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Abstract
The 5’ untranslated region plays a key role in regulating mRNA translation and consequently
protein  abundance.  Therefore,  accurate  modeling  of  5’UTR  regulatory  sequences  shall
provide insights into translational control mechanisms and help interpret genetic variants.
Recently,  a  model  was  trained  on  a  massively  parallel  reporter  assay  to  predict  mean
ribosome load (MRL) - a proxy for translation rate - directly from 5’UTR sequence with a high
degree of accuracy. However, this model is restricted to sequence lengths investigated in
the reporter assay and therefore cannot be applied to the majority of human sequences
without a substantial loss of information. Here, we introduced frame pooling, a novel neural
network operation that enabled the development of an MRL prediction model for 5’UTRs of
any  length.  Our  model  shows  state-of-the-art  performance  on  fixed  length  randomized
sequences, while offering better generalization performance on longer sequences and on a
variety of translation-related genome-wide datasets. Variant interpretation is demonstrated
on a 5’UTR variant of the gene HBB associated with beta-thalassemia. Frame pooling could
find  applications  in  other  bioinformatics  predictive  tasks.  Moreover,  our  model,  released
open source, could help pinpoint pathogenic genetic variants.
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Background
Eukaryotic cells make use of complex regulatory mechanisms, which allow precise control of
the  conversion  of  genetic  information  into  functional  proteins.  Understanding  how these
mechanisms are encoded in regulatory sequences is therefore essential to both understand
how healthy  cells  function  and  which  mutations  can predispose  them to  disease.  Much
progress  has been made in  understanding  the control  of  transcription.  However,  mRNA
abundance, while very helpful, is often not sufficient to accurately predict protein abundance
[1–5]. This suggests an active role for regulatory mechanisms that act after transcription,
such as those controlling translation.

The 5’  untranslated regions (UTR) of RNA transcripts plays a key role in the translation
process [6]. According to the standard scanning model of translation initiation, the ribosome
binds  to  the  5’  cap  of  the  mRNA  and  scans  along  the  5’UTR  until  it  finds  a  suitable
translation initiation site (TIS), at which point it will begin the process of protein assembly
[7,8]. This process is generally described as leaky, as the ribosome can skip a TIS. The
ribosome is more likely to skip weaker TIS, i.e. TIS with an unfavourable sequence context,
as opposed to strong TIS [9]. A strong TIS will usually be composed of the AUG start codon
flanked by a sequence similar to the Kozak consensus GCC(A/G)CCAUGG [10], although
other features such as secondary structure will also play a role [11,12]. Once a TIS has been
selected by the ribosome,  it  will  continue translating until  encountering an in-frame stop
codon. Approximately 50% of human transcripts have a TIS and corresponding stop codon
upstream of the canonical coding sequence, a structure commonly referred to as upstream
open reading frame (uORF) [13].

The scanning process has important implications for the regulation of translation. For one,
regulatory motifs can increase or reduce overall protein production by aiding or impeding the
scanning  ribosome.  For  instance,  single  nucleotide  variants  (SNV)  affecting  the  Kozak
sequence or uORFs have been shown to cause significant variation in protein abundance
between humans, even if  mRNA abundance is unaffected  [14].  Differences in translation
efficiency due to such variants have also been observed in a mouse hybrid system  [15].
Additionally, mutations that introduce new TIS upstream of the canonical start codon (uTIS)
can cause the ribosome to translate an altered protein. This may either correspond to a
lengthened version of the canonical protein, or, if the new TIS is out of frame with respect to
the canonical start, an entirely new, and likely dysfunctional, protein. As a result, variants in
the 5’UTR can contribute to or even cause diseases and thus the analysis of such variation
has clinical significance [13,16–18].

Much of  the computational  literature studying translation and the 5’UTR has focused on
developing methods to classify whether a particular input sequence segment acts as a TIS
or not [19–23]. Some studies also directly report which of several TIS in a sequence is most
likely to be chosen [24], although in theory all tools in this category could be used for this
purpose after slight modification. Generally, these computational methods provide accurate
predictions  for  their  chosen task.  However,  as their  goal  is  to  classify  TIS they are not
designed to provide a comprehensive estimate for the overall impact of a particular 5’UTR
sequence on translation.

Recently a massively parallel reporter assay (MPRA) has been developed which provided a
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more complete quantification of the impact of the entire 5’UTR sequence on translation [25].
Specifically more than 200,000 entirely random 5’UTR sequences were generated, each 50
nucleotides long,  and fused with an egfp coding sequence. Using the polysome profiling
technique, the mean ribosome load (MRL), a metric of the average number of ribosomes
associated to a given RNA and a proxy for translation efficiency, was measured for each
sequence. This experimental setup thus allowed measuring the combined impact of a large
variety of  5’UTR motifs on MRL, without any bias due to differences in the coding sequence
or 3’UTR. The same experiment was additionally performed for a library of about 80,000
random 5’UTRs with lengths ranging from 25 to 100 nucleotides.

Using this data, convolutional neural network models predicting the MRL directly from the
5’UTR sequence were trained, including one model using the 50 nt long MPRA sequences
and one model using the variable length MPRA data. Henceforth, they will be referred to as
Optimus50  and  Optimus100  respectively.  These  models  are  very  accurate  on  their
respective test sets and they are undoubtedly valuable tools to study the impact of different
5’UTR  sequence  features.  However,  as  a  result  of  the  specific  architecture  used,  the
Optimus models learn position-specific weights (where the position is defined relative to the
canonical start codon). As a result, neither model can yield predictions for sequences longer
than  the  longest  sequence  in  their  training  data.  Longer  5’UTR sequences  need  to  be
truncated before they can be fed to the model, and thus any information contained in the
truncated segments are lost. Unfortunately, the average human 5’UTR contains about 200
nt,  and  thus  many  annotated  human  5’UTR  are  significantly  longer  than  50  or  100
nucleotides  [26].  As  a  result,  Optimus  MRL  predictions  may  be  incomplete  and  thus
unreliable  for  a  large  number  of  human  transcripts.  Moreover,  the  effects  of  variants
disrupting motifs further than 100 nt from the canonical start cannot be quantified, making it
difficult  to  apply  the  Optimus  models  to  real  human  variant  data.  This  is  unfortunate
because, as the authors have shown, the Optimus models do provide reasonable variant
effect predictions for sequences which do not violate its length restrictions. 

Here we develop a model which bridges this gap and extends the capabilities of the Optimus
models to 5’UTR of any length. Such a model would then allow, in principle, to quantify the
impact on MRL of any kind of variant, mutation or indel, anywhere in a 5’UTR, thus making
the rich knowledge encoded in the MPRA data easily accessible to practitioners.

Results

Modelling 5’UTR of any length using frame pooling
To  investigate  the  extent  to  which  5’UTR  length  varies  across  human  transcripts,  we
computed the empirical cumulative distribution function of length for the 5’UTR annotated in
Genecode  v19  (Fig  1A).  It  was  found  that  only  30%  of  5’UTR  are  100  nt  or  shorter.
Therefore, around 70% of human 5’UTR need to be truncated before they can be analysed
by an Optimus model. If only Optimus50 is used, this number rises to 85%. Furthermore, as
the median  sequence  has  about  200 nt,  it  means that  truncation  will  usually  lead  to  a
substantial loss of information. In the majority of cases, more than half of the sequence must
be thrown away before an Optimus model can be used.
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To  create  a  model  which  provides  mean  ribosome  load  predictions  for  any  5’UTR,
regardless of  length,  care must be taken to not  introduce position-specific  weights while
nevertheless capturing and quantifying the regulatory motifs found in the sequence. One
approach,  which had been successfully  used for  this purpose in the past,  is to combine
convolutional layers with a global pooling operation ([27,28], reviewed in  [29] ). In such a
setup, convolutional layers specialize on detecting the presence and strength of regulatory
motifs,  whereas  the  pooling  layers  aggregate  this  information  across  the  sequence.
However, as noted previously, the impact of upstream start codons (uAUG), depends heavily
on whether  they are located in-frame or  out-of-frame with respect  to  the canonical  start
codon.  As  a  result,  simple  global  pooling  will  not  generalize  well  to  arbitrary  length
sequences since this operation loses the frame information. 

To overcome this problem, we propose instead to first  separate the convolutional  output
according to the underlying biological  reading frame and then perform global  pooling for
each frame separately. This method ensures that the frame information is preserved and
thus the network can differentiate between regulatory motifs located in-frame or out-of-frame
with the coding sequence. We call  this operation framewise pooling, or frame pooling for
short.

The resulting model consists of three convolutional layers, followed by frame pooling, a fully
connected layer and a linear layer to assemble the final MRL prediction (Fig 1B). Two global
pooling  operations  are  performed:  global  max pooling  and  global  average  pooling.  Max
pooling indicates whether a particular motif is strongly present in a particular frame, whereas
average pooling roughly indicates how often a particular motif is present in each frame.

The model was trained three times: using the 50 nt MPRA sequences to allow comparison
with  Optimus50,  using  the  25-100  nt  MPRA  sequences  to  allow  comparison  with
Optimus100 and using both datasets, to create a combined model. Since these datasets
measure MRL on a slightly different scale, the combined model has an additional regression
layer before the final output that learns a library-specific scaling. Henceforth the models will
be referred to as FramePool50, FramePool100 and FramePoolCombined respectively.

These models have been integrated into the Kipoi API [30], allowing them to be applied with
very little overhead to a VCF file containing human variant data (see also Figure 6). As a
result  the  models  are  easy  to  use  and  straightforward  to  integrate  into  existing  variant
annotation pipelines.
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Fig 1: Modelling 5’UTR of any length. A) Empirical cumulative distribution of human 5’UTR
lengths, according to Genecode v19: only 14% (for Optimus50), or 30% (for Optimus100) of
human 5’UTR sequences can be quantified by an Optimus model without information being
lost due to truncation. B) Schematic of a frame pooling model: a one-hot-encoded 5’UTR is
fed through 3 convolutional layers. For ease of visualization, the biological frame is indicated
by colour. Then the convolution output is sliced according to the frame, and each frame is
pooled separately, using global average and max pooling. The frame-specific information is
then aggregated by a dense layer and a final linear layer assembles the mean ribosome load
prediction. 

Evaluating frame pooling on MPRA data
To ascertain that a model based on frame pooling still yields accurate predictions, despite no
longer having detailed position information, it was tested on the same held-out test set as in
the original Optimus study  [25]. On these 20,000 sequences, the predictions of the frame
pooling model (FramePool50) show a Pearson correlation of 0.964 with the observed MRL
values,  whereas  Optimus50  had  a  correlation  of  0.966  (Fig  2).  Hence,  despite  having
considerably  fewer  weights  overall,  and  no  position-specific  weights  in  particular,
FramePool50  still  performs  almost  as  well  as  Optimus50  on  MPRA  sequences.  This
demonstrates that  frame pooling  is  sufficient  to  capture  almost  all  the  signal  present  in
MPRA data,  with  the  distinct  advantage  of  not  needing  to  introduce  constraints  on the
sequence length.

This advantage becomes apparent when applying the model to the other MPRA test set,
consisting of 7,600 sequences, with lengths ranging from 25 to 100 nt (with 100 sequences
for  each  length).  Optimus50,  due  to  its  position-specific  weights,  cannot  identify  motifs
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located further than 50 nucleotides from the canonical start codon. As a result, it generalizes
poorly  to  this  variable-length  test  set,  and the correlation  drops to 0.743.  FramePool50,
despite being trained on the same data, does not face this restriction and generalizes much
better,  with  a  correlation  of  0.901(Fig  2).  Note  that  this  result  compares well  even with
Optimus100, which was trained on the variable-length MPRA data, and has a correlation of
0.915 with the observed values of this test set (Table S1). A similar pattern can be observed
on (truncated) human sequences measured in the MPRA experiments (Fig S2). Optimus50
and FramePool50 perform very similarly on human 5’UTR truncated to 50 nt (corr: 0.889 vs
0.882), but frame pooling again generalizes better: for 25-100 nt sequences the correlation
for Optimus50 drops to 0.7, whereas FramePool50 remains at 0.871. These results show
that, despite the relative simplicity of the frame pooling operation, it  provides an effective
method of generalizing the model to 5’UTR sequences considerably longer than those it has
been trained on. 

Fig  2:  Performance  of  Optimus50  and  FramePool50  on  MPRA test-sets.  Observed
mean ribosome load (MRL< y-axis)  against  predicted MRL for  Optimus50 (top row)  and
FramePool50 (bottom row) on the 50 nt fixed-length MPRA dataset (left column) and the
variable-length MPRA dataset (right column). Optimus50 performs very well when evaluated
on a test set of 20,000 random 50 nt long 5’UTR sequences. However,  its performance
drops strongly when evaluated on a test-set of 7,600 random 5’UTR sequences which vary
in  length  from 25 to  100 nt.  This  is  because  sequences  longer  than 50 nt  need to  be
truncated to fit the model. Despite not having position-specific weights, the frame pooling
model  captures  almost  as  much  signal  as  Optimus  on  the  short  MPRA  sequences.
Additionally,  it  generalizes  very  well  to  the  variable-length  MPRA  data,  strongly
outperforming Optimus50. This shows the ability of the frame pooling approach to capture
predictive signals even in sequences considerably longer than those it has been trained on.
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FramePool quantitatively predicts effects of uTIS motifs
To evaluate the predictive power of a frame pooling model on an independent data set, we
applied  it  to  large-scale  perturbation  assays  probing  upstream  translation  initiation  site
contexts.  Noderer  et  al.  [9] investigated every possible  -6 to +5 context  of  a AUG site,
whereas Diaz de Arce et al. [31] performed a similar analysis for every -3 to +4 context for
selected alternative start codons, such as CUG and GUG. We evaluated the extent to which
our  model  (FramePoolCombined)  agrees  with  these  estimates.  This  was  achieved  by
injecting each of these uTIS motifs out-of-frame into a random sequence and then feeding
them to the model twice: once with the central start codon “deactivated” (e.g. AUG replaced
with AGG) and once in  an “active form”.  The difference,  in  terms of  fold change of  the
predicted MRL, between the active and inactive version was recorded (Fig 3A). The resulting
scores were correlated with the relative  strengths of  the respective  motifs  (Fig  3B).  We
expect these correlations to be significantly negative, since stronger uTIS motifs should also
lead to stronger reductions in predicted MRL if they are activated. For uAUG contexts we
indeed  measured  a  strong,  negative  Pearson  correlation  of  -0.802.  Hence,  despite  not
having been trained explicitly  for this task, the model has learnt to effectively distinguish
between weak and strong uTIS motifs with high accuracy. For uCUG and especially uGUG,
the correlations are weaker (-0.712 and -0.394 respectively) but still significant. Likely the
training data was not sufficient to learn the full regulatory code of such non-canonical TIS, as
they generally are much weaker than uAUG, and thus more difficult to detect in MPRA data.
Nevertheless,  even  here  the  model  clearly  makes  some  correct  distinctions  between
stronger  and  weaker  alternative  start  codon  motifs.  In  summary,  these  results  on
independent perturbation data show that our model captured important components of the
5’UTR code regulating translation, and can be used to quantify the impact of variants on
translation control.
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Fig 3: Framepool predicts the strength of upstream transcription initiation sites. A)

The model was used to predict the effect of upstream TIS contexts by injecting them into
random sequences and comparing predicted MRL fold change associated with upstream
start  codon  activation  (mutation  AGG  →  AUG).  B)   These  predictions  (x-axis)  were
correlated with independent experimental  measurements of the relative strength of these
contexts (y-axis). Overall, a negative correlation is observed (top right) as expected because
upstream TISs  compete  with  canonical  TISs.  For  AUG start  codon  data  [9],  the  model
correlates well  with the strength estimates (top right, Pearson correlation of -0.802), with
more efficient contexts causing a larger predicted effect on MRL. Negative correlations were
also observed for the alternative start codons CUG (bottom left) and GUG (bottom right) data
[31].  The  correlations  are  weaker,  particularly  for  GUG,  likely  reflecting  the  difficulty  of
detecting more subtle motifs in MPRA data. Nevertheless,  the model has still  learned to
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distinguish between strong and weak CUG/GUG motifs to some extent.

Evaluating frame pooling on endogenous genes
Having  evaluated  the  performance  of  frame  pooling  on  MPRA data,  we  next  analysed
whether it could also deliver meaningful predictions for endogenous genes.

Many experimental protocols exist to measure different aspects of translation efficiency for
human transcripts, such as ribosome footprinting (Ribo-Seq,  [32]) or using Mass-Spec to
determine  Protein-to-mRNA  ratios  (PTR,  [33]) which  all  relate  to  mean  ribosome  load.
Hence, such measures should correlate with the MRL predictions provided by our models.
The correlations are expected to be lower though, because these measurements are not
direct measurement of ribosome load and because in endogenous data, as compared to
MPRA data, the coding sequence and the 3’UTR are not constants, but also vary between
transcripts. Both of these features have been shown to considerably affect the ribosome load
and the PTR [3,34]. Moreover, PTR is also dependent on protein degradation rates, which
are not captured by MRL.

Nevertheless,  we correlated the predictions of our models with such measures gathered
from  six  different  previously  published  studies.  These  include  two  Ribo-Seq  studies
performed on HEK293 cells [35,36] and one on PC3 cells [37]. In these three studies, RNA
sequencing  (RNA-Seq)  and  Ribo-Seq  data  are  combined  to  compute  a  measure  of
translation  efficiency  comparable  to  ribosome  load.  Two  studies  measure  PTR  across
human tissues [3,38]. As our model is not tissue specific, we used the median PTR across
tissues. Lastly, Floor et al. [34] computed a mean ribosome load measure using a technique
called Trip-Seq for all transcripts in HEK293 cells. This involves polysome profiling and is
similar to the MRL measured in the MPRA experiments. Note that most of these studies
compare several conditions but we only used data for control group cells.

For each of these datasets, the correlations were positive and statistically significant, albeit
small, ranging from 0.11 tro 0.25  (Tables S2-3). Thus, despite the bias introduced by other
sequence features and despite our models only being trained on purely random sequences,
they nevertheless captured biologically relevant signals related to translational regulation.
 
Moreover,  the  MRL predictions  of  the  frame pooling  model  correlated  better  with  these
various datasets than the Optimus predictions did (Fig 4). For example, on sequences longer
than 50 nt,  FramePool50 shows significantly  better correlation on endogenous data than
Optimus50 on 4 of 6 datasets, with the last two showing no significant difference (Fig 4).
Meanwhile,  on  sequences  longer  than  100  nt,  FramePool100  significantly  outperforms
Optimus100 on 2 datasets, with the other 4 showing no significant difference. These results
provide further evidence that  frame pooling allows to generalize and provide meaningful
predictions beyond the range of 5’UTR sequences used in training. Moreover, these results
indicate that the ability to generalize to longer sequences is not restricted to synthetic MPRA
sequences, but extends to human transcripts.

Eraslan et al. [3] identified a number of 5’UTR motifs which are not captured by our models,
likely because their effects are too subtle or context-specific to be detected in MPRA data. A
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linear model which includes these motifs as additional predictors can explain more of the
signal in PTR data than the MRL predictions of a frame pooling model alone, although the
difference is modest (using FramePoolCombined as the basis, the Pearson correlation rises
from 0.171 to 0.199 when including the additional motifs). In further studies of translation
efficiency, predictions from a frame pooling model could be used as an informative input
feature to models trained on endogenous data. 

Fig  4: Correlating  Optimus  and  Framepool  MRL  predictions  with  a  variety  of

translation-efficiency  related  measurements  for  human  transcripts.   Pearson’s
correlation  between  MRL predictions  and  various  published  translation-efficiency  related
measurements for Framepool (y-axis) against Optimus (x-axis) for human 5’UTR sequences
shorter than the longest training sequence (left column) or larger (right column) and when
the model is trained on 50 nt MPRA (top row) or the variable-length MPRA (bottom row).
Dataset labels are colour-coded by measurement type: Protein-to-mRNA ratio (red), Ribo-
Seq (green), and TripSeq (blue). For 5’UTR sequences shorter than 50 nt, no significant
difference  can  be  observed  between  FramePool50  and  Optimus50  (the  diagonal  line
indicates identical performance).  For  those longer than 50 nt, FramePool50 significantly
outperforms  Optimus  on  4  of  6  datasets.   FramePool100  and  Optimus100  show
indistinguishable  performance  on  5’UTR  sequences  shorter  than  100  nucleotides.  For
sequences longer than 100 nt, FramePool100 significantly outperforms Optimus on 2 out of
6 datasets, with inconclusive results for the other sets. This suggests that frame pooling
captures  additional  signals  from  longer  sequences  in  endogenous  data.  Significance  is
assessed by bootstrapping and corrected for multiple testing (Bonferroni, methods).
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Quantifying the impact of variants
We next asked whether our models could identify functionally  important  nucleotides.  We
reasoned  that  single  nucleotide  variants  predicted  to  have  strong  effects  on  ribosome
loading  should  occur  at  locations  which  are  more  evolutionarily  conserved,  at  least  for
functionally  important  genes.  Hence,  we  predicted  the  effect  of  every  single  nucleotide
variant on MRL throughout the 5’UTR of the canonical transcripts of genes strongly depleted
for loss-of-function variants in the human population (LoF-intolerant genes, Methods). We
observed  that  the  stronger  the  effect  FramePool100  predicted  was,  the  more
phylogenetically conserved the position was (PhyloP score  [39] Methods, Fig 5). The trend
was particularly pronounced within 100 nt of the canonical start codon, whereby variants
predicted to affect MRL by more than 50% showed an average PhyloP score roughly double
than the average 5’UTR position (Fig 5A). The same trend was observed for Optimus100.
Positions  further  than  100  nt  from  the  canonical  start  could  only  be  scored  with
FramePool100  and  further  exhibited  a  milder  yet  significant  association  between
phylogenetic conservation and predicted SNV effect on MLR (Fig 5B). These results indicate
that  these  models  can  identify  positions  in  5’UTR  with  important  regulatory  functions.
Therefore,  these  models  could  be  useful  to  flag  variants  which  may  have  particularly
deleterious impacts on translational control. In this regard, the frame pooling model has the
advantage that  it  can deliver  predictions  for  any 5’UTR variant,  regardless how far  it  is
located from the canonical start. 
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Fig 5: Comparing the predicted impact of every possible 5’UTR SNV with conservation

scores for loss-of-function intolerant genes. A) For positions no further than 100 nt from
the canonical transcript start codon, both Optimus100 and FramePool100 can predict the
impact of SNV. Positions where a SNV is predicted to have a high impact on average also
tend to be more strongly conserved. Error bars correspond to 95% confidence intervals. The
grey line shows the average PhyloP score among all analysed 5’UTR position. B) For 5’UTR
positions further than 100 nt from the canonical start, only FramePool100 can be applied.
Again, positions where the SNV impact is predicted to be higher also tend to be more highly
conserved. This further demonstrates that FramePool100 can identify biologically relevant
regulatory elements even in sequences longer than those it has been trained on.

Variant effect prediction and model interpretation
The FramePoolCombined model has been integrated into the model repository for genomics
Kipoi  [30].  This  allows  leveraging  the  diverse  features  of  the  Kipoi  ecosystem.  Most
importantly, the FramePoolCombined model can be readily used for variant effect prediction
including SNVs and indels from VCF files (Fig 6). 
The Kipoi model reports variant effects in terms of log2 fold change of MRL. However, uTIS
located out-of-frame will generally have a large impact on MRL, but in-frame uTIS may not
necessarily change ribosome load much if they just lengthen the effective coding sequence.
Nevertheless, such a change may still affect the function of the protein. To provide indication
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to practitioners whether such a protein lengthening has occurred, the Kipoi version of the
model additionally  reports two additional  variant  effect scores, representing the predicted
variant effect after “shifting” the 5’UTR sequence by one or two frames. 

Fig 6: Schematic of the Kipoi model workflow. Using a vcf, bed and fasta file as input, the
kipoi model predicts log2 fold-change in MRL due to variants affecting particular transcript
5’UTRs. Additionally, the model reports the log2 fold-change in MRL for the same sequences
after simulated frameshifts.

To offer an illustration of how variants effects are predicted, we provide the results of a
model interpretation procedure for the 5’UTR sequence of the HBB gene (HBB-001), which
plays a role in beta-thalassemia and has known 5’UTR variants  [40,41].  Specifically,  we
computed gradient contribution scores and all predicted variant effects for all positions in the
sequence (Fig 7A). Contribution scores measure the gradient of the predicted output with
respect to a particular input nucleotide. Contribution scores thus give an indication of the
importance of this nucleotide to the final output according to the model (Methods). Variant
effect scores meanwhile visualize how the model scores mutations at different points in the
sequence. As the HBB gene does not include an uTIS, the model mainly focuses on the
sequence at the 5’ end and on the sequence preceding the canonical start  codon. Most
SNVs are predicted to have little impact, with the exception of those creating uAUGs. One of
these  uAUG-creating  mutations  is  a  known  pathogenic  variant.  Introducing  it  to  the
sequence greatly changes the model’s predictions (Fig 7B), as the main focus of the model
now shifts to the created uAUG and its context. Consistent with previous research on the
Kozak  sequence,  the  -3  position  of  the  uTIS is  predicted   to  play  an important  role  in
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modulating the effect of the new start codon [10,14]. The striking difference in variant effect
prediction  in  the  reference  sequence  versus  the  SNV-containing  alternative  sequence
reflects the high nonlinearity  of  the model.  Rather than just  being able to score specific
SNVs, the model can also provide predictions for combinations of variants (such as creating
an uAUG while simultaneously modifying its -3 position).
Altogether,  we  believe  our  model  can  be  used  to  improve  germline  or  somatic  variant
interpretation and foresee application of it in rare disease research.

Fig 7: Identifying motifs within the HBB 5’UTR sequence. A) The sequence logo shows
the gradient impact of each nucleotide on the model’s final prediction. The 5’ end and the
sequence  immediately  preceding  the  canonical  start  contribute  relatively  strongly  to  the
gradient,  as  does a  G.  The heatmap shows the predicted  impact  (in  terms of  log2  fold
change) of mutating each position within the sequence. Strong effects are associated with
uAUG-creating variants. B) Variant rs34704828, a known pathological variant which creates
an uAUG, is introduced to the sequence. The model’s main focus, in terms of gradient, now
lies on the new AUG and its surrounding context. The heatmap shows that the impact of the
variant is influenced by its context.

Discussion
We have introduced frame pooling, a novel neural network operation which performs pooling
over distinct frames of an input vector. By combining a convolutional neural network with
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framewise pooling and training on MPRA data, we have created a model which can provide
mean ribosome load predictions for 5’UTR of any length. In comparison to the state-of-the-
art,  our  approach  provides  similar  performance  on short  sequences,  with  the additional
advantage that longer sequences do not need to be truncated for analysis. This allows for
better  generalization  and moreover  makes it  possible  to  score  additional  variants  which
would have been ignored previously.  Comparison with conservation scores and previous
research on uTIS motifs has further shown that a model equipped with frame pooling has
learned to quantify important components of the 5’UTR regulatory code. Since our model
has  been integrated  into  the Kipoi  framework,  it  can easily  be used  by  practitioners  to
analyse any human 5’UTR variant or mutation, including indels. Additionally it can quickly be
integrated into a larger pipeline or serve as the starting point for future research.

The frame pooling approach developed in this paper is specific to the study of translation,
but it is reflective of a more general idea: despite often being regarded as black-box models,
it  is  possible  to  encode  prior  biological  knowledge  into  neural  networks  through  careful
modifications to their architecture. As demonstrated in this study, this can allow the network
to  generalize  more  effectively  to  unseen  contexts  and  beyond  the  specific  constraints
inherent in the training data. Genomics has many features, such as reverse complementarity
[42], or helical periodicity which could be encoded in a somewhat analogous fashion into
neural network architecture. However, by encoding a specific model of biology into a neural
network,  one also reduces its ability to learn about mechanisms which deviate from this
model.

Despite its clear advantages, two limitations of our model architecture should be noted. First,
because the architecture relies on convolutions and pooling, there are known features of
translational regulation that it cannot fully capture. For one, a frame pooling model cannot
detect upstream open reading frames that are longer than the receptive field, that is, the
segment of the input sequence that contributes to the activation of an individual neuron in
the  final  convolutional  layer.  In  our  architecture,  this  limits  uORF  that  can  reliably  be
detected  to  a  length  of  19  nt.  Second,  this  architecture  cannot  entirely  replicate  the
mechanics of leaky scanning. While it can reliably detect uTIS, detect which frame they are
in and assess their relative strengths, it cannot determine in which order they appear in the
sequence. Because the ribosome scans from the 5’ end, this ordering should in principle
matter, although it is unclear whether this effect is detectable in the MPRA data. A recurrent
neural  network,  such  as  long  short  term memory  networks  [43],  could  overcome these
limitations. However, in our experiments simple long short term memory networks were not
able to outperform the frame pooling models and additionally took far longer to train and to
predict.  Accordingly,  designing a scanning model that incorporates our knowledge of the
scanning process more holistically, remains an avenue for future research.

More generally, training on MPRA data implies unique advantages and disadvantages. The
main  advantage of  MPRA data is  its  lack of  bias  as  compared to endogenous  data.  In
endogenous data, many sources of spurious correlations exist as a result of evolutionary
optimization. For example, certain classes of genes may be highly translated as they fulfill
vital  functions.  A model may then use motifs in the coding sequence that  encode these
functions to predict translation. It will then possibly erroneously conclude that mutation of the
function also impacts translation. In an MPRA experiment such as Sample et al. [25], such
spurious correlations do not arise as everything except the 5’UTR is held constant. A model
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trained on such data can thus provide unbiased and plausible effects for the impact of a
mutation. Moreover, MPRA experiments sample a much larger space of genetic variation
than endogenous data. Evolution quickly removes variants which are too destructive from
the gene pool, thus collecting sufficient data on highly pathogenic genetic mutations from
living populations is difficult. MPRA data circumvents this problem as it allows for any kind of
motif to be analysed, no matter if it could occur in a living human. Thus, models trained on
MPRA data can more confidently score variants deviating heavily from the average genome.
This suggests that our models could be used effectively in a clinical setting to quickly flag
candidate mutations that could significantly distort translation. 

This  lack  of  bias  however  also  presents  a  limitation.  Because  the  space  of  possible
sequences is  probed randomly,  motifs consisting of  many nucleotides  are unlikely  to be
featured in the data, unless the sample size is unfeasibly large. Moreover, motifs with more
subtle effects may be drowned out by motifs with larger effects. As a result a model trained
on MPRA data may have much knowledge of motifs that rarely occur in living organisms
while  lacking  knowledge  of  complex  motifs  carefully  selected  by  evolution  to  finetune
biological processes. In particular, up to 10% of human 5’UTR exhibit a internal ribosome
entry site (IRES), which allows a ribosome to directly initiate translation without first scanning
the 5’UTR  [44,45]. Making a more general  model,  which combines  knowledge  from the
Sample et al.  [25] MPRA with other studies specific to IRES, presents another avenue for
future research. This conclusion extends also to other 5’UTR features, including the overall
length of the 5’UTR, 5’UTR introns and factors related to mRNA stabilization and decay, all
of which may play a role in regulating translation  [18]. Combining MPRA with endogenous
data could be an effective method to allow detection of additional motifs, without sacrificing
the ability to score variants in an unbiased manner.  

Methods

Framepool model
All  code  was  written  in  python  3.6.  The  model  was  implemented  using  Keras  with  a
Tensorflow backend. With the exception of the frame pooling (see below), all layers use the
standard Keras API.
The three convolutional layers all have a kernel size of 7 and 128 filters each. The dense
layer has 64 neurons and a dropout with a drop-rate of 0.2 is applied to its outputs. All
layers, except the final linear layer and the frame pooling, use ReLU activation functions.
Altogether the framepool models have 282,625 learnable weights each, with the exception of
the FramePoolCombined model,  which has 4 additional  learnable  weights  in  the scaling
regression layer.
Note  that  residual  skip  connections  [46] were  used  between  convolutional  layers  in  all
models.  These  were  used  as  they  speed  up  training,  but  did  not  provide  any  tangible
performance benefits.
Tensorflow requires each batch-tensor to have defined dimensions. To accomodate variable
length sequences,  we pad the 5’  end of  all  sequences with zeros to match the longest
sequence  in  the batch.  To prevent  these additional  zeros  from impacting  predictions,  a
masking  tensor  is  used.  Specifically,  this  masking  tensor  ensures  that  the  correct
denominator is used in average pooling.
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Frame pooling
Frame pooling was implemented using Tensorflow’s tensor-slicing utilities. The output tensor
of the third convolutional layer is sliced into three tensors, one for each frame with respect to
the canonical start codon. Global max pooling and global average pooling are then used to
aggregate the filter outputs along the input  sequence. The resulting pooled tensors thus
indicate whether the motif captured by a particular filter is (a) present somewhere in the
sequence and (b) how strongly it is present on average along the sequence. These tensors
are concatenated and fed to the dense layer.
To illustrate how this works, consider the following example: a sequence of length 300 (so
dimensions  are  (300,  4)  after  one-hot  encoding)  is  fed  to  the  model.  After  the  third
convolutional layer, it will have dimensions (300, 128). Before slicing, the tensor is reversed
along the sequence axis, to ensure that the frame is related to the canonical start codon in a
consistent manner for all input sequences. After slicing, there will be three tensors, each with
dimensions (100, 128), whereby the first tensor will consist of the slices conv3_output[(0, 3,
6, …, 297), :], the second will consist of conv3_output[(1, 4, 7, …, 298), :] and so on. Global
max pooling will return three tensors of shape (128, ), and so will global average pooling.
After concatenation, a tensor of shape (768, ) remains.

Model training
The FramePool50 model was trained on the egfp1 MPRA dataset from Sample et al.  [25].
This set comprises the sequences of 260,000 random 5’UTR, all 50 nucleotides in length,
together with mean ribosome load measurements for each sequence.
Of  these  260,000  sequences,  20,000  were  withheld  for  the  validation  set,  which  was
employed  to  optimize  hyperparameters  and  for  early  stopping  (but  not  for  testing).
Hyperparameters  were  adjusted  manually,  but  generally  only  minor  tweaking  was
necessary,  as  the  Optimus  5  Prime  hyperparameters  already  worked  very  well  for  the
framepool model.Training was done using the Adam optimizer with default parameters and a
standard mean-squared-error loss function. Training was stopped early if no improvement
was made on the validation set for 3 consecutive epochs. This generally happened after 10-
15 epochs. The model with the lowest validation set error was then chosen.
The FramePool100 model was trained on the random variable length MPRA dataset. This
set  comprises  76319  random  5’UTR,  with  lengths  varying  from  25  to  100  nucleotides,
together with mean ribosome load measurements for each sequence. No new validation set
was constructed for this data and training was done for six epochs straight, without early
stopping or other optimizations.
The FramePoolCombined model was trained on both training sets for six epochs straight,
with an additional library indicator to account for differences in scaling.

Model testing
Two MPRA test sets were used to evaluate model performance. One consists of 20,000
MPRA sequences that are 50 nt long. The other consists of 7,600 MPRA sequences, which
vary in length from 25 to 100 nt, with 100 sequences for each length. These are the same
test sets which were used in Sample et al. [25] to evaluate the performance of the Optimus
models. Thus, performances on these sets are directly comparable.
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Kipoi integration
To make the model compatible with the Kipoi  model zoo API, a custom dataloader was
written in Python 3.6, using the numpy, pandas and pybedtools packages. The dataloader
takes as input a bed file specifying 5’UTR exon regions of interest, a vcf file specifying the
variants of interest, and a fasta file with a human reference genome. The dataloader then
uses pybedtools to intersect the vcf file with the bed file, keeping only transcripts which have
some  variant  in  one  of  their  5’UTR  exon  regions.  The  reference  sequence  for  these
transcript 5’UTRs are then extracted from the fasta file, all intersecting variants are injected,
and both reference sequences and variant sequences are one-hot encoded and fed to the
model in batches. 
The model then predicts MRL for both the reference sequence and the variant sequence.
Using these predictions, the log2 fold change of MRL due to the variants is computed and
reported. 
By zero-padding the 3’ end of both reference and variant sequence, a frameshift with respect
to the canonical start codon is simulated. The log2 fold-change of MRL due to the variants for
these shifted sequences is reported as additional output, to provide more information to the
user. Particularly, this information can be used to detect AUG-creating/destroying variants
that act within the canonical frame and thus only lengthen/shorten the canonical protein,
rather than destroying it.

TIS strength
Noderer  et  al.  [9] provide  estimates  for  the  relative  translation  initiation  strength  of  all
possible -6 to +5 contexts surrounding an AUG start codon. This data was downloaded from
the journal website. 
The frame pooling models only output MRL predictions and thus do not rate the strength of
different  TIS contexts directly  (although internally  they undoubtedly  have some notion of
what constitutes a strong TIS). To force the models to provide TIS-strength predictions, we
took each AUG and their context of the Noderer et al data, added random bases on either
side (so the sequence length equals the receptive field size of the convolutional layers), and
then predicted MRL twice: once with AUG activated, and once with an inactive start (AGG).
Then the predicted fold change in MRL due to AUG activation was correlated with the TIS
Strength as estimated by Noderer et al [9]. To reduce noise due to the added random bases,
this procedure was performed 100 times and an average was taken. Additionally, contexts
which inadvertently introduce another AUG, e.g. AAUGGGAUGGG, were removed from the
analysis, as in such a case it is not clear which of the two AUG is selected as start codon.
Accordingly, the surrounding context of the start codon is not well defined.
The same analysis was performed for each non-AUG start codon considered in Diaz de Arce
et al [31]. Again, contexts which inadvertently introduce an AUG were removed.

Translation-related measures of endogenous genes
To evaluate the model’s predictive performance when applied to endogenous sequences,
data from a variety of experiments used to investigate translational control were collected.
These include a Trip-Seq experiment  [34], three Ribo-Seq experiments  [35–37],  and two
protein-to-mRNA ratio (PTR) experiments [3,38].
For the Trip-Seq experiment, processed data at the transcript level was downloaded from
the journal website. Transcripts with a count less than 1 TPM in either replicate were filtered
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and then the replicates were averaged. Next, counts for transcripts with the same 5’ UTR
were aggregated (as all models considered here only focus on the 5’ UTR) and the mean
ribosome load  was  calculated  from the  polysome  fractions.  The  final  dataset  has  MRL
values for 25,831 transcripts.
For the Ribo-Seq experiments, processed data at the gene level was downloaded from the
respective journal websites. In each case, only data from the control condition was used, as
the model was not trained to predict translation under stress or other abnormal conditions.
The Andreev and Xiao datasets were filtered, to exclude sequences with less than 10 Ribo-
Seq reads, as these produced outliers. To compute a measure similar to MRL which can be
correlated with the model predictions, the RPF (ribosome protected fragment) read count
was divided by the RNA-seq read count for each sequence, yielding the Ribo-Seq ribosome
load,  also called TE (Translation Efficiency).  This procedure yielded TE values for 8003,
7672 and 8956 genes in the Andreev, Xiao and Eichhorn datasets respectively.
For  the  PTR  experiments,  processed  data  for  tissue-specific  major  transcripts  were
downloaded from the respective journal websites. As the models considered here are not
tissue-specific, the median PTR across tissues was calculated for each available transcript.
This  procedure yielded PTR values for  5,293 transcripts  in  the Wilhelm dataset  and for
11,575 transcripts in the Eraslan dataset. 
For  each  dataset,  the  respective  sequences  were  then  one-hot  encoded  and  fed  to
FramPool50/100 (not truncated) and Optimus50/100 (after truncation to the required fixed-
size).  Then Pearson and Spearman correlations between the model  predictions  and the
observed measures (MRL, TE or PTR) were computed.
To  evaluate  whether  the  performance  difference  between  models  was  significant,  the
following procedure was used: first, the difference in performance between the models on
100 bootstrap samples was computed. From this, we calculated the standard deviation of
this difference. Note: we use standard deviations here, and not standard errors, as standard
errors can be made arbitrarily small simply by increasing the number of bootstrap samples.
This  is  undesirable,  as additional  bootstrap samples likely  add far  less  information than
additional samples from the actual population.
Using the standard deviation, a 95% confidence interval was constructed for the difference.
Since  6x4  =  24  tests  need  to  be  conducted  to  perform  all  comparisons,  a  Bonferroni
correction was applied. Thus the constructed intervals for individual data points correspond
to 99.98% CI, which is equivalent to +/-3.54 standard deviations on the normal distribution. A
difference is considered significant if the CI does not overlap zero.

Predicting variant effects for LoF-intolerant genes
The  predicted  effect  of  every  possible  5’UTR  single  nucleotide  variant  in  the  canonical
transcript  of  every  loss-of-function  intolerant  gene  was  computed.  To  define  a  loss-of-
function intolerant gene, we use the observed/expected (oe) score as provided by gnomAD
(gnomAD version 2.1,  [47]). Specifically, any gene where the upper bound of the 90% oe
score  lies  below  0.35  is  classed  as  loss-of-function  intolerant,  which  is  the  cutoff
recommended by the gnomAD consortium. The oe score compares the number of loss-of-
function variants observed in a gene with the number that would be expected to arise by
chance given a mutational model that takes into account sequence context, coverage and
methylation. The data was taken from the “pLOF by Transcript TSV” table from the gnomAD
website, which also defines which transcripts were considered as canonical for the purpose
of computing the oe score.  
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For possible SNVs located at most 100 nt upstream of the start codon of the respective
transcript,  the  sequence  was  truncated,  and  the  SNV  effect  was  computed  both  using
FramePool100 and Optimus100, to allow for a fair comparison. For those located further
than 100 nt from the start, only the FramePool100 model can be used.
As  phyloP  conservation  scores  do  not  distinguish  between  variant  bases,  the  average
variant  effect  was computed by averaging the effect  of  the three possible  SNV at  each
position (note that we average the absolute values of the log2 fold changes, to ensure up
and  downregulation  are  treated  uniformly).  This  gives  an  indication  of  how impactful  a
mutation  is  at  a particular  position  in  expectation,  without  knowing  to which  base it  will
mutate. Moreover, since a particular position could be included in the 5’UTR of more than
one transcript, the variant effect of each position was also averaged across all 5’UTR that
contain it.
PhyloP conservation scores (hg19 phyloP 100way) were downloaded in bigwig format from
the UCSC website. Positions in the genome were binned according to the model’s predicted
average  variant  effect  and  the  average  phyloP  score  for  each  bin  was  computed.
Additionally, error bars corresponding to a 95% t-test confidence interval were calculated.

Contribution scores
Using the DeepExplain package  [48], the grad*input metric was computed for a variety of
sequences. Grad*input, as the name implies, computes the gradient for a particular input
example (that is, a particular 5’UTR sequence) and then multiplies it with the input tensor.
The resulting contribution scores measure the impact of slightly “strengthening” a base on
the predicted MRL. Mathematically, as the bases are one-hot encoded, this means that the
score measures the impact on the output of increasing the one-hot value for a base from 1 to
1 + epsilon. While this does not have a direct biological interpretation (there is no such thing
as 1 + epsilon times a Uridine),  it  nevertheless indicates which bases the model deems
particularly important for its prediction (since, if a base is not important for the prediction,
perturbing it should not influence the output).
Using the concise package [49] these contribution scores are then visualized as sequence
logo. This allows for easy interpretation.
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Supporting Information

Supplementary Figure S1: Performance of Optimus50 and Framepool50 on (truncated) 
human 5’UTR sequences measured in the MPRA experiment. On 50 nt human sequences, 
the two models perform equivalently, but FramePool50 generalizes much better to longer 
sequences.

Optimus 50 FramePool 
50

Optimus 100 FramePool 
100

FramePool 
Combined

Random 
50nt

0.966 0.964 0.938 0.929 0.954

Random 25-
100nt

0.743 0.901 0.915 0.903 0.914

Human 50nt 0.889 0.882 0.852 0.839 0.867

Human 25-
100nt

0.700 0.871 0.882 0.884 0.894

Supplementary table S1: Performance on MPRA datasets of Optimus and Framepool 
models
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Dataset Type N FramePool
50

FramePool
100

FramePool 
Combined

Floor Trip-Seq 25831 0.126** 0.156** 0.150**

Andreev Ribo-Seq 8003 0.221** 0.219** 0.220**

Xiao Ribo-Seq 7672 0.254** 0.195** 0.208**

Eichhorn Ribo-Seq 8956 0.206** 0.246** 0.243**

Eraslan PTR 11575 0.145** 0.167** 0.171**

Wilhelm PTR 5293 0.114* 0.113* 0.117*

Supplementary Table S2: Pearson correlations of predictions with endogenous data. * = p-
value smaller than 1*10^-10, ** = p-value smaller than 1*10^-50 (where H_0 is zero 
correlation)

Dataset Type N FramePool
50

FramePool
100

FramePool 
Combined

Floor Trip-Seq 25831 0.131** 0.155** 0.151**

Andreev Ribo-Seq 8003 0.223** 0.230** 0.227**

Xiao Ribo-Seq 7672 0.259** 0.217** 0.224**

Eichhorn Ribo-Seq 8956 0.209** 0.242** 0.239**

Eraslan PTR 11575 0.152** 0.175** 0.176**

Wilhelm PTR 5293 0.110* 0.125* 0.123*

Supplementary Table S3: Spearman correlations of predictions with endogenous data. * = p-
value smaller than 1*10^-10, ** = p-value smaller than 1*10^-50 (where H_0 is zero 
correlation)
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