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15 Abstract

16 The introduction of several differential gene expression analysis tools has made it difficult for 

17 researchers to settle on a particular tool for RNA-seq analysis. This coupled with the appropriate 

18 determination of biological replicates to give an optimum representation of the study population 

19 and make biological sense. To address these challenges, we performed a survey of 8 tools used 

20 for differential expression in RNA-seq analysis. We simulated 39 different datasets (from 10 to 

21 200 replicates, at an interval of 5) using compcodeR with a maximum of 100 replicates. Our goal 

22 was to determine the effect of varying the number of replicates on the performance (F1-score, 

23 recall and precision) of the tools. EBSeq and edgeR-glmRT recorded the highest (0.9385) and 
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24 lowest (0.6505) average F1-score across all replicates, respectively. We also performed a 

25 pairwise comparison of all the tools to determine their concordance with each other in 

26 identifying differentially expressed genes. We found the greatest concordance to be between 

27 limma voom treat and limma voom ebayes. Finally, we recommend employing edgeR-glmRT for 

28 RNA-seq experiments involving 10-50 replicates and edgeR-glmQLF for studies with 55 to 200 

29 replicates.

30 Author summary

31 Downstream analysis of RNA-seq data in R often poses several challenges to researchers as it is 

32 a daunting task to choose a specific differential expression analysis tool over another. 

33 Researchers also find it challenging to determine the number (replicates) of samples to use in 

34 order to give comparable and accurate results. In this paper, we surveyed eight differential 

35 expression analysis tools using different number of replicates of simulated RNA-seq count data. 

36 We measured the performance of each tool and based on the recorded F1-scores, recall and 

37 precision, we made the following recommendations; consider edgeR-glmRT and edgeR-glmQLF 

38 for replicates of 10-50 and 55-200 respectively.   

39

40 Introduction

41 Since the introduction of RNA sequencing in the mid-2000s, undoubtedly, there has been an 

42 exponential increase in RNA-seq data generation with an equivalent rise in the development of 

43 algorithms for differential gene expression (DGE) analyses with varying performances. These 

44 methods seek to make data analyses relatively easier and address complex biological questions 

45 with greater levels of statistical confidence. However, the challenge still remains the selection of 
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46 optimal DGE tools and sample size calculations for optimal accuracy. This makes the selection 

47 of tools and sample sizes for optimum analyses a very crucial but daunting task.

48 Over the years, several research articles have been published that address the lack of consensus 

49 among DGE tools. Examples of these are the works of Seyednasrollah et al (1) who performed a 

50 systematic comparison of some popular DGE tools and provided recommendations for choosing 

51 the optimal tool. Rapaport et al (2) assessed a number of tools based on the performance of 

52 normalization, false-positive rates and the effect of sequencing depth and sample replication on 

53 DGE analyses. Kvam et al (3) compared the ability of edgeR, DESeq, baySeq, and TSPM to 

54 detect DEGs from both simulated and real RNA-seq data. Germain et al (4) assessed the effect of 

55 library size on quantification and DEA and went on to create an R package (RNAontheBENCH) 

56 and a web platform that could be used for benchmarking RNA-seq quantification and differential 

57 expression methods. The influence of the number of replicates, sequencing depth, and balanced 

58 versus unbalanced sequencing depth within and between groups using Cufflinks-Cuffdiff2, 

59 DESeq and edgeR was explored by Zhang et al (5). They concluded that edgeR performed better 

60 than DESeq and Cuffdiff2 in terms of its ability to detect true positives and recommended that 

61 Cuffdiff2 should not be used if sequencing depth is low (i.e. <10 million reads per individual 

62 sample).

63 Furthermore, most DGE analyses have been limited to designed experimental studies (eg. treated 

64 cell lines vs untreated cell lines), which characteristically utilize small (< 12) replicate samples 

65 limiting the power of statistical inference. 

66 In this study, we performed a comparative analysis of the performance of eight (8) DGE tools 

67 including ABSseq (6), ALDEx2 (7), edgeR (8), limma (9), EBSeq (10), sSeq (11), baySeq (12) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2020. ; https://doi.org/10.1101/2020.06.10.144063doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.144063
http://creativecommons.org/licenses/by/4.0/


68 and DESeq2 (13). The tools were assessed with a total of fourteen (14) different methods 

69 (algorithms used by the tools to identify DEGs) on simulated datasets generated with 

70 CompcodeR (14). We also determined the effect of varying the number of replicates per group 

71 (sample size) on the performance of each method. 

72 Unique to our study, we used a very high number of samples (20 to 400, at an interval of 5) to 

73 assess the performance of the DGE tools and to the best of our knowledge, this is the first study 

74 to employ such huge sample sizes to find DEGs in bulk RNA-seq analysis. Our sample sizes 

75 were chosen to reflect the current trends of experimental designs for particularly cancer research 

76 and population-based studies as smaller numbers of sample replicates are not enough to 

77 characterize the high heterogeneity in such studies.

78

79 Results and discussion

80 The performances of 14 DGE methods of 8 tools for RNA-seq analyses on varying numbers of 

81 replicates in two groups were critically assessed.

82 Tool Selection

83 The methods (Limma voom (treat), Limma voom (eBayes), Limma trend (treat),  Limma trend 

84 (eBayes), edgeR Exact, edgeR likelihood ratio test, edgeR  quasi-likelihood F-test, DESeq2, 

85 baySeq, EBseq, ALDEx2, sSeq, ABSseq (Classic) and ABSseq (aFold)) were selected based on 

86 the following criteria: Firstly, Poisson distribution assumes equal mean and variance across the 

87 data and this is atypical of RNA-seq count data which present different means and variance. We 

88 based seelction on the above to eliminate all tools that employ Poisson distributions rather than 

89 Negative Binomial. Secondly, we selected open-source software packages, which have their 
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90 source code released under a license that grants users the right to make changes and redistribute 

91 the software under certain conditions (15). These software packages are usually robust and have 

92 diverse perspectives. We based our choice on this to also eliminate tools that are not open-

93 sourced.

94 Comparison of tool performances

95 All tools were run with default parameters for both DGE and selection of significant genes. The 

96 calculated F1-Score for each method was a priority for the performance check as it gave a 

97 weighted average of precision and recall taking into account both false negatives and positives. 

98 All tools used in this study identified between 265 and 2500 DEGs across all datasets (Fig 1).

99 EBSeq and edgeR-exact recorded the lowest (266) and the highest (2500) number of DEGs 

100 which included the highest number of false negative and positives, respectively.

101
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102 Fig 1. A boxplot comparing the total number of DEGs (y-axis) for all the tools studied at various sample 

103 sizes (x-axis). In most of the tools, as the sample sizes increase, the total number of differentially 

104 expressed genes also increases steadily. There was an overall trend of increase in the number of DEGs as 

105 the sample sizes increase.

106 Fig 1 presents an overview of the distribution of DEGs identified by all tools at different sample 

107 sizes. Irrespective of the tool used, the number of significant genes increases with increasing 

108 sample size until a point where it plateaus (after dataset 105). From Figs 2 and 4, F1-Scores and 

109 recall of EBSeq increased with increasing sample sizes until dataset 75, where it begins to drop, 

110 indicating that EBSeq will work best with experimental designs of smaller sample sizes (<75) 

111 and might not be appropriate for analyses with larger sample sizes (>75). 

112
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113 Fig 2. Comparison of F1-scores of all the methods at different sample sizes. The F1-scores of the DGE 

114 tools increased with accompanying increase in sample size. The F1-score for EBSeq declines for sample 

115 size > 75.

116 Limma-voom (treat and ebayes) and limma-trend (ebayes) gave relatively higher F1-scores, 

117 compared to limma-trend (treat), which produced poorer F1-scores. This is consistent with those 

118 reported by Costa-Silva et al (16) (Fig 2). 

119 The outstanding performance (F1-scores) of ebayes against treat method could be attributed to 

120 its ability to control the false positive rate (keeping a good balance between sensitivity and 

121 precision). The treat method on the other hand compensates its poor sensitivity with very high 

122 precision scores. 

123 Generally, larger sample sizes give more reliable results with greater precision and power (17). 

124 Furthermore, work by Liu et al (18) and Busby et al (19) established that increasing the number 
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125 of replicates in an RNA-seq analysis usually leads to more robust results. This is evident as the 

126 majority of the tools showed increasing precision and F1-scores with increasing sample sizes 

127 (Fig 2). Moreover, across the majority of tools assessed (ABSseq, ALDEx2, baySeq, sSeq and 

128 Limma), there seemed to be a higher change in performance from sample sizes of 20 to 50 after 

129 which the F1-Scores increase steadily until they reached a plateau. This points to the fact that 

130 using a sample size of 100 and above per group in DEA might be optimal.

131 edgeR, DESeq2 and EBSeq recorded a slight decrease in performance at the highest sample size 

132 (200), which is in contrast with Biau et al�s (17) assumption (larger sample is equivalent to 

133 greater precision and power). This could be accounted for by the rise in the false positives and 

134 the false negatives recorded at this sample size. 

135
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136

137 Fig 3: Comparison of precision values for all the methods at different sample sizes. edgeR-exact recorded 

138 low values of precision across all the datasets, followed closely by sSeq and baySeq. ABSseq, limma 

139 voom (treat) and limma trend (treat), all gave consistently higher precision values.

140 Whilst limma and ABSseq (aFold) are amongst the best performing tools overall, this evaluation 

141 indicates that for analyses requiring high precision, limma-trend, ABSseq (classic) and edgeR 

142 would be the best option whilst sSeq and DESeq2 could be optimal for analyses prioritizing 

143 recall (Fig 4). This is in line with a study by Lamarre (20) who found that the DESeq2 pipeline 

144 seems to prioritize recall while limma prioritizes precision. It is also worth noting that whilst 

145 recall of all the tools (except EBseq) seems to be strongly dependent on sample size, precision is 

146 independent of sample size.
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147

148 Fig 4. Comparison of recall scores by all the methods at different sample sizes. Overall, sensitivity 

149 increased gently across the various datasets in all methods, with sSeq (Dataset_100) recording the highest 

150 (0.9872). The least sensitive method was limma voom (treat) (0.4296) at a sample size of 20.

151

152 We also investigated the concordance between a pair of DGE tools using a heatmap. This was 

153 generated from data at sample size 75, where almost all the tools had an optimal performance 

154 and therefore typical of the F1-score of the entire datasets. We plotted a heatmap using the top 

155 1000 most significant DEGs from each tool based on adjusted p-values or FDR. The heatmap 

156 was used to identify tools that had the highest number of common genes. We surmise that these 

157 tools employ similar approaches in identifying DEGs. limma voom (treat) and limma voom 
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158 (ebayes). identified the highest number (994) of DEGs while edgeR (QLF) and ABSeq (aFold) 

159 recorded the least (808) (Fig 5).

160

161

162

163

164 Fig 5. A heatmap showing the pairwise concordance between DGE tools. The highest concordance was 

165 between limma voom (treat) and limma voom (ebayes) while the lowest was between edgeR (QLF) and 

166 ABSeq (aFold).

167 limma voom treat and limma voom ebayes. identified the highest number (994) of DEGs while 

168 edgeR (QLF) and ABSeq (aFold) recorded the least numbers (808).
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169 Finally, we compared the averaged F1-scores of all the methods in order to identify the overall 

170 best- and worst-performing tools (Fig 6). Based on this, the best tool was edgeR-glmRT (avg. 

171 F1-score = 0.938498), which would be ideal for DGE analysis of RNA-seq data involving a 

172 maximum of 100 replicates. 

173

174

175 Fig 6. Performance (F1-score) measure of DGE tools. edgeR (glmRT) and EBSeq were the overall best- 

176 and worst-performing tools respectively based on average F1-score.

177

178 An alternative would be edgeR (glmQLF) ((avg. F1-score = 0.937598)) and AbSseq (aFold) 

179 (avg. F1-score = 0.934508). EBSeq (avg. F1-score =0.650498), baySeq (avg. F1-score = 

180 0.813696) and edgeR (EXACT) (avg. F1-score = 0.830104) (Fig 6) are not recommended for 

181 research studies involving up to 100 replicates. 

182
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183 Conclusion

184 We presented a detailed review of different methods used for differential expression analysis of 

185 simulated count data from RNA-seq experiments. After evaluating the effect of increasing the 

186 number of replicates on the performance (F1-score, recall and precision) of DGE tools, we made 

187 the following recommendations that may be relevant to researchers employing diverse replicates 

188 in their RNA-seq experiments; for replicate numbers between 10 and 50, edgeR-glmRT produces 

189 better results while edgeR-glmQLF was better for replicates between 55 and 200. We did not 

190 identify among the evaluated methods a tool that produces optimum results in all the 

191 performance measures for the evaluated replicate numbers. 

192 For recall, precision and F1-score, sSeq (0.970913), limma_voom_treat (0.998309) and sSeq 

193 (0.970913) produced the best results, respectively. Depending on the objectives of a particular 

194 research, investigators can prioritize one performance measure over the other and employ the 

195 appropriate recommended method.

196

197 Materials and Methods

198 Tool selection criteria

199 Several tools have been developed for DGE in RNA-seq analyses. These tools adopt diverse 

200 distributions and methods to identify DEGs. Popular among these are the Negative Binomial 

201 (NB) and Poisson distributions. Upon surveying over 35 tools, 8 were selected based on our set 

202 criteria: tools that follow a Negative Binomial Distribution and are open-source. Tools that 

203 employ Poisson distribution were not considered since it assumes equal variance across a given 

204 dataset, which is atypical of RNA-seq data.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2020. ; https://doi.org/10.1101/2020.06.10.144063doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.144063
http://creativecommons.org/licenses/by/4.0/


205 Data Simulation and datasets

206 We simulated an RNA-seq count data set (dataframe containing the number of reads mapping to 

207 each genomic feature of interest in each of the samples) using compcodeR�s 

208 generateSyntheticData function (14), with the mean values sampled from values estimated from 

209 the Pickrell (21) and Cheung (22) data sets. Gene counts were simulated following the Negative 

210 Binomial distribution. 

211 The simulated datasets contained 12,500 gene counts with two groups of 10 replicates each, 

212 where 10% of the simulated genes were differentially expressed between the two groups. Counts 

213 were also simulated with the same dispersion in the two groups, and no outlier counts were 

214 introduced. The datasets were filtered to exclude all genes with total counts of 0 and the DEGs 

215 were equally distributed between up regulated and down regulated genes. The above simulation 

216 approach was repeated for replicates of 15 to 200 (with an interval of 5).

217 A set of randomly generated gene names obtained from biomaRt (23) was appended as row 

218 names to the count table of the dataset. This newly generated count matrix was further used for 

219 DGE analyses. From the dataset generated, the truth set was extracted from the 

220 differential.expression column of the variable.annotations table, where �1� and �0� represented 

221 differentially expressed and non-differentially genes, respectively. The group designation was 

222 also extracted from the sample.annotations table, which contained the group for each sample.

223 Differential Gene Expression Analysis

224 A brief description of the 8 different tools is presented below: 

225 DESeq2: A DESeqDataSet object was created from the matrix of counts and metadata using 

226 DESeqDataSetFromMatrix function for counts data. The DESeq function was then run on the 
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227 object created to perform DGE analysis. This was followed by building the results table using the 

228 results function. MA plots were then generated from the results obtained. Finally, the selection of 

229 DEGs was performed and genes with adjusted p-values of less than 0.1 (default for DESeq2) 

230 were considered to be significant and differentially expressed.

231 limma: Firstly, a DGEList object was created using edgeR package in R. Trimmed mean of M 

232 values (TMM) normalization method was used on the counts data since it performs well in 

233 comparative studies (24). Counts were then converted to logCPM values using edgeR�s cpm 

234 function. The logCPM values were then used in the entire analyses using limma-trend pipeline 

235 with eBayes and treat methods. The voom transformation was applied to the normalized 

236 DGEList object to create an Elist object, which was finally used in eBayes and treat methods for 

237 DGE analyses. Genes with adjusted p-values of less than 0.05 (default) were selected as 

238 significantly differentially expressed.

239 edgeR: A DGEList object was created from the matrix of counts, ensued by normalization using 

240 TMM. Prior to DGE analyses with classic edgeR approach (exact), quasi-likelihood F-test and 

241 the likelihood ratio test, the dispersions were estimated. Genes with an adjusted p-value of less 

242 than 0.05 were selected as significantly differentially expressed.

243 baySeq: DEA commenced with the creation of a countData object from the simulated data and 

244 the already defined groups and replicates. We then inferred the library sizes. Prior to obtaining 

245 posterior probabilities and estimating proportions of differentially expressed counts, we 

246 estimated prior probabilities on countData object using the negative binomial model. Genes with 

247 an adjusted p-value of less than 0.05 (default) were selected as significantly differentially 

248 expressed.
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249 EBSeq: Working with EBSeq requires an estimation of library sizes for each sample. Here, the 

250 library sizes were obtained by a median normalization function. The data was converted into a 

251 matrix with all the genes explicitly stated as the row names. The function EBTest was used, 

252 which considers the count data, the conditions, the library sizes and the expected number of 

253 iterations. GetPPMat and GetDEResults were used to output the results and to extract the 

254 significantly differentially expressed genes (p-value less than or equal to 0.5).

255 ALDEx2: It estimates per-feature technical variation within each sample using Monte-Carlo 

256 instances drawn from the Dirichlet distribution. During the analyses, we first set the comparison 

257 groups, which is a vector of conditions in the same order as samples in the counts dataset. We 

258 then performed a t-test and used 128 Monte-Carlo instances as recommended by Gloor (7) for t-

259 test analyses.  DEGs were extracted by setting a threshold of adjusted p-value to less than 0.1 

260 (default).

261 sSeq: The function nbTestSH was used to obtain the regularized dispersion estimates and 

262 perform the exact tests. P-values were corrected with the Benjamini-Hochberg method using the 

263 p.adjust function. Significantly differentially expressed genes were extracted by setting a 

264 threshold of adjusted p-value less than 0.05 (default).
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265 ABSseq: We created an object by providing a count matrix (from the simulated gene counts) and 

266 the defined groups. The ABSDataSet function includes a parameter for normalization, which by 

267 default is qtotal. To identify differentially expressed genes, the ABSseq function was used. This 

268 ran a default analysis by calling all required functions in the background. In an alternative 

269 approach (aFold), DEGs were called via log fold-change. It uses a polynomial function to model 

270 the uncertainty (variance) of read count, and thus takes into consideration the variance of 

271 expression levels across treatments and genes. In this approach, useaFold was set to �TRUE�. In 

272 both approaches, differentially expressed genes were extracted by setting a threshold of adjusted 

273 p-value < 0.05 (default).

274 Performance metrics measurement

275 The simulated datasets and �truthset� were used to assess the performance of each method based 

276 on precision, recall and F1-score. We also explored the effect of varying the number of replicates 

277 in both groups on the performance of each method.  Finally, we performed a pairwise 

278 comparison on the number of DEGs recorded for each tool.
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