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Abstract 16 

Anaerobic digestion (AD) is a key technology at many wastewater treatment plants 17 

(WWTPs) for converting surplus activated sludge to methane-rich biogas. However, the 18 

limited number of surveys and the lack of comprehensive data sets have hindered a deeper 19 

understanding of the characteristics and associations between key variables and the 20 

microbiome composition. Here, we present a six-year survey of 46 anaerobic digesters, 21 

located at 22 WWTPs in Denmark, which is the largest known study of the microbial 22 

ecology of AD at WWTPs at a regional scale. For three types of AD (mesophilic, 23 

mesophilic with thermal hydrolysis pretreatment, and thermophilic), we present the 24 

typical value range of 12 key parameters including operational variables and performance 25 

parameters. The bacterial and archaeal microbiomes were analyzed at species-level 26 

resolution using amplicon sequencing in >1,000 samples and the new ecosystem-specific 27 

MiDAS 3 reference database. We detected 42 phyla, 1,600 genera and 3,584 species in 28 

the bacterial microbiome, where 70% of the genera and 93% of the species represented 29 

uncultivated taxa that were only classified based on MiDAS 3 denovo placeholder 30 

taxonomy. More than 40% of the 100 most abundant bacterial species did not grow in the 31 

digesters and were only present due to immigration with the feed sludge. Temperature, 32 

ammonium concentration, and pH were the main drivers shaping the microbiome clusters 33 

of the three types of ADs for both bacteria and for archaea. Within mesophilic digesters, 34 

feed sludge composition and other key parameters (organic loading rate, biogas yield, and 35 

ammonium concentration) correlated with the growing bacterial microbiome. 36 

Furthermore, correlation analysis revealed the main drivers for specific species among 37 

growing bacteria and archaea, and revealed the potential ecological function of many 38 

novel taxa. Our study highlights the influence of immigration on bacterial AD 39 

microbiome. Subsetting the growing microbes improves the understanding of the 40 
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diversity and main drivers of microbiome assembly, and elucidates functionality of 41 

specific species-level microorganisms. This six-year survey provides a comprehensive 42 

insight into microbiome structure at species level, engineering and ecological 43 

performance, and a foundation for future studies of the ecological 44 

significance/characteristics and function of the novel taxa. 45 

Introduction 46 

Anaerobic digestion (AD) is successfully employed worldwide to convert organic 47 

feedstock into biogas by anaerobic mixed microbial communities. As a key technology 48 

at wastewater treatment plants (WWTP), AD is used to reduce and stabilize the primary 49 

and waste-activated sludge by generating methane for bioenergy production. Moreover, 50 

AD can be used as a platform for the recovery of value-added compounds (e.g., 51 

phosphorus, nitrogen, volatile fatty acids) [1,2]. Thus, it is an important step in the 52 

development of circular economy at the WWTPs. The conversion of organic feedstock is 53 

carried out by the AD microbiome, a complex network of hydrolyzing and fermenting 54 

bacteria, specialized acidogenic and acetogenic syntrophs, and methanogenic archaea [3], 55 

which is shaped by stochastic (birth-death immigration) and deterministic (microbial 56 

competition, operation and environment) factors [4,5]. Hence, a good understanding of 57 

the microbial ecology in digesters is essential for informed control and manipulation of 58 

the process for optimal performance.  59 

AD harbours a complex microbial network which is ideal for identifying diversity trends 60 

in constrained microbial community structures. Research has shown that the operational 61 

parameters, including temperature, substrate type, organic loading rate (OLR), and sludge 62 

retention time (SRT) are vital factors for determining the microbiome structure [6–12]. 63 

Other parameters, such as ammonia concentration and salinity, are also thought to be 64 

significant drivers shaping the microbiome [7,13–15]. Additionally, the microorganisms 65 

immigrating with the feed sludge should not be overlooked. Most of them do not grow or 66 

contribute to the ecological functions in the system, but they still account for a significant 67 

fraction of sequencing reads identified by 16S rRNA gene amplicon sequencing [7,9,13]. 68 

However, most of these findings are based on investigations across various AD substrate 69 

types, such as manure, food waste, and wastewater sludge, where large differences in 70 

growth conditions are observed. Whether the same drivers are also important among 71 

digesters at WWTPs is unclear. The AD performance can be highly variable between 72 

different WWTPs, but how this links to different microbiomes and growth conditions is 73 

poorly described for full-scale systems.  74 

The quantitative relationships between specific microorganisms and key parameters in 75 

AD can be evaluated by multiple linear regression (MLR). Most studies have focused on 76 

linear associations between methanogenic populations (i.e., characterized by the mcrA 77 

gene) and specific methanogenic activities [17–20]. However, the traditional MLR fails 78 

when the number of predictors is comparable to, or larger than, the number of 79 

observations, and when there is high collinearity in predictors. Projection-based methods 80 

for analysis of multivariate data, such as Partial Least Squares (PLS) regression, stand as 81 
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promising techniques to evaluate the links between specific microorganisms and key 82 

parameters, lessening the shortcomings of traditional methods [21]. 83 

To provide insightful links between the AD microbiome and its performance, it is crucial 84 

to obtain a high phylogenetic resolution and good taxonomic classification at all ranks. A 85 

high phylogenetic resolution can be obtained by using amplicon sequence variants (ASVs) 86 

[22,23] instead of operational taxonomic units (OTUs) typically clustered at 97% 87 

similarity thresholds, and by using an ecosystem-specific, high-quality 16S rRNA gene 88 

reference database for taxonomic classification. We have developed MiDAS 3, a 89 

comprehensive ecosystem-specific reference database for activated sludge and anaerobic 90 

digesters which provides a taxonomic classification at all ranks for all sequences based 91 

on an improved and automated classification system (AutoTax) [24,25]. The MiDAS 3 92 

reference database is based on full-length 16S rRNA gene ASVs (FL-ASVs) obtained 93 

from Danish WWTPs and digesters, but can be applied to similar systems worldwide [24]. 94 

MiDAS 3 improves the classification of prokaryotic microorganisms found in AD 95 

compared to other public reference databases (SILVA [26], Greengenes [27], and RDP 96 

[28]), which lack reference sequences for many taxa and high taxonomic resolution, often 97 

resulting in poor classification (Figure S1). Application of MiDAS 3 for the study of AD 98 

communities offers a possibility of finding the link between identity and function of 99 

species-level taxa. Species names provide stable taxa identifiers independent of the data 100 

set, thus, allowing cross-study comparisons.  101 

The aims of our study are threefold. Firstly, we describe the typical operational 102 

parameters and performance values of three different types of AD at WWTPs (i.e., 103 

mesophilic AD, mesophilic AD with pre-treatment (thermal hydrolysis) of waste 104 

activated sludge, and thermophilic AD). Secondly, we present the microbial communities 105 

in the AD systems (with focus on the growing microbes), for the first time at species level, 106 

and make this publicly available on the MiDAS website 107 

(https://www.midasfieldguide.org/guide).  And thirdly, by focusing on species-level 108 

microbiome, we analyse the correlations between key AD parameters and microbiome 109 

structure in mesophilic digesters, which are the most common digesters in Denmark at 110 

WWTPs. 111 

Methods 112 

Anaerobic digesters and sample collection 113 

The survey was conducted during the period 2011 – 2016 in 46 anaerobic digesters at 22 114 

WWTPs across Denmark, which were operated under mesophilic (MAD), mesophilic 115 

with thermal hydrolysis pretreatment of feedstock (THP-MAD), or thermophilic (TAD) 116 

conditions (see Table S1 for information of digesters). During the six years of survey, all 117 

plants reported minor fluctuations in substrate amounts and composition, but no major 118 

changes of operating conditions were introduced, except for Aaby and Aalborg East, 119 

which switched from mesophilic to thermophilic operation (Table S1). A total of more 120 

than 50,000 observations, including operational, physicochemical, and performance 121 

parameters, except volatile fatty acids (VFAs), were obtained from the records of 122 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 7, 2020. ; https://doi.org/10.1101/2020.06.07.138891doi: bioRxiv preprint 

https://www.midasfieldguide.org/guide
https://doi.org/10.1101/2020.06.07.138891
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

individual plants. Each key variable had at least 1,087 observations, except VFAs (Table 123 

1). 124 

The digester sludge samples were obtained 2-4 times a year during the investigation 125 

period, and the VFA samples were collected 2-5 times from each studied digester during 126 

2016. All samples were transported to the laboratory within 24 h and processed 127 

immediately upon arrival. After homogenization, the biomass samples were stored as 2 128 

mL aliquots at -80℃ before DNA extraction. Samples for VFA analysis were filtered 129 

with 0.22 µm filters (Frisenette, Knebel, Denmark) and stored at -20℃ until analysis, 130 

which is described elsewhere [29].  131 

DNA extraction, 16S rRNA gene amplicon sequencing, and bioinformatics 132 

processing 133 

The microbial communities of a total of 1,010 AD sludge samples (418 for archaea and 134 

592 for bacteria) were analyzed using 16S rRNA gene amplicon sequencing. 50 µl AD 135 

sample were used for DNA extraction with the FastDNA® Spin Kit for soil (MP 136 

Biomedicals, Solon, OH, USA), following the optimized protocol for anaerobic digesters 137 

by Kirkegaard et al. [30]. The library preparation for 16S rRNA amplicon sequencing was 138 

performed as described in Kirkegaard et al. [10], targeting the V1-3 variable regions for 139 

bacteria and V3-5 variable regions for archaea. The bacterial primers used were 27F 140 

(AGAGTTTGATCCTGGCTCAG) [31] and 534R (ATTACCGCGGCTGCTGG)[32], 141 

which amplify a DNA fragment of ~500 bp of the 16S rRNA gene (V1–3). The archaeal 142 

primers used were 340F (CCCTAHGGGGYGCASCA) [33] and 915R 143 

(GWGCYCCCCCGYCAATTC) [33], which amplify a DNA fragment of ~ 560 bp of the 144 

16S rRNA gene (V3–5). The amplicon libraries were paired-end sequenced (2×300 bp) 145 

on the Illumina MiSeq as described by Albertsen et al. [34]. 146 

The archaeal and bacterial read data were analyzed separately using USEARCH 147 

(v.11.0.667) [35]. For the V1-3 amplicons raw fastq files were filtered for phiX sequences 148 

using -filter_phix, trimmed to 250 bp using -fastx_truncate -trunclen 250, and quality 149 

filtered using -fastq_filter with -fastq_maxee 1.0. The sequences were dereplicated using 150 

-fastx_uniques with -sizeout -relabel Uniq. ASVs were generated using UNOISE3 [36], 151 

and ASV-tables were created by mapping the raw reads to the ASVs using -otutab with 152 

the -zotus and -strand both options. Taxonomy was assigned using the MiDAS 3 reference 153 

database [24,25] using sintax with the -strand both and -sintax_cutoff 0.8 [37]. The V3-5 154 

amplicon data were analyzed in the same way except that only the reverse read was used 155 

and the primer binding site was removed during the trimming using –fastx_truncate –156 

stripleft 18 –trunclen 250. 157 

Data processing and statistical analysis 158 

Downstream statistical analyses and visualization were mostly performed in the R 159 

environment (v3.6.2) [38] using ampvis2 (v2.5.8) [34] and ggplot2 (v3.2.1) [39], unless 160 

indicated otherwise. Non-parametric dunn.test was used to identify significant differences 161 

between AD types. The correlations between all the variables were explored by Spearman 162 

correlation, where correlations greater than ±0.5 and false discovery rate (FDR) corrected 163 

P > 0.05 were visualized in Gephi (v0.9.2) [40], using Force Altas2 and manual tweaking 164 
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to generate the network. For sequence data, samples were randomly subsampled to 10,000 165 

sequences per sample, yielding a final dataset of 402 archaeal and 564 bacterial samples. 166 

For the growing bacteria datasets, after removing the non-growing ASVs from ASVtable, 167 

samples were also randomly subsampled to 10,000 sequences per sample for downstream 168 

analysis and comparison.  Boxplot and heatmaps were made by the amp_boxplot and 169 

amp_heatmap function in ampvis2. Alpha diversity was calculated by amp_alphadiv 170 

function in ampvis2. The linear regression between alpha diversity (using Shannon’s 171 

index) and each operational and performance variable was used to pick the key variables 172 

most correlated. Weighted uniFrac distance, calculated by beta_diversity.py script in 173 

QIIME (v1.9.0) [41], was applied for all beta diversity comparisons. For ordination 174 

visualizations, the non-metric multidimensional scaling (NMDS) was performed by 175 

amp_ordinate in ampvis2 to show the dissimilarities of microbial profiles. Based on 176 

weighted uniFrac distance matrix, ANOSIM was applied to assess similarities for 177 

categorical variables using compare_categories.py in QIIME with 999 permutations. A 178 

PERMANOVA analysis using adonis in QIIME was used to describe the strength and 179 

significance for continuous variables. The significant difference of species between two 180 

groups of feed sludge was explored by Wilcoxon rank-sum test. 181 

PLS regression was performed using R package mdatools v0.10.1 [21] to validate 182 

quantitative relationship between operational and performance parameters, and the 183 

microbial community, as well as to identify specific microbes which correlate to each 184 

variable the most. All bacterial species with median relative abundance >= 0.01% and 185 

archaeal ASVs with median relative abundance >= 0.05% were used to perform the PLS 186 

analysis. The model was trained using all samples and validated by segmented cross-187 

validation (CV) with systematic splits (venetian blinds). Determination coefficient (R2) 188 

and root mean square error (RMSE) were used to assess performance of the model. The 189 

contribution of individual predictors was evaluated using regression coefficients and 190 

corresponding inferential analysis carried out by Jack-Knifing approach [42]. 191 

Results and discussion 192 

Characterization of key parameters of AD 193 

Key operational and performance parameters of the 46 anaerobic digesters during the six-194 

year survey are summarized in Table 1. The digesters are classified into three types, based 195 

on the operational temperature and pretreatment of the feed sludge. MAD is the most 196 

common configuration (78% of all digesters) followed by TAD (15%) and THP-MAD 197 

(7%). The most common digester type is single-stage continuously stirred tank reactor 198 

(CSTR). The anaerobic digesters surveyed were running stably without major process 199 

complications for six years, therefore common ranges of operation and performance 200 

conditions are described for each digester type. As presented in Table 1 and described 201 

below, values of several environmental parameters are very different from other AD 202 

systems treating manure, crops, food waste, and industrial waste [7,11,15,43–47], with 203 

generally lower or much lower values of total ammonia nitrogen (TAN) and level of 204 

VFAs.  205 
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The median temperature values of the three types of digesters were 38.0℃, 38.6℃, and 206 

53.6℃, for MAD, THP-MAD, and TAD, respectively. Other operational variables (OLR 207 

and SRT) and the performance parameters (pH, TAN, alkalinity, TS, VS, biogas yield, 208 

and methane content) were found to be significantly different across all three types of AD 209 

(Figure S2). For more details on the description of each parameter, please see Additional 210 

file 2. In general, the same overall correlations between operational and performance 211 

parameters across digesters treating different types of substrates could also be observed 212 

specifically for digesters among WWTPs. Strong positive correlations (Spearman, r > 0.7, 213 

false discovery rate (FDR) P < 0.05) were observed between TAN and TS or VS, OLR 214 

and alkalinity, and methane production and SRT (Figure S3). Strong negative 215 

correlations between the OLR and methane production and biogas yield were also 216 

revealed (Spearman, r > 0.65, FDR P < 0.05), and between methane production and TAN 217 

(Figure S3), indicating that these operational variables are linked to the performance of 218 

the digesters. It is interesting that VFAs only related weakly to SRT and the ratio of VS 219 

to TS, which have previously been considered as important variables [48]. This may be 220 

due to a general low concentration range in the digesters and low loading.  221 

Table 1. Operational variables and performance parameters: Intervals and median 222 

values for ADs at WWTPs in Denmark. 223 

Category Variable Unit MAD* THP-MAD* TAD* 

Interval1 Median Interval Median Interval Median 

Operational 
variables  

Temperature ℃ 35.6 ~ 39.9 38.0 38.2 ~ 39.0 38.6 51.1 ~ 55.40 53.6 
OLR2 kg VS/m3·d 0.84 ~ 1.13 0.96 1.66 ~ 2.30 2.04 1.63 ~ 2.49 2.15 
SRT* Day 24.8 ~ 35.6 29.4 27.3 ~ 34.9 30.1 15.8 ~ 20.7 17.3 

Performance 
parameters 

TS* g/L 21.1 ~ 38.4 31.0 41.1 ~ 65.9 44.8 31.2 ~ 39.0 35.8 
VS* g/L 12.1 ~ 19.9 16.2 25.9 ~ 34.0 27.7 21.0 ~ 25.5 23.6 
VS TS% 56.0 ~ 61.6 58.6 54.0 ~ 63.5 60.2 57.0 ~ 60.9 58.0 
pH - 7.06 ~ 7.38 7.19 7.64 ~ 7.86 7.75 7.50 ~ 7.80 7.70 
TAN mg N/L 603 ~ 972 745 2691 ~ 3100 2888 1070 ~ 1430 1215 
Alkalinity mM 50.0 ~ 73.0 60.8 148 ~ 186 168.6 67.9 ~ 87.7 78.4 
Total VFA* mM 0.28 ~ 1.11 0.50 0.45 ~ 2.34 0.73 0.92 ~ 2.18 1.30 
Acetate mM 0.10 ~ 0.40 0.21 0.25 ~ 0.44 0.30 0.53 ~ 1.18 0.79 
Biogas yield2 Nm3/kg VS 0.39 ~ 0.53 0.46 0.38 ~ 0.56 0.49 0.25 ~ 0.36 0.29 
Methane content % 61.0 ~ 63.5 61.7 63.0 ~ 65.0 65.0 53.7 ~ 64.3 57.6 

 Methane production3 Nm3/ m3·d - 0.27 - 0.65 - 0.36 
1 Interval shows the range of first quantile and third quantile of each variable. 224 
2 OLR and biogas yield are normalized using an average volatile solids value of influent feed (74.5%). 225 
3 Methane production is calculated on median value of biogas yield, OLR, and methane content. 226 

* MAD = mesophilic, THP-MAD = mesophilic with thermal hydrolysis pretreatment, TAD = thermophilic, OLR = organic loading 227 

rate, SRT = solids retention time, TS = total solids, VS = volatile solids, TAN = total ammonia nitrogen, Total VFA = total volatile 228 

fatty acid. 229 

 230 

Like many other full-scale plants, running at low OLR and long SRT of the digesters 231 

surveyed, which is referred as “suboptimal” operational conditions, may lead up to a 30% 232 

profitability loss [46,49]. Increasing the OLR seems promising, but there may be a 233 

number of operational problems which need to be considered, such as foaming and 234 

acidosis, due to the imbalance between operational and microbial processes. Thus, a better 235 

understanding of microbial communities and their function may help to control or 236 

manipulate the processes that decrease the potential risks of operational failures.  237 
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Bacterial and archaeal microbiomes  238 

We obtained 33,047 bacterial and 878 archaeal unique ASVs, which were classified and 239 

assigned using sintax and the MiDAS 3 database. Thus, a total of 42 phyla, 1,600 genera, 240 

and 3,584 species were detected in the bacterial microbiome, where 1,117 (70%) genera 241 

and 3,336 (93%) species were novel and could only be assigned genus and species name 242 

based on the MiDAS 3 denovo placeholder taxonomy. For archaea it was not possible to 243 

analyze the methanogenic archaea at the species level because the phylogeny of most of 244 

these species cannot be resolved using the 16S rRNA gene, even with full-length 245 

sequences [24]. As a result, only 26 species were classified and most of the archaeal 246 

population are shown at ASV level. 247 

AD at WWTPs are complex systems, as they receive a substantial amount of 248 

microorganisms via feed streams (primary sludge, PS, or surplus activated sludge, AS). 249 

Many of these microorganisms are not growing in the digester, presumably inactive or 250 

dying off [10,13,50]. The growing and non-growing microorganisms were identified 251 

according to the ratio of read abundances in digester and feed as described by Kirkegaard 252 

et al. [10]. The bimodal distribution of ratios was split at a ratio of around 10 (Figure S4), 253 

showing two clearly separated groups of ASVs. The group with a ratio >10 represents 254 

ASVs enriched in digesters compared to the feed sludge, here designated as “growing 255 

microorganisms”. The group with a ratio <10 represents ASVs with unchanged or lower 256 

relative read abundance in digesters, compared to the feed sludge, here designated as 257 

“non-growing microorganisms”. Thus, combined with median relative abundance across 258 

samples in each type of AD, the total ASVs (>0.01% median relative abundance) were 259 

divided into four groups, growing/non-growing ASVs with high abundance (>0.1%) and 260 

growing/non-growing ASVs with low abundance (<0.1%). It was observed that the 261 

growing highly abundant ASVs only accounted for 7.6%, 23.2%, and 9.4% of the total 262 

ASV counts in MAD, THP-MAD, and TAD, respectively (Fig. 1). However, the 263 

proportion of relative abundances of these growing highly abundant ASVs were large, at 264 

38.8%, 85.3%, and 50.9% in MAD, THP-MAD, and TAD, respectively. This suggests 265 

that the performance and functionality of AD might be driven by only a small number of 266 

the microbial phylotypes detected by amplicon sequencing. 267 

The five most abundant bacterial phyla were Firmicutes, Proteobacteria, Chloroflexi, 268 

Actinobacteria, and Bacteroidetes, accounting for 75.7% (median value) of all amplicon 269 

sequences across all samples, and these phyla are typical for digesters at WWTPs 270 

[7,15,43,51–54]. However, the three types of AD showed variations in the dominant 271 

bacterial taxa, especially at genus level (Figure S5). Among the 25 most abundant species, 272 

11 species in MAD and 9 species in TAD belonged to the group of non-growing 273 

microorganisms (Fig. 2A and 2B). These included species in genera belonging to the 274 

polyphosphate-accumulating organisms (PAO) Tetrasphaera,  the putative PAO 275 

Dechloromonas [55], the filamentous genus Ca. Microthrix [56],  and the genera 276 

Romboutsia, and Trichococcus. These all belong to the top-most abundant reported 277 

genera in activated sludge in Danish WWTPs [25], thereby indicating carry-over to the 278 

digesters with the feed sludge. Since the top100 species in MAD and TAD, respectively, 279 

are very similar across the digesters, these lists can be used as a representative reference 280 
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of abundant growing and non-growing organisms in digesters at WWTPs across the world 281 

(Figure S6 and S7). These results demonstrate that surprisingly many, 44% and 54% of 282 

the species were non-growing in MAD and TAD, respectively. The top 25 species in 283 

THP-MAD all belonged to growing microorganisms in good agreement with the presence 284 

of THP pretreatment, which causes a decay of essentially all organisms coming with the 285 

feed sludge (Figure S8A).  286 

The growing microorganisms are considered to be responsible for the most important 287 

ecological functions within AD. Among the dominant growing bacterial species there 288 

were many known fermenters, such as species belonging to the genera Thermovirga, Ca. 289 

Fermentibacter, and Leptolinea in MAD, and Coprothermobacter and Acetomicrobium 290 

in TAD. There were also syntrophic bacteria, such as members of Ca. Cloacimonas [57] 291 

and Syntrophorhabdus in MAD. However, a large fraction of the most abundant growing 292 

species were novel taxa without any known function. They were identified by MiDAS 3 293 

species-level taxonomy and given robust placeholder names until characterized in more 294 

detail, enabling across-study comparisons of AD microbiome at high taxonomic 295 

resolution [24]. Due to the high relative abundance, some genera are of special interest: 296 

midas_g_12 (family Prolixibacteraceae), midas_g_19 (family Bacteroidetes vadinHA17), 297 

midas_g_156 (family Anaerolineaceae), and midas_g_789 (family Anaerolineaceae) in 298 

MAD; midas_g_88 (family Syntrophomonadaceae), midas_g_112 (order MBA03), and 299 

midas_g_16 (family Lentimicrobiaceae) in TAD, and midas_g_13 (order D8A-2) in THP-300 

MAD. Some of these genera encompass very abundant species, especially in the family 301 

Anaerolineaceae (up to 8% median abundance): midas_s_156, midas_s_876, 302 

midas_s_956, midas_s_1462, midas_s_467, midas_s_1625. These abundant and novel 303 

taxa should be investigated in future studies, as their physiology and ecological role in 304 

AD are completely unknown while likely important. 305 

Moreover, compared with MiDAS 2 taxonomy (which was the curated version of Silva 306 

taxonomy) [58], MiDAS 3 provides a much higher resolution to classify sequences and 307 

introduces species-level names for the first time for the abundant microorganisms in AD 308 

ecosystem. For example, genus T78 (family Anaerolineaceae) in MiDAS 2 encompassed 309 

sequences that are split into midas_g_156 and midas_g_467 in MiDAS 3, both being the 310 

abundant genera mentioned above. These genera are both diverse, each having three 311 

abundant species present in MAD (Figure S9). Also, Ca. Cloacimonas and 312 

Pelotomaculum and the newly discovered syntrophic genus midas_g_995 [29] had high 313 

species diversity as well, with several abundant species with random distribution (Figure 314 

S9). 315 

Euryarchaeota was the dominant archaea in the digesters (99.9%, median value). The 316 

acetoclastic genus Methanothrix (previously named Methanosaeta) dominated in MAD 317 

(71.8%) and THP-MAD (93.8%), whereas the genera Methanothermobacter (70.7%) and 318 

Methanosarcina (24.8%) dominated in TAD (Figure S10B). Methanosarcina was in very 319 

low abundance in MAD (0.1%) and THP-MAD (0.01%), in contrast to other mesophilic 320 

full-scale studies of manure-based AD where it was dominant [7,53,59]. However, the 321 

low concentrations of VFAs (<1 mM) in the mesophilic AD may explain why 322 

Methanothrix dominated [60]. The hydrogenotrophic methanogenic Methanoculleus was 323 
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the predominant genus (4.2%) in THP-MAD, which is in line with other lab-scale and 324 

pilot-scale THP digesters studies [61,62]. 325 

Acetoclastic and hydrogenotrophic methanogenic species/ASVs were quite abundant in 326 

all the types of AD (Fig. 2C, 2D, and Figure S8B). g_Methanothrix_ASV1 was 327 

dominant in both MAD and THP-MAD, followed by midas_s_1190 (genus Methanolinea) 328 

and g_Methanolinea_ASV6 in MAD and midas_s_880 (genus Methanoculleus) in THP-329 

MAD. Methanothermobacter tenebrarum and Methanosarcina thermophila species were 330 

the second most abundant species in TAD (Fig. 2).  331 

Microbial diversity in different AD types   332 

The use of common measures for richness and diversity in the digesters surveyed has only 333 

limited value, as abundant immigrating bacteria, likely inactive or dying off without any 334 

functional role in the systems, will influence the diversity measures and produce 335 

misleading results. This is illustrated by comparing the diversity measures calculated for 336 

all bacteria and for the growing bacteria only (Fig. 3A). When the non-growing fraction 337 

was removed, the median values of observed ASVs decreased from 1935 to 928, 1486 to 338 

534, and the median values of Shannon index from 6.22 to 5.11 and 5.59 to 4.33 in MAD 339 

and TAD, respectively (Fig. 3A). THP-MAD only had a minor change in observed ASVs 340 

(from 832 to 741) and the median Shannon index (4.47 and 4.63, respectively), reflecting, 341 

as expected, that these communities were not strongly influenced by immigration. The 342 

adjusted diversity measures showed the same order of magnitude decrease for archaea 343 

(Figure S11) with THP-MAD between MAD and TAD. The measures also showed that 344 

higher temperature harbored fewer number of microbes in accordance to other full-scale 345 

surveys [15,51], but that the exact values are strongly dependent on the inclusion of the 346 

immigrating microbes. Higher alpha diversity measures for bacterial communities 347 

compared with archaea is in agreement with other full-scale WWTPs studies [15,43,51]. 348 

The diversity in thermophilic AD has been shown to be lower than in mesophilic digesters 349 

[63–65], which is also supported by our data. 350 

The total bacterial (including growing and non-growing fraction) and archaeal 351 

microbiome seemed relatively stable in each digester across all 22 WWTPs during the 352 

six-year survey as indicated by tight clustering as visualized by non-metric 353 

multidimensional scaling (NMDS) (Figure S12). This is also reported from other time-354 

series studies of full-scale digesters mainly treating manure, agricultural waste, and 355 

municipal solid waste [7,43], suggesting that overall stable microbiomes are common in 356 

full-scale digesters during steady-state operation. However, as a major part of the 357 

microorganisms are immigrants, they may strongly affect the betadiversity measures. 358 

Therefore, it is important to compare the diversity of both the total and the growing 359 

fraction of the population.  The dissimilarity among plants seemed the same considering 360 

the community structure of the total and growing bacteria in MAD (ANOSIM; Total 361 

bacteria: R = 0.65, P = 0.001; Growing bacteria: R = 0.63, P = 0.001) and THP-MAD 362 

(ANOSIM; Total bacteria: R = 0.45, P = 0.001; Growing bacteria: R = 0.49, P = 0.001). 363 

However, the growing bacterial community in TAD became more similar across plants 364 

compared to the total bacterial population (ANOSIM; Total bacteria: R = 0.64, P = 0.001; 365 

Growing bacteria: R = 0.40, P = 0.001). This shows that the inclusion of non-growing 366 
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bacteria in microbiome analyses of TAD may lead to misleading results and erroneous 367 

conclusions. 368 

Analysis of beta diversity of the communities present in different AD types revealed three 369 

distinct clusters corresponding to MAD, THP-MAD, and TAD (Fig. 3B and Figure 370 

S13A). Clear separation dictated by AD type was evident for all bacteria (ANOSIM: R = 371 

0.95, P = 0.001), the growing bacteria (ANOSIM: R = 0.97, P = 0.001), as well as the 372 

archaeal microbiome (ANOSIM: R = 0.83, P = 0.001), reflecting the huge effects of 373 

operational conditions on the resulting variation in the microbiomes. Permutational 374 

multivariate analyses of variance showed that TAN contributed to shaping the structure 375 

of the total bacterial microbiome (adonis: R2 = 32%, P = 0.001) (Figure S13B), which 376 

has also been observed in full-scale digesters treating different kinds of substrates [7]. In 377 

contrast to the bacterial microbiome, the overall structure of the archaeal microbiome was 378 

separated mainly by temperature (adonis: R2 = 66%, P = 0.002), with a separate cluster 379 

for THP-MAD alongside MAD (Figure S13C). pH was the second factor influencing the 380 

archaeal microbiome (adonis: R2 = 27%, P = 0.002), which may explain the separated 381 

cluster of THP-MAD from MAD (Figure S13D).  382 

Main drivers of MAD microbiome 383 

Since most digesters surveyed were MAD, we further applied the correlation analysis 384 

between key parameters and microbial diversity and structure to determine the main 385 

drivers, with special focus on the growing bacterial microbiome, as non-growing 386 

microorganisms may mask the influence of key drivers on the active microbiome in 387 

correlation analyses. In general, bigger difference was observed on linear regression of 388 

key parameters against alpha diversity between the total and growing bacterial 389 

microbiomes, compared with permutational multivariate analysis of betadiversity (Table 390 

S2 and Table S3). 391 

It is well-known that temperature is a very important factor for shaping the microbial 392 

diversity and community structure in full-scale digesters [7,15,43], but it is less clear to 393 

what extent it is for mesophilic AD at WWTPs. In our study, the temperature range in 394 

MAD was small (35.6-39.9) and was only considered to be most important to the total 395 

bacterial alpha diversity in MAD (25%, linear regression, FDR P < 0.001, Table S2), but 396 

not the alpha diversity of growing bacteria (16%, FDR P < 0.001). This indicates that 397 

temperature may not be the most important factor in MAD. Instead, the correlation 398 

coefficient of OLR improved significantly by subsetting the growing bacterial alpha 399 

diversity (31%, P < 0.001) compared to the total bacterial alpha diversity (9%, P > 0.05). 400 

OLR also shaped the microbiome structure (beta diversity) of growing bacteria (adonis: 401 

R2 = 21%, P = 0.001, Table S3). Although OLR is widely accepted as a deterministic 402 

factor for any type of AD microbiome [66–69], our study strengthened it when OLR was 403 

only correlated with growing bacteria. Moreover, the biogas yield exhibited strong 404 

correlation with the growing bacterial microbiome both on alpha diversity (46%, P < 405 

0.001) and beta diversity (adonis: R2 = 31%, P = 0.001), as well as archaeal beta diversity 406 

(adonis: R2 = 23%, P = 0.008), supporting the observation that AD performance depends 407 

on the activity of the microbiome [70]. Similarly, TAN was observed to be more 408 

correlated to growing bacterial alpha diversity compared with the total bacterial 409 
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population (Table S2). Regarding the archaeal microbiome, no strong correlation was 410 

found between parameters and alpha diversity in MAD. However, apart from biogas yield, 411 

acetate concentration (adonis: R2 = 18%, P = 0.04) was also found to have significant 412 

correlation with the archaeal microbiome structure. 413 

Samples from MAD digesters treating only surplus AS and without PS (Fornaes, 414 

Mariagerfjord, and Soeholt) formed a small separate cluster, compared to MAD treating 415 

a mixture of both types of substrates for all bacteria (ANOSIM: R = 0.44, P = 0.001, 416 

Figure S14A) and for the growing bacteria (ANOSIM: R = 0.57, P = 0.001, Fig. 3C). 417 

The higher dissimilarity of growing bacteria in MAD supports the observation that 418 

substrate characteristics (e.g., biodegradability, composition, concentration) from PS 419 

shape the growing bacterial community structure [7,15]. This is different from the 420 

growing bacteria in the three types of AD, which is mainly driven by operational 421 

parameters (Fig. 3B). While for all bacterial communities, the relative abundance of 18 422 

of the 25 most abundant species showed a significant difference between the two clusters 423 

depending on the feed sludge (Wilcoxon rank-sum test, P < 0.05, Figure S14B). Non-424 

growing species in digesters but abundant in AS (i.e., species belonging to genus 425 

Tetrasphaera, Ca. Microthrix, or Dechloromonas) were found in higher relative 426 

abundance in MAD treating only AS compared to MAD treating AS and PS. These results 427 

underline that besides substrate characteristics, the immigrating bacterial load has a strong 428 

impact on the total bacterial microbiome in AD. Additionally, we also observed the 429 

influence of feed sludge on archaeal community (Figure S15A), with significant 430 

difference between the digesters with different feed sludge (ANOSIM: R = 0.23, P = 431 

0.001). It is interesting to see that the species belonging to genus Methanolinea were rare 432 

in the digesters only fed with AS (Figure S15B).  433 

Relationship between MAD microbiome and its driving factors predicted by PLS 434 

regression model  435 

We applied PLS regression to predict key operational variables and performance 436 

parameters and their relationship to the microbiome in MAD. Separate PLS models were 437 

built on the bacterial microbiome at species level and archaeal ASVs with each factor (for 438 

bacteria: temperature, OLR, TAN, and biogas yield; for archaea: temperature, TAN, 439 

acetate, and biogas yield). Very good prediction accuracy was observed on the bacterial 440 

microbiome, where the CV R2 of all four PLS models exceeded 0.85 (Fig. 4). However, 441 

none of the models based on archaeal ASVs had the R2 over 0.80, except for biogas yield 442 

(Fig. 4). PLS regression models were also carried out on pH and SRT, since they are 443 

important AD parameters (Figure S16 and S17). The growing bacterial species and 444 

archaeal ASVs, which most significantly contributed to each PLS regression model (the 445 

contribution was estimated using inferential statistics for corresponding regression 446 

coefficients, P < 0.05), for both positive and negative contributions, are shown in Fig. 5. 447 

Most growing bacterial species exhibiting significant correlations were represented by 448 

novel taxa (Fig. 5A). Species belonging to the same genus were correlated to different 449 

operational or performance parameters, such as was the case with two species in family 450 

Anaerolineaceae (midas_s_467 and midas_s_1462 belonging to genus midas_g_467). 451 

The positive correlation of midas_s_467 with TAN and biogas yield, and the negative 452 
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correlation of midas_s_1462 with temperature and OLR, could explain the abundance 453 

variability and trend across MAD (Figure S9). Similar observations were found for three 454 

species belonging to genus midas_g_12 (family Prolixibacteraceae, phylum 455 

Bacteroidetes). The ecological function of these novel species is unknown so the PLS 456 

correlation results may provide hypotheses which could aid the design of experiments to 457 

reveal the role of novel taxa in AD [71]. Among the known species, Ca. Brevefilum 458 

fementans showed a positive correlation with TAN, which can indicate a preference or 459 

tolerance to slightly higher TAN conditions. This hypothesis is supported by their genome 460 

blueprint indicating that Ca. B. fementans can ferment proteinaceous substrates to VFAs 461 

with ammonium as a by-product of protein degradation [72]. Additionally, species 462 

belonging to the known syntrophic genera Ca. Cloacimonas, Smithella, Syntrophomonas, 463 

and Syntrophorhabdus were found mostly negatively correlated with TAN and 464 

temperature, thereby confirming the high sensitivity of this group to environmental 465 

conditions [73–76].  466 

Non-growing bacterial species (primarily immigrating with the feed sludge) showed 467 

negative correlations to some key parameters (Figure S18), especially for biogas yield 468 

and SRT, suggesting that they are not directly involved in the conversion of feed stocks 469 

to biogas and are probably degraded or washed out of the digesters. This is exemplified 470 

by Tetrasphaera midas_s_5, the most abundant non-growing species in MAD, and it was 471 

negatively correlated with SRT together with Tetrasphaera elongata and midas_s_299. 472 

Tetrasphaera is very abundant in Danish wastewater treatment plants [55] and is 473 

introduced into the digester with the waste activated sludge. The negative correlation with 474 

the SRT indicates that Tetrasphaera is dying off in the digesters despite the potential for 475 

surviving or growing under anaerobic conditions as fermenters, and polyphosphate 476 

accumulators [77]. 477 

Correlation results for archaeal ASVs are shown in Fig. 5B. Generally, ASVs belonging 478 

to the same genus show the same trends. For example, ASVs classified to family 479 

Methanosarcinaceae and order Methanosarcinales known as acetoclastic and 480 

hydogenotrophic methanogens, positively correlated with acetate. This is consistent with 481 

other findings [78] where Methanosarcina was most abundant in digesters with higher 482 

acetate concentration. In contrast, most Methanothrix ASVs correlated negatively with 483 

acetate, supporting the dominance of Methanothrix at low acetate concentrations [79]. 484 

Many Methanothrix ASVs also showed negative correlation with TAN, which is in 485 

agreement with studies that show that Methanothrix is the methanogen most sensitive to 486 

ammonia inhibition [80]. It is interesting that even small TAN variations as seen here for 487 

Danish digesters (603-972 mg N/L, MAD – Table 1) can affect individual Methanothrix 488 

ASVs in different ways.  489 

For hydrogenotrophic methanogens, different ASVs from the same genus or species 490 

showed diverse correlations with AD parameters. The second most abundant archaeal 491 

species in MAD belonging to genus Methanolinea (midas_s_1190) included three ASVs, 492 

which correlated with TAN differently suggesting that species microdiversity can 493 

influence process performance. The negative correlation of many hydrogenotrophic 494 

methanogens with biogas yield, such as Methanoculleus, could be due to their ability to 495 
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survive/compete at sub-optimal AD conditions (e.g., increased TAN) [80] which could 496 

translate into lower biogas yields.   497 

Overall, the PLS regression models presented enable elucidation of the relationships 498 

between important AD parameters and the main drivers shaping AD microbiome at very 499 

high resolution. The results for known taxa agree with present knowledge, thus verifying 500 

the robustness of the PLS application in microbiome study. Importantly, a combination 501 

of the PLS regression with species-level microbial data provides the first insight into 502 

potential functional importance of several novel microorganisms, where little or no 503 

description of their ecology and physiology is available. Based on our observations, 504 

hydrolytic-fermentative bacteria, and acetogenic syntrophs along with archaeal 505 

methanogens, all have significant and quantitative relationships with important 506 

parameters at MAD. This shows great promise for the improved models, and optimized 507 

functional performance of AD.  508 

Conclusion  509 

A six-year survey of 46 anaerobic digesters located at 22 Danish WWTPs provided a 510 

comprehensive overview of typical operational and performance parameters, detailed 511 

identification of the AD microbiome at species level, and elucidated relationships 512 

between specific taxa and key parameters in AD. The anaerobic digesters surveyed were 513 

running stably but operated at low intensity, a common feature across digesters in WWTP.  514 

Non-growing species migrating from the feed sludge were abundant in mesophilic and 515 

thermophilic AD, but did not seem to contribute to the functionality of AD. In contrast, 516 

many growing species were novel and identified using MiDAS 3 taxonomy, and their 517 

physiological and ecological roles in AD remains to be described. The microbiome of the 518 

three types of AD surveyed (mesophilic, thermophilic, and thermal hydrolysis pre-519 

treatment-mesophilic) showed high stability within plants, forming separate clusters for 520 

all bacteria, growing bacteria, and archaea depending on the operational parameters. The 521 

variations of growing bacteria within mesophilic digesters were related to organic loading 522 

rate, ammonium concentration, feed sludge characteristics, and biogas yield. Multiple 523 

correlations between growing bacteria and archaea at species level and key parameters 524 

were found, forming a basis for future studies of the ecology and function of novel taxa. 525 
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Figures 526 

 527 

Fig. 1   Composition of growing and non-growing ASVs in Danish ADs at WWTPs. 528 

The total ASVs (median relative abundance > 0.01%) divided into four groups based on 529 

growth ratio (growing/non-growing) and relative abundance (high/low abundant, 0.1% 530 

indicates the cutoff value). A and B show the composition of ASV counts and ASV 531 

relative abundance for these four groups in MAD, THP-MAD, and TAD, respectively. 532 

MAD = Mesophilic AD, THP = Mesophilic with thermal hydrolysis pretreatment, TAD 533 

= Thermophilic AD.534 
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 535 

Fig. 2 Boxplots of the most abundant species/ASVs in Danish ADs at WWTPs. (A) The 25 most abundant bacterial species/ASVs in 536 

MAD, (B) The 25 most abundant bacteria species/ASVs in TAD, (C) The 10 most abundant archaeal species/ASVs in MAD, (D) The 10 537 

most abundant archaeal species/ASVs in TAD. The dots at the left in A and B indicate whether the species/ASVs are growing (ratio >10, 538 

blue), non-growing or dying off (ratio <10, orange). MAD = Mesophilic AD, TAD = Thermophilic AD. Ratio refers to the digester to influent 539 

relative read abundance ratio (please see Additional file 3). Sequences not possessing species-levels classification are shown here as 540 

individual ASVs.541 
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 542 

Fig. 3 Alpha and beta diversity plots of bacterial and archaeal communities of three 543 

types of AD. (A) Boxplots of observed ASVs and Shannon index of entire and growing 544 

bacterial community, significant differences are indicated (Wilcoxon rank-sum test; ***, 545 

p < 0.001). (B) Non-metric multidimensional scaling (NMDS) plots of growing bacterial 546 

community structure based on weighted UniFrac matrix, (C) NMDS plots of growing 547 

bacterial community structure of MAD based on weighted UniFrac matrix. MAD = 548 

Mesophilic AD, THP-MAD = Mesophilic with thermal hydrolysis pretreatment process, 549 

TAD = Mesophilic AD, AS = Activated sludge, PS = Primary sludge.550 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 7, 2020. ; https://doi.org/10.1101/2020.06.07.138891doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.07.138891
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

 551 

Fig. 4 Prediction plots of main drivers based on bacterial and archaeal microbiome in MAD by partial least squares regression. MAD 552 

= mesophilic AD, OLR = organic loading rate, TAN = total ammonium nitrogen. nLV = number of selected components, RMSE = root mean 553 

squared error.554 
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 555 

Fig. 5 Partial least squares estimation for main driver for important growing 556 

bacterial species (A) and archaeal ASVs (B) in MAD. P < 0.05, positive correlation in 557 

blue, negative correlation in orange. F = Fermenters, S = Syntrophic bacteria, AM = 558 

Acetoclastic methanogens, AHM = Acetoclastic or Hydrogenotrophic methanogens, HM 559 

= Hydrogenotrophic methanogens, MM = Methylotrophic methanogens, Unk = Unknown.560 
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Supplementary information 561 

Additional file 1: Table S1. Overview of WWTP digester capacities, type, and industrial load. 562 

Table S2. Linear regression of key variables individually against alpha diversity using the 563 

Shannon diversity index at MAD. Table S3. Permutational multivariate analysis (using 564 

continuous variables only) of variance of beta diversity using weighted UniFrac matrix at MAD. 565 

Figure S1. Comparison of classification between full-length exact sequence variants (FL-ESVs) 566 

database and the SILVA_132_SSURef_Nr99 database on the top 50 ASVs in the digester sludge 567 

samples from Danish wastewater treatment plants. Figure S2. Box plots of operational and 568 

performance parameters of three types of AD. Figure S3. Spearman correlations on operational 569 

and performance parameters in AD. Figure S4. Distribution of digester:feed relative read 570 

abundance ratios for each ASV. Figure S5. (A) Relative abundance of the 20 most abundant 571 

bacterial phyla in AD. (B) Relative abundance of the 50 most abundant bacterial genera in AD (n 572 

= 564). Figure S6. Boxplots of the top 100 species/ASVs in MAD. Figure S7. Boxplots of the 573 

top 100 species ASVs in TAD. Figure S8. Boxplots of the most abundant species/ASVs in THP-574 

MAD. Figure S9. Heatmap of the most abundant species/ASVs belonging to the genus T78 in 575 

MiDAS 2 (split into the genera midas_g_156 and midas_g_467, all family Anaerolineaceae), 576 

genus Ca. Cloacimonas, genus Pelotomaculum, midas_g_995, and genus Methanothrix in Danish 577 

digesters at WWTPs. Figure S10. Relative abundance of the 25 most abundant archaeal genera 578 

in AD (n = 402). Figure S11. Boxplots of alpha diversity measures of archaeal community of 579 

three types of AD. Figure S12. Non-metric multidimensional scaling (NMDS) plots of bacterial 580 

and archaeal community structure based on weighted Unifrac matrix colored by WWTPs. Figure 581 

S13. Non-metric multidimensional scaling (NMDS) plots of all aacteria and archaea community 582 

structures based on weighted Unifrac matrix. Figure S14. (A) Non-metric multidimensional 583 

scaling (NMDS) plots of entire bacterial community structure based on weighted UniFrac matrix 584 

in MAD. (B) Heatmap of 25 most abundant bacterial species in MAD digesters depending on the 585 

composition of feed sludge (AS and PS). Figure S15. (A) Non-metric multidimensional scaling 586 

(NMDS) plots of archaeal community structure based on weighted UniFrac matrix in MAD. (B) 587 

Heatmap of 15 most abundant archaeal species in MAD digesters depending on the composition 588 

of feed sludge (AS and PS). Figure S16. Prediction plots of other important parameters based on 589 

bacterial and archaeal microbiome in MAD by partial least square regression. Figure S17. 590 

Complete list for partial least squares estimation of key variables with growing bacterial species 591 

(A) and archaeal ASVs (B) in MAD. Figure S18. Partial least squares estimation of key variables 592 

with non-growing bacterial species in MAD. 593 

Additional file 2: Characterization of key parameters of anaerobic digestions  594 

Additional file 3: Digester to influent relative read abundance ratios for each ASV 595 
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