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Abstract

DNA methylation (DNAm) is known to play a pivotal role in childhood health and development, but a
comprehensive characterization of genome-wide DNAm trajectories across this age period is
currently lacking. We have therefore performed a series of epigenome-wide association studies in
5,019 blood samples collected at multiple time-points from birth to late adolescence from 2,348
participants of two large independent cohorts. DNAm profiles of autosomal CpG sites (CpGs) were
generated using the lllumina Infinium HumanMethylation450 BeadChip. Change over time was
widespread, observed at over one-half (53%) of CpGs. In most cases DNAm was decreasing (36% of
CpGs). Inter-individual variation in linear trajectories was similarly widespread (27% of CpGs).
Evidence for nonlinear change and inter-individual variation in nonlinear trajectories was somewhat
less common (11% and 8% of CpGs, respectively). Very little inter-individual variation in change was
explained by sex differences (0.4% of CpGs) even though sex-specific DNAm was observed at 5% of
CpGs. DNAm trajectories were distributed non-randomly across the genome. For example, CpGs with
decreasing DNAm were enriched in gene bodies and enhancers and were annotated to genes
enriched in immune-developmental functions. By contrast, CpGs with increasing DNAm were
enriched in promoter regions and annotated to genes enriched in neurodevelopmental functions.
These findings depict a methylome undergoing widespread and often nonlinear change throughout
childhood. They support a developmental role for DNA methylation that extends beyond birth into
late adolescence and has implications for understanding life-long health and disease. DNAm

trajectories can be visualized at http://epidelta.mrcieu.ac.uk.
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Introduction

DNA methylation (DNAm), an epigenetic process whereby DNA is modified by the addition of methyl
groups, has gained increasing attention over the past few decades, due to its pivotal role in
development. In utero, DNAm is involved in a range of essential processes including cell
differentiation’3, X-chromosome inactivation* and fetal growth®. Its role extends well beyond birth,
e.g. by maintaining cell type identity and genome stability®?, responding to environmental

911 and its involvement in immune!? and neural development?. Since it is influenced by

exposures
both genetic and environmental factors*?>, DNAm has also emerged as a key mechanism of interest
for understanding the gene-environmental interplay in normal ageing and disease development.
Numerous studies have identified strong associations between DNAm and age. While most
have relied on cross-sectional data'®*®, but a few have utilized longitudinal measurements of DNAm
within individuals'®2. Longitudinal measurements allow one to distinguish intra-individual change
from inter-individual differences in change, thereby greatly improving the power to detect change
over time and to identify differences between individuals?*. Identifying and characterizing CpGs for
which DNAm changes differently over time between individuals (i.e. inter-individual variation in
change) is a necessary step in identifying genetic and environmental influences on the methylome as
well as their potential impact on health outcomes?. Moreover, longitudinal designs facilitate the
study of nonlinear trajectories®®?’, which might help to identify sensitive periods for DNAm change in
development. To date, the largest epigenome-wide longitudinal study on DNAm included 385 elderly
individuals who were followed up to five times over a maximum period of 18 years, identifying
DNAm change at 1,316 CpG (Cytosine-phosphate-Guanine) sites'® and inter-individual variation at
change at 570 CpGs®. Yet, little is known about DNAm trajectories across early development, as

21,23

existing studies in childhood DNAm typically have been limited by small sample sizes*"**, short time-

22,28

periods??? or focused on specific CpGs in relation to maternal smoking?, birthweight*°, or maternal

BMI


https://doi.org/10.1101/2020.06.09.142620
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.142620; this version posted June 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

In the current study, we aim to provide a benchmark of typical epigenome-wide age-related
DNAm trajectories within individuals, spanning the first two decades of life. This study combines
repeated measurements of DNAm at nearly half a million CpG sites across the genome from two
large population-based cohorts, the Generation R Study and Avon Longitudinal Study of Parents and
Children (ALSPAC), to form one integrated dataset with four time-points of measurement. In a series
of three epigenome-wide mixed model analyses we study linear (Model 1), nonlinear (Model 2) and
sex-related (Model 3) trajectories of change across development. Further, we aim to identify CpGs
for which trajectories vary between individuals (Model 1 and 2). Results are interpreted in the
context of CpG location and biological pathways. The key findings are discussed here, full results per

CpG can be freely accessed and visualized at http://epidelta.mrcieu.ac.uk/ [note to reviewers: this is

a demo website for now].

Results

Cross-cohort comparability

Sample characteristics of 1,399 Generation R participants (total DNAm samples=2,333) and of 949
ALSPAC participants (total DNAm samples=2,686; Figure 1) are provided in Supplementary Table 1.
After the DNAm datasets of the two cohorts underwent joint functional normalization (see
Supplementary Figure 1 for distributions of mean DNAm levels), within-cohort stability of DNAm at
birth and 6 or 7 years (in Generation R and ALSPAC, respectively) was compared. Stability of DNAm at
individual CpG sites (437,864 autosomal sites) was estimated in three ways: relative concordance
using Spearman correlations between time points, absolute concordance using intraclass correlations
between time points (children with data for both time points: n Generation R=476, n ALSPAC=826),
and change over time using change estimates from a linear mixed model (Model 1, online Methods)
applied within each cohort (children with data for at least one of the two time-points: n Generation
R=1,394, n ALSPAC=944). Estimates of all stability measures for both cohorts are depicted in Figure 2.

Next, agreement of these stability estimates between the two cohorts was estimated with the
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Spearman (p) or Pearson (r) correlation (depending on normality of the data) across all CpGs,
between the datasets. The Spearman correlation of the relative concordance was p=0.62, the
Pearson correlation of the absolute concordance was p=0.60, and the Pearson correlation of the
change estimates was r=0.86, indicating strong agreement between datasets. Based on these results
the two datasets were joined to form one set with four different time-points of DNAm (birth, age 6/7

years, 10 years, 17 years).

Longitudinal overlap DNA methylation Generation R Longitudinal overlap DNA methylation ALSPAC
Birth 6 years 10 years Birth 7 years 17 years
449 823
1382 488 463 852 918 916
476 343 826 887
a 334 b 799

Figure 1. Longitudinal sample sizes. Sample sizes for (a) Generation R (N total children=1,399, N total
DNAm samples=2,333); and (b) ALSPAC (N total children=949, N total DNAm samples=2,686). Bolded
numbers represent total sample size at each time-point; non-bolded number refer to overlapping

samples between time-points.
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Figure 2. Scatterplots of within-cohort stability of DNA methylation. Showing (a) Spearman
correlations, (b) intraclass correlation coefficients and (c) change estimates from birth to 6/7 years

per CpG for Generation R and ALSPAC.

Linear DNAm change from birth to early adulthood

Estimates of overall change in DNAm from birth to early adolescence (Model 1; see online Methods)
indicated linear change at 51.6% of CpGs at a Bonferroni-corrected threshold (P<1x10?) (Figure 3a
and 3b). Specifically, DNAm decreased over time at 35.5% of all CpGs and increased at 16.0%. The
mode intercept indicated that the decreasing CpGs were 88% methylated at birth (Figure 4). DNAm
levels for increasing CpGs typically started at 5%.

The mode estimate DNAm change was b=-9.24x10°* (with corresponding mode SE=6.85x10
%), indicating an overall 0.09% DNAm decrease per year at a typical CpG site. This translates into a
1.66% decrease in DNAm over the course of 18 years. An example of a CpG site with a typical change
in DNAm is depicted in Figure 3a. The largest observed absolute change in DNAmM was b=-3.47x102
(SE=3.65x10%4, P<9.88x103?%), indicating an overall DNAm decrease of 62.5% over 18 years (Figure
3b). Only twenty-two CpGs showed an absolute change >50% over the course of 18 years
(Supplementary Table 2). From this it follows that typically in (cord-/peripheral) blood tissue, DNAm
levels for CpGs do not change from a fully unmethylated to fully methylated state, or vice versa, over
the course of 18 years.

Further, we observed substantial inter-individual variation in linear DNAm changes over time
at 27.4% of all CpGs (i.e. random slope variance was greater than zero at Bonferroni-corrected
threshold P<1x10%7; Figure 3c). On average, this variation accounted for 2.7% (SD=1.5%) of all
estimated inter-individual variation (for intercept, age, batch, and residual) at these CpGs. At 17.3%

of all CpGs, we observed both change and inter-individual variation in change.
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Figure 3. DNAm levels of selected CpG sites across childhood. Parts (a-c) show CpG sites with linear

change over time (Model 1). A typical site is shown in (a), the site with the largest observed change in
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(b) and with inter-individual variation in DNAm change (c). Parts (d-f) show CpG sites with non-linear

change (Model 2). A Positive-Neutral trajectory is shown in (d), a Negative-Neutral trajectory in (e)

and a Positive-More Positive-Less Positive in (f). Parts (g-i) show CpG sites with inter-individual

variation in change (Model 2). A site with slope variation from birth is shown in (g), slope change

variation at 6 in (h) and slope change variation at 9 in (i). Parts (j-1) show CpG sites with sex-specific

DNAm. A site with stable sex differences is shown in (Model 3) (j), sex-specific slope in (Model 3) (k)

and sex-specific slope change at 6 in (Model 2) (I).
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interaction). Percentages represent percentage of autosomal CpGs below Bonferroni-corrected

threshold (P<1x10%).
M1 overall DNAm change M2 nonlinear DNAm change
slope direction slope direction
D null E’ —
RN W
D / D othar nonlinear
g 0.00 0.25 0.50 0.75 1.00 p 000 0.25 0.50 0.75 1.00
Intercept Intercept
M3 stable sex differences in DNAm M3 sex differences in DNAm change
slope difference slope direction
D girls higher D qgirls steeper
I:l boys higher D bays steeper
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
c d
Intercept Intercept

Figure 5. Density plots of intercepts of CpGs. Intercepts for CpGs with (a) directions of change in
Model 1 (n=473,864); (b) nonlinear trajectories in Model 2 (n=52,043); (c) stable sex differences in

Model 3 (n=22,821); (d) sex differences in DNAm change in Model 3 (n=1,768).

Nonlinear DNAm change
Model 2 (see online Methods) was identical to Model 1 but permitted slope changes at ages 6 and 9
years to test for nonlinear DNAm trajectories. At 11.0% of CpGs a nonlinear trajectory was detected.

Specifically, at 4.8% of all CpGs, DNAm increased from birth and remained stable from 6 onward

10
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(Positive-Neutral; Figure 3d). Second, at 3.1% of all CpGs, DNAm decreased from birth and then
remained stable at 6 years (Negative-Neutral; Figure 3e). The remaining 3.0% of all CpGs followed
other nonlinear trajectories (e.g. Figure 3f), with each trajectory observed in <1.0% of all CpGs.
Overall, linear and/or nonlinear changes in Model 1 or 2 were observed in 52.6% of CpGs (Figure 3),
indicating that most nonlinear patterns were also detected as linear patterns in Model 1.
Inter-individual differences in change (i.e. random variance in slopes) from birth onward was
detected at 3.4% of all sites (Figure 3g), inter-individual differences in slope change at 6 years in 0.2%
(Figure 3h), and inter-individual differences in slope change at 9 years at 8.2% of CpGs (Figure 3i).
Inter-individual differences in slope (change) at each time-point were detected more often at CpGs
with an increasing rather than decreasing overall DNAm change in Model 1 (P=2.37x10%%). Last, both
Positive-Neutral and Negative-Neutral changes coincided more often with inter-individual variation
from birth (P<9.88x103%). Any inter-individual differences in change, detected by Model 1 or 2, was
observed at 27.9% of CpGs. In total, Models 1 and 2 detected age-related change whether linear,

non-linear or inter-individual differences in change at 62.8% of all CpG sites (Figure 3).

Sex differences in longitudinal DNAm and DNAm change
According to Model 3 (online Methods), sex differences in DNAmM were present at 4.9% of
(autosomal) CpGs (Figure 3). Specifically, stable longitudinal sex differences (main sex effects) were
observed at 4.8% of all (autosomal) CpGs (Figure 3j), and sex differences in DNAm change (sex by age
interaction effects) were found at 0.4% of all (autosomal) CpGs (Figure 3k). At sites with stable sex
differences, DNAm levels were higher in girls at 3.6% (Figure 3j) and lower at 1.2% of CpG sites.
DNAm at sites with higher DNAm in girls tended to increase over time, whereas DNAm at sites with
higher DNAm in boys tended to decrease (P=4.20x102%). Most commonly (at 0.2% of all CpGs),
DNAm was higher in girls at birth but DNAm in boys increased at a higher rate.

Both CpGs with stable sex differences and those with sex differences in DNAm change were

less likely to show inter-individual variation than other sites (20.8% versus 27.5% and 18.1% versus

11
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27.3%; P=5.36x101tand P=7.57x108). Finally, CpGs with stable sex differences or sex differences in
DNAm change detected in Model 3 were much more likely to follow an overall Positive-Neutral
trajectory of DNAm change detected in Model 2 than other CpG sites were (24.2% of CpGs with
stable sex differences followed a Positive-Neutral trajectory versus 3.8% of other CpGs and 53.9% of
CpGs with sex differences in DNAm change followed a Positive-Neutral trajectory versus 4.6% of
other CpGs; P<9.88x107324, P<9.88x10732%; Figure 3l). Albeit less prominently so, CpGs with stable sex
differences or sex differences in DNAm change also more often followed a Negative-Neutral
trajectory than other CpGs did (stable sex differences: 5.0% versus 3.0%, P=5.43x10%%; sex

differences in DNAm change: 7.7% versus 3.1%, P<7.11x10%).

Follow-up analyses

Follow-up analyses were performed to understand how different types of age-related DNAm
trajectories are distributed across the genome (Supplementary Tables 3-5). All reported enrichments
have significance below a Bonferroni-corrected threshold of P<4.46x10, corrected for the number
of chi-square tests (n=112). We further report enrichment of Gene Ontology (GO) pathways (nominal
P<0.05) for genes annotated to CpG sites in each trajectory (Supplementary Tables 5-7). Last, we
study enrichment of age-related DNAm trajectories in reported hits of different EWASs (Figure 6). All
reported EWAS enrichments are below a Bonferroni-corrected threshold of P<2.16x10%, corrected

for the number of Fishers’ exact tests (n=231; Supplementary Table 8).

Patterns of DNAm change and CpG location

CpG sites with DNAm change associated patterns were labeled by gene associated regions, CpG
island associated regions, as well as enhancer elements. Although many exceptions exist, low levels
of DNAm in the promoter area but high levels of DNAm in the gene body are generally associated
with increased gene transcription3233, CpGs annotated to TSS200 regions more often showed an

overall DNAm increase (Model 1) than other CpGs (19.0% versus 15.6%), whereas CpGs annotated to

12
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the gene body more often showed an overall DNAm decrease than other sites (38.8% versus 33.7%).
TSS200 CpGs showed less inter-individual variation in overall DNAm change than other sites (22.2%
versus 28.1%), whereas gene body CpGs showed somewhat more inter-individual variation in overall
DNAm change than other sites (28.9% versus 26.5%).

Promoter areas often coincide with CpG islands®*. Here, 63.3% of TSS200 CpGs were also
annotated to CpG islands. As in TSS200 areas, CpGs annotated to CpG islands had lower DNAm levels
(mode M1 intercept 2.4% (SD=30.2%)), and more often showed an overall DNAm increase than other
sites (25.2% versus 12.0%). DNAm sex differences were especially present in the shores of CpG
islands compared to all other island associated regions (stable sex differences: 7.5% versus 4.0%, sex
differences in DNAm change: 0.6% versus 0.3%).

Enhancers act on promoters to regulate gene transcription®. CpGs annotated to enhancer
elements (2.0% of CpGs) tended to have low DNAm levels (mode M1 intercept 5.07%; SD=31.4%) and
then increased with age more than other CpGs (23.9% versus 15.9%). Inter-individual variation in

change from birth was more common at enhancer sites than at other sites (5.6% versus 3.3%).

Functional associations

Enrichment of Gene Ontology categories was tested for genes linked to CpGs with different DNAm
trajectories. In short, genes annotated to CpGs with overall decreasing DNAm levels were enriched in
immune-developmental functions, whereas those annotated to CpGs with increasing levels were
enriched in neurodevelopmental functions. This pattern seemed even more pronounced at genes
annotated to nonlinear Negative-Neutral and Positive-Neutral CpGs, with the former more often
associated to immune-development and the latter to neurodevelopment. Genes linked to CpGs with
stable sex differences and sex differences in DNAm change were enriched in pathways associated
with sexual development, such as genital development, as well as pathways associated with
neurodevelopment. Genes linked to CpGs with sex difference in DNAm change were also enriched in

functions related to tooth and hair development.

13
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Enrichment in EWASs

We further investigated functional relevance of CpG sites with age-related DNAm trajectories by
testing enrichment with published EWAS associations (Figure 6)?%3%%1, Unsupervised clustering of the
enrichments shows that CpG sites with inter-individual variation in change over time have distinct
enrichments and cluster differently from those with age-associated change that is consistent among
individuals. The CpG sites of each age-associated DNAm trajectory were enriched with published age
associations in adulthood. Multiple smoking EWAS clustered together with enrichment patterns
exhibiting strongest enrichments among CpG sites with Negative-Neutral trajectories and mostly
weak enrichments among CpG sites with inter-individual variation in change. Further, despite
adjusting for cell count heterogeneity in our models, we observed enrichments of CpG sites that
differ by white blood cell type among sites following nearly all age-associated trajectories. Finally, we
observed enrichments of CpG sites associated with gestational age and prenatal smoking with sex-

specific DNAm.
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Figure 6. Enrichment of age-related trajectories in EWASs

Discussion

In this study we described changes in DNAm levels through the first two decades of human life. We
examined DNAm levels per CpG by their linear association with age, their nonlinear trajectories and
inter-individual variation in change, as well as sex differences and CpG characteristics.

We found that about half of sites change: consistent linear and/or nonlinear DNAm change was
found at 53% of sites. We further found that over a quarter of sites, 28%, were characterized by

substantial inter-individual differences in the direction of this change. DNAm sex differences were
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present, but not abundant: 5% of autosomal sites displayed different DNAm levels or differences in
change over time for girls and boys.

Specifically, we determined that DNAm at 52% of the measured methylome have some form
of linear change from birth to late adolescence, with DNAm decreasing at 36% and increasing at 16%
of CpGs. CpGs with decreasing DNAm tended to have high levels of DNAm and were more often
located in gene bodies. CpGs with increasing levels of DNAm tended to have low levels of DNAm and
were more likely to be located in promoter regions and at enhancers. The predominance of
decreasing CpGs is in agreement with literature on epigenome-wide DNAm and age in cross-sectional
research on children and adults'®%2, as well as with longitudinal research in adults®®.

Nonlinear DNAm trajectories were detected at 11% of CpGs, mostly involving changes in
DNAm from birth to age 6 years, after which DNAm was more stable. We note that this could be due
to cord blood being used to generate DNAm profiles at birth, whereas peripheral blood was used at
later ages. A previous study? including eight children showed that the cord blood DNAm profile at
birth clustered separately from later peripheral profiles, after which DNAm changed gradually from 1,
to 2.5, to 5 years. Such differences between DNAm in cord and peripheral blood might be due to
uncaptured differences in white blood cell composition, as well as to different gene-regulatory
functioning in the intra-uterine versus extra-uterine environment. On the other hand, Gene Ontology
analyses showed that functional associations for positive and negative linear DNAm patterns, which
are unlikely to be affected by tissue type, were consistent with functional associations for nonlinear
positive and negative patterns, respectively (e.g. positive and negative up to 6 years, and then no
change up to 18 years).

Specifically, sites with decreasing levels of DNAm, both with or without slope changes around
the age of 6 years, were functionally enriched for immune-developmental pathways, and sites with
increasing levels of DNAm, both with or without slope changes, were enriched for

neurodevelopmental pathways. Since these observations were based on blood DNAm, it remains to

16


https://doi.org/10.1101/2020.06.09.142620
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.142620; this version posted June 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

be studied what roles genes linked to neurodevelopmental pathways play in in blood, or to what
extent DNAm trajectories in blood mirror those in neural tissue.

Inter-individual differences in linear DNAm trajectories were found at 27% of CpGs, indicating
change at different rates or directions for different individuals. Such sites tended to have overall
increasing rather than decreasing levels of DNAm from birth to 18 years. This observation is
consistent with the only other large study to examine inter-individual differences in DNAm change?®,
although we note that this study included elderly subjects and detected a smaller number of relevant
CpGs. We are the first to investigate inter-individual differences in nonlinear DNAm trajectories.
These were most often found in the slope change at 9 years (8% of CpG sites), indicating that most
inter-individual differences in DNAm emerge after the first decade of life. More research is needed to
understand if the direction of change in this period is determined by stimuli during that period, or
rather by preceding, perhaps cumulative, exposures. However, it is clear that, given the high
proportion of CpG sites with inter-individual variation in DNAm change over time that we have
observed, it is important to restrict the range of ages of children included a single EWAS. Specific
limits should be discussed given the rapidly growing number of studies generating DNAm profiles
across childhood®.

Stable sex differences were found at 5% of autosomal CpGs, and sex differences in DNAm
change were found at 0.4% of all CpGs. In general, if there were stable sex differences, girls had
higher levels of DNAm (4% of all CpGs), in case of sex differences in DNAm change, boys had an
accelerated upward change (0.2% of all CpGs). The direction of stable sex differences detected are
congruent with a cross-sectional study on newborns, in which girls had higher DNAm levels than boys
for the large majority of the 3031 significant autosomal CpGs>*. Sex-discordant associations with age
seemed to be more prevalent from birth to age 6 years than afterwards, suggesting that any
phenotypic sex differences associated to DNAm would be established in early childhood. Their
enrichment in the shores of CpG islands, areas at which DNAm has been associated with tissue

differentiation and tissue-specific gene expression®, is consistent with the critical role that these
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processes play in sexual differentiation. Studies into sex differences in epigenetic regulation might
want to focus on these locations.

We also found the other DNAm trajectories to be arranged throughout the genome in a
nonrandom fashion. Earlier studies3?%> have shown that, for active genes, lower DNAm towards the
promoter area (TSS200) and higher DNAm in the gene body relate to increased gene transcription.
Here we add the observation that promoter DNAm tends to increase and gene body DNAm tends to
decrease with age. From this finding, one might infer that a downregulation of gene expression takes
place from birth to late adolescence. Enrichment analyses of published EWAS associations further
showed that different traits and exposures exhibited distinct enrichment patterns among DNAm
trajectories. For example, there were clear differences between smoking and BMI-related traits.
Enrichment of sites with DNAm sex differences in EWASs on prenatal maternal smoking is consistent
with studies finding that prenatal smoking affects traits such as birth weight®® , brain

t%788 and attention® differently in boys and girls. Clustering for prenatal maternal

developmen
smoking EWASs also showed enrichment for CpGs with consistent change among individuals, not for
CpGs with inter-individual variation in change. This may suggest a link with the well-known effects of
prenatal smoking on childhood development since consistent DNAm change is more likely related to
development or aging programming than inter-individual variation. This may explain why changes
associated to prenatal smoking persist throughout life’®. Notably, this pattern of change without
inter-individual variation is visible in cg05575921, the AHRR CpG site strongly and persistently
associated with prenatal smoking”>’? (Supplemental Figure 2; http://epidelta.mrcieu.ac.uk/).
‘Epigenetic age acceleration’ is a term coined to indicate the deviation of chronological age
from age as estimated by an ‘epigenetic clock’ and is associated with disease risk and mortality”>.
Existing clocks are all linear models based on DNAm. Consequently, one might expect that all CpGs
included in the clock model change linearly with age. Furthermore, to detect age acceleration, one

would expect that these CpG sites would also vary between individuals. Surprisingly, many CpG sites

included in the most popular clocks do not match these expectations’*’® (Supplemental Tables 9, 10).

18


https://doi.org/10.1101/2020.06.09.142620
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.142620; this version posted June 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

For example, we observe that over one-quarter and nearly one-half of the CpG sites included in the
Horvath and Hannum clocks, respectively, follow non-linear DNAm trajectories in childhood. Given
the widespread use of clocks to investigate biological aging, further investigation is warranted to
better understand how, and perhaps if, associations using these clocks should be interpreted in child
DNAm profiles.

We note three main limitations of our findings. First, the use of different tissue types (cord
blood and peripheral blood) could account for some of the differences between birth and later time
points, e.g. sites that increased or decreased between birth and 6, but did not show change after
that. Generation of DNAm profiles of a single tissue or cell type collected across childhood would be
needed to disentangle this issue further. Unfortunately, such a dataset is not currently available as
most cohorts have generated DNAm profiles from peripheral blood and cord blood®. Analysis of
these complex tissues has nevertheless yielded many valuable insights. Second, since DNAm at 9
years was measured only in Generation R and at 17 years only in ALSPAC, DNAm differences from 9
to 17 may be to some extent driven by batch effects or cohort differences. This may explain some of
the inter-individual differences in slope changes at 9 towards 17 years. However, the high level of
agreement in both stability and change among the corresponding time points of the two cohorts is
reassuring. Moreover, it is not entirely surprising that inter-individual variation in directionality of
change was higher for the largest age interval. This interval, furthermore, encompasses the period of
adolescent development, a time in which many inter-individual phenotypic differences arise. Finally,
it should be noted that the current study only included children of European ancestry. Considerable
DNAm differences have been found between populations’®7%, but research on age-associated DNAm
differences is scarce. One study’® reported evidence for overlap in age-associated CpGs in two
African populations with studies on European-ancestry populations, but more research is needed to
map the generalizability of longitudinal DNAm changes among different populations.

In conclusion, in the first comprehensive CpG-by-CpG characterization of DNAm from birth to

late adolescence, we found that DNAm at more than half of the studied CpG sites changes
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consistently between individuals, and that considerable inter-individual variation in change exists.
Further, characteristics such as child sex, CpG location, and environmental and disease traits have
distinct associations with patterns of DNAm change. Further analysis of these patterns is made

readily available at http://epidelta.mrcieu.ac.uk/, which we hope can be used in future studies to test

developmental hypotheses that promote our understanding of the developmental nature of DNAm,

its role in gene functioning, and the associated biological pathways leading to health and disease.

Methods

Setting

Data were obtained from two population-based prospective birth cohorts, the Dutch Generation R
Study (Generation R) and the British Avon Longitudinal Study of Parents and Children (ALSPAC).
Pregnant women residing in the study area of Rotterdam, the Netherlands, with an expected delivery
date between April 2002 and January 2006 were invited to enroll in Generation R. A more extensive
description of the study can be found elsewhere®’. The Generation R Study is conducted in
accordance with the World Medical Association Declaration of Helsinki and has been approved by
the Medical Ethics Committee of the Erasmus Medical Center, Rotterdam. Informed consent was

obtained for all participants.

Pregnant women residing in the study area of former county Avon, United Kingdom, with an
expected delivery date between April 1991 and December 1992 were invited to enroll in the ALSPAC
study. Detailed information on the study design can be found elsewhere®®!, The ALSPAC website
contains details of all available data through a fully searchable data dictionary and variable search

tool (http://www.bristol.ac.uk/alspac/researchers/our-data/). Ethical approval for the study was

obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

Consent for biological samples has been collected in accordance with the Human Tissue Act (2004).
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Informed consent for the use of data collected via questionnaires and clinics was obtained from

participants following the recommendations of the ALSPAC Ethics and Law Committee at the time.

Study Population

In the Generation R Study, 9,778 pregnant mothers had 9,749 live-born children. For a subsample of
1,414 children DNAm data was collected at birth and/or 6 years and/or 10 years of age. This
subsample consisted of participants with parents born in the Netherlands (European ancestry??
confirmed for all children with genetic data available (95.4%)). Fifteen sibling pairs were present in
the dataset. From each pair one sibling with the lowest number of DNAm measurements, or
otherwise randomly, was excluded, resulting in a sample with 1,399 children (with 2,333 DNAm

samples; see below).

In the ALSPAC study, 15,247 pregnant mothers gave birth to 14,973 live-born children. DNAm
at birth and/or 7 years and/or 17 years was available for a subsample of 1,003 children as part of the
Accessible Resource for Integrated Epigenomic Studies (ARIES) study®. From this sample, 48 children
with non-European ancestry as based on genetic principle component analysis and 6 children with
missing data on gestational age were excluded, resulting in a sample of 949 children with DNAm data

(with 2,686 DNAmM samples; see below).

DNA methylation

Cord blood was drawn after birth for both cohorts, and peripheral blood was drawn at a mean age of
6.0 (SD=0.47) and 9.8 (SD=0.3) years for Generation R, and 7.5 (5D=0.2) and 17.1 (5D=1.0) years for
ALSPAC. Both cohorts made use of the EZ-96 DNAm kit (shallow) (Zymo Research Corporation, Irvine,

USA) to perform bisulfite conversion on the extracted leukocytic DNA. Samples were further
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processed with the lllumina Infinium HumanMethylation450 BeadChip (lllumina Inc., San Diego, USA)

to analyze DNAm.

In Generation R, quality control was performed on all 2,467 available DNAm samples with the
CPACOR workflow®, Arrays with observed technical problems such as failed bisulfite conversion,
hybridization or extension, as well as arrays with a mismatch between sex of the proband and sex
determined by the chromosome X and Y probe intensities were removed from subsequent analyses.
Additionally, only arrays with a call rate >95% per sample were processed further, resulting in 2,355
samples, 22 of which belonged to half of an excluded sibling pair, hence 2,333 samples were carried

forward into normalization.

In ALSPAC, quality control was performed on 6,057 samples (3,286 belonging to children,
2,771 to their mothers), using the meffil package® in R version 3.4.3%¢. After removing samples with
mismatched genotypes, mismatched sex, incorrect relatedness, low concordance with samples
collected at other time points, extreme dye bias, and poor probe detection, 5,337 samples remained,

2,845 of which belonging to children, used in the current study.

To minimize cohort effects as much as possible, we normalized both cohorts together as a
single dataset. Functional normalization (10 control probe principal components, slide included as a
random effect) was performed with the meffil package in R®. Normalization took place on the
combined Generation R and ALSPAC set comprising a total of 5,178 samples for a total of 485,512
CpGs. One-hundred and fifty-nine ALSPAC samples belonging to non-European children or children
with missing data on gestational age were excluded, leading to a final ALSPAC set of 2,686 samples
(for 949 children). Together with 2,333 samples for Generation R (of 1,399 children) they formed a

combined set of 5,019 samples (of 2,348 children.)

Analyses were restricted to 473,864 autosomal CpGs. DNAm levels were operationalized as
beta values (B values), representing the ratio of methylated signal relative to the sum of methylated

and unmethylated signal measured per CpG.
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Covariates

Sample plate number (N=29 in Generation R and N=31 in ALSPAC), was used to correct for batch
effects, which was added as a random variable in the model (see below). White blood cell (WBC)
composition was estimated with the reference-based Bakulski method®” for cord blood and
Houseman method?®® for peripheral blood (Supplemental Table 11). Nucleated red blood cells were
not further analyzed due to its specificity to cord blood, leaving CD4+ T-lymphocytes, CD8+ T-
lymphocytes, natural killer cells, B-lymphocytes, monocytes, and granulocytes. Other covariates

included gestational age in weeks, sex of the child, and cohort.

Statistical analyses

Step 1: Assessing cross-cohort comparability in DNA methylation stability

To ascertain comparability amongst the two cohorts we compared within-cohort DNAm stability
between the time points that were present in both cohorts —i.e. birth and 6/7 years (Generation
R/ALSPAC, respectively).

Longitudinal stability per CpG within each cohort was assessed by studying estimates of
concordance and change. For concordance, DNAm data was first residualized within each cohort for
all variables present in the longitudinal models except the ‘cohort’ variable, in order to remove
between-cohort differences due to other covariates. Concordance was then measured both with
Spearman correlation (data at most CpGs is not normally distributed) as a measure of relative
concordance, and with intra-class correlations as a measure of absolute concordance (children with
data for both time points: n Generation R=476, n ALSPAC=826). Longitudinal change from birth to 6/7
years was assessed by studying the estimates of the change in DNAm per year by applying Model 1
(see below) within each cohort (children with data for at least one of the two time-points: n

Generation R=1,394, n ALSPAC=944).
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In a second step, cross-cohort comparability was assessed with Spearman (p) correlation of
concordance estimates of the CpGs of each cohort (which were not normally distributed) and
Pearson correlations (r) amongst the change estimates of the CpGs of each cohort (which were

normally distributed).

Step 2: Longitudinal modelling of DNA methylation using combined Generation R and ALSPAC data
The combined Generation R and ALSPAC dataset had four time points of collection (birth, age
6/ 7 years, 10 years, and 17 years). We fit three linear mixed models to CpG site DNAm across the
genome to identify (i) linear change over time (Model 1); (ii) nonlinear change over time (Model 2);
and (iii) sex differences in change over time (Model 3). Both fixed and random effects were examined
to allow for inter-individual variation in DNAm patterns over time. The models are described in detail

below.

Model 1: Linear change. This model was applied to identify CpGs that show an overall change in
DNAm from birth to 18 years (i.e. fixed age effect), as well as CpGs with inter-individual differences in

change during that time (i.e. random age effect). The Model 1 is defined as:

M1: Mk = 8o+ ugi+ B:Agejj+ uiiAge;j + Ugk+ covariates + €
€k~ N(0,08)
uoi ™ N(0,007)
uzi~ N(0,0:17)

Uok ™ N(0,0'0k2)

Here, participants are denoted by i, time points by j, and sample plates by k. M denotes DNAm level,
Bo fixed intercept, ug random intercept, 8; fixed age coefficient, u;;random age coefficient, v

random intercept for sample plate. Hence, 8; represents the average change in DNAm per one year.
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Variability in this change amongst individuals was captured with uz. To avoid problems with model
identification, the random slope of age was uncorrelated to the random intercept (i.e. a diagonal

random effects matrix was used).

Model 2: Nonlinear change. To identify nonlinear changes in DNAm, we extended Model 1 to allow

slope changes at ages 6 and 93931

M2: Mk =80+ ugi+ BiAgeji+ B:(Agei—6)" + Bs(Agei—9)* +usiAgeij+ uzi (Agei—6)* + usi
(Agei—9)* + ugc+ covariates + €
€k~ N(0,05)
uoi ™~ N(0,007)
uzi ™~ N(0,0:7)
Uz~ N(0,057)
usi~ N(0,057)

Uok ™ N(0,0'0k2)

Where a* = a if a>0 and 0 otherwise, so that 8, represents the average change in DNAm per year
from 6 years of age onward, after accounting for the change per year from birth onward, as denoted
by 8:. Likewise, Bsrepresents the average change in DNAm per year from 9 years of age onward, after
accounting for the change per year from 6 years of age onward. Hence, with those variables we are
able to detect slope changes at 6 and 9 years old. These slope changes were used to identify different
types of nonlinear patterns. With uzand usithe inter-individual variation in slope changes at 6 and 9
years were captured, respectively. General linear hypothesis testing® was applied to our fitted

models to determine if there were changes in DNAm per year from 6-9 years and from 9-18 years.
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Model 3: Sex differences in change: To identify CpGs for which DNAm changes differently over time

for boys and girls, we applied the following model:

M3: Mk =80+ ugi+ BiAge; +usiAgejj + 8:SexiAge;+ uoc+ covariates + €
€k~ N(0,0)
uoi~ N(0,0.)
uzi~ N(0,017)

Uok ™ N(O,O'Okz)

Here, Sex; denotes the sex of child i. Both main and interaction effects for sex were studied.

The three mixed models were fitted using maximum likelihood estimation in R with the Ime4
package®. Continuous covariates (WBCs, gestational age) were z-score standardized. Random slopes
were kept uncorrelated with random intercepts and the NLopt optimizer was used, enabling us to
improve computational speed compared to the default settings. P-values for the fixed effects were
computed with a z-test. P-values for random slopes of the Age effects were obtained by refitting the
model without the random slope and comparing the fit estimates of the two models with a likelihood
ratio test. Within each model, P-value thresholds were Bonferroni-corrected for the number of

tested CpGs (i.e. to P<1x10).

Step 3: Functional characterization of probes with comparable patterns of change

To interpret the functionality of the age-related DNAm patterns from the three models, CpG sites
adhering to 8 different age-related patterns (M1 linear change and inter-individual variation in linear
change, M2 nonlinear trajectories, and inter-individual variation in change from birth, in slope
change at 6 years, and in slope change at 9 years, and M3 stable sex differences and sex differences

in DNAm change) were tested for enrichment in:
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(i) gene-relative genomic regions (TSS1500, TSS200, 5'UTR, 1st exon, gene body, 3'UTR, and
intergenic regions®),
(ii) CpG island-relative genomic regions (N shelf, N shore, CpG island, S shore, S shelf, and open
sea regions®) as indicated by the lllumina HumanMethylation450 v1.2 Manifest (lllumina
Inc., San Diego, USA), and
(iii) enhancer elements as those expressed in whole blood, peripheral blood mononuclear cells,
natural killer cells, CD4+ T cells, CD8+ T cells, monocytes, neutrophils, eosinophils or B cells®,
Altogether, these encompassed 14 enrichment analyses for 8 variables. Enrichment was tested using
x>-tests of unequal proportions. The enrichment P-value threshold was Bonferroni-corrected for
multiple tests (i.e. P<4.46x10°* for 8x14=122 tests). Second, we tested enrichment of Gene Ontology
(GO) categories for genes linked to CpG sites surviving adjustment for multiple tests (P<1x10) for
each of the main variables of interest. This analysis was adjusted for gene size and pruned for near-
identical terms (see elsewhere for a full description®?). For completeness, terms with nominal P<0.05
were reported. Last, we tested enrichment of age-related DNAm trajectories (11 different age-
related patterns: M1 decreasing, increasing, and inter-individual variation in linear change, M2
Positive-Neutral, Negative-Neutral, other nonlinear, inter-individual variation in change from birth, in
slope change at 6 years, and in slope change at 9 years, and M3 stable sex differences and sex
differences in DNAm change) in EWASs on age, prenatal smoking, smoking, cardiovascular-associated
traits, C-reactive protein, allergies, educational attainment, and cellular heterogeneity. EWAS
summary statistics were retrieved from the EWAS Catalog (http://www.ewascatalog.org/) and studies
were included when performed with the 450K array in peripheral or cord blood, resulting in 21
EWASs. Enrichment was tested with Fisher’s exact tests, the enrichment P-value threshold was

Bonferroni-corrected for multiple tests (i.e. P<1.37x10% for 11x33=363 tests).
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Data access

Data from the Generation R Study are available upon request (generationr@erasmusmc.nl), subject
to local rules and regulations. ALSPAC data access is through a system of managed open access. The
ALSPAC access policy (http://www.bristol. ac.uk/media-library/sites/alspac/documents/researchers/
data-access/ALSPAC_Access_Policy.pdf) describes the process of accessing the data and samples in
detail, and outlines the costs associated with doing so. The results per CpG will be made available at

http://epidelta.mrcieu.ac.uk.
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