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Abstract

The introduction of several differential gene expression analysis tools has made it difficult for
researchers to settle on a particular tool for RNA-seq analysis. This coupled with the appropriate
determination of biological replicates to give an optimum representation of the study population
and make biological sense. To address these challenges, we performed a survey of 8 tools used
for differential expression in RNA-seq analysis. We simulated 39 different datasets (from 10 to
200 replicates, at an interval of 5) using compcodeR with a maximum of 100 replicates. Our goal
was to determine the effect of varying the number of replicates on the performance (F1-score,

recall and precision) of the tools. EBSeq and edgeR-glmRT recorded the highest (0.9385) and
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lowest (0.6505) average Fl-score across all replicates, respectively. We also performed a
pairwise comparison of all the tools to determine their concordance with each other in
identifying differentially expressed genes. We found the greatest concordance to be between
limma voom treat and limma voom ebayes. Finally, we recommend employing edgeR-gIlmRT for
RNA-seq experiments involving 10-50 replicates and edgeR-gImQLF for studies with 55 to 200

replicates.

Author summary

Downstream analysis of RNA-seq data in R often poses several challenges to researchers as it is
a daunting task to choose a specific differential expression analysis tool over another.
Researchers also find it challenging to determine the number (replicates) of samples to use in
order to give comparable and accurate results. In this paper, we surveyed eight differential
expression analysis tools using different number of replicates of simulated RNA-seq count data.
We measured the performance of each tool and based on the recorded Fl-scores, recall and
precision, we made the following recommendations; consider edgeR-glmRT and edgeR-glmQLF

for replicates of 10-50 and 55-200 respectively.

Introduction

Since the introduction of RNA sequencing in the mid-2000s, undoubtedly, there has been an
exponential increase in RNA-seq data generation with an equivalent rise in the development of
algorithms for differential gene expression (DGE) analyses with varying performances. These
methods seek to make data analyses relatively easier and address complex biological questions

with greater levels of statistical confidence. However, the challenge still remains the selection of
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optimal DGE tools and sample size calculations for optimal accuracy. This makes the selection

of tools and sample sizes for optimum analyses a very crucial but daunting task.

Over the years, several research articles have been published that address the lack of consensus
among DGE tools. Examples of these are the works of Seyednasrollah et al (1) who performed a
systematic comparison of some popular DGE tools and provided recommendations for choosing
the optimal tool. Rapaport et al (2) assessed a number of tools based on the performance of
normalization, false-positive rates and the effect of sequencing depth and sample replication on
DGE analyses. Kvam et al (3) compared the ability of edgeR, DESeq, baySeq, and TSPM to
detect DEGs from both simulated and real RNA-seq data. Germain ef al (4) assessed the effect of
library size on quantification and DEA and went on to create an R package (RNAontheBENCH)
and a web platform that could be used for benchmarking RNA-seq quantification and differential
expression methods. The influence of the number of replicates, sequencing depth, and balanced
versus unbalanced sequencing depth within and between groups using Cufflinks-Cuffdiff2,
DESeq and edgeR was explored by Zhang et al (5). They concluded that edgeR performed better
than DESeq and Cuffdiff2 in terms of its ability to detect true positives and recommended that
Cuftdiff2 should not be used if sequencing depth is low (i.e. <10 million reads per individual

sample).

Furthermore, most DGE analyses have been limited to designed experimental studies (eg. treated
cell lines vs untreated cell lines), which characteristically utilize small (< 12) replicate samples

limiting the power of statistical inference.

In this study, we performed a comparative analysis of the performance of eight (8) DGE tools

including ABSseq (6), ALDEx2 (7), edgeR (8), limma (9), EBSeq (10), sSeq (11), baySeq (12)


https://doi.org/10.1101/2020.06.10.144063
http://creativecommons.org/licenses/by/4.0/

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.10.144063; this version posted June 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

and DESeq2 (13). The tools were assessed with a total of fourteen (14) different methods
(algorithms used by the tools to identify DEGs) on simulated datasets generated with
CompcodeR (14). We also determined the effect of varying the number of replicates per group

(sample size) on the performance of each method.

Unique to our study, we used a very high number of samples (20 to 400, at an interval of 5) to
assess the performance of the DGE tools and to the best of our knowledge, this is the first study
to employ such huge sample sizes to find DEGs in bulk RNA-seq analysis. Our sample sizes
were chosen to reflect the current trends of experimental designs for particularly cancer research
and population-based studies as smaller numbers of sample replicates are not enough to

characterize the high heterogeneity in such studies.

Results and discussion

The performances of 14 DGE methods of 8 tools for RNA-seq analyses on varying numbers of

replicates in two groups were critically assessed.

Tool Selection

The methods (Limma voom (treat), Limma voom (eBayes), Limma trend (treat), Limma trend
(eBayes), edgeR Exact, edgeR likelihood ratio test, edgeR quasi-likelihood F-test, DESeq2,
baySeq, EBseq, ALDEx2, sSeq, ABSseq (Classic) and ABSseq (aFold)) were selected based on
the following criteria: Firstly, Poisson distribution assumes equal mean and variance across the
data and this is atypical of RNA-seq count data which present different means and variance. We
based seelction on the above to eliminate all tools that employ Poisson distributions rather than

Negative Binomial. Secondly, we selected open-source software packages, which have their
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90 source code released under a license that grants users the right to make changes and redistribute
91 the software under certain conditions (15). These software packages are usually robust and have
92  diverse perspectives. We based our choice on this to also eliminate tools that are not open-

93  sourced.

94  Comparison of tool performances

95  All tools were run with default parameters for both DGE and selection of significant genes. The
96 calculated F1-Score for each method was a priority for the performance check as it gave a
97  weighted average of precision and recall taking into account both false negatives and positives.

98  All tools used in this study identified between 265 and 2500 DEGs across all datasets (Fig 1).

99 EBSeq and edgeR-exact recorded the lowest (266) and the highest (2500) number of DEGs

100  which included the highest number of false negative and positives, respectively.

101
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102  Fig 1. A boxplot comparing the total number of DEGs (y-axis) for all the tools studied at various sample
103  sizes (x-axis). In most of the tools, as the sample sizes increase, the total number of differentially
104  expressed genes also increases steadily. There was an overall trend of increase in the number of DEGs as
105  the sample sizes increase.

106  Fig 1 presents an overview of the distribution of DEGs identified by all tools at different sample
107  sizes. Irrespective of the tool used, the number of significant genes increases with increasing
108  sample size until a point where it plateaus (after dataset 105). From Figs 2 and 4, F1-Scores and
109  recall of EBSeq increased with increasing sample sizes until dataset 75, where it begins to drop,
110 indicating that EBSeq will work best with experimental designs of smaller sample sizes (<75)

111 and might not be appropriate for analyses with larger sample sizes (>75).

112


https://doi.org/10.1101/2020.06.10.144063
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.10.144063; this version posted June 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Plot of Fscore

bay5eq.R
deseq
EdgeR_gimRT
EdgeR_gimQLF
EdgeR_EXACT
limma-trend_eBayes
limma-trend_treat
limma_voom_eBayes
limma_voom_treat
+— Absseq.R
—+ Aldex2TT.R
®— ghseq.R
== Seql2.R
—#— AhsseghFold.R

FEEHE TS

Fscore

04 Y

03 w

L o S e o e e e e e e e B e e T R e E e S
10 15 20 25 30 35 40 45 50 55 60 65 YO 75 BD 85 90 95 100105110115120125130035140145150155160165170175150185190195200
Dataset

113 Fig 2. Comparison of Fl-scores of all the methods at different sample sizes. The Fl-scores of the DGE
114  tools increased with accompanying increase in sample size. The F1-score for EBSeq declines for sample
115  size>75.

116  Limma-voom (treat and ebayes) and limma-trend (ebayes) gave relatively higher F1-scores,
117  compared to limma-trend (#reat), which produced poorer F1-scores. This is consistent with those

118  reported by Costa-Silva et al (16) (Fig 2).

119  The outstanding performance (F1-scores) of ebayes against treat method could be attributed to
120  its ability to control the false positive rate (keeping a good balance between sensitivity and
121 precision). The treat method on the other hand compensates its poor sensitivity with very high

122  precision scores.

123 Generally, larger sample sizes give more reliable results with greater precision and power (17).

124  Furthermore, work by Liu et al (18) and Busby et a/ (19) established that increasing the number
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of replicates in an RNA-seq analysis usually leads to more robust results. This is evident as the
majority of the tools showed increasing precision and Fl-scores with increasing sample sizes
(Fig 2). Moreover, across the majority of tools assessed (ABSseq, ALDEx2, baySeq, sSeq and
Limma), there seemed to be a higher change in performance from sample sizes of 20 to 50 after
which the F1-Scores increase steadily until they reached a plateau. This points to the fact that

using a sample size of 100 and above per group in DEA might be optimal.

edgeR, DESeq2 and EBSeq recorded a slight decrease in performance at the highest sample size
(200), which is in contrast with Biau et al’s (17) assumption (larger sample is equivalent to
greater precision and power). This could be accounted for by the rise in the false positives and

the false negatives recorded at this sample size.
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Fig 3: Comparison of precision values for all the methods at different sample sizes. edgeR-exact recorded
low values of precision across all the datasets, followed closely by sSeq and baySeq. ABSseq, limma
voom (treat) and limma trend (treat), all gave consistently higher precision values.

Whilst limma and ABSseq (aFold) are amongst the best performing tools overall, this evaluation
indicates that for analyses requiring high precision, limma-trend, ABSseq (classic) and edgeR
would be the best option whilst sSeq and DESeq2 could be optimal for analyses prioritizing
recall (Fig 4). This is in line with a study by Lamarre (20) who found that the DESeq?2 pipeline
seems to prioritize recall while limma prioritizes precision. It is also worth noting that whilst
recall of all the tools (except EBseq) seems to be strongly dependent on sample size, precision is

independent of sample size.
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Fig 4. Comparison of recall scores by all the methods at different sample sizes. Overall, sensitivity
increased gently across the various datasets in all methods, with sSeq (Dataset 100) recording the highest

(0.9872). The least sensitive method was limma voom (treat) (0.4296) at a sample size of 20.

We also investigated the concordance between a pair of DGE tools using a heatmap. This was

generated from data at sample size 75, where almost all the tools had an optimal performance

and therefore typical of the Fl-score of the entire datasets. We plotted a heatmap using the top

1000 most significant DEGs from each tool based on adjusted p-values or FDR. The heatmap

was used to identify tools that had the highest number of common genes. We surmise that these

tools employ similar approaches in identifying DEGs. limma voom (treat) and limma voom
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(ebayes). identified the highest number (994) of DEGs while edgeR (QLF) and ABSeq (aFold)

recorded the least (808) (Fig 5).
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Fig 5. A heatmap showing the pairwise concordance between DGE tools. The highest concordance was
between limma voom (treat) and limma voom (ebayes) while the lowest was between edgeR (QLF) and
ABSeq (aFold).

limma voom treat and limma voom ebayes. identified the highest number (994) of DEGs while

edgeR (QLF) and ABSeq (aFold) recorded the least numbers (808).


https://doi.org/10.1101/2020.06.10.144063
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.10.144063; this version posted June 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

169  Finally, we compared the averaged F1-scores of all the methods in order to identify the overall
170  best- and worst-performing tools (Fig 6). Based on this, the best tool was edgeR-gImRT (avg.
171 Fl-score = 0.938498), which would be ideal for DGE analysis of RNA-seq data involving a

172 maximum of 100 replicates.
173

174
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175  Fig 6. Performance (F1-score) measure of DGE tools. edgeR (glmRT) and EBSeq were the overall best-
176  and worst-performing tools respectively based on average F1-score.

177

178  An alternative would be edgeR (glmQLF) ((avg. Fl-score = 0.937598)) and AbSseq (aFold)
179  (avg. Fl-score = 0.934508). EBSeq (avg. Fl-score =0.650498), baySeq (avg. Fl-score =
180  0.813696) and edgeR (EXACT) (avg. Fl-score = 0.830104) (Fig 6) are not recommended for

181  research studies involving up to 100 replicates.

182
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183 Conclusion

184  We presented a detailed review of different methods used for differential expression analysis of
185  simulated count data from RNA-seq experiments. After evaluating the effect of increasing the
186  number of replicates on the performance (F1-score, recall and precision) of DGE tools, we made
187  the following recommendations that may be relevant to researchers employing diverse replicates
188  in their RNA-seq experiments; for replicate numbers between 10 and 50, edgeR-gImRT produces
189  better results while edgeR-glmQLF was better for replicates between 55 and 200. We did not
190 identify among the evaluated methods a tool that produces optimum results in all the

191  performance measures for the evaluated replicate numbers.

192  For recall, precision and Fl-score, sSeq (0.970913), limma voom treat (0.998309) and sSeq
193 (0.970913) produced the best results, respectively. Depending on the objectives of a particular
194  research, investigators can prioritize one performance measure over the other and employ the

195  appropriate recommended method.

196

197  Materials and Methods

198 Tool selection criteria

199  Several tools have been developed for DGE in RNA-seq analyses. These tools adopt diverse
200  distributions and methods to identify DEGs. Popular among these are the Negative Binomial
201  (NB) and Poisson distributions. Upon surveying over 35 tools, 8§ were selected based on our set
202  criteria: tools that follow a Negative Binomial Distribution and are open-source. Tools that
203  employ Poisson distribution were not considered since it assumes equal variance across a given

204  dataset, which is atypical of RNA-seq data.
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205 Data Simulation and datasets

206  We simulated an RNA-seq count data set (dataframe containing the number of reads mapping to
207 each genomic feature of interest in each of the samples) wusing compcodeR’s
208 function (14), with the mean values sampled from values estimated from
209  the Pickrell (21) and Cheung (22) data sets. Gene counts were simulated following the Negative

210 Binomial distribution.

211 The simulated datasets contained 12,500 gene counts with two groups of 10 replicates each,
212 where 10% of the simulated genes were differentially expressed between the two groups. Counts
213 were also simulated with the same dispersion in the two groups, and no outlier counts were
214  introduced. The datasets were filtered to exclude all genes with total counts of 0 and the DEGs
215 were equally distributed between up regulated and down regulated genes. The above simulation

216  approach was repeated for replicates of 15 to 200 (with an interval of 5).

217 A set of randomly generated gene names obtained from biomaRt (23) was appended as row
218 names to the count table of the dataset. This newly generated count matrix was further used for
219 DGE analyses. From the dataset generated, the truth set was extracted from the
220 column of the table, where “1” and “0” represented
221 differentially expressed and non-differentially genes, respectively. The group designation was

222 also extracted from the table, which contained the group for each sample.

223 Differential Gene Expression Analysis

224 A brief description of the 8 different tools is presented below:

225 DESeq2: A object was created from the matrix of counts and metadata using

226 function for counts data. The function was then run on the


https://doi.org/10.1101/2020.06.10.144063
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.10.144063; this version posted June 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

227  object created to perform DGE analysis. This was followed by building the results table using the
228 function. MA plots were then generated from the results obtained. Finally, the selection of
229  DEGs was performed and genes with adjusted p-values of less than 0.1 (default for DESeq2)

230  were considered to be significant and differentially expressed.

231 limma: Firstly, a object was created using edgeR package in R. Trimmed mean of M
232 values (TMM) normalization method was used on the counts data since it performs well in
233 comparative studies (24). Counts were then converted to values using edgeR’s

234 function. The values were then used in the entire analyses using limma-trend pipeline
235 with eBayes and treat methods. The voom transformation was applied to the normalized
236 object to create an object, which was finally used in eBayes and treat methods for
237 DGE analyses. Genes with adjusted p-values of less than 0.05 (default) were selected as

238  significantly differentially expressed.

239  edgeR: A object was created from the matrix of counts, ensued by normalization using
240 TMM. Prior to DGE analyses with classic edgeR approach (exact), quasi-likelihood F-test and
241 the likelihood ratio test, the dispersions were estimated. Genes with an adjusted p-value of less

242 than 0.05 were selected as significantly differentially expressed.

243 baySeq: DEA commenced with the creation of a object from the simulated data and
244  the already defined groups and replicates. We then inferred the library sizes. Prior to obtaining
245  posterior probabilities and estimating proportions of differentially expressed counts, we
246  estimated prior probabilities on object using the negative binomial model. Genes with
247  an adjusted p-value of less than 0.05 (default) were selected as significantly differentially

248  expressed.
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249  EBSeq: Working with EBSeq requires an estimation of library sizes for each sample. Here, the
250 library sizes were obtained by a median normalization function. The data was converted into a
251  matrix with all the genes explicitly stated as the row names. The function was used,
252  which considers the count data, the conditions, the library sizes and the expected number of
253  iterations. and were used to output the results and to extract the

254  significantly differentially expressed genes (p-value less than or equal to 0.5).

255  ALDEXx2: It estimates per-feature technical variation within each sample using Monte-Carlo
256  instances drawn from the Dirichlet distribution. During the analyses, we first set the comparison
257  groups, which is a vector of conditions in the same order as samples in the counts dataset. We
258  then performed a t-test and used 128 Monte-Carlo instances as recommended by Gloor (7) for t-
259  test analyses. DEGs were extracted by setting a threshold of adjusted p-value to less than 0.1

260  (default).

261  sSeq: The function was used to obtain the regularized dispersion estimates and
262 perform the exact tests. P-values were corrected with the Benjamini-Hochberg method using the
263 function. Significantly differentially expressed genes were extracted by setting a

264  threshold of adjusted p-value less than 0.05 (default).
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265 ABSseq: We created an object by providing a count matrix (from the simulated gene counts) and
266  the defined groups. The function includes a parameter for normalization, which by
267  default is . To identify differentially expressed genes, the function was used. This
268 ran a default analysis by calling all required functions in the background. In an alternative
269  approach (aFold), DEGs were called via log fold-change. It uses a polynomial function to model
270  the uncertainty (variance) of read count, and thus takes into consideration the variance of
271  expression levels across treatments and genes. In this approach, was set to “TRUE’. In
272 both approaches, differentially expressed genes were extracted by setting a threshold of adjusted

273  p-value < 0.05 (default).

274  Performance metrics measurement

275  The simulated datasets and ‘truthset” were used to assess the performance of each method based
276  on precision, recall and F1-score. We also explored the effect of varying the number of replicates
277 in both groups on the performance of each method. Finally, we performed a pairwise

278  comparison on the number of DEGs recorded for each tool.
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