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ABSTRACT: Gas clathrates are both a resource and a hindrance. They store massive quantities of natural gas but also can clog
natural gas pipelines, with disastrous consequences. Eco-friendly technologies for controlling and modulating gas clathrate growth
are needed. Type | Antifreeze Proteins (AFPs) from cold-water fish have been shown to bind to gas clathrates via repeating motifs
of threonine and alanine. We tested whether proteins encoded in the genomes of bacteria native to natural gas clathrates bind to and
alter clathrate morphology. We identified putative clathrate-binding proteins (CBPs) with multiple threonine/alanine motifs in a
putative operon (cbp) in metagenomes from natural clathrate deposits. We recombinantly expressed and purified five CbpA pro-
teins, four of which were stable, and experimentally confirmed that CbpAs bound to tetrahydrofuran (THF) clathrate, a low-
pressure analog for structure |l gas clathrate. When grown in the presence of CbpAs, THF clathrate was polycrystalline and plate-
like instead of forming single, octahedral crystals. Two CbpAs yielded branching clathrate crystals, similar to the effect of Type |
AFP, while the other two produced hexagonal crystals parallel to the [1 1 1] plane, suggesting two distinct binding modes. Bacterial
CBPs may find future utility in industry, such as maintaining a plate-like structure during gas clathrate transportation.

Gas clathrates—crystalline structures of hydrogen-bonded
water molecules that encage various gases via van der
Waalsl interactions—are found along continental margins,
in and under permafrost, and likely on a number of other
planetary bodies throughout the solar system™. Gas
clathrates have garnered considerable interest for their impli-
cations in climate change*® and as prospective energy re-
sources’. The natural gas industry devotes considerable fi-
nancial resources® to synthetic chemical inhibitors’ of gas
clathrate formation because clogged natural gas pipelines
pose human and environmental safety’® ™ hazards (e.g. the
Deepwater Horizon Oil Spill).

In the search for more-“green” gas clathrate inhibitors, an-
tifreeze proteins (AFPs) were found to provide superior
clathrate inhibition than synthetic commercial inhibitors™.
AFPs enable diverse organisms, from bacteria to fish, to
survive under low-temperature conditions by binding specif-
ic ice planes irreversibly, thereby depressing the freezing
point of ice™®. Although ice and gas clathrates have differ-
ent crystalline structures, Type | AFPs inhibit gas clathrate™
172 Type | AFPs bind clathrates using the motif
TxXXAXXXAXX, where x is any amino acid®.

Gas clathrates are known to support microbial life*’. Gas
clathrate-dwelling archaea and bacteria were found to be
physically associated with the gas clathrates at average con-
centrations of 10° cells mL™ **. Here we report the first char-
acterization of clathrate binding proteins (CBPs) encoded in
bacterial genomes from gas clathrate stability zones.

We identified five potential cbp genes (cbpAgzse) Within
conserved gene clusters (cbpBCD(AL,ALILD)A, Figure 1A;

Table S1) from metagenome analysis of Hydrate Ridge
(ODP site 1244), offshore Oregon®, and other gas clathrate-
rich sites including offshore Shimokita Peninsula, Japan®.
Gene products of cbpA share secondary structure similarity
with Maxi, the larger, hyperactive isoform of the winter
flounder (Pseudopleuronectes americanus) AFP?. CbpAs
harbor one to six Type | AFP clathrate binding motifs, par-
ticularly in their conserved C-terminal domains, which are
predicted® to form coiled-coils (Figure 1B, C). CbpAs have
conserved N- and C-termini (orange and green, Figure 1A,
C), though the former is absent in CbpAg and found else-
where (AI'/A111) in the contigs of CbpAss. All CbpAs ex-
cept CbpA, share a common N-termina domain (purple,
Figure 1A, C), but none harbor secretion signal sequences
that are readily detected by prediction software®. Reminis-
cent of other Type | AFPs,*® CbpAs are largely composed of
alanine residues (32.8-42.4% composition, Table S2) and
are rich in prolines (up to 5.6%, Table S2). Pro-rich areas
cluster a the end of the N-terminal domain (CbpAsseg), OF
near the end of the C-terminal domain (magenta, Figure 1A,
C).

While the importance and interrelatedness of the gene
products in these putative cbp operons remain unclear,
neighboring genes encode an apparent cysteine peptidase
(cbpB) and a bacterial cell adhesion protein (Tables S3, $4).
The cbp gene sequences most likely originated from
Dehalococcoidia bacteria, of the phylum Chloroflexi (Table
S3, $4). Chloroflexi, which have gained interest for their
capacity to metabolize organohalides® ™, are known to pop-
ulate methane clathrate-rich sediment® 3 %,
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We expressed and purified the putative CbpAs to homo-
geneity (Figure S1). CpbAg, the shortest gene product (Fig-
ure 1A, C), degrades appreciably within 24 h (data not
shown), and was not studied further. CbpA,sse exhibit
strong a-helical secondary structure signatures by circular
dichroism (Figure S1) and migrate in SDS-PAGE as species
larger than their expected molecular masses (Figure S1,
Table S5). Finally, CbpAs exhibit thermal melting tempera-
tures below 40°C (Figure S1, Table S6).

Next, we tested for gas clathrate activity using an estab-
lished surrogate assay using liquid THF clathrate. Although
THF clathrate does not form in nature, it is commonly used
as a gas clathrate analog due to its low-pressure stability to
study potential natural gas clathrate inhibitors™ ** 3“2, THF
clathrate adopts structure Il (sll) clathrate with octahedral
morphology and is composed of two types of cavities — 16
small pentagonal dodecahedron (5™) and 8 large pentagonal
hexadecahedron (5'%6*) cages'®. We grew THF clathrate at -
3°C from a stoichiometric solution® composed of 19.1
weight percent (wt%) THF in the presence or absence of
additives, using the setup presented in Figure S2. To probe
for additive bound to clathrate, concentrations in the solution
remaining after crystal growth and in the melted clathrate
were measured at the end of each experiment. Negative con-
trols with no additives (Figure S3A), phosphate-buffered
saline solution, cytochrome ¢, and eGFP treatments resulted
in single octahedral crystals, or twinned crystals with clearly
defined [1 1 1] faces (Figure 2A). Cytochrome ¢ and eGFP
treatments resulted in more protein in solution compared to
clathrate; the average [protein] in clathrate melt: [protein] in
non-crystallized solution (hereafter [C/S]) was less than 1
(<0.7; Figure $4). Positive controls, including the chemical
inhibitor polyvinylpyrrolidone (PVP)® (Figure S3B), and
Type | AFP (Figure 2A) produced, as expected,'” *® 3
twinned or polycrystalline THF clathrate with skeletal or
branched morphology, respectively. The [C/S] for Type |
AFP was 1.9+0.8, confirming preferential binding.

In general, the addition of CbpAs (CbpA,sse) Yielded
plate-like morphology of THF clathrate when tested at 100
ug mL™ with or without fusion to eGFP*® “** (Figure 2B,
C), digtinct from negative controls (Figure 2A, Figure
S3A)®. Under blue light, THF clathrate formed in eGFP-
CbpA treatments fluoresced green (Figure 2B), indicating
the presence of fusion protein bound to the clathrate. Binding
was confirmed by [C/S] analysis, which for CbpAs were
intermediate between the negative controls and Type | AFP
(Figure $4). Clathrate crystals grown in the presence of
CbpA, or CbpA; were most similar to Type 1 AFP, forming
many branched clathrate crystals whereas CbpAs or CbpAs
yielded large, flat hexagonal crystals (Figure 2B, C). Con-
centration dependence was tested for eGFP-CbpA, and
ChpA; (Figure S5), revealing a flat plate-like morphology at
the higher concentrations (0.53 uM for eGFP-CbpA, and
1.63 uM and 1.22 uM for CbpA,) and single THF clathrate
crystals with surface deformities, such as kinking, at lower
CbpA concentrations (0.35 uM for eGFP-CbpA, and 0.82
pM for CbpA.,).

Unexpectedly, morphological changes conferred by
CbpAs on THF clathrate structures were dependent on the
specific CbpA tested, even though the proteins exhibit high
levels of sequence similarity. CbpA, and ChpA; induce
branching THF clathrate (Figure 2B, C) similar to the effect

of the kinetic clathrate inhibitor polyvinylcaprolactam
(PVCap) on ethylene oxide clathrate®. CbpAs and CbpAsg
promote 2D hexagonal clathrate growth parallel to the [1 1
1] face (Figure S6), similar to the effect of the winter floun-
der AFP on THF clathrate'” *8.

The differing THF clathrate morphologies obtained in the
presence of CbpA, and CbpA; versus CbpAsand CbpAgraise
the possibility of two discrete binding modes, such as bind-
ing to a different crystalline face, or distinct mechanisms of
inhibition. In ice-based systems, AFPs are thought to interact
directly with water ice by an absorption inhibition mecha-
nism which involves AFP binding to an actively growing ice
front; this confines the space in which additional water can
be incorporated into the growing ice lattice, eventually re-
sulting in energetically unfavorable addition and halted ice
crystal growth™*. The anchored-clathrate water hypothesis
describes a potential avenue of AFP absorption to ice,
whereby AFPs organize water molecules into clathrate-like
cages that then merge with ice at the ice/fluid water inter-
face®; the crystal structure of the dimeric, Type | Maxi AFP
supports this method of interaction”. Modeling studies pre-
dict that ssimple Type | AFPs bind to clathrate via a similar
absorption mechanism, where small hydrophaobic side-chains
of the AFPs (methyl groups of aanine and threonine from
TxxxAxxxAxx motif) fill partially-completed clathrate cag-
es”. While our CbpAs have similarities with Maxi their dif-
fering effects on THF clathrate morphology should prompt
future mechanistic studies into CbpA mode(s) of action,
which could shed light on AFP inhibition more generally.

Future studies will extend our protein characterization to
other antifreeze properties and our initial focus on the acces-
sible sll THF clathrate. CbpA binding likely extends across
the most common gas clathrates, including methane
clathrate, which adopts structure | (two small pentagonal
dodecahedron (5%) and six large hexagona truncated
trapezohedron (5'%6%) cages'®. First, CbpAs are derived from
natural habitats containing methane clathrate. Indeed, higher
potency binding may be expected for gas clathrate in situ®’.
Second, Type | AFPs found in cold-adapted fish bind can
alter both sI*® and slI'” *® even though their native substrate
is ice. Third, the commercially used clathrate inhibitor
PV Cap inhibits ethylene oxide clathrate (sl clathrate)®, re-
sulting in a similar morphology to those seen for CbpA, and
CbpA:.

Commercial gas clathrate inhibitors, including the ther-
modynamic inhibitor methanol, and the kinetic inhibitors
PVP and PVPCap, are neither economical nor ecologically
friendly®®. Protein-based alternatives are attractive due to
their superior inhibition, and environmentally friendly, bio-
degradable nature. Although AFPs have been screened for
gas clathrate inhibition, AFPs have yet to be commercialized
because they cannot be produced in sufficient quantities®.
Our newly discovered CbpAs isolated from microbia ge-
nomes in gas clathrate stability zones that are readily ex-
pressed and purified in mg quantities in E. coli with likely
tailored function to inhibit natural gas clathrates, are an at-
tractive new direction both for gas production from clathrate
deposits, as well as controlling crystal growth for gas storage
and transport, or for use as a novel separation technique to
isolate gases from other hazardous substances, or even as a
desalination process™. These newly discovered CBPs also
have implications for searching for life on other planetary
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bodies, such as Pluto and Mars, which are predicted to host gas clathrates’.
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Figure 1. Gene arrangement and CbpA alignment. A) cbpBCDA gene clusters from five metagenomes from methane clathrate-bearing
sediments. Genes encoding ChpA proteins that were the focus of this study are marked with bold borders and labeled A,, Az, As, Ag, and
As. cbpA;” and cbpAs™” denote genes upstream from cbpA. The “cc” label in cbpAs depicts the best predicted coiled coil, shown in (B). B)
Coiled coil region, labeled by type of amino acid. C) Amino acid alignments of the five CbpA proteins. Colored regions correspond to
the color scheme in (A). The blue box in CbpAs denotes the region of the helical wheel in (B). Type | AFP motifs (TXXXAXxXAXX) are
underlined in CbpA sequences.
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Figure 2. ChpAs induce polycrystalline and plate-like THF clathrate growth. Representative images of each trestment are shown. Protein
concentration was 100 pg mL™ for all treatments shown except for eGFP-CbpA,s (48 and 64 pg mL™, respectively). A) Negative con-
trols: Phosphate buffered saline (PBS) solution, cytochrome ¢, and eGFP trestments. Positive control: Type | AFP. B) THF clathrate
grown in the presence of eGFP-ChpA 356, With a blue light to illuminate clathrate-bound eGFP. C) THF clathrate grown in the presence
of CbpA.356. Each image is labeled with the treatment or CbpA number and a scale bar.
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