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Abstract:

Local adaptation can drive diversification of closely related species across environmental
gradients and promote convergence of distantly related taxa that experience similar conditions.
We examined a potential case of adaptation to novel visual environments in a species flock
(Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the
Oxford Nanopore Flongle. Five visual opsin genes were amplified for individuals of C. artedi, C.
hoyi, C. kiyi, and C. zenithicus. Comparisons revealed species-specific differences in the coding
sequence of rhodopsin (Tyr261Phe substitution), suggesting local adaptation by C. kiyi to the
blue-shifted depths of Lake Superior. Parallel evolution and “toggling” at this amino acid residue
has occurred several times across the fish tree of life, resulting in identical changesto the visual
systems of distantly related taxa across replicated environmental gradients. Our results suggest
that ecological differences and local adaptation to distinct visual environments are strong drivers

of both evolutionary parallelism and diversification.
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I ntroduction:

Local adaptation to novel environments presents a mechanism that can drive genetic and
phenotypic differentiation among closely related organisms. Diversification may occur as
populations become locally adapted to distinct conditions, leading to the divergence of traits that
are beneficial in each lineage' s preferred environment. Conversely, atrait may be sufficiently
advantageous in a particular environment that multiple distantly related taxa converge upon it, in
some cases due to the same mutation or amino acid substitution occurring independently, i.e.,
parallel evolution (Zhang and Kumar 1997, Futuyma and Kirkpatrick 2017). For example,
parallel substitutions have occurred in myoglobin in pinnipeds and cetaceans (Romero-Herrera et
a. 1978), lysozyme in ruminants and col obine monkeys (Stewart et al. 1987) and rhodopsin in
fishes colonizing brackish or freshwater ecosystems (Hill et a. 2019). In this study, we examined
a specific case of local adaptation in the teleost visual system that has led to diversification

among similar taxa and parallel evolution among distantly related fishes.

Dueto their importance in ecological interactions and their dynamic evolutionary history,
the evolution of visual pigment genes (i.e. opsins) in marine and freshwater fishes has received
considerable attention. The vertebrate visual opsin system is divided into five subgroups — one
rod opsin responsible for vision under low light conditions (rhodopsin) and four cone opsins
responsible for color vision (long-wave sensitive, short-wave sendtive 1, short-wave sensitive 2,
and rhodopsin 2) which are differentiated based on their peak absorbance spectra (Okano et al.
1992). Previous studies have identified two primary mechanisms through which opsin genes can
shape the evolution of vision: (1) Single nucleotide polymorphisms (SNPs) causing non-
synonymous substitutions in key spectral tuning residues driving adaptation to different light

environments (Teral et al. 2002, Marques et al. 2017), and (2) Copy number variation (CNV's) of
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opsin genes with different spectral tuning (e.g., rod opsin copy number expansions in deep-sea
fishes[Musilovaet a. 2019], and expansions of cone opsin familiesin shallow-water fishes

[Weadick and Chang 2007]).

The cisco species flock (genus Coregonus) of the Laurentian Great Lakes present a well-
suited opportunity to study local adaptation of the visual opsin repertoire to novel photic
environments based on depth differences (Harrington et al. 2015). The four extant cisco species
in Lake Superior show generally low levels of interspecific variation across the genome
(Turgeon and Bernatchez 2003, Turgeon et al. 2016, Ackiss et al. 2020) despite considerable
differences in depth preferences (Eshenroder et al. 2016, Rosinski et al. 2020). C. artedi is
typically epilimnetic (10-80 m), C. hoyi and C. zenithicus are both found at intermediate depths
(40-160 m), and C. kiyi can be found at depths of 80 to >200 m (Eshenroder et al. 2016). Despite
the overall weak genetic divergence among species of the complex, we hypothesized that
divergent selection may act to tune opsins to maximally absorb wavelengths of light that
penetrate to each species preferred depth allowing for prey capture and predator avoidance,
leading to measurable genetic differentiation in these species’ opsin genes. Here we assess the
evolution of five visua opsinsin the Coregonus species flock to better understand mechanisms
underlying their evolution across a depth gradient. Our aim was to explore both local adaptation
to different photic conditions among the closely related Coregonus species, and to determine if
parallel changes at key spectral tuning sites have occurred among our Coregonus species and

more distantly related fish taxa.

New Approaches:

Oxford Nanopore sequencing is contributing to a rapidly expanding toolkit for DNA

seguencing, owing to low up-front costs, enhanced ability to detect DNA or RNA base
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modifications, and read lengths limited only by input nucleic acids. Nanopore sequencing allows
for straightforward haplotyping, as whole molecules can be sequenced for each amplicon with no
need for assembly. This approach has been successfully applied to microbial metabarcoding and
pathogen identification (Shin et al. 2016, Moon et a. 2018, Rames and Macdonald 2018), as well
as human genotyping (Corndlis et al. 2017, Cornelis et al. 2019). Asflow cell quality and base-
calling algorithms have improved, the accuracy and functionality of nanopore amplicon
sequencing have rapidly expanded. Y e, its gpplication to single nucleotide polymorphism (SNP)
genotyping in non-human eukaryotes with large and complex genomes remains relatively
unexplored. In particular, akey open question is whether accurate genotypes can be obtained and

the coverage depth needed to do so.

In the present study, we sequenced amplicons of five teleost opsin genesin atotal of 80
samples on the Oxford Nanopore Flongle device. In combination with the PCR Barcoding
Expansion 1-12 (Oxford Nanopore Technologies), we sequenced and genotyped 12 individuals
simultaneously on a single Flongle flow cell, following the pipeline shown in Figure 1 (for a
complete protocol, see Supplementary File S1). To the best of our knowledge, the present study
isone of the first to demonstrate the accuracy and utility of amplicon sequencing with the Oxford

Nanopore Flongle for SNP genotyping eukaryotic samples.

Resultsand Discussion:

A preliminary assembly of the de novo transcriptome of Coregonus artedi (NCBI
Bioproject XXXXX) was used as areference to extract gene sequences of: long-wave sensitive
(LWS), short-wave sensitive 1 (SWSL), short-wave sensitive 2 (SWS2), rhodopsin (RH1), and
rhodopsin 2 (RH2), representing one gene from each teleost opsin subfamily. For each of the five

genes of interest, a fragment approximately 700-2100 bp in length was amplified for 18 samples
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99 of C. artedi, 19 C. hoyi, 21 C. kiyi, and 16 C. zenithicus (Tables 1, S1, S2). All amplicons from a

100 singleindividual were assigned a specific barcode and were pooled into alibrary containing

101  genesfrom 12 samples, which were sequenced simultaneously on a single Flongle flow cell

102  (Figure1). This process was then repeated until amplicons from all samples were sequenced.

103  After sequencing, sample-specific barcodes were detected and trimmed using Guppy v3.2.4

104  (Oxford Nanopore Technologies) with the command guppy_barcoder, and reads from each

105  sample were mapped with BWA v0.7.17 using the command bwa mem (Li 2013), with version
106  one of the Corgeonus sp. “ balchen” genome assembly as areference (De-Kayne et al. 2020;

107 GCA_902810595.1). An annotated bash script detailing the entire bioinformatic pipelineis

108 available from Github (https://github.com/KrabbenhoftL ab/rhodopsin).

109 On average, Flongle sequencing runsyielded atotal of 206.13 Mb (+166.64 Mb; 26.84-
110 471.50 Mb), with an average of 184,958 reads (+154,877 reads, 23,468-435,138 reads), though
111  vyield varied based on flow cell quality (flow cells used were early release and had low starting
112 pore counts). The average sequence N50 was 1,117 bp (£305 bp; 897-1,852 bp), with read length
113  abundances peaking at the approximate lengths of our amplicons (Figure 1). After resequencing
114  geneswith low coverage following first-round sequencing, the average coverage was 3,199.58x
115  across al five genes (+4,804.24x, 10.47-31,158.31x; Table 1). Coverage varied sightly by

116  gpecies, but thisislikely an artifact of stochastic differences in PCR efficiency and sequencing
117  vyield (Table S3). Amplicon reads mapped uniquely (i.e., one genomic region per amplicon) to
118 theC. sp. “ balchen” genome, providing no evidence for CNVsin opsin genes among Coregonus

119  gpecies.

120 To verify the accuracy of nanopore amplicon genotyping, we performed a rarefaction

121  analysisin which SNPswere called at various levels of coverage (i.e., maximum, 2,000, 1,000,
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122 500, 250, 100, 75, 50, and 25x) in BCFtools v1.9 using the command bcftools mpileup (Li 2010,
123 Li 2011, Danecek et a. 2014). The option -d was used to specify the maximum per-sample

124  depth. The SNP calls from nanopore data were then compared with Sanger sequences of

125 rhodopsin for the same individuals. While accuracy remained high at all sequencing depths

126  (>90%), we found incongruencies in a small proportion of samples between 10x and 75x. Only
127  when reaching 100x coverage were genotypes called with complete accuracy for al individuals,
128 inreation to Sanger sequences. Consdering that small errors can impact the results of analyses
129  involving amplicons with few variant sites, we recommend a minimum per-amplicon coverage

130 of 100x for future work.

131 The genotyping approach used in this study was conservative, as the goal was to assess
132  the coverage needed for accurate genotyping on a Flongle flow cell. Based on our findings, this
133 approach could be used for higher throughput sequencing, which could involve more amplicons,
134  moreindividuals, or acombination of both. Considering that we generated approximately 200
135  Mb of sequence data per run, one can calculate the number of individuals and amplicons that can

136  be sequenced simultaneously at 100x using the following formula:

200,000,000 bp = 100 x A * N x N,

137 Where A isthe amplicon size (in bp), N isthe number of samples to be sequenced

138  simultaneously, and Na is the number of amplicons to be sequenced per sample. To optimize
139  throughput for the maximum number of samples, the PCR Barcoding Expansion 1-96 (EXP-

140 PBCO096, Oxford Nanopore Technologies) can be employed to generate sequence data for 96

141  samples simultaneously. Assuming an average amplicon size of 1,000 bp, one could sequence 20
142  amplicons across 96 samplesin a single 24-hour Flongle sequencing run for approximately $300,

143 or $0.16 per genotype (Table $4). The use of aMinlON flow cell (not analyzed here) would
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144  increase output by afactor of ~16x (based on differencesin number of total pores) and reduce
145  the cost per genotype overall. With the growth of nanopore sequencing, these conservative cost

146  estimates are expected to drop in upcoming years.

147 The average Fsr of SNPs in the five opsins analyzed across four species was 0.055 (Table
148  2). Theonly large differences (Fsr > 0.4) were found in four SNPs detected within the coding
149  sequence of rhodopsin, with no highly differentiated SNPs among the four cone opsins. This

150 suggeststhat differencesin dim-light vision and changes in rhodopsin could be driving local

151  adaptation by depth. Of the four high Fsr SNPs, one (Fsr = 0.44) was synonymous. One SNP
152 (Fsr=0.44) resulted in a shift from asparagine to histidine at amino acid residue 100, whichis
153  located near the C-terminal end of transmembrane helix two, possibly in the extracel lular matrix
154  (Figures 2a, 2b; see aso Y okoyama 2000). Another (Fsr = 0.44) resulted in a change from valine
155 toisoleucine at residue 255, which islocated in transmembrane helix six, facing away from the
156  retina binding pocket (Figures 2a, 2b, see a'so Baldwin 1993, Hunt et al. 1996). Neither residue
157 100 nor 255 are known to be key spectral tuning sites in rhodopsin (Y okoyama 2000), but site-
158  directed mutagenesi s experiments to determine the effect of these substitutions on the absorbance
159  spectrum should be conducted in the future. All three of these SNPs possess the exact same Fsr
160  and changesin genotype were completely consistent across all samples, suggesting that these

161  sitesaretightly linked.

162 The most strongly segregating SNP (Fsr = 0.88) occurred at amino acid residue 261 of

163  rhodopsin, whichislocated in transmembrane helix six, facing the retinal binding pocket of the
164  protein (Figures 2a, 2b, see also Baldwin 1993, Hunt et a. 1996, Y okoyama 2000). Coregonus
165 artedi, C. hoyi, and C. zenithicus, inhabitants of ared-shifted light environment, were primarily

166  homozygous for tyrosine (Figure 3). Thisamino acid substitution is known to cause an 8 nm red-


https://doi.org/10.1101/2020.06.13.150334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.13.150334; this version posted June 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

167  shift in the absorbance spectrum (Y okoyama et al. 1995). Meanwhile, C. kiyi, which inhabits the
168  blue-shifted deeper waters of Lake Superior, was completely homozygous for phenylalanine,

169  which does not produce a similar red-shift in photic absorbance (Figure 3; Y okoyama et al.

170  1995). Genotypic associations at this locus vary consistently across the depth gradient (Figure 3),
171  providing evidence that C. kiyi is adapted to life in deep water after evolving from shallow-water
172 ancestors. This hypothesisisfurther corroborated by phenotypic data, as C. kiyi have

173 dignificantly larger eye diameters (as a proportion of total head length) than C. artedi (p <

174  0.001), C. zenithicus (p < 0.001), and C. hoyi (p < 0.001), consistent with Eshenroder et al.

175  (2016) (Figure S1). The predictable variation of both genetic and morphological traits along the
176  axisof the depth gradient provides key evidence that local adaptation by depth accompanies

177  diversification of Lake Superior ciscoes (Figure S2).

178 Hill et al. (2019) examined the shift between the two aforementioned amino acids at

179  rhodopsin residue 261 in a deep phylogenetic context, suggesting that many lineages, including
180 salmonids, are likely derived from a marine ancestor possessing the allele encoding the blue-

181  shift-associated 261Phe. Additionally, Hill et al. (2019) found that fish lineages which have

182  undergone a habitat change from blue-shifted marine waters to red-shifted brackish or freshwater
183  haveindependently converged on the red-shift-associated 261Tyr phenotype over 20 times

184  acrossthefish tree of life. Here, we show that the exact same substitution has occurred in Great
185  Lakesciscoes, asthe 261Tyr phenotype is predominant among Coregonus artedi, C. hoyi, and C.
186  zenithicus, which inhabit the red-shifted shallow water of Lake Superior. Thisfinding supports
187 thehypothesisthat local adaptation to anove visual environment is driving paralel molecular
188  evolution across the fish tree of life. Interestingly, it appears that deep-water C. kiyi has

189 undergone areversal to the blue-shifted marine ancestral state (261Phe) after more than 100
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190 million yearsindicating that rhodopsin residue 261 may be ableto “toggle” (sensu Delport et al.
191  [2008]) between these two amino acids depending on what is advantageous in a particular photic

192  environment, even across incredibly long time scales.

193 Conclusons:

194 The present study provides evidence of the utility of the Oxford Nanopore Flongle device
195  for genotyping complex eukaryotic samples by long-read amplicon sequencing. The protocol

196  described issimple and reliable, and offers the promise of rapid, low-cost genotyping in non-

197 mode organisms. This methodology was employed here to understand the genetic basis of local

198  adaptation and ecological differentiation among Great Lakes Ciscoes.

199 The results of this study indicate that local adaptation to distinct visual environmentsis
200  associated with genetic and morphological differentiation among the closely related ciscoes of
201 the Great Lakes. The identification of several high Fsr SNPsin rhodopsin, including Phe261Tyr,
202 isparticularly relevant, as the shifts between these two amino acids at residue 261 are identical to
203  those observed across smilar depth gradients in phylogenetically-distant fishes (Hill et a. 2019).
204  Thisresult suggests that evolutionary parallelism via single-nucleotide changes at thissiteis

205  driving phenotypic covergence of distantly related groups exposed to similar photic

206  environments. Additionally, the discovery of areversal to the ancient ancestral statein C. kiyi at
207 thisdte provides evidence of genetic toggling, whereby organisms may be able to transition bi-
208 directionally between different states at this site in response to environmental pressures. This
209 result is striking because the genetic background is persumably very different across these taxa
210  after more than 100 million years of divergence. In addition, the potential for epistatic

211  interactionsis expected to be increased across such deep phylogenetic splits, further reducing the

212 likelihood of parallel evolution (Storz 2016). The observation of amino acid toggling in Great

10
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213  Lakes Coregonus species standsin stark contrast to the general prediction that evolution can only

214  reverseitsdf after short time periods (Storz 2016; Blount et a. 2018).

215
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Tables:
Table 1. Average coverage and fragment length for the five amplified opsin genes on the Flongle
platform.
Gene name Aver age cover age Fragment length (bp)
LWS 722 1879
RH1 5409 763
RH2 846 2079
SWSL 4734 815
W 4237 960
Table 2. Pairwise Weir-Cockerham Fgr estimates across species for all genes (above diagonal)
and for rhodopsin only (below diagonal).
Species C. artedi C. hoyi C. kiyi C. zenithicus
C. artedi - 0.042 0.092 0.049
C. hoyi 0.26 - 0.056 0.005
C. kiyi 0.68 0.34 - 0.068
C. zenithicus 0.26 0 0.34 -
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Figure 1. Summary of steps for amplicon sequencing and bioinformatic analyses. Boxes on the
left represent individual steps, color-coded based on their phase: red represents sample
preparation, yellow represents nanopore sequencing, green represents sample demultiplexing,
blue represents read mapping, and purple represents genotyping and analysis. Larger boxes to the
right show additional information for each of the steps: the simplified mechanisms by which
amplicons are generated and barcoded (top); frequency histogram with read length on the x-axis
and number of readsin the y-axis (middle); and how reads are mapped to the reference genome

(bottom).
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332

333  Figure2. @) 2-D model of Coregonus artedi rhodopsin based on a 3-D model generated using
334 PHYRE V2.0 (Kelley et a. 2015) and visualized in UCSF Chimera (Pettersen et al. 2004).

335  Amino acid residues are numbered in order from N-terminus to C-terminus, and amino acid

336  residues 100, 255, and 261 are colored in red. 2-D model was constructed for the specific model
337 obtained for Coregonus artedi, following Y okoyama (2000) and Musilova et a. (2019). b) 3-D
338 model of bovine rhodopsin, colored blue (N-terminus) to red (C-terminus). Amino acid residues
339 100, 255, and 261 have been colored in black, and are labeled accordingly.

340
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341

342  Figure 3. @) Thefour cisco species included in this study: Coregonus zenithicus, C. artedi, C.
343  hoyi, and C. kiyi (Ieft - right). Pie charts below each photo indicate the allele frequency at
344  residue 261 of rhodopsin, where black represents the allele coding for tyrosine and white

345 representsthe allele coding for phenylalanine. b) Boxplots indicating the approximate capture
346  depths of samples from each of the four species. ¢) Visible light spectrum, from approximately

347  400-700 nm wavelength. The narrowing of the spectrum with increased depth shows how the
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348  ability of organismsto perceive certain wavelengths of light diminishes with increasing depth,

349  particularly with red and orange light (following Harrington et al. 2015).
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