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Abstract

The current global pandemic COVID-19, caused by SARS-CoV-2, has resulted in
millions of infections worldwide in a few months. Global efforts to tackle this
situation have produced a tremendous body of genomic data, which can be used
for tracing transmission routes, characterization of isolates, and monitoring
variants with potential for unusual virulence. Several groups have analyzed these
genomes using different approaches. However, as new data become available, the
research community needs a pipeline to perform a set of routine analyses, that can
quickly incorporate new genome sequences and update the analysis reports. We
developed a programmatic tool, CoVa, with this objective. It is a fast, accurate and
user-friendly utility to perform a variety of genome analyses on hundreds of SARS-
CoV-2 sequences. Using CoVa, we define a modified sequence typing nomenclature
and identify sites under positive selection. Further analysis identified some
peptides and sites showing geographical patterns of selection. Specifically, we
show differences in sequence type distribution between sequences from India and
those from the rest of the world. We also show that several sites show signatures
of positive selection uniquely in sequences from India. Preliminary evolutionary
analysis, using features that will be incorporated into CoVa in the near future,
show a mutation rate of 7.4 x 10* substitutions/site/year, confirm a temporal signal
with a November 2019 origin of SARS-CoV-2, and a heterogeneity in the
geographical distribution of Indian samples.
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Introduction

Being one of the biggest public health crises that the world has faced in the 21st
Century, COVID-19 needs no introduction. The causal agent of this pandemic is a
novel Coronavirus, a group of positive strand RNA viruses which also includes
SARS and MERS, and is identified as SARS-CoV-2 (1). In a short span of 5 months,
the virus has expanded globally and has accumulated a large number of variants
(2), thus requiring the continued monitoring of variation in its population. With a
large body of genomic data publicly available, preprint servers have seen a deluge
of variant analysis reports. However, these reports typically differ in their
methodology and the extent of analysis. As more and more genomes are being
sequenced, we require a rapid and routine tracking of variation in the population
as well as genomic characterization of these new isolates.

To serve this purpose, we developed CoVa, a pipeline for Coronavirus variant
analysis. CoVa is a fast, light-weight and user-friendly command-line tool,
especially geared to analyse hundreds to a thousand of SARS-CoV-2 genomes.
CoVa not only calls variants but bundles several routine analyses required to trace
the progress of this disease in genomic terms. This includes estimation of sequence
diversity, type identification, phylogeny and selection analysis, with identification
of sites potentially undergoing positive selection. We use CoVa to describe
sequence diversity and signatures of selection in SARS-CoV-2 genomes with
special emphasis on sequences from India.

Methods

Implementation

CoVa is implemented as a python library meant to be run as a command-line tool.
The only required input is a multi-FASTA file of assembled whole-genome
sequences. CoVa first builds a whole-genome multiple sequence alignment
(wgMSA) which serves as the starting material for all downstream analyses. NCBI
Refseq accession NC 045512 is used as the variant calling reference in the
pipeline. Therefore, this genome is required to be included in the input file. Since
several analyses require identification of “reference” sites, CoVa includes a
command to reduce wgMSA to sites present in the reference genome (rMSA).
Duplicate sequences are removed at this stage (generating uMSA) to speed up
downstream analyses and to avoid polytomies in phylogeny. The entire set of
commands along with their input and output transfers have been depicted as a
directed acyclic graph in Figure 1. Cova has been implemented in a way that
allows for execution of individual commands or a combination thereof. It is also
possible to run the entire pipeline with a single command.
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Figure 1: Cova’s workflow. Schematic of CoVa's workflow with all its sub-
commands and their input/output connections.

CoVa splits into multiple programs following the generation of uMSA, viz., variant
calling, diversity computation, phylogeny and selection analysis. Selection analysis
incorporates estimation of non-synonymous and synonymous rates for each region,
and identification of individual sites, if any, under positive selection. Sequences
with nonsense mutations throw an error in the selection analysis. Therefore, these
sequences are removed from the alignment, generating sfMSA. Selection analysis
also requires extraction of protein/peptide-encoding nucleotide regions of MSA
(pnMSA), along with the phylogenetic tree, both of which also need to be
generated from sfMSA. The pnMSAs are also used to compute nucleotide diversity
of these regions, along with that of the whole-genome. CoVa also includes an
option to calculate nucleotide diversity with a window sliding over the entire
genome. Besides its core functionality, CoVa packages several functions to
preprocess sequences, extract their metadata and for plotting phylogenies.

CoVa employs several popular programs for individual jobs, viz., MAFFT (3) to
build wgMSA, FastTree2 (4) for phylogeny, and FUBAR (5) program of Hyphy to
identify sites under positive selection. These programs were selected for their
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speed and accuracy. CoVa runs these commands with such options that optimize
for speed without a heavy compromise on the accuracy. For example, CoVa uses a
maximum of 5 iterative refinements in MAFFT, as opposed to MAFFT’s speed-
default (2) and the accuracy default (1000). Given that most input genomes are
expected to be highly similar and MAFFT achieves most of the accuracy in the
initial refinements, a limit of 5 allows CoVa to be fast and accurate, as well as
consistent in its runtime. CoVa switches to MAFFT’s speed-default if the number of
input sequences exceeds 1000. Similarly, CoVa limits split-support computation in
FastTree to 100 runs for both speed and memory optimization without
compromising on accuracy.

One of the key advantages of using MAFFT in CoVa is its ability to quickly
incorporate new sequences to an existing MSA (6). CoVa provides this feature
explicitly for a prompt integration of new data and updation of existing analysis
results. With this option, labs can compare and integrate their local genomic data
with the sequences already available in the public repository. To facilitate this, an
MSA comprising 825 sequences from GenBank is available on CoVa’s github page.

Estimation of Sequence diversity

The extent of variation in the population is estimated in terms of nucleotide
diversity, which is the average pairwise difference per-unit length. CoVa can
compute the whole-genome nucleotide diversity of an MSA of thousands of
sequences in seconds. It achieves this by splitting the calculation over individual
sites, which reduces the time complexity to O(NL) as opposed to O(N?) , where L
is the number of sites and N is the number of sequences.

Specifically, we calculate nucleotide diversity m as follows:

Let B be an ordered set of alphabets, e.g., {A,C,G, T} with size K. f represents the
number of occurrences of B; for a single site in the MSA. Then,

&": Z:lh:_ll Z_T:l-l f'f-"

where, A;= total pairwise base difference for site L

CoVa also estimates diversity of individual peptide-encoding regions. Optionally,
following (7), the entire genome can be scanned with a sliding window diversity
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calculator to identify segments of high diversity. This is a convenient way to
quickly observe high-frequency variants and the affected genomic loci. Most of
these hotspots also align with the positions used in (8) to type SARS-CoV-2
sequences, and can be instrumental in future for an automated sequence typing
scheme for this virus.

Sequence typing with CoVa

Genome sequences of SARS-CoV-2 are typed in CoVa following the barcoding
scheme suggested in (8). This involves extracting a nucleotide sequence from 10
positions spread across the genome. The positions are listed in Table 1, along with
the affected peptide and its major amino acid substitution. Every variant of this
10-nucleotide long sequence tag is considered a distinct sequence type. Sequence
types are indexed in the order of their earliest collection date, i.e., at least one
sequence of type ST-i was observed before any sequence of type ST-i+1.

Table 1. 10 nucleotide positions used for sequence typing in CoVa, along with their major
mutation.

SN | Position | Peptide | Mutation

1 1397 nsp2 V1981
2 1440 nsp2 G212D
3 2891 nsp3 A58T

4 3037 nsp3 F106F
5 8782 nsp4 S76S

6 14408 RDRp P323L
7 23403 S D614G

8 26144 ORF3a G251V

9 28144 ORF8 L84S

10 28688 N L139L
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Data Sources

CoVa was initially validated on whole genome sequences of 825 SARS-CoV2
isolates from GenBank. For the analysis described in this study, sequences were
acquired from GISAID ( accessed May 21 ). Only complete and high coverage
genomes were downloaded. All of the 301 Indian genomes were analyzed. To select
a sample from over 30,000 sequences available from other countries, the GISAID
browser option of selecting sequences with known patient’s status was used. This
limited the “global” dataset (countries excluding India) to 1356 genomes. This data
was further processed to exclude all genomes with more than 1% ambiguous
characters, retaining 248 Indian and 1262 global genomes. Since CoVa removes
duplicate genomes from MSA, our final dataset had 244 Indian and 1129 global
sequences.

Information on countries’ population was collected from Worldometer
(https://www.worldometers.info/world-population/population-by-country/) and on
countries’ latitude was  collected from  Google’s public dataset
(https://developers.google.com/public-data/docs/canonical/countries_csv).

Evolution of SARS-CoV-2

Two multiple sequence alignments built using - 1) only Indian samples and 2)
samples across the globe (excluding Indian samples) were merged together as a
single multiple sequence alignment (MSA) using the mafft --merge option (MAFFT
reference). The effect of sample over-representation bias was reduced by including
one sample per isolation date for a given geographical location. Therefore, the final
alignment used for phylogenetic tree reconstruction consisted of 413 SARS-CoV2
whole genome sequences (WGS), including the reference genome. The conserved
regions relevant for phylogenetic inference were extracted from the MSA using
BMGE v1.12, with -DNA option. Using IQTREE v1.6.5 (9), a maximum likelihood
(ML) based tree was built with GTR+F+I nucleotide substitution model.
ModelFinder (10)with -m MF option was used to choose this model compared
against 285 other model combinations based on the least Bayesian Information
Criterion (BIC) score. This pipeline was created using python 2.7.

This procedure for generating trees, which is more accurate (11) but substantially
slower than FastTree, is not part of CoVa at present in light of CoVa’s preference
for faster methods. However, the accuracy of this procedure could be critical to
more sophisticated evolutionary analysis including ancestral reconstruction, and
will be considered for a future update of CoVa.

To examine the relationship between time (temporal signal) and genetic
divergence we used the ML tree produced above which assumes a non-molecular
clock model. We used TempEst (12) to find the root of the tree such that it
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optimised for the temporal signal by trying all possible roots and chose the one
that minimised the mean of the square of the residuals. This also allowed us to
estimate the rate of evolution of SARS-CoV?2, reported as substitutions per site per
year.

Clustering of sites under selection

Amino acid sites were clustered based on their probability of positive selection
across 13 countries. A site with its probability of non-synonymous rate (B) being
greater than synonymous rate (a), P, > 0.7 was considered to be under positive
selection. This threshold was based on the distribution of these values across sites.
The probabilities across countries were transformed into bits; 1 for positive
selection and O for not. Binary distance (proportion of bits in which only one is 1,
out of all the bits in which at least one is 1) was calculated for all pairs of sites.
Indices of site pairs with zero distance were collected and clusters were identified
based on overlapping indices.

Results

CoVa’s Performance evaluation

We tested CoVa’s speed on multiple pilot datasets, of different sizes viz., small
(30), medium(106) and large(826). Starting from the un-aligned sequences, CoVa
finished the entire analysis in approx. 2, 6 and 50 minutes for small, medium and
large datasets respectively, using only 4 CPUs. To test its accuracy on variant
calling, we had initially compiled a set of 21 mutations described in the SARS-CoV-
2’s literature from the preprint server BioRxiv (till May 03) (Sup. table 1). CoVa
correctly identified 19 of these mutations. The two mutations where CoVa's
identification differed from that of the original authors were originally displaced by
1 residue. Therefore, the variant calling feature of CoVa showed 100% accuracy.
This also validates the MSA-building procedure used in CoVa, as the accuracy of
variant calling would be directly affected by the accuracy of the MSA. As for the
phylogeny and selection analysis, CoVa can be expected to be as accurate as the
external programs it invokes for these purposes. It is worth noting in this regard
that even though the Spike protein appears overall conserved, FUBAR identified
multiple sites potentially under positive selection, corroborating previous reports
(13,14). On the other hand, it supported the hypothesis in (15) of positive selection
on ORF8 but not on ORF3a, using the large dataset. However, ORF3a was
predicted to be under positive selection on the medium dataset. This likely reflects
the fact that the selection on ORF3a was not pervasive, and therefore not
amenable to detection through FUBAR (we address this specifically below).

All analysis described below are based on the larger dataset described in Methods.
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Figure 2: Sequence types of SARS-CoV-2. (A) Distribution of sequence types of SARS-CoV-2
genomes sequenced in India, in comparison with their global distribution. Whole genome
phylogeny of global (B) dataset and Indian (C) dataset, showing phylogenetic clusters of these
sequence types.

Sequence types of SARS-CoV2

We have used the ten nucleotide genetic barcoding scheme suggested by Guan et
al, 2020 (8) to identify clades in SARS-CoV2 phylogeny. We have opted for a
different nomenclature than the one used in (8) or the one adopted by GISAID. In
CoVa, genomes are identified and categorized into “sequence types” (defined by
the barcoding scheme), as opposed to “clades”. Moreover, as opposed to naming
clades after a specific amino acid substitution, these types were named in the
order of their first appearance. For example, the first sequence to be typed ST1
must have been observed before any sequence of type ST2. This scheme has the
advantage that the new types are naturally accommodated in the nomenclature as
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they emerge and the standing variation can be captured at a finer resolution as
compared to a hard-coded clade nomenclature.

Our typing system identified 18 sequence types in the rest-of-the-world (referred to
as “global” in the rest of this paper) dataset, 5 of which had more than 1%
representative sequences. We looked for the distribution of these 5 types ( ST1, 3,
4, 5, 10) in the Indian dataset (Figure 2A). We found ST1 and ST4 to be
overrepresented while ST3 and ST10 to be underrepresented among the Indian
genomes ( Psnom < 0.01, adjusted for multiple testing using “Holm-Bonferroni
correction”). Other types only amounted to 2 %. 3 Indian sequences could not be
typed due to the presence of ambiguous characters at the barcoding positions.
Sequence type information of all the analyzed genomes is available from Sup.
table 2.

We built separate whole-genome phylogenies for the Indian and the global datasets
using FastTree2, as implemented in CoVa. The barcoding scheme used in CoVa
successfully clustered sequences into distinct clades (Figure 2B,C). However,
several sectors of type ST1 can be seen in the global phylogeny (Figure 2B). This
is not due to any limitation on our choice of phylogeny method and software, as
multiple variants on CoVa’s implementation of FastTree2 as well as other
softwares like MEGAX (16) (used in GISAID), and FastME2 (17) were tried and
they did not improve upon these results ( not included in this study). Rather, it
highlights the fact that a 10 nucleotide barcode cannot capture the entire
emergent diversity of SARS-CoV2 genomes. This is where our choice of using “
sequence types” over “clades” becomes significant as types do not have to form
mutually exclusive phylogenetic clusters. Each separate sector of ST1 was
essentially a different clade which could not be typed distinctively by the present
barcode. As an example to this effect, a distinct clade in India was reported in (18).
We noticed that CoVa categorized this cluster as ST1. In fact, 85 of 88 ST1
sequences from India belonged to this cluster. Since none of the 4 positions used
to define this cluster (6312, 13730, 23929, 28311) were included in the genetic
barcode, it did not receive a distinct sequence type. However, 4 sequences with
the same mutations were of type ST10 (3) and ST17 (1), possibly as a result of
recombination.

Evolution of SARS-CoV2

Our analysis - using the dated phylogeny, which is not yet incorporated within
CoVa (see Methods, Sup. table 3) - suggests that SARS-CoV2 is a measurably
evolving population, with a sufficient divergence accumulation over our sampling
time range (R*=0.25, correlation coefficient, r = 0.5, Figure 3A). We obtained an
evolutionary rate of 7.4 x 10* substitutions/site/year and the time to the most
recent common ancestor (TMRCA) of late November 2019 (Figure 3A), the latter


https://www.zotero.org/google-docs/?eMEXH5
https://www.zotero.org/google-docs/?T6aXgk
https://www.zotero.org/google-docs/?1zeACA
https://doi.org/10.1101/2020.06.09.082834
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.082834; this version posted June 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A)

0.0008
0.0007
0.0006
0.0005

0.0004

Root-to-tip distance

0.0003

0.0002

0.0001

2019.8 2079.9 2020.0 2020.1 2020.2 2020.3 2020.4 2020.5

B)

6000

5000

-
3
3
3

8
8
S

Proportion

2000-

1000

-0.0003 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

Residual

Figure 3: Temporal signal analysis of SARS-CoV-2. A) Scatter plot showing the
relationship between the root-to-tip distances (genetic divergence) and time
(calculated as sampling times). The best fit line represents the minimum residual
mean squared test statistic. Green lines represent the ancestral traces for each
sample. (B) Scatter plot showing the relationship between the residuals for each
sample and their proportion in the dataset.
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being consistent with recent studies (19-21). The evolutionary rate estimation,
however, is lower than what has been reported previously in coronaviruses i.e of
the order of 102 substitutions/site/year (22-24), but is similar to that described by
others for SARS-CoV-2 (25) (https://bit.ly/2BRvEwj). Our estimate is also similar to
those reported for SARS and MERS coronaviruses (22,26) and is a third of the
estimates reported for influenza B (27). As noted before (28), root-to-tip
regression, employed in this study, often produces lower estimates than those from
Bayesian methods. For our dataset, whether this is a technical artifact remains to
be tested.

Ancestor tracing of sequences like the one isolated from Taiwan on 17th March
2020 (Accession number: 422415) suggested that the sequence might be more
recent than the date it has been given (Figure 3A and 3B, red circle). Another
outlier sequence type like the one isolated from France on 2nd March 2020
(Accession number: 414628) was substantially more divergent from its ancestor
than expected given a linear relationship between time of divergence and genetic
diversity (Figure 3A and 3B, blue circle). These observations can be explained in a
number of ways. For example, the former could be a result of recombination from a
recent virus of the supposed date. Similarly, the latter could be because of
sequencing errors, recombination etc. One more explanation that could give rise to
these “outliers” is the difference in the rate of evolution among different lineages
i.e a relaxed molecular clock as opposed to a strict molecular clock assumed in this
analysis. In this direction, a recent study of sequences from India has suggested
that different lineages are evolving at different rates (18). However, since the
outbreak recently emerged, the number of substitutions is still small. Therefore,
the confounding factors described above are a more likely explanation of the large
residual values (Figure 3B) observed for our samples than a molecular clock
variant. Only an extensive Bayesian analysis based study comparing different
variants of molecular clock models would shed more light in this direction.

The dated phylogeny obtained after applying the best fitting root (see Methods)
shows the diversification of SARS-CoV2 along two distinct lineages with respect to
the root - one temporally closer to the root than the other (Figure 4). The former
lineage contains thirty samples (88%) submitted from China, including the
reference genome reported in late December 2019. Samples from India are
distributed across the two main lineages identified, 43% samples belonging to the
lineage temporally closer to the root. Indian samples cluster with those belonging
to different geographical locations. A further ancestral reconstruction analysis
would shed light on the most likely origins of this heterogeneity identified among
the Indian samples.
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Figure 4: Maximume-likelihood based dated tree with best fit root. A dated Maximum
likelihood based phylogenetic tree with a GTR+F+I nucleotide substitution model and rooted
with the best fit based on residual mean squared test statistic. It shows the geographical
distribution of different SARS-CoV-2 samples across two temporally distinct lineages.

Mutations in SARS-CoV2 peptides

CoVa reported 5 deletions and 361 point mutations analyzing Indian genomes. It
also found a 1 base insertion present in a single genome. 346 of the 361 point
mutations were located in peptide-encoding regions, including 224 missense and 5
nonsense mutations. All nonsense mutations were singletons, except ORFS8
(E110*), which was also present only in 2 genomes. 70 of the 224 missense
mutations were present in more than 1 genome. We found 28 of these mutations to
be present in the global sample, 10 of which were enriched in the Indian sample
(Prishers test < 0.01, adjusted for multiple testing). However, it should be noted that
the Indian genomes were sequenced relatively more recently. More specifically, ~
70 % of the Indian genomes were sequenced after 31st March, whereas only ~ 24
% genomes were sequenced in the same period in the global sample. To reduce
this temporal component of the observed difference, we compiled another dataset
for comparison with the local sample. We also used this chance to reduce the
sampling bias in the global sample, originating from a disproportionately large
number of sequences from some countries. First, we selected all high quality
genomes from GISAID, collected from 1st of April to 5th of May. We normalized
sample size for each country, represented in this dataset, to its population as
follows:
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N 6
=(—)x 10
s=(2)
Where s = number of genomes sequenced per million individuals (pmi) from the
country, N = number of genomes & P = Country’s population.

The value of s for India was 0.16. Therefore, we selected 0.2 pmi most recent
genomes from all other countries. For countries with fewer sequences, we used all
of the available data. After removing the duplicate sequences, we had a set of 250
“recent” sequences. The above 10 mutations were enriched in Indian sequences
relative to global samples, even after accounting for temporal and sampling bias
(table 2).

Additionally, 7 mutations, which were present in more than 5 Indian sequences
(Sup. table 4), were missing from the global samples. However, these are not
necessarily unique to India, as we did find 3 of the 7 - nsp3 ( S1197R, S697F) &
nsp8 (Q198H) - in a different global dataset ( not included in this study).

Table 2. Mutations enriched among Indian sequences relative to genomes from other

countries.
Indian Global Recent

Peptide Change count freq count freq count freq

nsp6 L37F 101 0.412 128 0.113 12 0.048
RDRp A97V 89 0.363 7 0.006 3 0.012
N P13L 87 0.355 8 0.007 3 0.012
nsp3 T1198K 85 0.347 7 0.006 3 0.012
N S194L 31 0.127 8 0.007 6 0.024
nsp2 V1981 16 0.065 20 0.018 1 0.004
nsp2 R27C 14 0.057 7 0.006 0 0
nsp4 M33I 14 0.057 10 0.009 0 0
N R203K 11 0.045 1 0.001 1 0.004
nsp3 D1121G 9 0.037 1 0.001 0 0

Proteins under positive selection

We estimated the mode and strength of selection acting on SARS-CoV2 peptides
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Figure 5: Proteins under positive selection across countries. Difference between non-
synonymous substitution rate () and synonymous rate (a) for 8 proteins with S - a > 0 either in
India or globally.

using FUBAR over the entire phylogeny, as implemented in CoVa. FUBAR
estimates gene-specific distribution of synonymous and non-synonymous rates
using a Bayesian approach coupled with Markov Chain Monte Carlo (MCMC)
sampling. Sites are assumed to evolve independently under a codon-based model
in which rates are drawn from a prespecified discrete bivariate distribution to
maximize the probability of observed alignment. FUBAR estimates these rates over
the entire phylogeny and not specific branches and therefore, it is suited to detect
pervasive selection. A protein or a site is considered under positive selection if its
non-synonymous rate (B) is greater than the synonymous rate (a). Analysing the
global dataset, we found 2 non-structural proteins - nsp2 & nsp8, and the
nucleocapsid protein N to be under positive selection. Within India, we detected
signs of positive selection on N, along with several other proteins -
methyltransferase, ORF8, ORF3a, nspl0 & nspl1, but not on nsp2 and nsp8.

It is possible that some of these proteins are also under selection in the global
dataset. However, as mentioned earlier, FUBAR detects pervasive and not episodic
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selection. The presence of a large no.

of sequences from different parts of

T the world, representing independent
S populations, could have masked signs
of positive selection on these peptides
within some countries. Conversely,
nsp2 and nsp8 might be under
positive selection in a specific country
with a large number of sequences. To
test if this were indeed the case, we
separated global data by countries
and performed selection analysis
separately (using CoVa) on 12

o i ol o countries with at least 20 genomes.
Lattitude "N As suspected, we detected positive
selection on these peptides in several
other countries except for nspll,
which showed signs of positive
selection only in India (Figure 5). On
the other hand, nsp2 and nsp8 were
actually under positive selection in
many countries. 8 - « values for all peptides are provided in Sup. table 5. It should
be noted that many peptides appeared to be under positive selection in a few
countries, and India was not peculiar in having 6 peptides under positive selection.

Density
0.02 0.03 0.04
| | |

0.0
|

0.00
|

Figure 6: Geographical pattern of selection
on nsp2. Distributions of geographic latitudes of
countries with and without positive selection on
nsp2.

To test if there were any geographical correlates to the probability of a protein
being under positive selection, we compared the distribution of latitudes for
countries where a protein was under positive selection to that of the other
countries. For nsp2, we found that the protein was under positive selection in
temperate locations more often than in subtropics (Figure 6) (Puwicoxon rank sum =
0.01).

Nsp?2 is involved in viral RNA synthesis (29), and can potentially impair host cell
signaling via its interaction with Prohibitins (30). An amino acid deletion (D268)
was reported from France, Netherland and England, exemplifying the above trend
(31). A point mutation in nsp2, T85I, was reported in sequences from the USA, and
was predicted to cause structural alterations (32). We found the same mutation in
222 global sequences while only in 2 sequences from India. Nsp8 encodes an RNA
polymerase which was proposed to produce primers for the canonical RDRp
(nspl12) (33). Nspl1 is a small and uncharacterized 13-residue long peptide. It was
shown to enhance binding of nspl10 with nspl4 (exoribonuclease) and nspl6
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(methyltransferase), and thus, likely have a role in replication/transcription (34).
Positive selection on individual sites

Notwithstanding the signs of positive selection on the proteins above, it is well
known that proteins are rarely under positive selection over their entire sequence.
Rather, it is more common to find a few sites under positive selection in an
otherwise conserved protein. FUBAR identifies such sites based on the total
posterior probability of 8 > « , averaged over MCMC samples, being greater than
0.9. In India, we found 27 sites as targets of positive selection distributed over 14
proteins, including the polymerase RDRp, spike protein S, and even nsp2. Only 7 of
these sites could be detected in the global dataset, viz., RDRp (97, 323), N (13,
194), ORF3a-57, Helicase-206 and nsp6-37.

Amino acid positions on a protein sequence are rarely the target of selection by
themselves unless they solely dictate a function. We can expect groups of sites to
be under selection. However, many such sites might skip detection while using a
stringent and arbitrary threshold, as above. For this reason, we extracted posterior
probabilities P; . , of all the sites of these 14 proteins from 13 countries including
India (Sup. table 6). We observed 3 distinct distributions of these values; a
majority of the sites had F;. . in the range 0.4-0.6 while a few sites had the
probability > 0.7 indicating some degree of positive selection or < 0.2 suggesting
purifying selection. Similar to our analysis with the whole proteins, we sought to
identify sites for which the probability of positive selection was correlated with
geographical parameters. We tested the strength of spearman correlation between
a country’s latitude and a site’s P;. . for 589 sites, which had P;..> 0.7 in at least
one country. After correcting for multiple testing, we did not find a single site with
a significantly non-zero correlation (P < 0.05). However, based on uncorrected p-
values, we found 2 sites (212, 228) in nsp2 with a strong positive correlation
(0.785) with latitude and the lowest P (0.001), supporting our observation at the
protein level. Besides, multiple sites in RDRp (141, 196, 323, 668, 874), a single
site in S (723) and few other sites showed negative correlation values (unadjusted
P < 0.05), suggesting greater odds of their being positively selected at lower
latitudes (Table 3).

As proteins often interact in a physical space to perform a function, a group of sites
under the same selection pressure can be distributed across multiple proteins. A
consequence of their coupled evolution would be that if one of the co-evolving sites
is under positive selection in any population, then we can expect its partner(s) to
also be under positive selection in that population. With this reasoning, we
clustered sites which were all under selection (P;> ., > 0.7) in the same set of
countries. We identified 36 sites constituting 10 such clusters (Figure 7). Cluster 3
represented 3 sites under selection across all countries. Cluster-1, 2, 5 & 6 had
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sites from India common with different sets of countries. Cluster 7 was the largest
with 6 sites, and it represented sites common between the USA and Taiwan. As can
be seen from the figure, certain groups of proteins co-appeared in multiple
clusters; nsp2 + nsp3 in 4 and S + nsp3 in 3 clusters.

Table 3. Sites with a strong correlation of ;.. in a country with its latitude (|p| > 0.6, P <

0.05).

SN Protein Site rho P adjP

1 RDRp 141 -0.634 0.02 1
2 RDRp 323 -0.616 0.025 1
3 RDRp 874 -0.664 0.013 1
4 S 723 -0.613 0.026 1
5 nsp3 1198 -0.624 0.023 1
6 orf3a 8 0.615 0.025 1
7 orf3a 67 0.64 0.019 1
8 orf3a 102 0.615 0.025 1
9 orf3a 222 0.601 0.03 1
10 orf3a 239 0.624 0.023 1
11 N 13 -0.675 0.011 1
12 N 41 0.64 0.018 1
13 N 378 0.615 0.025 1
14 nsp2 198 -0.609 0.027 1
15 nsp2 212 0.785 0.001 0.589
16 nsp2 228 0.785 0.001 0.589
17 nsp2 384 0.632 0.021 1
18 nsp2 478 0.634 0.02 1
19 nsp2 548 0.785 0.001 0.589

20 nsp2 555 0.739 0.004 1
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Figure 7: Range of selection pressure on sites of SARS-CoV-2 proteins. Majority of sites
were found to be under neutral selection whereas sites under purifying or positive selection
were sparse and scattered across proteins. Several sites appeared under positive selection

together across a set of countries. Positively selected sites in some countries were conserved in
others.

Conclusion

Cova’s speed, accuracy and breadth of analysis makes it an ideal tool for genome
analysis of SARS-CoV-2. While several other genome analysis tools (35-37) have
been developed for this virus, CoVa accomplishes all of these analyses in a short
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time and with minimum computational resources. As opposed to other web-based
tools, CoVa can be run locally and, being a command-line utility, has the added
advantage that it can be easily integrated into a larger workflow for bioinformatics
research. The present capabilities of CoVa allowed us to identify subtypes of SARS-
CoV-2, both in India and across the world. Using CoVa, we could detect signs of
positive selection across multiple proteins and individual sites. Interesting
patterns emerged from this study across geographies. Some of these might be
explained by environmental factors, like ambient temperature, relative humidity
etc, others might require epidemiological explanations, demanding more detailed
analysis. Future updates to CoVa will include more sophisticated phylogenetic
analysis methods and mutation mapping to available structure data.
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