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16  Abstract

17  Anaerobic digestion (AD) is a key technology at many wastewater treatment plants
18  (WWTPs) for converting surplus activated sludge to methane-rich biogas. However, the
19  limited number of surveys and the lack of comprehensive data sets have hindered a deeper
20 understanding of the characteristics and associations between key variables and the
21  microbiome composition. Here, we present a six-year survey of 46 anaerobic digesters,
22 located at 22 WWTPs in Denmark, which is the largest known study of the microbial
23 ecology of AD at WWTPs at a regional scale. For three types of AD (mesophilic,
24 mesophilic with thermal hydrolysis pretreatment, and thermophilic), we present the
25  typical value range of 12 key parameters including operational variables and performance
26  parameters. The bacterial and archaeal microbiomes were analyzed at species-level
27  resolution using amplicon sequencing in >1,000 samples and the new ecosystem-specific
28  MIiDAS 3 reference database. We detected 42 phyla, 1,600 genera and 3,584 species in
29  the bacterial microbiome, where 70% of the genera and 93% of the species represented
30 uncultivated taxa that were only classified based on MiDAS 3 denovo placeholder
31  taxonomy. More than 40% of the 100 most abundant bacterial species did not grow in the
32 digesters and were only present due to immigration with the feed sludge. Temperature,
33  ammonium concentration, and pH were the main drivers shaping the microbiome clusters
34  of the three types of ADs for both bacteria and for archaea. Within mesophilic digesters,
35 feed sludge composition and other key parameters (organic loading rate, biogas yield, and
36 ammonium concentration) correlated with the growing bacterial microbiome.
37  Furthermore, correlation analysis revealed the main drivers for specific species among
38  growing bacteria and archaea, and revealed the potential ecological function of many
39 novel taxa. Our study highlights the influence of immigration on bacterial AD
40  microbiome. Subsetting the growing microbes improves the understanding of the
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41  diversity and main drivers of microbiome assembly, and elucidates functionality of
42  specific species-level microorganisms. This six-year survey provides a comprehensive
43  insight into microbiome structure at species level, engineering and ecological
44  performance, and a foundation for future studies of the ecological
45  significance/characteristics and function of the novel taxa.

46 Introduction

47  Anaerobic digestion (AD) is successfully employed worldwide to convert organic
48  feedstock into biogas by anaerobic mixed microbial communities. As a key technology
49  at wastewater treatment plants (WWTP), AD is used to reduce and stabilize the primary
50 and waste-activated sludge by generating methane for bioenergy production. Moreover,
51 AD can be used as a platform for the recovery of value-added compounds (e.g.,
52  phosphorus, nitrogen, volatile fatty acids) [1,2]. Thus, it is an important step in the
53  development of circular economy at the WWTPs. The conversion of organic feedstock is
54  carried out by the AD microbiome, a complex network of hydrolyzing and fermenting
55  Dbacteria, specialized acidogenic and acetogenic syntrophs, and methanogenic archaea [3],
56  which is shaped by stochastic (birth-death immigration) and deterministic (microbial
57  competition, operation and environment) factors [4,5]. Hence, a good understanding of
58 the microbial ecology in digesters is essential for informed control and manipulation of
59 the process for optimal performance.

60  AD harbours a complex microbial network which is ideal for identifying diversity trends
61  in constrained microbial community structures. Research has shown that the operational
62  parameters, including temperature, substrate type, organic loading rate (OLR), and sludge
63  retention time (SRT) are vital factors for determining the microbiome structure [6—12].
64  Other parameters, such as ammonia concentration and salinity, are also thought to be
65  significant drivers shaping the microbiome [7,13—15]. Additionally, the microorganisms
66  immigrating with the feed sludge should not be overlooked. Most of them do not grow or
67  contribute to the ecological functions in the system, but they still account for a significant
68  fraction of sequencing reads identified by 16S rRNA gene amplicon sequencing [7,9,13].

69  However, most of these findings are based on investigations across various AD substrate
70  types, such as manure, food waste, and wastewater sludge, where large differences in
71 growth conditions are observed. Whether the same drivers are also important among
72 digesters at WWTPs is unclear. The AD performance can be highly variable between
73 different WWTPs, but how this links to different microbiomes and growth conditions is
74 poorly described for full-scale systems.

75  The quantitative relationships between specific microorganisms and key parameters in
76 AD can be evaluated by multiple linear regression (MLR). Most studies have focused on
77  linear associations between methanogenic populations (i.e., characterized by the mcrA
78  gene) and specific methanogenic activities [17-20]. However, the traditional MLR fails
79  when the number of predictors is comparable to, or larger than, the number of
80  observations, and when there is high collinearity in predictors. Projection-based methods
81  for analysis of multivariate data, such as Partial Least Squares (PLS) regression, stand as
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82  promising techniques to evaluate the links between specific microorganisms and key
83  parameters, lessening the shortcomings of traditional methods [21].

84  To provide insightful links between the AD microbiome and its performance, it is crucial
85  to obtain a high phylogenetic resolution and good taxonomic classification at all ranks. A
86  high phylogenetic resolution can be obtained by using amplicon sequence variants (ASVs)
87 [22,23] instead of operational taxonomic units (OTUs) typically clustered at 97%
88  similarity thresholds, and by using an ecosystem-specific, high-quality 16S rRNA gene
89 reference database for taxonomic classification. We have developed MiDAS 3, a
90 comprehensive ecosystem-specific reference database for activated sludge and anaerobic
91  digesters which provides a taxonomic classification at all ranks for all sequences based
92  on an improved and automated classification system (AutoTax) [24,25]. The MiDAS 3
93  reference database is based on full-length 16S rRNA gene ASVs (FL-ASVs) obtained
94  from Danish WWTPs and digesters, but can be applied to similar systems worldwide [24].
95 MiDAS 3 improves the classification of prokaryotic microorganisms found in AD
96 compared to other public reference databases (SILVA [26], Greengenes [27], and RDP
97  [28]), which lack reference sequences for many taxa and high taxonomic resolution, often
98  resulting in poor classification (Figure S1). Application of MiDAS 3 for the study of AD
99  communities offers a possibility of finding the link between identity and function of
100  species-level taxa. Species names provide stable taxa identifiers independent of the data
101 set, thus, allowing cross-study comparisons.

102  The aims of our study are threefold. Firstly, we describe the typical operational
103  parameters and performance values of three different types of AD at WWTPs (i.e.,
104  mesophilic AD, mesophilic AD with pre-treatment (thermal hydrolysis) of waste
105  activated sludge, and thermophilic AD). Secondly, we present the microbial communities
106  inthe AD systems (with focus on the growing microbes), for the first time at species level,
107  and make this publicly available on the MiDAS website
108  (https://www.midasfieldguide.org/guide). And thirdly, by focusing on species-level
109  microbiome, we analyse the correlations between key AD parameters and microbiome
110  structure in mesophilic digesters, which are the most common digesters in Denmark at
111 WWTPs.

112 Methods

113  Anaerobic digesters and sample collection

114  The survey was conducted during the period 2011 — 2016 in 46 anaerobic digesters at 22
115  WWTPs across Denmark, which were operated under mesophilic (MAD), mesophilic
116  with thermal hydrolysis pretreatment of feedstock (THP-MAD), or thermophilic (TAD)
117  conditions (see Table S1 for information of digesters). During the six years of survey, all
118  plants reported minor fluctuations in substrate amounts and composition, but no major
119  changes of operating conditions were introduced, except for Aaby and Aalborg East,
120  which switched from mesophilic to thermophilic operation (Table S1). A total of more
121 than 50,000 observations, including operational, physicochemical, and performance
122 parameters, except volatile fatty acids (VFAs), were obtained from the records of
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123 individual plants. Each key variable had at least 1,087 observations, except VFAs (Table
124 1)

125  The digester sludge samples were obtained 2-4 times a year during the investigation
126  period, and the VFA samples were collected 2-5 times from each studied digester during
127 2016. All samples were transported to the laboratory within 24 h and processed
128  immediately upon arrival. After homogenization, the biomass samples were stored as 2
129 mL aliquots at -80°C before DNA extraction. Samples for VFA analysis were filtered
130  with 0.22 pum filters (Frisenette, Knebel, Denmark) and stored at -20°C until analysis,
131 which is described elsewhere [29].

132 DNA extraction, 16S rRNA gene amplicon sequencing, and bioinformatics
133 processing

134  The microbial communities of a total of 1,010 AD sludge samples (418 for archaea and
135 592 for bacteria) were analyzed using 16S rRNA gene amplicon sequencing. 50 pul AD
136  sample were used for DNA extraction with the FastDNA® Spin Kit for soil (MP
137  Biomedicals, Solon, OH, USA), following the optimized protocol for anaerobic digesters
138 by Kirkegaard et al. [30]. The library preparation for 16S rRNA amplicon sequencing was
139  performed as described in Kirkegaard et al. [10], targeting the V1-3 variable regions for
140  bacteria and V3-5 variable regions for archaea. The bacterial primers used were 27F
141 (AGAGTTTGATCCTGGCTCAG) [31] and 534R (ATTACCGCGGCTGCTGG)[32],
142 which amplify a DNA fragment of ~500 bp of the 16S rRNA gene (V1-3). The archaeal
143  primers used were 340F (CCCTAHGGGGYGCASCA) [33] and 915R
144  (GWGCYCCCCCGYCAATTC) [33], which amplify a DNA fragment of ~ 560 bp of the
145  16S rRNA gene (V3-5). The amplicon libraries were paired-end sequenced (2x300 bp)
146  on the [llumina MiSeq as described by Albertsen et al. [34].

147  The archaeal and bacterial read data were analyzed separately using USEARCH
148  (v.11.0.667)[35]. For the V1-3 amplicons raw fastq files were filtered for phiX sequences
149  using -filter phix, trimmed to 250 bp using -fastx_truncate -trunclen 250, and quality
150 filtered using -fastq_filter with -fastq maxee 1.0. The sequences were dereplicated using
151  -fastx uniques with -sizeout -relabel Uniq. ASVs were generated using UNOISE3 [36],
152  and ASV-tables were created by mapping the raw reads to the ASVs using -otutab with
153  the -zotus and -strand both options. Taxonomy was assigned using the MiDAS 3 reference
154  database [24,25] using sintax with the -strand both and -sintax_cutoff 0.8 [37]. The V3-5
155  amplicon data were analyzed in the same way except that only the reverse read was used
156  and the primer binding site was removed during the trimming using —fastx_truncate —
157  stripleft 18 —trunclen 250.

158  Data processing and statistical analysis

159  Downstream statistical analyses and visualization were mostly performed in the R
160  environment (v3.6.2) [38] using ampvis2 (v2.5.8) [34] and ggplot2 (v3.2.1) [39], unless
161  indicated otherwise. Non-parametric dunn.test was used to identify significant differences
162  between AD types. The correlations between all the variables were explored by Spearman
163  correlation, where correlations greater than +0.5 and false discovery rate (FDR) corrected
164 P> 0.05 were visualized in Gephi (v0.9.2) [40], using Force Altas2 and manual tweaking
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165  to generate the network. For sequence data, samples were randomly subsampled to 10,000
166  sequences per sample, yielding a final dataset of 402 archaeal and 564 bacterial samples.
167  For the growing bacteria datasets, after removing the non-growing ASVs from ASVtable,
168  samples were also randomly subsampled to 10,000 sequences per sample for downstream
169  analysis and comparison. Boxplot and heatmaps were made by the amp boxplot and
170  amp heatmap function in ampvis2. Alpha diversity was calculated by amp_alphadiv
171 function in ampvis2. The linear regression between alpha diversity (using Shannon’s
172 index) and each operational and performance variable was used to pick the key variables
173  most correlated. Weighted uniFrac distance, calculated by beta diversity.py script in
174  QIIME (v1.9.0) [41], was applied for all beta diversity comparisons. For ordination
175  visualizations, the non-metric multidimensional scaling (NMDS) was performed by
176  amp_ordinate in ampvis2 to show the dissimilarities of microbial profiles. Based on
177  weighted uniFrac distance matrix, ANOSIM was applied to assess similarities for
178  categorical variables using compare_categories.py in QIIME with 999 permutations. A
179 PERMANOVA analysis using adonis in QIIME was used to describe the strength and
180  significance for continuous variables. The significant difference of species between two
181  groups of feed sludge was explored by Wilcoxon rank-sum test.

182  PLS regression was performed using R package mdatools v0.10.1 [21] to validate
183  quantitative relationship between operational and performance parameters, and the
184  microbial community, as well as to identify specific microbes which correlate to each
185  variable the most. All bacterial species with median relative abundance >= 0.01% and
186  archaeal ASVs with median relative abundance >= 0.05% were used to perform the PLS
187  analysis. The model was trained using all samples and validated by segmented cross-
188  validation (CV) with systematic splits (venetian blinds). Determination coefficient (R?)
189  and root mean square error (RMSE) were used to assess performance of the model. The
190  contribution of individual predictors was evaluated using regression coefficients and
191  corresponding inferential analysis carried out by Jack-Knifing approach [42].

192  Results and discussion

193  Characterization of key parameters of AD

194  Key operational and performance parameters of the 46 anaerobic digesters during the six-
195  year survey are summarized in Table 1. The digesters are classified into three types, based
196  on the operational temperature and pretreatment of the feed sludge. MAD is the most
197  common configuration (78% of all digesters) followed by TAD (15%) and THP-MAD
198  (7%). The most common digester type is single-stage continuously stirred tank reactor
199  (CSTR). The anaerobic digesters surveyed were running stably without major process
200 complications for six years, therefore common ranges of operation and performance
201  conditions are described for each digester type. As presented in Table 1 and described
202  below, values of several environmental parameters are very different from other AD
203  systems treating manure, crops, food waste, and industrial waste [7,11,15,43—47], with
204  generally lower or much lower values of total ammonia nitrogen (TAN) and level of
205  VFAs.
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206  The median temperature values of the three types of digesters were 38.0°C, 38.6°C, and
207 53.6°C, for MAD, THP-MAD, and TAD, respectively. Other operational variables (OLR
208 and SRT) and the performance parameters (pH, TAN, alkalinity, TS, VS, biogas yield,
209  and methane content) were found to be significantly different across all three types of AD
210  (Figure S2). For more details on the description of each parameter, please see Additional
211 file 2. In general, the same overall correlations between operational and performance
212 parameters across digesters treating different types of substrates could also be observed
213 specifically for digesters among WWTPs. Strong positive correlations (Spearman, r> 0.7,
214  false discovery rate (FDR) P < 0.05) were observed between TAN and TS or VS, OLR
215 and alkalinity, and methane production and SRT (Figure S3). Strong negative
216  correlations between the OLR and methane production and biogas yield were also
217  revealed (Spearman, r > 0.65, FDR P < 0.05), and between methane production and TAN
218  (Figure S3), indicating that these operational variables are linked to the performance of
219  the digesters. It is interesting that VFAs only related weakly to SRT and the ratio of VS
220  to TS, which have previously been considered as important variables [48]. This may be
221  due to a general low concentration range in the digesters and low loading.

222 Table 1. Operational variables and performance parameters: Intervals and median
223 values for ADs at WWTPs in Denmark.

Category Variable Unit MAD* THP-MAD* TAD*
Interval’ Median Interval Median Interval Median
Operational Temperature °C 35.6~39.9 38.0 38.2~39.0 38.6 51.1~55.40 53.6
variables OLR? kg VS/m*d  0.84~1.13 0.96 1.66 ~2.30 2.04 1.63~2.49 2.15
SRT* Day 24.8~35.6 29.4 273~349 30.1 15.8~20.7 17.3
TS* g/L 21.1~38.4 31.0 41.1~659 44.8 31.2~39.0 35.8
VS* g/L 12.1~19.9 16.2 25.9~34.0 27.7 21.0~255 23.6
VS TS% 56.0~61.6 58.6 54.0 ~63.5 60.2 57.0 ~60.9 58.0
pH - 7.06 ~7.38 7.19 7.64 ~7.86 7.75 7.50 ~7.80 7.70
Performance ~ TAN mg N/L 603 ~ 972 745 2691 ~ 3100 2888 1070 ~ 1430 1215
parameters Alkalinity mM 50.0 ~73.0 60.8 148 ~ 186 168.6 67.9 ~87.7 78.4
Total VFA* mM 028 ~1.11 0.50 0.45~2.34 0.73 0.92~2.18 1.30
Acetate mM 0.10 ~0.40 0.21 0.25~0.44 0.30 0.53 ~1.18 0.79
Biogas yield? Nm’kg VS 0.39~0.53 0.46 0.38 ~0.56 0.49 0.25~0.36 0.29
Methane content % 61.0~63.5 61.7 63.0~65.0 65.0 53.7~64.3 57.6
Methane production®* Nm?*/ m*-d - 0.27 - 0.65 - 0.36
224 ! Interval shows the range of first quantile and third quantile of each variable.
225 2 OLR and biogas yield are normalized using an average volatile solids value of influent feed (74.5%).
226 3 Methane production is calculated on median value of biogas yield, OLR, and methane content.

227 * MAD = mesophilic, THP-MAD = mesophilic with thermal hydrolysis pretreatment, TAD = thermophilic, OLR = organic loading
228 rate, SRT = solids retention time, TS = total solids, VS = volatile solids, TAN = total ammonia nitrogen, Total VFA = total volatile
229 fatty acid.

230

231 Like many other full-scale plants, running at low OLR and long SRT of the digesters
232 surveyed, which is referred as “suboptimal” operational conditions, may lead up to a 30%
233 profitability loss [46,49]. Increasing the OLR seems promising, but there may be a
234  number of operational problems which need to be considered, such as foaming and
235  acidosis, due to the imbalance between operational and microbial processes. Thus, a better
236  understanding of microbial communities and their function may help to control or
237  manipulate the processes that decrease the potential risks of operational failures.
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238  Bacterial and archaeal microbiomes

239  We obtained 33,047 bacterial and 878 archaeal unique ASVs, which were classified and
240  assigned using sintax and the MiDAS 3 database. Thus, a total of 42 phyla, 1,600 genera,
241 and 3,584 species were detected in the bacterial microbiome, where 1,117 (70%) genera
242 and 3,336 (93%) species were novel and could only be assigned genus and species name
243 based on the MiDAS 3 denovo placeholder taxonomy. For archaea it was not possible to
244  analyze the methanogenic archaea at the species level because the phylogeny of most of
245  these species cannot be resolved using the 16S rRNA gene, even with full-length
246  sequences [24]. As a result, only 26 species were classified and most of the archaeal
247  population are shown at ASV level.

248 AD at WWTPs are complex systems, as they receive a substantial amount of
249  microorganisms via feed streams (primary sludge, PS, or surplus activated sludge, AS).
250 Many of these microorganisms are not growing in the digester, presumably inactive or
251  dying off [10,13,50]. The growing and non-growing microorganisms were identified
252 according to the ratio of read abundances in digester and feed as described by Kirkegaard
253  etal. [10]. The bimodal distribution of ratios was split at a ratio of around 10 (Figure S4),
254  showing two clearly separated groups of ASVs. The group with a ratio >10 represents
255  ASVs enriched in digesters compared to the feed sludge, here designated as “growing
256  microorganisms”. The group with a ratio <10 represents ASVs with unchanged or lower
257  relative read abundance in digesters, compared to the feed sludge, here designated as
258  “non-growing microorganisms”. Thus, combined with median relative abundance across
259  samples in each type of AD, the total ASVs (>0.01% median relative abundance) were
260  divided into four groups, growing/non-growing ASVs with high abundance (>0.1%) and
261  growing/non-growing ASVs with low abundance (<0.1%). It was observed that the
262  growing highly abundant ASVs only accounted for 7.6%, 23.2%, and 9.4% of the total
263  ASV counts in MAD, THP-MAD, and TAD, respectively (Fig. 1). However, the
264  proportion of relative abundances of these growing highly abundant ASVs were large, at
265  38.8%, 85.3%, and 50.9% in MAD, THP-MAD, and TAD, respectively. This suggests
266  that the performance and functionality of AD might be driven by only a small number of
267  the microbial phylotypes detected by amplicon sequencing.

268  The five most abundant bacterial phyla were Firmicutes, Proteobacteria, Chloroflexi,
269  Actinobacteria, and Bacteroidetes, accounting for 75.7% (median value) of all amplicon
270  sequences across all samples, and these phyla are typical for digesters at WWTPs
271 [7,15,43,51-54]. However, the three types of AD showed variations in the dominant
272 bacterial taxa, especially at genus level (Figure S5). Among the 25 most abundant species,
273 11 species in MAD and 9 species in TAD belonged to the group of non-growing
274  microorganisms (Fig. 2A and 2B). These included species in genera belonging to the
275  polyphosphate-accumulating organisms (PAO) Tetrasphaera, the putative PAO
276  Dechloromonas [55], the filamentous genus Ca. Microthrix [56], and the genera
277  Romboutsia, and Trichococcus. These all belong to the top-most abundant reported
278  genera in activated sludge in Danish WWTPs [25], thereby indicating carry-over to the
279  digesters with the feed sludge. Since the top100 species in MAD and TAD, respectively,
280 are very similar across the digesters, these lists can be used as a representative reference
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281  of'abundant growing and non-growing organisms in digesters at WWTPs across the world
282  (Figure S6 and S7). These results demonstrate that surprisingly many, 44% and 54% of
283  the species were non-growing in MAD and TAD, respectively. The top 25 species in
284  THP-MAD all belonged to growing microorganisms in good agreement with the presence
285  of THP pretreatment, which causes a decay of essentially all organisms coming with the
286  feed sludge (Figure S8A).

287  The growing microorganisms are considered to be responsible for the most important
288  ecological functions within AD. Among the dominant growing bacterial species there
289  were many known fermenters, such as species belonging to the genera Thermovirga, Ca.
290  Fermentibacter, and Leptolinea in MAD, and Coprothermobacter and Acetomicrobium
291  in TAD. There were also syntrophic bacteria, such as members of Ca. Cloacimonas [57]
292 and Syntrophorhabdus in MAD. However, a large fraction of the most abundant growing
293  species were novel taxa without any known function. They were identified by MiDAS 3
294  species-level taxonomy and given robust placeholder names until characterized in more
295  detail, enabling across-study comparisons of AD microbiome at high taxonomic
296  resolution [24]. Due to the high relative abundance, some genera are of special interest:
297 midas g 12 (family Prolixibacteraceae), midas_g 19 (family Bacteroidetes vadinHA17),
298 midas g 156 (family Anaerolineaceae), and midas_g 789 (family Anaerolineaceae) in
299 MAD; midas g 88 (family Syntrophomonadaceae), midas g 112 (order MBAO3), and
300 midas g 16 (family Lentimicrobiaceae) in TAD, and midas g 13 (order D8A-2) in THP-
301 MAD. Some of these genera encompass very abundant species, especially in the family
302  Anaerolineaceae (up to 8% median abundance): midas s 156, midas s 876,
303 midas s 956, midas s 1462, midas s 467, midas s 1625. These abundant and novel
304 taxa should be investigated in future studies, as their physiology and ecological role in
305  AD are completely unknown while likely important.

306  Moreover, compared with MiDAS 2 taxonomy (which was the curated version of Silva
307 taxonomy) [58], MiDAS 3 provides a much higher resolution to classify sequences and
308 introduces species-level names for the first time for the abundant microorganisms in AD
309 ecosystem. For example, genus T78 (family Anaerolineaceae) in MiDAS 2 encompassed
310  sequences that are split into midas g 156 and midas_g 467 in MiDAS 3, both being the
311  abundant genera mentioned above. These genera are both diverse, each having three
312 abundant species present in MAD (Figure S9). Also, Ca. Cloacimonas and
313 Pelotomaculum and the newly discovered syntrophic genus midas g 995 [29] had high
314  species diversity as well, with several abundant species with random distribution (Figure
315 S9).

316  Euryarchaeota was the dominant archaea in the digesters (99.9%, median value). The
317  acetoclastic genus Methanothrix (previously named Methanosaeta) dominated in MAD
318  (71.8%) and THP-MAD (93.8%), whereas the genera Methanothermobacter (70.7%) and
319  Methanosarcina (24.8%) dominated in TAD (Figure S10B). Methanosarcina was in very
320 low abundance in MAD (0.1%) and THP-MAD (0.01%), in contrast to other mesophilic
321  full-scale studies of manure-based AD where it was dominant [7,53,59]. However, the
322 low concentrations of VFAs (<1 mM) in the mesophilic AD may explain why
323 Methanothrix dominated [60]. The hydrogenotrophic methanogenic Methanoculleus was
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324  the predominant genus (4.2%) in THP-MAD, which is in line with other lab-scale and
325  pilot-scale THP digesters studies [61,62].

326 Acetoclastic and hydrogenotrophic methanogenic species/ASVs were quite abundant in

327  all the types of AD (Fig. 2C, 2D, and Figure S8B). g Methanothrix ASV1 was

328  dominant in both MAD and THP-MAD, followed by midas s 1190 (genus Methanolinea)
329 and g Methanolinea ASV6 in MAD and midas_s 880 (genus Methanoculleus) in THP-

330 MAD. Methanothermobacter tenebrarum and Methanosarcina thermophila species were

331  the second most abundant species in TAD (Fig. 2).

332 Microbial diversity in different AD types

333  The use of common measures for richness and diversity in the digesters surveyed has only
334  limited value, as abundant immigrating bacteria, likely inactive or dying off without any
335 functional role in the systems, will influence the diversity measures and produce
336  misleading results. This is illustrated by comparing the diversity measures calculated for
337  all bacteria and for the growing bacteria only (Fig. 3A). When the non-growing fraction
338  was removed, the median values of observed ASVs decreased from 1935 to 928, 1486 to
339 534, and the median values of Shannon index from 6.22 to 5.11 and 5.59 to 4.33 in MAD
340 and TAD, respectively (Fig. 3A). THP-MAD only had a minor change in observed ASVs
341  (from 832 to 741) and the median Shannon index (4.47 and 4.63, respectively), reflecting,
342 as expected, that these communities were not strongly influenced by immigration. The
343  adjusted diversity measures showed the same order of magnitude decrease for archaea
344  (Figure S11) with THP-MAD between MAD and TAD. The measures also showed that
345  higher temperature harbored fewer number of microbes in accordance to other full-scale
346  surveys [15,51], but that the exact values are strongly dependent on the inclusion of the
347 immigrating microbes. Higher alpha diversity measures for bacterial communities
348  compared with archaea is in agreement with other full-scale WWTPs studies [15,43,51].
349  The diversity in thermophilic AD has been shown to be lower than in mesophilic digesters
350 [63-65], which is also supported by our data.

351 The total bacterial (including growing and non-growing fraction) and archaeal
352  microbiome seemed relatively stable in each digester across all 22 WWTPs during the
353 six-year survey as indicated by tight clustering as visualized by non-metric
354  multidimensional scaling (NMDS) (Figure S12). This is also reported from other time-
355  series studies of full-scale digesters mainly treating manure, agricultural waste, and
356  municipal solid waste [7,43], suggesting that overall stable microbiomes are common in
357 full-scale digesters during steady-state operation. However, as a major part of the
358  microorganisms are immigrants, they may strongly affect the betadiversity measures.
359  Therefore, it is important to compare the diversity of both the total and the growing
360 fraction of the population. The dissimilarity among plants seemed the same considering
361 the community structure of the total and growing bacteria in MAD (ANOSIM; Total
362  Dbacteria: R = 0.65, P = 0.001; Growing bacteria: R = 0.63, P = 0.001) and THP-MAD
363  (ANOSIM; Total bacteria: R = 0.45, P = 0.001; Growing bacteria: R = 0.49, P = 0.001).
364  However, the growing bacterial community in TAD became more similar across plants
365 compared to the total bacterial population (ANOSIM; Total bacteria: R =0.64, P=0.001;
366  Growing bacteria: R = 0.40, P = 0.001). This shows that the inclusion of non-growing
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367  Dbacteria in microbiome analyses of TAD may lead to misleading results and erroneous
368  conclusions.

369  Analysis of beta diversity of the communities present in different AD types revealed three
370  distinct clusters corresponding to MAD, THP-MAD, and TAD (Fig. 3B and Figure
371  S13A). Clear separation dictated by AD type was evident for all bacteria (ANOSIM: R =
372 0.95, P=0.001), the growing bacteria (ANOSIM: R = 0.97, P = 0.001), as well as the
373  archaeal microbiome (ANOSIM: R = 0.83, P = 0.001), reflecting the huge effects of
374  operational conditions on the resulting variation in the microbiomes. Permutational
375 multivariate analyses of variance showed that TAN contributed to shaping the structure
376  of the total bacterial microbiome (adonis: R? = 32%, P = 0.001) (Figure S13B), which
377  has also been observed in full-scale digesters treating different kinds of substrates [7]. In
378  contrast to the bacterial microbiome, the overall structure of the archaeal microbiome was
379  separated mainly by temperature (adonis: R? = 66%, P = 0.002), with a separate cluster
380  for THP-MAD alongside MAD (Figure S13C). pH was the second factor influencing the
381 archaeal microbiome (adonis: R? = 27%, P = 0.002), which may explain the separated
382  cluster of THP-MAD from MAD (Figure S13D).

383 Main drivers of MAD microbiome

384  Since most digesters surveyed were MAD, we further applied the correlation analysis
385  between key parameters and microbial diversity and structure to determine the main
386  drivers, with special focus on the growing bacterial microbiome, as non-growing
387  microorganisms may mask the influence of key drivers on the active microbiome in
388  correlation analyses. In general, bigger difference was observed on linear regression of
389 key parameters against alpha diversity between the total and growing bacterial
390 microbiomes, compared with permutational multivariate analysis of betadiversity (Table
391  S2 and Table S3).

392 It is well-known that temperature is a very important factor for shaping the microbial
393  diversity and community structure in full-scale digesters [7,15,43], but it is less clear to
394  what extent it is for mesophilic AD at WWTPs. In our study, the temperature range in
395 MAD was small (35.6-39.9) and was only considered to be most important to the total
396  bacterial alpha diversity in MAD (25%, linear regression, FDR P <0.001, Table S2), but
397 not the alpha diversity of growing bacteria (16%, FDR P < 0.001). This indicates that
398 temperature may not be the most important factor in MAD. Instead, the correlation
399  coefficient of OLR improved significantly by subsetting the growing bacterial alpha
400  diversity (31%, P <0.001) compared to the total bacterial alpha diversity (9%, P > 0.05).
401  OLR also shaped the microbiome structure (beta diversity) of growing bacteria (adonis:
402  R*=21%, P =0.001, Table S3). Although OLR is widely accepted as a deterministic
403  factor for any type of AD microbiome [66—69], our study strengthened it when OLR was
404  only correlated with growing bacteria. Moreover, the biogas yield exhibited strong
405  correlation with the growing bacterial microbiome both on alpha diversity (46%, P <
406  0.001) and beta diversity (adonis: R? =31%, P =0.001), as well as archaeal beta diversity
407  (adonis: R? = 23%, P = 0.008), supporting the observation that AD performance depends
408 on the activity of the microbiome [70]. Similarly, TAN was observed to be more
409 correlated to growing bacterial alpha diversity compared with the total bacterial
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410 population (Table S2). Regarding the archaeal microbiome, no strong correlation was
411  found between parameters and alpha diversity in MAD. However, apart from biogas yield,
412 acetate concentration (adonis: R? = 18%, P = 0.04) was also found to have significant
413  correlation with the archaeal microbiome structure.

414  Samples from MAD digesters treating only surplus AS and without PS (Fornaes,
415  Mariagerfjord, and Soeholt) formed a small separate cluster, compared to MAD treating
416  a mixture of both types of substrates for all bacteria (ANOSIM: R = 0.44, P = 0.001,
417  Figure S14A) and for the growing bacteria (ANOSIM: R = 0.57, P = 0.001, Fig. 3C).
418  The higher dissimilarity of growing bacteria in MAD supports the observation that
419  substrate characteristics (e.g., biodegradability, composition, concentration) from PS
420  shape the growing bacterial community structure [7,15]. This is different from the
421  growing bacteria in the three types of AD, which is mainly driven by operational
422  parameters (Fig. 3B). While for all bacterial communities, the relative abundance of 18
423  of the 25 most abundant species showed a significant difference between the two clusters
424  depending on the feed sludge (Wilcoxon rank-sum test, P < 0.05, Figure S14B). Non-
425  growing species in digesters but abundant in AS (i.e., species belonging to genus
426  Tetrasphaera, Ca. Microthrix, or Dechloromonas) were found in higher relative
427  abundance in MAD treating only AS compared to MAD treating AS and PS. These results
428  underline that besides substrate characteristics, the immigrating bacterial load has a strong
429  impact on the total bacterial microbiome in AD. Additionally, we also observed the
430 influence of feed sludge on archaeal community (Figure S15A), with significant
431 difference between the digesters with different feed sludge (ANOSIM: R = 0.23, P =
432 0.001). It is interesting to see that the species belonging to genus Methanolinea were rare
433 in the digesters only fed with AS (Figure S15B).

434  Relationship between MAD microbiome and its driving factors predicted by PLS
435  regression model

436 We applied PLS regression to predict key operational variables and performance
437  parameters and their relationship to the microbiome in MAD. Separate PLS models were
438  built on the bacterial microbiome at species level and archaeal ASV's with each factor (for
439  bacteria: temperature, OLR, TAN, and biogas yield; for archaea: temperature, TAN,
440  acetate, and biogas yield). Very good prediction accuracy was observed on the bacterial
441  microbiome, where the CV R? of all four PLS models exceeded 0.85 (Fig. 4). However,
442  mnone of the models based on archaeal ASVs had the R? over 0.80, except for biogas yield
443  (Fig. 4). PLS regression models were also carried out on pH and SRT, since they are
444  important AD parameters (Figure S16 and S17). The growing bacterial species and
445  archaeal ASVs, which most significantly contributed to each PLS regression model (the
446  contribution was estimated using inferential statistics for corresponding regression
447  coefficients, P < 0.05), for both positive and negative contributions, are shown in Fig. 5.

448  Most growing bacterial species exhibiting significant correlations were represented by
449  novel taxa (Fig. SA). Species belonging to the same genus were correlated to different
450  operational or performance parameters, such as was the case with two species in family
451  Anaerolineaceae (midas s 467 and midas s 1462 belonging to genus midas g 467).
452  The positive correlation of midas s 467 with TAN and biogas yield, and the negative
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453  correlation of midas s 1462 with temperature and OLR, could explain the abundance
454  variability and trend across MAD (Figure S9). Similar observations were found for three
455  species belonging to genus midas g 12 (family Prolixibacteraceae, phylum
456  Bacteroidetes). The ecological function of these novel species is unknown so the PLS
457  correlation results may provide hypotheses which could aid the design of experiments to
458  reveal the role of novel taxa in AD [71]. Among the known species, Ca. Brevefilum
459  fementans showed a positive correlation with TAN, which can indicate a preference or
460  tolerance to slightly higher TAN conditions. This hypothesis is supported by their genome
461  blueprint indicating that Ca. B. fementans can ferment proteinaceous substrates to VFAs
462  with ammonium as a by-product of protein degradation [72]. Additionally, species
463  belonging to the known syntrophic genera Ca. Cloacimonas, Smithella, Syntrophomonas,
464  and Syntrophorhabdus were found mostly negatively correlated with TAN and
465  temperature, thereby confirming the high sensitivity of this group to environmental
466  conditions [73-76].

467  Non-growing bacterial species (primarily immigrating with the feed sludge) showed
468  negative correlations to some key parameters (Figure S18), especially for biogas yield
469  and SRT, suggesting that they are not directly involved in the conversion of feed stocks
470  to biogas and are probably degraded or washed out of the digesters. This is exemplified
471 by Tetrasphaera midas_s 5, the most abundant non-growing species in MAD, and it was
472  negatively correlated with SRT together with Tetrasphaera elongata and midas s 299.
473  Tetrasphaera is very abundant in Danish wastewater treatment plants [55] and is
474  introduced into the digester with the waste activated sludge. The negative correlation with
475  the SRT indicates that Tetrasphaera is dying off in the digesters despite the potential for
476  surviving or growing under anaerobic conditions as fermenters, and polyphosphate
477  accumulators [77].

478  Correlation results for archaeal ASVs are shown in Fig. SB. Generally, ASVs belonging
479  to the same genus show the same trends. For example, ASVs classified to family
480  Methanosarcinaceae and order Methanosarcinales known as acetoclastic and
481  hydogenotrophic methanogens, positively correlated with acetate. This is consistent with
482  other findings [78] where Methanosarcina was most abundant in digesters with higher
483  acetate concentration. In contrast, most Methanothrix ASVs correlated negatively with
484  acetate, supporting the dominance of Methanothrix at low acetate concentrations [79].
485  Many Methanothrix ASVs also showed negative correlation with TAN, which is in
486  agreement with studies that show that Methanothrix is the methanogen most sensitive to
487  ammonia inhibition [80]. It is interesting that even small TAN variations as seen here for
488  Danish digesters (603-972 mg N/L, MAD — Table 1) can affect individual Methanothrix
489  ASVs in different ways.

490  For hydrogenotrophic methanogens, different ASVs from the same genus or species
491  showed diverse correlations with AD parameters. The second most abundant archaeal
492  species in MAD belonging to genus Methanolinea (midas_s 1190) included three ASVs,
493  which correlated with TAN differently suggesting that species microdiversity can
494  influence process performance. The negative correlation of many hydrogenotrophic
495  methanogens with biogas yield, such as Methanoculleus, could be due to their ability to

12


https://doi.org/10.1101/2020.06.07.138891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.07.138891; this version posted June 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

496  survive/compete at sub-optimal AD conditions (e.g., increased TAN) [80] which could
497  translate into lower biogas yields.

498  Overall, the PLS regression models presented enable elucidation of the relationships
499  between important AD parameters and the main drivers shaping AD microbiome at very
500  high resolution. The results for known taxa agree with present knowledge, thus verifying
501 the robustness of the PLS application in microbiome study. Importantly, a combination
502  of the PLS regression with species-level microbial data provides the first insight into
503 potential functional importance of several novel microorganisms, where little or no
504  description of their ecology and physiology is available. Based on our observations,
505  hydrolytic-fermentative bacteria, and acetogenic syntrophs along with archaeal
506 methanogens, all have significant and quantitative relationships with important
507  parameters at MAD. This shows great promise for the improved models, and optimized
508 functional performance of AD.

509  Conclusion

510 A six-year survey of 46 anaerobic digesters located at 22 Danish WWTPs provided a
511  comprehensive overview of typical operational and performance parameters, detailed
512  identification of the AD microbiome at species level, and elucidated relationships
513  between specific taxa and key parameters in AD. The anaerobic digesters surveyed were
514  running stably but operated at low intensity, a common feature across digesters in WWTP.
515  Non-growing species migrating from the feed sludge were abundant in mesophilic and
516  thermophilic AD, but did not seem to contribute to the functionality of AD. In contrast,
517 many growing species were novel and identified using MiDAS 3 taxonomy, and their
518 physiological and ecological roles in AD remains to be described. The microbiome of the
519 three types of AD surveyed (mesophilic, thermophilic, and thermal hydrolysis pre-
520 treatment-mesophilic) showed high stability within plants, forming separate clusters for
521  all bacteria, growing bacteria, and archaea depending on the operational parameters. The
522  variations of growing bacteria within mesophilic digesters were related to organic loading
523  rate, ammonium concentration, feed sludge characteristics, and biogas yield. Multiple
524  correlations between growing bacteria and archaea at species level and key parameters
525  were found, forming a basis for future studies of the ecology and function of novel taxa.
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528 Fig.1 Composition of growing and non-growing ASVs in Danish ADs at WWTPs.
529  The total ASVs (median relative abundance > 0.01%) divided into four groups based on
530 growth ratio (growing/non-growing) and relative abundance (high/low abundant, 0.1%
531 indicates the cutoff value). A and B show the composition of ASV counts and ASV
532  relative abundance for these four groups in MAD, THP-MAD, and TAD, respectively.
533  MAD = Mesophilic AD, THP = Mesophilic with thermal hydrolysis pretreatment, TAD
534 = Thermophilic AD.
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Fig. 2 Boxplots of the most abundant species/ASVs in Danish ADs at WWTPs. (A) The 25 most abundant bacterial species/ASVs in
MAD, (B) The 25 most abundant bacteria species/ASVs in TAD, (C) The 10 most abundant archaeal species/ASVs in MAD, (D) The 10
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543  Fig. 3 Alpha and beta diversity plots of bacterial and archaeal communities of three
544  types of AD. (A) Boxplots of observed ASVs and Shannon index of entire and growing
545  bacterial community, significant differences are indicated (Wilcoxon rank-sum test; ***,
546  p<0.001). (B) Non-metric multidimensional scaling (NMDS) plots of growing bacterial
547  community structure based on weighted UniFrac matrix, (C) NMDS plots of growing
548  bacterial community structure of MAD based on weighted UniFrac matrix. MAD =
549  Mesophilic AD, THP-MAD = Mesophilic with thermal hydrolysis pretreatment process,
550 TAD = Mesophilic AD, AS = Activated sludge, PS = Primary sludge.

16


https://doi.org/10.1101/2020.06.07.138891
http://creativecommons.org/licenses/by-nc-nd/4.0/

Temperature 5 OLR TAN Biogas yield
3.8 3.8
nLV=4 nLv=2 nLv==6 nLV =1
RMSE =0.025 RMSE = 0.20 RMSE = 0.10 061 RMSE = 0.042
R2=0.87 * R2=0.91
- 371 ) 3.71 0.51 o
"q_'J 24 Q
Q Q
8 0.4+ D
5 38 3.6 =
0.31 Q
1-
357" 35" Q.27
‘bb “P 'b/\ ‘b(b N i = ‘bﬁ ‘bb ”J"\ ’b‘b Qq’ Q'b Qb‘ QQJ QQ:\ Q/\
Temperature Acetate TAN Biogas yield
: L4 J| 72 :
nLV =2 . nLv=1 ] nLV =1 05{ nLV =1
3701 RMSE=0.038 . o, RMSE=0.77 RMSE =0.15 | RMSE = 0.056
R?=0.62 e RZ=0.44 6ol R2=0.59 R2=0.83 "
= . : 0.41 5 -
o 3.651 =
5 S
g 3.601 0.3 )
a D
i Q
3.55{4 « 0.2
3-50'I ] . . . | | | | | i s j . . | _loas l‘ | . |
2] 8] hs) O ] Q \e] s} N Q N Nl \2) L 2]
WP AP WP WP P # Ak g & A F O P ¥ @ &

Reference
551

552  Fig. 4 Prediction plots of main drivers based on bacterial and archaeal microbiome in MAD by partial least squares regression. MAD
553  =mesophilic AD, OLR = organic loading rate, TAN = total ammonium nitrogen. nLV = number of selected components, RMSE = root mean
554  squared error.
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556  Fig. 5 Partial least squares estimation for main driver for important growing
557  bacterial species (A) and archaeal ASVs (B) in MAD. P < 0.05, positive correlation in
558  blue, negative correlation in orange. F = Fermenters, S = Syntrophic bacteria, AM =
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