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ABSTRACT: Gas clathrates are both a resource and a hindrance. They store massive quantities of natural gas but also can clog 
natural gas pipelines, with disastrous consequences. Eco-friendly technologies for controlling and modulating gas clathrate growth 
are needed. Type I Antifreeze Proteins (AFPs) from cold-water fish have been shown to bind to gas clathrates via repeating motifs 
of threonine and alanine. We tested whether proteins encoded in the genomes of bacteria native to natural gas clathrates bind to and 
alter clathrate morphology. We identified putative clathrate-binding proteins (CBPs) with multiple threonine/alanine motifs in a 
putative operon (cbp) in metagenomes from natural clathrate deposits. We recombinantly expressed and purified five CbpA pro-
teins, four of which were stable, and experimentally confirmed that CbpAs bound to tetrahydrofuran (THF) clathrate, a low-
pressure analog for structure II gas clathrate. When grown in the presence of CbpAs, THF clathrate was polycrystalline and plate-
like instead of forming single, octahedral crystals. Two CbpAs yielded branching clathrate crystals, similar to the effect of Type I 
AFP, while the other two produced hexagonal crystals parallel to the [1 1 1] plane, suggesting two distinct binding modes. Bacterial 
CBPs may find future utility in industry, such as maintaining a plate-like structure during gas clathrate transportation. 

Gas clathrates—crystalline structures of hydrogen-bonded 
water molecules that encage various gases via van der 
Waals� interactions—are found along continental margins, 
in and under permafrost, and likely on a number of other 
planetary bodies throughout the solar system1-3. Gas 
clathrates have garnered considerable interest for their impli-
cations in climate change4-6 and as prospective energy re-
sources7. The natural gas industry devotes considerable fi-
nancial resources8 to synthetic chemical inhibitors9 of gas 
clathrate formation because clogged natural gas pipelines 
pose human and environmental safety10, 11 hazards (e.g. the 
Deepwater Horizon Oil Spill). 

In the search for more-“green” gas clathrate inhibitors, an-
tifreeze proteins (AFPs) were found to provide superior 
clathrate inhibition than synthetic commercial inhibitors12. 
AFPs enable diverse organisms, from bacteria to fish, to 
survive under low-temperature conditions by binding specif-
ic ice planes irreversibly, thereby depressing the freezing 
point of ice13-16. Although ice and gas clathrates have differ-
ent crystalline structures, Type I AFPs inhibit gas clathrate12, 

17-22. Type I AFPs bind clathrates using the motif 
TxxxAxxxAxx, where x is any amino acid23.  

Gas clathrates are known to support microbial life24. Gas 
clathrate-dwelling archaea and bacteria were found to be 
physically associated with the gas clathrates at average con-
centrations of 106 cells mL-1 24. Here we report the first char-
acterization of clathrate binding proteins (CBPs) encoded in 
bacterial genomes from gas clathrate stability zones.  

We identified five potential cbp genes (cbpA2,3,5,6,8) within 
conserved gene clusters (cbpBCD(A�,A��)A, Figure 1A; 

Table S1) from metagenome analysis of Hydrate Ridge 
(ODP site 1244), offshore Oregon25, and other gas clathrate-
rich sites including offshore Shimokita Peninsula, Japan26. 
Gene products of cbpA share secondary structure similarity 
with Maxi, the larger, hyperactive isoform of the winter 
flounder (Pseudopleuronectes americanus) AFP27. CbpAs 
harbor one to six Type I AFP clathrate binding motifs, par-
ticularly in their conserved C-terminal domains, which are 
predicted28 to form coiled-coils (Figure 1B, C). CbpAs have 
conserved N- and C-termini (orange and green, Figure 1A, 
C), though the former is absent in CbpA8 and found else-
where (A�/A��) in the contigs of CbpA3,5. All CbpAs ex-
cept CbpA2 share a common N-terminal domain (purple, 
Figure 1A, C), but none harbor secretion signal sequences 
that are readily detected by prediction software29. Reminis-
cent of other Type I AFPs,30 CbpAs are largely composed of 
alanine residues (32.8-42.4% composition, Table S2) and 
are rich in prolines (up to 5.6%, Table S2). Pro-rich areas 
cluster at the end of the N-terminal domain (CbpA3,5,6,8), or 
near the end of the C-terminal domain (magenta, Figure 1A, 
C). 

While the importance and interrelatedness of the gene 
products in these putative cbp operons remain unclear, 
neighboring genes encode an apparent cysteine peptidase 
(cbpB) and a bacterial cell adhesion protein (Tables S3, S4). 
The cbp gene sequences most likely originated from 
Dehalococcoidia bacteria, of the phylum Chloroflexi (Table 
S3, S4). Chloroflexi, which have gained interest for their 
capacity to metabolize organohalides31-33, are known to pop-
ulate methane clathrate-rich sediment26, 34, 35. 
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We expressed and purified the putative CbpAs to homo-
geneity (Figure S1). CpbA8, the shortest gene product (Fig-
ure 1A, C), degrades appreciably within 24 h (data not 
shown), and was not studied further. CbpA2,3,5,6 exhibit 
strong α-helical secondary structure signatures by circular 
dichroism (Figure S1) and migrate in SDS-PAGE as species 
larger than their expected molecular masses (Figure S1, 
Table S5). Finally, CbpAs exhibit thermal melting tempera-
tures below 40°C (Figure S1, Table S6).   

Next, we tested for gas clathrate activity using an estab-
lished surrogate assay using liquid THF clathrate. Although 
THF clathrate does not form in nature, it is commonly used 
as a gas clathrate analog due to its low-pressure stability to 
study potential natural gas clathrate inhibitors17, 18, 36-42. THF 
clathrate adopts structure II (sII) clathrate with octahedral 
morphology and is composed of two types of cavities – 16 
small pentagonal dodecahedron (512) and 8 large pentagonal 
hexadecahedron (51264) cages10. We grew THF clathrate at -
3°C from a stoichiometric solution43 composed of 19.1 
weight percent (wt%) THF in the presence or absence of 
additives, using the setup presented in Figure S2. To probe 
for additive bound to clathrate, concentrations in the solution 
remaining after crystal growth and in the melted clathrate 
were measured at the end of each experiment. Negative con-
trols with no additives (Figure S3A), phosphate-buffered 
saline solution, cytochrome c, and eGFP treatments resulted 
in single octahedral crystals, or twinned crystals with clearly 
defined [1 1 1] faces (Figure 2A). Cytochrome c and eGFP 
treatments resulted in more protein in solution compared to 
clathrate; the average [protein] in clathrate melt: [protein] in 
non-crystallized solution (hereafter [C/S]) was less than 1 
(<0.7; Figure S4). Positive controls, including the chemical 
inhibitor polyvinylpyrrolidone (PVP)38 (Figure S3B), and 
Type I AFP (Figure 2A) produced, as expected,17, 18, 36 
twinned or polycrystalline THF clathrate with skeletal or 
branched morphology, respectively. The [C/S] for Type I 
AFP was 1.9±0.8, confirming preferential binding.  

In general, the addition of CbpAs (CbpA2,3,5,6) yielded 
plate-like morphology of THF clathrate when tested at 100 
µg mL-1 with or without fusion to eGFP36, 40-42 (Figure 2B, 
C), distinct from negative controls (Figure 2A, Figure 
S3A)39. Under blue light, THF clathrate formed in eGFP-
CbpA treatments fluoresced green (Figure 2B), indicating 
the presence of fusion protein bound to the clathrate. Binding 
was confirmed by [C/S] analysis, which for CbpAs were 
intermediate between the negative controls and Type I AFP 
(Figure S4). Clathrate crystals grown in the presence of 
CbpA2 or CbpA3 were most similar to Type 1 AFP, forming 
many branched clathrate crystals whereas CbpA5 or CbpA6 
yielded large, flat hexagonal crystals (Figure 2B, C).  Con-
centration dependence was tested for eGFP-CbpA2 and 
CbpA2 (Figure S5), revealing a flat plate-like morphology at 
the higher concentrations (0.53 µM for eGFP-CbpA2 and 
1.63 µM and 1.22 µM for CbpA2) and single THF clathrate 
crystals with surface deformities, such as kinking, at lower 
CbpA concentrations (0.35 µM for eGFP-CbpA2 and 0.82 
µM for CbpA2).  

Unexpectedly, morphological changes conferred by 
CbpAs on THF clathrate structures were dependent on the 
specific CbpA tested, even though the proteins exhibit high 
levels of sequence similarity. CbpA2 and ChpA3 induce 
branching THF clathrate (Figure 2B, C) similar to the effect 

of the kinetic clathrate inhibitor polyvinylcaprolactam 
(PVCap) on ethylene oxide clathrate38. CbpA5 and CbpA6 
promote 2D hexagonal clathrate growth parallel to the [1 1 
1] face (Figure S6), similar to the effect of the winter floun-
der AFP on THF clathrate17, 18.    

 The differing THF clathrate morphologies obtained in the 
presence of CbpA2 and CbpA3 versus CbpA5 and CbpA6 raise 
the possibility of two discrete binding modes, such as bind-
ing to a different crystalline face, or distinct mechanisms of 
inhibition. In ice-based systems, AFPs are thought to interact 
directly with water ice by an absorption inhibition mecha-
nism which involves AFP binding to an actively growing ice 
front; this confines the space in which additional water can 
be incorporated into the growing ice lattice, eventually re-
sulting in energetically unfavorable addition and halted ice 
crystal growth44,45. The anchored-clathrate water hypothesis 
describes a potential avenue of AFP absorption to ice, 
whereby AFPs organize water molecules into clathrate-like 
cages that then merge with ice at the ice/fluid water inter-
face46; the crystal structure of the dimeric, Type I Maxi AFP 
supports this method of interaction27. Modeling studies pre-
dict that simple Type I AFPs bind to clathrate via a similar 
absorption mechanism, where small hydrophobic side-chains 
of the AFPs (methyl groups of alanine and threonine from 
TxxxAxxxAxx motif) fill partially-completed clathrate cag-
es23. While our CbpAs have similarities with Maxi their dif-
fering effects on THF clathrate morphology should prompt 
future mechanistic studies into CbpA mode(s) of action, 
which could shed light on AFP inhibition more generally.     

Future studies will extend our protein characterization to 
other antifreeze properties and our initial focus on the acces-
sible sII THF clathrate. CbpA binding likely extends across 
the most common gas clathrates, including methane 
clathrate, which adopts structure I (two small pentagonal 
dodecahedron (512) and six large hexagonal truncated 
trapezohedron (51262) cages10. First, CbpAs are derived from 
natural habitats containing methane clathrate. Indeed, higher 
potency binding may be expected for gas clathrate in situ47. 
Second, Type I AFPs found in cold-adapted fish bind can 
alter both sI48 and sII17, 18 even though their native substrate 
is ice. Third, the commercially used clathrate inhibitor 
PVCap inhibits ethylene oxide clathrate (sI clathrate)38, re-
sulting in a similar morphology to those seen for CbpA2 and 
CbpA3.  

Commercial gas clathrate inhibitors, including the ther-
modynamic inhibitor methanol, and the kinetic inhibitors 
PVP and PVPCap, are neither economical nor ecologically 
friendly12. Protein-based alternatives are attractive due to 
their superior inhibition, and environmentally friendly, bio-
degradable nature. Although AFPs have been screened for 
gas clathrate inhibition, AFPs have yet to be commercialized 
because they cannot be produced in sufficient quantities12. 
Our newly discovered CbpAs isolated from microbial ge-
nomes in gas clathrate stability zones that are readily ex-
pressed and purified in mg quantities in E. coli with likely 
tailored function to inhibit natural gas clathrates, are an at-
tractive new direction both for gas production from clathrate 
deposits, as well as controlling crystal growth for gas storage 
and transport, or for use as a novel separation technique to 
isolate gases from other hazardous substances, or even as a 
desalination process49.  These newly discovered CBPs also 
have implications for searching for life on other planetary 
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bodies, such as Pluto and Mars, which are predicted to host gas clathrates3. 
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Figure 1. Gene arrangement and CbpA alignment. A) cbpBCDA gene clusters from five metagenomes from methane clathrate-bearing 
sediments. Genes encoding CbpA proteins that were the focus of this study are marked with bold borders and labeled A2, A3, A5, A6, and 
A8. cbpA3´ and cbpA5´´ denote genes upstream from cbpA. The “cc” label in cbpA5 depicts the best predicted coiled coil, shown in (B). B) 
Coiled coil region, labeled by type of amino acid. C) Amino acid alignments of the five CbpA proteins. Colored regions correspond to 
the color scheme in (A). The blue box in CbpA5 denotes the region of the helical wheel in (B). Type I AFP motifs (TxxxAxxxAxx) are 
underlined in CbpA sequences.  
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Figure 2. CbpAs induce polycrystalline and plate-like THF clathrate growth. Representative images of each treatment are shown. Protein 
concentration was 100 µg mL-1 for all treatments shown except for eGFP-CbpA2,5 (48 and 64 µg mL-1, respectively). A) Negative con-
trols: Phosphate buffered saline (PBS) solution, cytochrome c, and eGFP treatments. Positive control: Type I AFP. B) THF clathrate 
grown in the presence of eGFP-CbpA2,3,5,6, with a blue light to illuminate clathrate-bound eGFP. C) THF clathrate grown in the presence 
of CbpA2,3,5,6. Each image is labeled with the treatment or CbpA number and a scale bar. 
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