diagonal line
321 indicates identical performance). For those longer than 50 nt, FramePool50 significantly
322 outperforms Optimus on 4 of 6 datasets. FramePool100 and Optimus100 show
323 indistinguishable performance on 5'UTR sequences shorter than 100 nucleotides. For
324 sequences longer than 100 nt, FramePool100 significantly outperforms Optimus on 2 out of
325 6 datasets, with inconclusive results for the other sets. This suggests that frame pooling
326 captures additional signals from longer sequences in endogenous data. Significance is
327 assessed by bootstrapping and corrected for multiple testing (Bonferroni, methods).

328

329 Quantifying the impact of variants

330 We next asked whether our models could identify functionally important nucleotides. We
331 reasoned that single nucleotide variants predicted to have strong effects on ribosome
332 loading should occur at locations which are more evolutionarily conserved, at least for
333 functionally important genes. Hence, we predicted the effect of every single nucleotide
334 variant on MRL throughout the 5'UTR of the canonical transcripts of genes strongly depleted
335 for loss-of-function variants in the human population (LoF-intolerant genes, Methods). We
336 observed that the stronger the effect FramePool100 predicted was, the more
337 phylogenetically conserved the position was (PhyloP score [39] Methods, Fig 5). The trend
338 was particularly pronounced within 100 nt of the canonical start codon, whereby variants
339 predicted to affect MRL by more than 50% showed an average PhyloP score roughly double
340 than the average 5'UTR position (Fig 5A). The same trend was observed for Optimus100.
341 Positions further than 100 nt from the canonical start could only be scored with
342 FramePool100 and further exhibited a milder yet significant association between
343 phylogenetic conservation and predicted SNV effect on MRL (Fig 5B). These results indicate
344 that these models can identify positions in 5'UTR with important regulatory functions.
345 Therefore, these models could be useful to flag variants which may have particularly
346 deleterious impacts on translational control. In this regard, the frame pooling model has the
347 advantage that it can deliver predictions for any 5'UTR variant, regardless how far it is
348 located from the canonical start.

349
350



351
352
353 **Fig 5: Comparing the predicted impact of every possible 5'UTR SNV with conservation**
354 **scores for loss-of-function intolerant genes. A)** For positions no further than 100 nt from
355 the canonical transcript start codon, both Optimus100 and FramePool100 can predict the
356 impact of SNV. Positions where a SNV is predicted to have a high impact on average also
357 tend to be more strongly conserved. Error bars correspond to 95% confidence intervals. The
358 grey line shows the average PhyloP score among all analysed 5'UTR position. **B)** For 5'UTR
359 positions further than 100 nt from the canonical start, only FramePool100 can be applied.
360 Again, positions where the SNV impact is predicted to be higher also tend to be more highly
361 conserved. This further demonstrates that FramePool100 can identify biologically relevant
362 regulatory elements even in sequences longer than those it has been trained on.

363 Variant effect prediction and model interpretation

364 The FramePoolCombined model has been integrated into the model repository for genomics
365 Kipoi [30]. This allows leveraging the diverse features of the Kipoi ecosystem. Most
366 importantly, the FramePoolCombined model can be readily used for variant effect prediction
367 including SNVs and indels from VCF files (Fig 6).
368 The Kipoi model reports variant effects in terms of \log_2 fold change of MRL. However, uTIS
369 located out-of-frame will generally have a large impact on MRL, but in-frame uTIS may not
370 necessarily change ribosome load much if they just lengthen the effective coding sequence.
371 Nevertheless, such a change may still affect the function of the protein. To provide indication

372 to practitioners whether such a protein lengthening has occurred, the Kipoi version of the
 373 model additionally reports two additional variant effect scores, representing the predicted
 374 variant effect after “shifting” the 5'UTR sequence by one or two frames.
 375



376
 377 **Fig 6: Schematic of the Kipoi model workflow.** Using a vcf, bed and fasta file as input, the
 378 kipoi model predicts \log_2 fold-change in MRL due to variants affecting particular transcript
 379 5'UTRs. Additionally, the model reports the \log_2 fold-change in MRL for the same sequences
 380 after simulated frameshifts.
 381

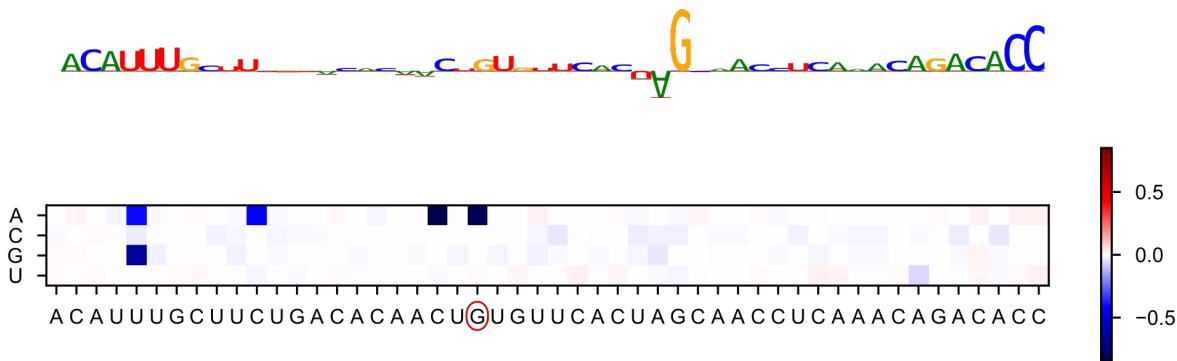
382 To offer an illustration of how variants effects are predicted, we provide the results of a
 383 model interpretation procedure for the 5'UTR sequence of the HBB gene (HBB-001), which
 384 plays a role in beta-thalassemia and has known 5'UTR variants [40,41]. Specifically, we
 385 computed gradient contribution scores and all predicted variant effects for all positions in the
 386 sequence (Fig 7A). Contribution scores measure the gradient of the predicted output with
 387 respect to a particular input nucleotide. Contribution scores thus give an indication of the
 388 importance of this nucleotide to the final output according to the model (Methods). Variant
 389 effect scores meanwhile visualize how the model scores mutations at different points in the
 390 sequence. As the HBB gene does not include an uTIS, the model mainly focuses on the
 391 sequence at the 5' end and on the sequence preceding the canonical start codon. Most
 392 SNVs are predicted to have little impact, with the exception of those creating uAUGs. One of
 393 these uAUG-creating mutations is a known pathogenic variant. Introducing it to the
 394 sequence greatly changes the model's predictions (Fig 7B), as the main focus of the model
 395 now shifts to the created uAUG and its context. Consistent with previous research on the
 396 Kozak sequence, the -3 position of the uTIS is predicted to play an important role in

397 modulating the effect of the new start codon [10,14]. The striking difference in variant effect
398 prediction in the reference sequence versus the SNV-containing alternative sequence
399 reflects the high nonlinearity of the model. Rather than just being able to score specific
400 SNVs, the model can also provide predictions for combinations of variants (such as creating
401 an uAUG while simultaneously modifying its -3 position).

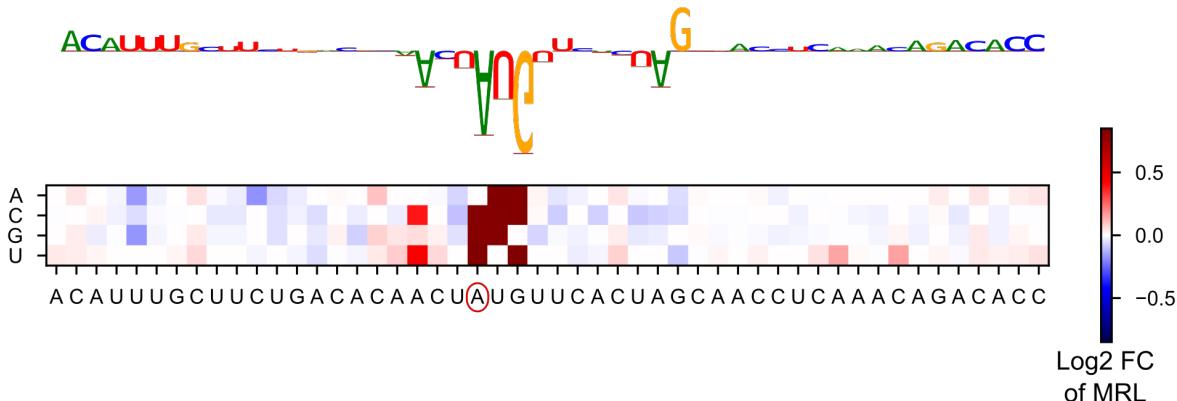
402 Altogether, we believe our model can be used to improve germline or somatic variant
403 interpretation and foresee application of it in rare disease research.

404
405
406
407

A



B



408

409 **Fig 7: Identifying motifs within the HBB 5'UTR sequence. A)** The sequence logo shows
410 the gradient impact of each nucleotide on the model's final prediction. The 5' end and the
411 sequence immediately preceding the canonical start contribute relatively strongly to the
412 gradient, as does a G. The heatmap shows the predicted impact (in terms of \log_2 fold
413 change) of mutating each position within the sequence. Strong effects are associated with
414 uAUG-creating variants. **B)** Variant rs34704828, a known pathological variant which creates
415 an uAUG, is introduced to the sequence. The model's main focus, in terms of gradient, now
416 lies on the new AUG and its surrounding context. The heatmap shows that the impact of the
417 variant is influenced by its context.

418 Discussion

419 We have introduced frame pooling, a novel neural network operation which performs pooling
420 over distinct frames of an input vector. By combining a convolutional neural network with

421 framewise pooling and training on MPRA data, we have created a model which can provide
422 mean ribosome load predictions for 5'UTR of any length. In comparison to the state-of-the-
423 art, our approach provides similar performance on short sequences, with the additional
424 advantage that longer sequences do not need to be truncated for analysis. This allows for
425 better generalization and moreover makes it possible to score additional variants which
426 would have been ignored previously. Comparison with conservation scores and previous
427 research on uTIS motifs has further shown that a model equipped with frame pooling has
428 learned to quantify important components of the 5'UTR regulatory code. Since our model
429 has been integrated into the Kipoi framework, it can easily be used by practitioners to
430 analyse any human 5'UTR variant or mutation, including indels. Additionally it can quickly be
431 integrated into a larger pipeline or serve as the starting point for future research.

432

433 The frame pooling approach developed in this paper is specific to the study of translation,
434 but it is reflective of a more general idea: despite often being regarded as black-box models,
435 it is possible to encode prior biological knowledge into neural networks through careful
436 modifications to their architecture. As demonstrated in this study, this can allow the network
437 to generalize more effectively to unseen contexts and beyond the specific constraints
438 inherent in the training data. Genomics has many features, such as reverse complementarity
439 [42], or helical periodicity which could be encoded in a somewhat analogous fashion into
440 neural network architecture. However, by encoding a specific model of biology into a neural
441 network, one also reduces its ability to learn about mechanisms which deviate from this
442 model.

443

444 Despite its clear advantages, two limitations of our model architecture should be noted. First,
445 because the architecture relies on convolutions and pooling, there are known features of
446 translational regulation that it cannot fully capture. For one, a frame pooling model cannot
447 detect upstream open reading frames that are longer than the receptive field, that is, the
448 segment of the input sequence that contributes to the activation of an individual neuron in
449 the final convolutional layer. In our architecture, this limits uORF that can reliably be
450 detected to a length of 19 nt. Second, this architecture cannot entirely replicate the
451 mechanics of leaky scanning. While it can reliably detect uTIS, detect which frame they are
452 in and assess their relative strengths, it cannot determine in which order they appear in the
453 sequence. Because the ribosome scans from the 5' end, this ordering should in principle
454 matter, although it is unclear whether this effect is detectable in the MPRA data. A recurrent
455 neural network, such as long short term memory networks [43], could overcome these
456 limitations. However, in our experiments simple long short term memory networks were not
457 able to outperform the frame pooling models and additionally took far longer to train and to
458 predict. Accordingly, designing a scanning model that incorporates our knowledge of the
459 scanning process more holistically, remains an avenue for future research.

460

461 More generally, training on MPRA data implies unique advantages and disadvantages. The
462 main advantage of MPRA data is its lack of bias as compared to endogenous data. In
463 endogenous data, many sources of spurious correlations exist as a result of evolutionary
464 optimization. For example, certain classes of genes may be highly translated as they fulfill
465 vital functions. A model may then use motifs in the coding sequence that encode these
466 functions to predict translation. It will then possibly erroneously conclude that mutation of the
467 function also impacts translation. In an MPRA experiment such as Sample et al. [25], such
468 spurious correlations do not arise as everything except the 5'UTR is held constant. A model

469 trained on such data can thus provide unbiased and plausible effects for the impact of a
470 mutation. Moreover, MPRA experiments sample a much larger space of genetic variation
471 than endogenous data. Evolution quickly removes variants which are too destructive from
472 the gene pool, thus collecting sufficient data on highly pathogenic genetic mutations from
473 living populations is difficult. MPRA data circumvents this problem as it allows for any kind of
474 motif to be analysed, no matter if it could occur in a living human. Thus, models trained on
475 MPRA data can more confidently score variants deviating heavily from the average genome.
476 This suggests that our models could be used effectively in a clinical setting to quickly flag
477 candidate mutations that could significantly distort translation.

478
479 This lack of bias however also presents a limitation. Because the space of possible
480 sequences is probed randomly, motifs consisting of many nucleotides are unlikely to be
481 featured in the data, unless the sample size is unfeasibly large. Moreover, motifs with more
482 subtle effects may be drowned out by motifs with larger effects. As a result a model trained
483 on MPRA data may have much knowledge of motifs that rarely occur in living organisms
484 while lacking knowledge of complex motifs carefully selected by evolution to finetune
485 biological processes. In particular, up to 10% of human 5'UTR exhibit a internal ribosome
486 entry site (IRES), which allows a ribosome to directly initiate translation without first scanning
487 the 5'UTR [44,45]. Making a more general model, which combines knowledge from the
488 Sample et al. [25] MPRA with other studies specific to IRES, presents another avenue for
489 future research. This conclusion extends also to other 5'UTR features, including the overall
490 length of the 5'UTR, 5'UTR introns and factors related to mRNA stabilization and decay, all
491 of which may play a role in regulating translation [18]. Combining MPRA with endogenous
492 data could be an effective method to allow detection of additional motifs, without sacrificing
493 the ability to score variants in an unbiased manner.

494 Methods

495 Framepool model

496 All code was written in python 3.6. The model was implemented using Keras with a
497 Tensorflow backend. With the exception of the frame pooling (see below), all layers use the
498 standard Keras API.

499 The three convolutional layers all have a kernel size of 7 and 128 filters each. The dense
500 layer has 64 neurons and a dropout with a drop-rate of 0.2 is applied to its outputs. All
501 layers, except the final linear layer and the frame pooling, use ReLU activation functions.
502 Altogether the framepool models have 282,625 learnable weights each, with the exception of
503 the FramePoolCombined model, which has 4 additional learnable weights in the scaling
504 regression layer.

505 Note that residual skip connections [46] were used between convolutional layers in all
506 models. These were used as they speed up training, but did not provide any tangible
507 performance benefits.

508 Tensorflow requires each batch-tensor to have defined dimensions. To accomodate variable
509 length sequences, we pad the 5' end of all sequences with zeros to match the longest
510 sequence in the batch. To prevent these additional zeros from impacting predictions, a
511 masking tensor is used. Specifically, this masking tensor ensures that the correct
512 denominator is used in average pooling.

513 Frame pooling

514 Frame pooling was implemented using Tensorflow's tensor-slicing utilities. The output tensor
515 of the third convolutional layer is sliced into three tensors, one for each frame with respect to
516 the canonical start codon. Global max pooling and global average pooling are then used to
517 aggregate the filter outputs along the input sequence. The resulting pooled tensors thus
518 indicate whether the motif captured by a particular filter is (a) present somewhere in the
519 sequence and (b) how strongly it is present on average along the sequence. These tensors
520 are concatenated and fed to the dense layer.

521 To illustrate how this works, consider the following example: a sequence of length 300 (so
522 dimensions are (300, 4) after one-hot encoding) is fed to the model. After the third
523 convolutional layer, it will have dimensions (300, 128). Before slicing, the tensor is reversed
524 along the sequence axis, to ensure that the frame is related to the canonical start codon in a
525 consistent manner for all input sequences. After slicing, there will be three tensors, each with
526 dimensions (100, 128), whereby the first tensor will consist of the slices conv3_output[(0, 3,
527 6, ..., 297), :], the second will consist of conv3_output[(1, 4, 7, ..., 298), :] and so on. Global
528 max pooling will return three tensors of shape (128,), and so will global average pooling.
529 After concatenation, a tensor of shape (768,) remains.

530 Model training

531 The FramePool50 model was trained on the egfp1 MPRA dataset from Sample et al. [25].
532 This set comprises the sequences of 260,000 random 5'UTR, all 50 nucleotides in length,
533 together with mean ribosome load measurements for each sequence.
534 Of these 260,000 sequences, 20,000 were withheld for the validation set, which was
535 employed to optimize hyperparameters and for early stopping (but not for testing).
536 Hyperparameters were adjusted manually, but generally only minor tweaking was
537 necessary, as the Optimus 5 Prime hyperparameters already worked very well for the
538 framepool model. Training was done using the Adam optimizer with default parameters and a
539 standard mean-squared-error loss function. Training was stopped early if no improvement
540 was made on the validation set for 3 consecutive epochs. This generally happened after 10-
541 15 epochs. The model with the lowest validation set error was then chosen.

542 The FramePool100 model was trained on the random variable length MPRA dataset. This
543 set comprises 76319 random 5'UTR, with lengths varying from 25 to 100 nucleotides,
544 together with mean ribosome load measurements for each sequence. No new validation set
545 was constructed for this data and training was done for six epochs straight, without early
546 stopping or other optimizations.

547 The FramePoolCombined model was trained on both training sets for six epochs straight,
548 with an additional library indicator to account for differences in scaling.

549 Model testing

550 Two MPRA test sets were used to evaluate model performance. One consists of 20,000
551 MPRA sequences that are 50 nt long. The other consists of 7,600 MPRA sequences, which
552 vary in length from 25 to 100 nt, with 100 sequences for each length. These are the same
553 test sets which were used in Sample et al. [25] to evaluate the performance of the Optimus
554 models. Thus, performances on these sets are directly comparable.

555 Kipoi integration

556 To make the model compatible with the Kipoi model zoo API, a custom dataloader was
557 written in Python 3.6, using the numpy, pandas and pybedtools packages. The dataloader
558 takes as input a bed file specifying 5'UTR exon regions of interest, a vcf file specifying the
559 variants of interest, and a fasta file with a human reference genome. The dataloader then
560 uses pybedtools to intersect the vcf file with the bed file, keeping only transcripts which have
561 some variant in one of their 5'UTR exon regions. The reference sequence for these
562 transcript 5'UTRs are then extracted from the fasta file, all intersecting variants are injected,
563 and both reference sequences and variant sequences are one-hot encoded and fed to the
564 model in batches.

565 The model then predicts MRL for both the reference sequence and the variant sequence.
566 Using these predictions, the \log_2 fold change of MRL due to the variants is computed and
567 reported.

568 By zero-padding the 3' end of both reference and variant sequence, a frameshift with respect
569 to the canonical start codon is simulated. The \log_2 fold-change of MRL due to the variants for
570 these shifted sequences is reported as additional output, to provide more information to the
571 user. Particularly, this information can be used to detect AUG-creating/destroying variants
572 that act within the canonical frame and thus only lengthen/shorten the canonical protein,
573 rather than destroying it.

574 TIS strength

575 Noderer et al. [9] provide estimates for the relative translation initiation strength of all
576 possible -6 to +5 contexts surrounding an AUG start codon. This data was downloaded from
577 the journal website.

578 The frame pooling models only output MRL predictions and thus do not rate the strength of
579 different TIS contexts directly (although internally they undoubtedly have some notion of
580 what constitutes a strong TIS). To force the models to provide TIS-strength predictions, we
581 took each AUG and their context of the Noderer et al data, added random bases on either
582 side (so the sequence length equals the receptive field size of the convolutional layers), and
583 then predicted MRL twice: once with AUG activated, and once with an inactive start (AGG).
584 Then the predicted fold change in MRL due to AUG activation was correlated with the TIS
585 Strength as estimated by Noderer et al [9]. To reduce noise due to the added random bases,
586 this procedure was performed 100 times and an average was taken. Additionally, contexts
587 which inadvertently introduce another AUG, e.g. AAUGGGGAUGGG, were removed from the
588 analysis, as in such a case it is not clear which of the two AUG is selected as start codon.
589 Accordingly, the surrounding context of the start codon is not well defined.

590 The same analysis was performed for each non-AUG start codon considered in Diaz de Arce
591 et al [31]. Again, contexts which inadvertently introduce an AUG were removed.

592 Translation-related measures of endogenous genes

593 To evaluate the model's predictive performance when applied to endogenous sequences,
594 data from a variety of experiments used to investigate translational control were collected.
595 These include a Trip-Seq experiment [34], three Ribo-Seq experiments [35–37], and two
596 protein-to-mRNA ratio (PTR) experiments [3,38].

597 For the Trip-Seq experiment, processed data at the transcript level was downloaded from
598 the journal website. Transcripts with a count less than 1 TPM in either replicate were filtered

599 and then the replicates were averaged. Next, counts for transcripts with the same 5' UTR
600 were aggregated (as all models considered here only focus on the 5' UTR) and the mean
601 ribosome load was calculated from the polysome fractions. The final dataset has MRL
602 values for 25,831 transcripts.
603 For the Ribo-Seq experiments, processed data at the gene level was downloaded from the
604 respective journal websites. In each case, only data from the control condition was used, as
605 the model was not trained to predict translation under stress or other abnormal conditions.
606 The Andreev and Xiao datasets were filtered, to exclude sequences with less than 10 Ribo-
607 Seq reads, as these produced outliers. To compute a measure similar to MRL which can be
608 correlated with the model predictions, the RPF (ribosome protected fragment) read count
609 was divided by the RNA-seq read count for each sequence, yielding the Ribo-Seq ribosome
610 load, also called TE (Translation Efficiency). This procedure yielded TE values for 8003,
611 7672 and 8956 genes in the Andreev, Xiao and Eichhorn datasets respectively.
612 For the PTR experiments, processed data for tissue-specific major transcripts were
613 downloaded from the respective journal websites. As the models considered here are not
614 tissue-specific, the median PTR across tissues was calculated for each available transcript.
615 This procedure yielded PTR values for 5,293 transcripts in the Wilhelm dataset and for
616 11,575 transcripts in the Eraslan dataset.
617 For each dataset, the respective sequences were then one-hot encoded and fed to
618 FramPool50/100 (not truncated) and Optimus50/100 (after truncation to the required fixed-
619 size). Then Pearson and Spearman correlations between the model predictions and the
620 observed measures (MRL, TE or PTR) were computed.
621 To evaluate whether the performance difference between models was significant, the
622 following procedure was used: first, the difference in performance between the models on
623 100 bootstrap samples was computed. From this, we calculated the standard deviation of
624 this difference. Note: we use standard deviations here, and not standard errors, as standard
625 errors can be made arbitrarily small simply by increasing the number of bootstrap samples.
626 This is undesirable, as additional bootstrap samples likely add far less information than
627 additional samples from the actual population.
628 Using the standard deviation, a 95% confidence interval was constructed for the difference.
629 Since $6 \times 4 = 24$ tests need to be conducted to perform all comparisons, a Bonferroni
630 correction was applied. Thus the constructed intervals for individual data points correspond
631 to 99.98% CI, which is equivalent to ± 3.54 standard deviations on the normal distribution. A
632 difference is considered significant if the CI does not overlap zero.

633 Predicting variant effects for LoF-intolerant genes

634 The predicted effect of every possible 5'UTR single nucleotide variant in the canonical
635 transcript of every loss-of-function intolerant gene was computed. To define a loss-of-
636 function intolerant gene, we use the observed/expected (oe) score as provided by gnomAD
637 (gnomAD version 2.1, [47]). Specifically, any gene where the upper bound of the 90% oe
638 score lies below 0.35 is classed as loss-of-function intolerant, which is the cutoff
639 recommended by the gnomAD consortium. The oe score compares the number of loss-of-
640 function variants observed in a gene with the number that would be expected to arise by
641 chance given a mutational model that takes into account sequence context, coverage and
642 methylation. The data was taken from the “pLOF by Transcript TSV” table from the gnomAD
643 website, which also defines which transcripts were considered as canonical for the purpose
644 of computing the oe score.

645 For possible SNVs located at most 100 nt upstream of the start codon of the respective
646 transcript, the sequence was truncated, and the SNV effect was computed both using
647 FramePool100 and Optimus100, to allow for a fair comparison. For those located further
648 than 100 nt from the start, only the FramePool100 model can be used.
649 As phyloP conservation scores do not distinguish between variant bases, the average
650 variant effect was computed by averaging the effect of the three possible SNV at each
651 position (note that we average the absolute values of the log2 fold changes, to ensure up
652 and downregulation are treated uniformly). This gives an indication of how impactful a
653 mutation is at a particular position in expectation, without knowing to which base it will
654 mutate. Moreover, since a particular position could be included in the 5'UTR of more than
655 one transcript, the variant effect of each position was also averaged across all 5'UTR that
656 contain it.
657 PhyloP conservation scores (hg19 phyloP 100way) were downloaded in bigwig format from
658 the UCSC website. Positions in the genome were binned according to the model's predicted
659 average variant effect and the average phyloP score for each bin was computed.
660 Additionally, error bars corresponding to a 95% t-test confidence interval were calculated.

661 Contribution scores

662 Using the DeepExplain package [48], the grad*input metric was computed for a variety of
663 sequences. Grad*input, as the name implies, computes the gradient for a particular input
664 example (that is, a particular 5'UTR sequence) and then multiplies it with the input tensor.
665 The resulting contribution scores measure the impact of slightly “strengthening” a base on
666 the predicted MRL. Mathematically, as the bases are one-hot encoded, this means that the
667 score measures the impact on the output of increasing the one-hot value for a base from 1 to
668 $1 + \text{epsilon}$. While this does not have a direct biological interpretation (there is no such thing
669 as $1 + \text{epsilon}$ times a Uridine), it nevertheless indicates which bases the model deems
670 particularly important for its prediction (since, if a base is not important for the prediction,
671 perturbing it should not influence the output).
672 Using the concise package [49] these contribution scores are then visualized as sequence
673 logo. This allows for easy interpretation.

674 Declarations

675 Availability of data and materials

676 The datasets supporting the conclusions of this article are available in the Zenodo repository
677 under <https://doi.org/10.5281/zenodo.3584237> [50].
678 The code and trained models can be found under <https://github.com/Karollus/5UTR> [51]. The
679 kipoi model can be found under <http://kipoi.org/models/Framepool/> [52].

680 Acknowledgements

681 We would like to thank the Seelig lab, particularly Ban Wang, for providing their code and
682 data.

683 Author Contributions

684 AK, ZA and JG designed the model. AK implemented the software and analysed the data.
685 AK and JG wrote the manuscript. All authors read and approved the final manuscript.

686 Funding

687 Ž.A. was supported by the German Bundesministerium für Bildung und Forschung (BMBF)
688 through the project MechML(01IS18053F).
689

690 Ethics approval and consent to participate

691 Not applicable.

692 Consent for publication

693 Not applicable.

694 Competing Interests

695 The authors declare that they have no competing interests

696 References

697

- 698 1. Liu Y, Beyer A, Aebersold R. On the Dependency of Cellular Protein Levels on mRNA
699 Abundance. *Cell*. 2016;165:535–50.
- 700 2. Franks A, Airoldi E, Slavov N. Post-transcriptional regulation across human tissues. *PLoS*
701 *Comput Biol*. 2017;13:e1005535.
- 702 3. Eraslan B, Wang D, Gusic M, Prokisch H, Hallström BM, Uhlén M, et al. Quantification
703 and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues.
704 *Mol Syst Biol* [Internet]. John Wiley & Sons, Ltd; 2019 [cited 2019 Sep 5];15. Available from:
705 <https://www.embopress.org/doi/abs/10.15252/msb.20188513>
- 706 4. Fortelny N, Overall CM, Pavlidis P, Freue GVC. Can we predict protein from mRNA
707 levels? *Nature*. 2017;547:E19–20.
- 708 5. Schwanhäußer B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global
709 quantification of mammalian gene expression control. *Nature*. 2011;473:337–42.
- 710 6. Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation
711 and principles of its regulation. *Nat Rev Mol Cell Biol*. 2010;11:113–27.
- 712 7. Kozak M. How do eucaryotic ribosomes select initiation regions in messenger RNA? *Cell*.
713 1978;15:1109–23.
- 714 8. Hinnebusch AG. The scanning mechanism of eukaryotic translation initiation. *Annu Rev*
715 *Biochem*. 2014;83:779–812.

716 9. Noderer WL, Flockhart RJ, Bhaduri A, de Arce AJD, Zhang J, Khavari PA, et al.
717 Quantitative analysis of mammalian translation initiation sites by FACS -seq [Internet].
718 Molecular Systems Biology. 2014. p. 748. Available from:
719 <http://dx.doi.org/10.15252/msb.20145136>

720 10. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs.
721 Nucleic Acids Res. 1987;15:8125–48.

722 11. Kozak M. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes.
723 Proc Natl Acad Sci U S A. 1986;83:2850–4.

724 12. Kozak M. Downstream secondary structure facilitates recognition of initiator codons by
725 eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1990;87:8301–5.

726 13. Calvo SE, Pagliarini DJ, Mootha VK. Upstream open reading frames cause widespread
727 reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S
728 A. 2009;106:7507–12.

729 14. Cenik C, Cenik ES, Byeon GW, Grubert F, Candille SI, Spacek D, et al. Integrative
730 analysis of RNA, translation, and protein levels reveals distinct regulatory variation across
731 humans. Genome Res. 2015;25:1610–21.

732 15. Hou J, Wang X, McShane E, Zauber H, Sun W, Selbach M, et al. Extensive allele-
733 specific translational regulation in hybrid mice. Mol Syst Biol [Internet]. John Wiley & Sons,
734 Ltd; 2015;11. Available from: <https://www.embopress.org/doi/abs/10.15252/msb.156240>

735 16. Whiffin N, Karczewski KJ, Zhang X, Chothani S. Characterising the loss-of-function
736 impact of 5' untranslated region variants in whole genome sequence data from 15,708
737 individuals. BioRxiv [Internet]. biorxiv.org; 2019; Available from:
738 <https://www.biorxiv.org/content/10.1101/543504v1.abstract>

739 17. Liu L, Dilworth D, Gao L, Monzon J, Summers A, Lassam N, et al. Mutation of the
740 CDKN2A 5' UTR creates an aberrant initiation codon and predisposes to melanoma. Nat
741 Genet. 1999;21:128–32.

742 18. Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions.
743 Wiley Interdiscip Rev RNA. 2018;9:e1474.

744 19. Pedersen AG, Nielsen H. Neural network prediction of translation initiation sites in
745 eukaryotes: perspectives for EST and genome analysis. Proc Int Conf Intell Syst Mol Biol.
746 1997;5:226–33.

747 20. Zien A, Rätsch G, Mika S, Schölkopf B, Lengauer T, Müller KR. Engineering support
748 vector machine kernels that recognize translation initiation sites. Bioinformatics.
749 2000;16:799–807.

750 21. Reuter K, Biehl A, Koch L, Helms V. PreTIS: A Tool to Predict Non-canonical 5' UTR
751 Translational Initiation Sites in Human and Mouse [Internet]. PLOS Computational Biology.
752 2016. p. e1005170. Available from: <http://dx.doi.org/10.1371/journal.pcbi.1005170>

753 22. Chew G-L, Pauli A, Schier AF. Conservation of uORF repressiveness and sequence
754 features in mouse, human and zebrafish. Nat Commun. 2016;7:11663.

755 23. Zhang S, Hu H, Jiang T, Zhang L, Zeng J. TITER: predicting translation initiation sites by
756 deep learning. Bioinformatics. 2017;33:i234–42.

757 24. Li H, Jiang T. A class of edit kernels for SVMs to predict translation initiation sites in

758 eukaryotic mRNAs. *J Comput Biol.* 2005;12:702–18.

759 25. Sample PJ, Wang B, Reid DW, Presnyak V, McFadyen IJ, Morris DR, et al. Human 5'
760 UTR design and variant effect prediction from a massively parallel translation assay. *Nat*
761 *Biotechnol.* 2019;37:803–9.

762 26. Mignone F, Gissi C, Liuni S, Pesole G. Untranslated regions of mRNAs. *Genome Biol.*
763 2002;3:REVIEWS0004.

764 27. Lin M, Chen Q, Yan S. Network In Network [Internet]. arXiv [cs.NE]. 2013. Available
765 from: <http://arxiv.org/abs/1312.4400>

766 28. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for Simplicity: The All
767 Convolutional Net [Internet]. arXiv [cs.LG]. 2014. Available from:
768 <http://arxiv.org/abs/1412.6806>

769 29. Eraslan G, Avsec Ž, Gagneur J, Theis FJ. Deep learning: new computational modelling
770 techniques for genomics. *Nat Rev Genet.* 2019;20:389–403.

771 30. Avsec Ž, Kreuzhuber R, Israeli J, Xu N, Cheng J, Shrikumar A, et al. The Kipoi repository
772 accelerates community exchange and reuse of predictive models for genomics. *Nat*
773 *Biotechnol.* 2019;37:592–600.

774 31. Diaz de Arce AJ, de Arce AJD, Noderer WL, Wang CL. Complete motif analysis of
775 sequence requirements for translation initiation at non-AUG start codons [Internet]. *Nucleic*
776 *Acids Research.* 2018. p. 985–94. Available from: <http://dx.doi.org/10.1093/nar/gkx1114>

777 32. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide analysis in
778 vivo of translation with nucleotide resolution using ribosome profiling. *Science.*
779 2009;324:218–23.

780 33. Vogel C, de Sousa Abreu R, Ko D, Le S-Y, Shapiro BA, Burns SC, et al. Sequence
781 signatures and mRNA concentration can explain two-thirds of protein abundance variation in
782 a human cell line. *Mol Syst Biol* [Internet]. John Wiley & Sons, Ltd; 2010;6. Available from:
783 <https://www.embopress.org/doi/abs/10.1038/msb.2010.59>

784 34. Floor SN, Doudna JA. Tunable protein synthesis by transcript isoforms in human cells.
785 Elife. eLife Sciences Publications Limited; 2016;5:e10921.

786 35. Andreev DE, O'Connor PBF, Fahey C, Kenny EM, Terenin IM, Dmitriev SE, et al.
787 Translation of 5' leaders is pervasive in genes resistant to eIF2 repression. Elife. eLife
788 Sciences Publications Limited; 2015;4:e03971.

789 36. Eichhorn SW, Guo H, McGahey SE, Rodriguez-Mias RA, Shin C, Baek D, et al. mRNA
790 Destabilization Is the Dominant Effect of Mammalian MicroRNAs by the Time Substantial
791 Repression Ensues. *Mol Cell.* 2014;56:104–15.

792 37. Xiao Z, Zou Q, Liu Y, Yang X. Genome-wide assessment of differential translations with
793 ribosome profiling data. *Nat Commun.* The Author(s); 2016;7:11194.

794 38. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-
795 spectrometry-based draft of the human proteome. *Nature.* 2014;509:582–7.

796 39. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution
797 rates on mammalian phylogenies. *Genome Res.* 2010;20:110–21.

798 40. De Angioletti M, Lacerra G, Sabato V, Carestia C. $\beta + 45$ G → C: a novel silent β -

799 thalassaemia mutation, the first in the Kozak sequence. *Br J Haematol.* Wiley Online Library;
800 2004;124:224–31.

801 41. Oner R, Agarwal S, Dimovski AJ, Efremov GD, Petkov GH, Altay C, et al. The G----A
802 mutation at position+ 22 3'to the Cap site of the beta-globin gene as a possible cause for a
803 beta-thalassemia. *Hemoglobin.* 1991;15:67–76.

804 42. Shrikumar A, Greenside P, Kundaje A. Reverse-complement parameter sharing
805 improves deep learning models for genomics. *bioRxiv* [Internet]. biorxiv.org; 2017; Available
806 from: <https://www.biorxiv.org/content/10.1101/103663v1.abstract>

807 43. Hochreiter S, Schmidhuber J. Long short-term memory. *Neural Comput.* 1997;9:1735–
808 80.

809 44. Weingarten-Gabbay S, Elias-Kirma S, Nir R, Gritsenko AA, Stern-Ginossar N, Yakhini Z,
810 et al. Comparative genetics. Systematic discovery of cap-independent translation sequences
811 in human and viral genomes. *Science* [Internet]. 2016;351. Available from:
812 <http://dx.doi.org/10.1126/science.aad4939>

813 45. Weingarten-Gabbay S, Segal E. Toward a systematic understanding of translational
814 regulatory elements in human and viruses. *RNA Biol.* 2016;13:927–33.

815 46. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. *Proceedings*
816 of the IEEE conference on computer vision and pattern recognition. 2016. p. 770–8.

817 47. Karczewski KJ, Francioli LC, Tiao G, Cummings BB. Variation across 141,456 human
818 exomes and genomes reveals the spectrum of loss-of-function intolerance across human
819 protein-coding genes. *BioRxiv* [Internet]. biorxiv.org; 2019; Available from:
820 <https://www.biorxiv.org/content/10.1101/531210v2.abstract>

821 48. Shrikumar A, Greenside P, Kundaje A. Learning Important Features Through
822 Propagating Activation Differences. *Proceedings of the 34th International Conference on*
823 *Machine Learning - Volume 70.* Sydney, NSW, Australia: JMLR.org; 2017. p. 3145–53.

824 49. Avsec Ž, Barekatain M, Cheng J, Gagneur J. Modeling positional effects of regulatory
825 sequences with spline transformations increases prediction accuracy of deep neural
826 networks. *Bioinformatics.* 2018;34:1261–9.

827 50. Karollus A. Framepool supplementary data and tables [Internet]. 2019. Available from:
828 <https://doi.org/10.5281/zenodo.3584237>

829 51. Karollus A. Predicting mean ribosome load for 5'UTR of any length using deep learning
830 [Internet]. Github; [cited 2020 Jun 13]. Available from: <https://github.com/Karollus/5UTR>

831 52. Karollus A. Predicting mean ribosome load for 5'UTR of any length using deep learning
832 [Internet]. [cited 2020 Jun 13]. Available from: <http://kipoi.org/models/Framepool/>

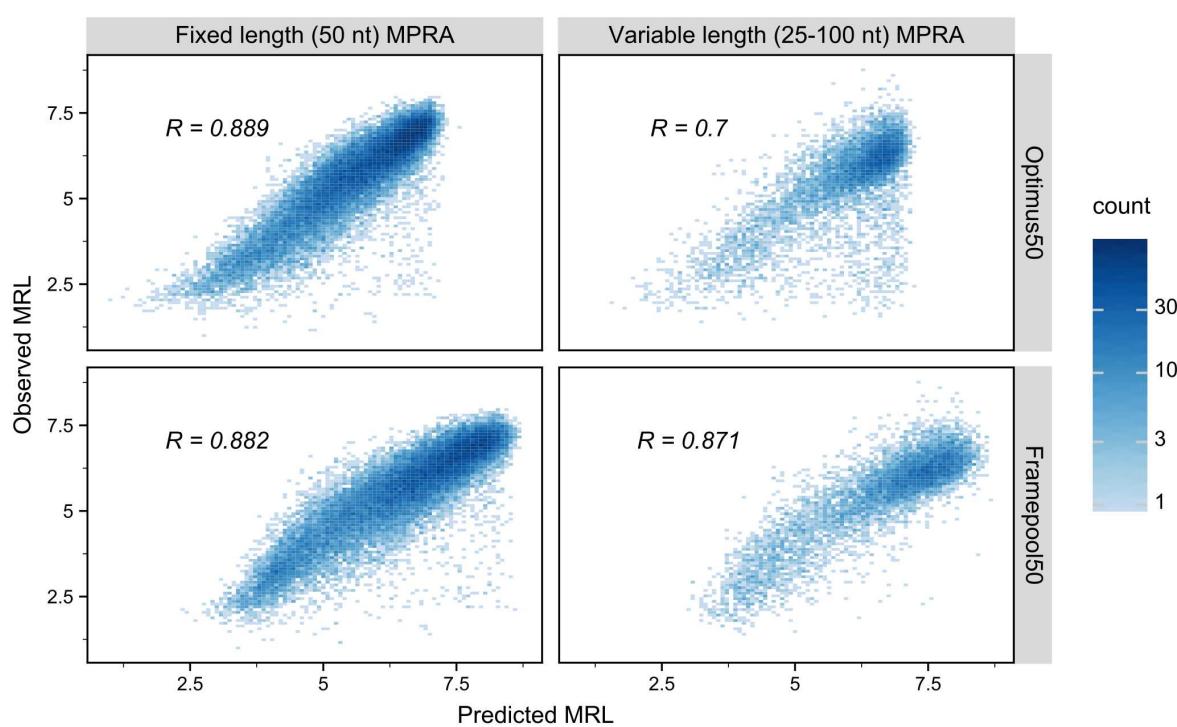
833

834

835

836 Supporting Information

837



839 Supplementary Figure S1: Performance of Optimus50 and Framepool50 on (truncated)
840 human 5'UTR sequences measured in the MPRA experiment. On 50 nt human sequences,
841 the two models perform equivalently, but FramePool50 generalizes much better to longer
842 sequences.

843

844

	Optimus 50	FramePool 50	Optimus 100	FramePool 100	FramePool Combined
Random 50nt	0.966	0.964	0.938	0.929	0.954
Random 25-100nt	0.743	0.901	0.915	0.903	0.914
Human 50nt	0.889	0.882	0.852	0.839	0.867
Human 25-100nt	0.700	0.871	0.882	0.884	0.894

845 Supplementary table S1: Performance on MPRA datasets of Optimus and Framepool
846 models

847

848

849

850

851

Dataset	Type	N	FramePool 50	FramePool 100	FramePool Combined
Floor	Trip-Seq	25831	0.126**	0.156**	0.150**
Andreev	Ribo-Seq	8003	0.221**	0.219**	0.220**
Xiao	Ribo-Seq	7672	0.254**	0.195**	0.208**
Eichhorn	Ribo-Seq	8956	0.206**	0.246**	0.243**
Eraslan	PTR	11575	0.145**	0.167**	0.171**
Wilhelm	PTR	5293	0.114*	0.113*	0.117*

852 Supplementary Table S2: Pearson correlations of predictions with endogenous data. * = p-
853 value smaller than $1*10^{-10}$, ** = p-value smaller than $1*10^{-50}$ (where H_0 is zero
854 correlation)

855

Dataset	Type	N	FramePool 50	FramePool 100	FramePool Combined
Floor	Trip-Seq	25831	0.131**	0.155**	0.151**
Andreev	Ribo-Seq	8003	0.223**	0.230**	0.227**
Xiao	Ribo-Seq	7672	0.259**	0.217**	0.224**
Eichhorn	Ribo-Seq	8956	0.209**	0.242**	0.239**
Eraslan	PTR	11575	0.152**	0.175**	0.176**
Wilhelm	PTR	5293	0.110*	0.125*	0.123*

856 Supplementary Table S3: Spearman correlations of predictions with endogenous data. * = p-
857 value smaller than $1*10^{-10}$, ** = p-value smaller than $1*10^{-50}$ (where H_0 is zero
858 correlation)

859