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Abstract

Trees are of vital importance for ecosystem functioning and services at locd to global scales, yet we
still lack a detailed overview of the global patterns of tree diversity and the underlying drivers,
particularly the imprint of paleoclimate. Here, we present the high-resolution (110 km) worldwide
mapping of tree species richness, functional and phylogenetic diversities based on ~7 million
guality-assessed occurrences for 46,752 tree species (80.5% of the estimated total number of tree
species), and subsequent assessments of the influence of paleo—climate legacies on these patterns.
All three tree diversity dimensions exhibited the expected latitudinal decline. Contemporary
climate emerged as the strongest driver of al diversity patterns, with Pleistocene and deeper-time
(>10' years) paleoclimate as important co-determinants, and, notably, with past cold and drought
stress being linked to reduced current diversity. These findings demonstrate that tree diversity is
affected by paleoclimate millions of years back in time and highlight the potential for tree diversity

losses from future climate change.
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155  Understanding the global distribution of tree diversity and its underlying drivers has been an

156  enduring pursuit of scientists, at least as far back as Alexander von Humboldt. Achieving thisaim is
157  becoming ever more urgent due to forest degradation and land use change *™, and also for aiding
158  forest restoration efforts °. Although our understanding of the global extent of tree cover has been
159  greatly improved viaremote sensing ® and large networks of forest tree plots "®, there are still gaps
160  in our knowledge of the global patterns and drivers of tree diversity. Previous studies have often
161  focused on tree species richness (SR) (e.g., ?). However, SR does not directly represent species

162  evolutionary history and does not provide trait-based insight into their functioning and role in

163  ecosystems. Phylogenetic diversity (PD; '*™) and functional diversity (FD; *%) have been

164  introduced as promising, more informative biodiversity variables than SR and have been

165  successfully used in awide variety of ecological applications, including conservation prioritization
166 *°. Indeed, FD is better coupled than SR to ecosystem functioning, e.g., productivity responses to
167  climate change and forest multi-functionality ***, In addition, PD and FD are more informative

19,20

168  than SR in describing mechanisms of species coexistence and ecosystem functioning =, and thus

169  shed light on species extinction and conservation 34#723,

170  Many studies have emphasized the importance of current climate and edaphic conditions as key

171  determinants of species diversity (e.g., **%).

However, paleoclimate could leave an influential

172 legacy, e.g. viaspeciation, extinction or dispersal, on contemporary SR, and on phylogenetic and
173 functional structures of forest ecosystems %, Earth climate has experienced continuous changes
174 during geological time *, such as cooling or warming trends and events, and major climatic

175  transitional periods have coincided with global ecosystem shifts **. Climatically-stable regions
176  tend to have high speciation and low extinction rates, resulting in higher SR, FD, and PD *.

177  Contrastingly, wide climate oscillations (like glacial-interglacial cycles) can dramatically truncate

178  species’ ranges and the chances of local diversification and adaptation, increasing the likelihood of
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extinction and the removal of species with suboptimal traits, thereby decreasing all three facets of
diversity “*%, However, rapid climate change may alternatively cause range fragmentation and

further allopatric speciation as the result of isolation, potentially increasing net diversification rates

27

Due to the non-equivalency between the facets of diversity “~*', the responses of SR, PD and FD to
different climatic conditions may vary. For example, warm and humid climates are hypothesized to
increase diversification rates ***, dispersal and establishment *°, and decrease extinction 2", thus
increasing SR and PD, but not necessarily FD, as comparable climates more likely predispose
species towards similar functional traits 2°°°. Thus, contemporary species diversity patterns can
be the result of historical climate legacies and present-day environment, although the relative

importance of these factors for FD and PD could be different.

Variable geological climates, i.e., warm and humid, or cold and dry in different paleo-time periods,
had remarkably divergent influences on tree diversities. However, previous studies have
concentrated mostly on assessing the effect of the cold and dry Last Glacial Maximum (LGM)
imprints that occurred ~27 — 19 thousand years ago (kya), but deeper-time perspectives may also be
important. For instance, ref. 2 found that palm tree diversity in Africa was affected by deep-time
climate during the late Pliocene (3.3 — 3.0 million years ago [mya]) and the late Miocene (11.6 — 7.3
mya), respectively. Similarly, ref. # found that the late Miocene climate influenced global patterns
of conifer phylogenetic structure. Recently, ref. ! reported opposite effects of LGM and Miocene
tree cover on tree phylogenetic endemism. Hence, considering paleoclimate jointly across a range

of time frames could be helpful in better understanding the factors shaping tree diversities. However,

only afew SR studies have explicitly considered this?°, and even fewer in FD and PD research *.
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Here, we go beyond global mapping of tree species richness ° by estimating species composition
and, based thereon, functional and phylogenetic diversity. We subsequently analyze the relative
roles of past and present climates in shaping global patterns of tree SR, FD, and PD. We first
compiled the most updated dataset of tree species including occurrence records, functional traits,
and tree phylogeny, covering 46,752 tree species or 80.5% of the speciesin the Global TreeSearch
list 4"*%5" We subsequently mapped global tree SR, FD, and PD. To understand the potential

effects of paleoclimatic change on tree diversities completely, we examined the relative importance
of three paleoclimatic states in determining current SR, FD and PD patterns, with consideration of
other potential contemporary covariates, such as current climate, elevation, and human activities
(Table S1). Specifically, we explored the influence of paleoclimate related to important climate
states of the late Cenozoic, the time frame where current species diversity to alarge extent have
evolved: i) the warm and humid late Miocene, ca. 11.63 — 7.25 mya; the mid-Pliocene Warm period,
ca. 3.264 — 3.025 mya; the cold and dry Pleistocene glaciations (represented by the LGM, ~ 21 kya);
and Pleistocene warm interglacials (IG, ~ 787 kyaand ~ 130 kya) (Figs. S1 & S2). In doing so, our
study addressed three main goals: (1) mapping global contemporary tree SR, FD and PD; (2)
assessing the relative importance of present-day environment, Quaternary glacial-interglacial
oscillations, and deeper-time effects on today’s SR, FD and PD patterns, to help understand the
fundamental processes determining accumulation and maintenance of tree diversity; and (3)

investigating spatial divergence between FD and PD, and identifying the underlying driving factors.

Results

Global patternsof tree diversities

The global tree SR, FD, and PD distributions show classic latitudinal gradients **®, with low

diversities at high latitudes and the highest diversitiesin the tropics (grid cell maximum value of
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3261 spp. for SR and cumulative branch lengths of 641 and 61,183 Myrs for FD and PD,
respectively at 110 km resolution, Fig. S3), particularly in the Neotropical lowlands (Amazonia)
(Fig. 1). Thelatitudinal pattern is stronger in Americaand Asia-Australasia than in Africa-Europe,
due to the interruption of the diversity gradients by deserts in northern Africa, where the diversity
indices (SR, FD, and PD) are aslow as at |atitudes harboring the boreal climate. The similarity of
the spatial patterns among the three diversity measures reflects the monotonic relationships

observed between them (Fig. $4).

Driversof global tree diversity

Due to the high associations between SR, FD, and PD, their individual relationships with the tested
predictors are mostly consistent (Figs. 2 & Table S2). After controlling for spatial autocorrelation,
simultaneous autoregressive models (SARS) explain more than 94% (global models) and 78%
(regiona models) of the variance (Table S2) in the response variables (SR, PD, and FD). Present-
day annual precipitation (AP) and mean annual temperature (MAT) are the overall strongest drivers
with positive effects on SR, FD, and PD globally, and for AP also regionally except for two regions
where other drivers are stronger (Australasia, Nearctic). The effect of MAT varies in strength and
sign among regions, showing both positive and negative effects on diversity (Fig. 2, Table S2).
Elevation range and human modification index (HMc) have consistent positive effects on SR, FD
and PD globally as well as regionally. Four out of the six paleoclimatic variables show significant
relations to all three diversity dimensions (Fig. 2). Globally, the Miocene MAT anomaly (i.e.,
Miocene MAT minus present MAT), the Miocene AP anomaly, and the LGM AP anomaly have
positive relations to al diversity indices, whilethe LGM MAT anomaly have a weak negative
relation to SR (p < 0.05, Table S2) and no relation to FD and PD (Fig. 2). Hence, SR, PD and FD

consistently increase with increasing high precipitation in the Miocene and LGM relative to the

10
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247  present, while SR, but not FD or PD, is generally reduced by increasing warm during LGM at a
248  global scale. However, although some of these global relationships are mirrored regionally, not all
249  paleoclimatic predictors are significant nor show consistent relationships across the biogeographic
250  regions, e.g., with LGM AP anomaly showing negative associations in Australasia and Miocene

251 MAT anomaly in Afrotropic for al three indices (Table S2).

252 Taken all together, precipitation-related effects were stronger and more consistent (among regions)
253  climatic drivers of diversity (SR, FD, PD) than were temperature-related effects, with this true both

254 for current climate (AP) and for paleoclimates (Miocene AP anomaly; IG AP anomaly).

255  Spatial divergence between functional and phylogenetic diversitiesand itsdrivers

256 FD and PD aretightly and positively related (Fig. SAc). Deviations (FD residuals) from this linear
257  relationship show marked spatial patterning (Fig. 3). Across North America, western and southern
258  Europe, central Africa, eastern Asia, and eastern Australia, FD is generally higher than predicted by
259  PD (i.e, overdispersion), whilst the opposite (i.e., FD deficit) isrevealed in western Australia, much

260  of southern and eastern Africa, west of the Andes (Peru), and central parts of northern Eurasia.

261  Therelative importance of the factors explaining variation in FD residuals are different from those
262  explaining their variations (Fig. 4 vs. Fig. 2b & 2c). Overall, current AP is correlated negatively

263  with the FD residuals both globally and regionally, but is only the strongest driver at global scale
264 (Figs. 4 & 5, Table S3). MAT and non-climatic factors show weak or no relations, except for MAT
265  for Indo-Maley and the Neotropics. The effects of the paleoclimate are variable. At global scale, the
266  Miocene AP anomaly and the LGM MAT anomaly are negatively related to the FD residuals, while
267 the LGM AP anomaly is positively related (Figs. 4 & 5). However, these relationships are

268  inconsistent across biogeographic regions (Figs. 4 & 5).
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Discussion

Based on an unprecedented tree occurrence database, our study maps strong latitudinal patternsin
all three diversity dimensions (SR, PD, and FD) at global scale. The SR-linked global latitudinal
patterns of Faith’s PD and FD matches previous empirical and modeled studies of tree species

9,61)1

richness (e.g., tree functional diversity in the New World ®?, and tree phylogenetic diversity at

aregional scale *. It has been reported that speciation in rainforest environments has taken place at

least since the Paleocene (~58 mya) %%

, probably coupled to jointly high temperatures and
precipitation ¥%°1%° Moreover, the relatively stable environment, compared to high latitudes, may
also resulted in low extinction rates, making the tropics both “ cradles (species diversifying)” and
“museums (species persistence)” of species diversity “*. In addition, long speciation history and
lower extinction ratesin the tropics could result in both higher phylogenetic diversity and functional
divers ty 38,48,49,51, but see 35.

Our results provide evidence that pal eoclimate complements current climate in shaping tree
diversity globally and regionally, and that these effects are not only related to the recent prehistory
—such as the Last Glacial period, represented by the LGM 21,000 years ago — but also much deeper
time scales. These results extend previous findings for other organism groups notably for species

39,42

richness and endemics and for trees or plant clades including trees in specific regions and

26,27,29,67-70

biomes , to trees globally. Importantly, they go beyond species richness to the more

ecologically meaningful indices, functional and phylogenetic diversity.

Notably, we found that precipitation effects were stronger and more consistent (across regions)
drivers than temperature effects, especialy in relation to the wet and warm middle Miocene (11.6 —

7.5 mya), and the dry, cold LGM. The middle Miocene, the warmest and wettest interval in the late
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Cenozoic, was a period of forest expansion **™*, due to warming coupled with elevated atmospheric
CO, (>500 ppm) "“". This likely promoted high species diversity globally dueto a higher
diversification rate and lower extinction rate **®!. The Myrtaceae family " and the genus Quercus
"® are examples that follow this pattern. As alegacy of forest expansion, the generally warmer and
wetter climate in the late Miocene compared to the contemporary climate have a positive
associations to tree SR, FD, and PD ¥, We also see thisin our results at the global scale and for
most regions with positive effects of both Miocene AP and MAT (Fig. 2). The weak negative
association between the LGM MAT anomaly and SR, but not with FD and PD, could indicate that
global cold climatein LGM (Fig. S1) caused range extractions or even extinctions of certain species.
Likely, theintensity of these processes were not strong enough to significantly decrease the
communities' FD and PD, probably due to the high tree diversity accumulated in previous warm

and humid periods *°. Indeed, both tree FD and PD showed the tendency to level-off with SR
increase (Fig. S6), asimilar pattern reported by **, indicating that closely related tree species have
more similar traits, i.e., the functional space tightly packed **™. The LGM precipitation anomaly
was positively related to tree SR, PD and FD, likely reflecting widespread forest contractions during
the generally dry LGM and tree survival in moist refugia ’"*®. Furthermore, the diversity of drier
forestsitself is generally lower due to alimited number of niches and the physiological limits of
species drought tolerance ”°. Our results suggest that paleoclimate affects not just forest biodiversity,
but also forest ecosystem functioning given the effects found here, which corroborates other studies
on FD % and PD 2*?"%"_Notably, a recent study has found that paleoclimatic legacies in tree FD

negatively affect stand productivity in Northern Hemisphere temperate forests ®.

The relationships between paleoclimate and SR, FD, and PD were partially repeated within
biogeographic regions, there was also substantial inter-region variation in these relations (Fig. 2).

For example, not all of the four significant relationships found globally were retained regionally,

13


https://doi.org/10.1101/2020.06.02.128975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.02.128975; this version posted June 3, 2020. The copyright holder for this preprint (which

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

and new relations emerged in some cases. These variable regional relations may reflect differing
regional paleoclimatic histories, differencesin the overall climatic and geographic setting, as well
as methodological effects, e.g., different covariation among explanatory variables. For example, in
Australasia, only the LGM AP anomaly showed significant, negative relationships with FD and PD,
possibly because the temperature there was rather stably high during the last millions of years, with

preci pitation being more variable and lower (Fig. S2).

The regions representing FD surplus relative to PD, i.e., where species were found to be more
functionally diverse (high FD) than expected from PD, largely coincided with high SR regions (Figs.
3 & 1a), represented by warm and humid climate today. This suggests that communities in warm
and humid conditions have accumulated more FD than expected compared to dry or cold regions.
This FD surplus could be caused by high competition, high heterogeneous environments, or
otherwise diversifying trait evolution **%#%%3 We found that all precipitation variables were
important for explaining the FD deviation from PD, even though their effects differed (Figs. 4 & 5).
Surprisingly, high current precipitation tended to correspond to FD deficits, i.e., areas where species
were more functionally similar than predicted by PD, both globally and in several biogeographic
regions. Even though the observed FD in many wet and warm areas were higher than expected from
PD, an explanation for the observed relationship could be that moist tropica forests harbor large
numbers of shade-tolerant species, which have evolved along asimilar evolutionary path (i.e.,
stabilizing selection) to adapt to the shady environment, thus showing high levels of ecological

equivalence 2%,

Building on recent progress in the harmonization of several databases on tree species distributions,
functional traits, phylogenetic relatedness, and global paleoclimate, we have found that the tropics

harbor the highest diversity across not only taxonomic, but also functional and phylogenetic
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338 dimensions, while high latitudes have lower diversity values for all diversity measures.

339  Nevertheless, there are important and informative deviations between the patternsin FD and PD,
340 including asignature consistent with less ecological filtering in moist, shady tropical forest

341 environments®. Importantly, we found evidence that current tree phylogenetic and functional

342 diversities are likely shaped not only by the contemporary environment, but also by past climate as
343  far back asthe Miocene (~10 Mya). Notably, we see long-term reductionsin FD and PD in relation
344  to past climatic cold or drought stress, likely affecting current forest ecosystem functioning .

345  These findings highlight the importance of climate for tree diversity and forest ecosystems, and that

346  losses from future climate change could have strong and very long-lasting effects.
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Methods

Tree species and their range maps

In this study, we used the world tree species list *° and species range maps compiled by *"*’. Briefly,
the world tree species checklist (Global TreeSearch, GTS *°) was used to extract the global tree
species list for the current study. Tree speciesincluded in the GTS is based on the definition by the
IUCN’s Global Tree Specialist Group (GTSG), i.e., “awoody plant with usually a single stem
growing to aheight of at least two meters, or if multi-stemmed, then at least one vertical stem five
centimeters in diameter at breast height” *°. This list was subsequently standardized viathe
Taxonomic Name Resolution Service (TNRS) online tool ® to remove synonyms. The occurrence
records of the selected species were collated from five widely used and publicly accessible
databases, namely: the Global Biodiversity Information Facility (GBIF; http://www.gbif.org), the
public domain Botanical Information and Ecological Network v.3 (BIEN;

http://bien.nceas.ucsh.edu/bien/;¥*®7), the Latin American Seasonally Dry Tropical Forest Floristic

Network (DRY FLOR,; http://www.dryflor.info/; %), the RAINBIO database

(http://rainbio.cesab.org/; %), and the Atlas of Living Australia (ALA; http://www.ala.org.au/). The
compiled occurrence datawas accessed °” and the high-quality records were then used to generate
range maps based on the alpha hull algorithm via the Alphahull package ! in R (ver. 3.5.1; ).
We further validated the range maps using an external independent dataset °. The estimated range
maps of the 46,752 tree species were rasterized to 110 km equal-area grid cells (~1 degree at the

45) 1

Equator), a resolution commonly used in global diversity studies (e.g.,*®), using the letsR package %.

For detailed information on the range map estimations and external validation, see *'.

Phylogeny
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We constructed a phylogenetic tree for the tree species using the largest seed-plant phylogeny
presently available (the ALLMB tree *). This dated phylogeny combines a backbone tree *, which
was built using sequence data from public repositories (GenBank) to reflect deep relationships, with
previous knowledge of phylogenetic relationships and species names from the Open Tree of Life
(Open Tree of Life synthetic tree release 9.1 and taxonomy version 3,
https://tree.opentreeoflife.org/about/synthesis-release/v9.1). This phylogeny was matched to our
tree species dataset, and any species that were not in our dataset were removed from the tree.
Subsequently, some species missing from the phylogeny were manually added, using the same

approach as ref. %,
Functional trait data

Eight ecologically relevant and commonly used traits * were selected for functional diversity
analyses, i.e., leaf nitrogen content, wood density, leaf phosphorus content, leaf dry matter content,
plant max height, seed dry mass, specific leaf area, and leaf area. Originally, we compiled 21
functional traits from the TRY (https://try-db.org/TryWeb/Home.php; *%, TOPIC *7%, and BIEN
(http://bien.nceas.ucsb.edu/bien/; %) databases. As many of the species’ trait were missing, we
imputed missing values via an gap-filling algorithm with Bayesian Hierarchical Probabilistic Matrix
Factorization (BHPMF, %) which is mostly based on both trait-trait correlation matrix and the
phylogentic signal of traits (Refer to ref. *’ for the detailed gap-filling procedure). In this process,

al the 21 traits were used to maximally benefit from the correlations among them.
Environmental variables

We compiled 17 environmental variables, including current climate, paleo-climate, human effects,
topographic heterogeneity and evolutionary history (Supplementary Table S1). Climate, both

present-day and paleoclimate, is generally assumed to be avital predictor of species distribution and
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392 diversity patterns (e.g., 2#"#*1%1% ‘Dye to the data availability of the paleoclimates, we
393  included two bioclimatic predictors commonly used in relevant studies: annual mean temperature
394 (MAT) and annual precipitation (AP). Current climate variables were extracted from WorldClim

395  (v.2, www.worldclim.org) at aresolution of 30 arc-seconds (~1 km at the equator), averaging global

396  climate data from the period 1970 - 2000 **!. We selected six paleo-time periods spanning from ca.
397 11.6-7.2myato ca. 21 kya, representing climatic conditions either warmer, cooler, or similar

398 compared to the present-day climate. Specifically, each bioclimatic layer of the late Miocene

399  climate (11.61 — 7.25 mya*’) and mid-Pliocene Warm period (~ 3.264 — 3.025 mya; ***'%) were
400  averaged to represent the warmer climate compared to present day (hereafter Miocene). Pliocene

13119 \was used to

401  Marine Isotope Stage M2, a glacial interval in the late Pliocene (~ 3.3 mya;
402  represent the Pliocene global cooling period, while the Last Glacial Maximum (LGM, ~ 21 kya)
403  was used to present the more recent global cooling event compared to M2 3% We further

404  constructed a current climate (hereafter Interglacial, 1G) analog using the mean value per

405  bioclimatic layer between the Pleistocene Marine Isotope Stage 19 (MIS 19), the oldest Pleistocene
406 interglacial (~ 787 kya™®), and the Last Interglacial (LIG; ~ 130 kya '°). The mid-Pliocene Warm

407 Period, Pliocene M2, Pleistocene MIS19, and the LIG data were extracted from Paleoclim

408  (www.paleoclim.org), at aresolution of 2.5 arc-minutes (~ 4.5 km at the equator) **3, and the LGM

409 datawas extracted from the CHELSA database (www.chelsa-climate.org) at a resolution of 30 secs

410

411  Inaddition to climate, other factors, such as human activities, topographic heterogeneity, and

412 evolutionary history, can also affect plant distributions *#**"8_ The Human Modification map

413 (HMc ™)™ was used as a proxy of human activities. Compared to the commonly used human

414 footprint index and human influence index maps *?°, HMc has been modelled with the incorporation

415  of 13 most recent global-scale anthropogenic layers (with the median year of 2016) to account for
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the spatial extent, intensity, and co-occurrence of human activities, many of which showing high
direct or indirect impact on biodiversity !, HMc was extracted at aresolution of 1 km?**°, The
elevation range is the absol ute difference between the maximum and minimum elevation value
within aspecific area. We computed the elevation/topographic range within each 110 x110 km grid

cell based on the digital elevation model at 90 m resolution (http://srtm.csi.cgiar.org/). Elevation

range is a proxy of environmental heterogeneity, which is considered as a universal driver of
biological diversity ****?%, To analyze the potential effects of evolutionary and biogeographic
history, we also included the biogeographic regions as an additional variable. We applied the
definition of biogeographic regions from ref. ***, which defines 12 regions globally using cladistic
and phylogenetic analyses of plant species, and plate tectonics. However, due to the varying data
sizein each of the 12 regions, we combined them into six regions, i.e., Afrotropic, Australasia,
Indo-Malay, Nearctic, Neotropic, Palearctic, largely similar to the biogeographic realms proposed
by ref. >, All predictors were extracted from various databases, which we describe in further detail

in the supplement (Supplementary Table S1).

Except for the biogeographic regions and elevation range, mean values for all predictors were
extracted at a 110 x110 km resolution. The variable extractions and averaging were carried out in
the letsR package. Due to the low reliability and/or missing environmental variables for many

126

islands ~°, we removed insular grid cells from small islands, and 11,950 grid cells with records

were kept (Fig. S5).
Phylogenetic and functional diversity

Phylogenetic diversity (PD) was calculated for each 110 x110 km grid cell as the sum of the branch

lengths of all co-occurring species as defined by ref. *°. Among the many existing, somewhat
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overlapping matrices of PD, the one we selected is the most widely used due to its easy calculation

and interpretation and a more robust basis for conservation %14,

Functional diversity (FD) was calculated in an analogous manner to PD **’. A Principal Component
Analysis (PCA) was applied to the eight traits to eliminate trait redundancy. Values of all traits
were log transformed to improve normality and were standardized before analysis. Then a
dendrogram based on the first three PCs (explaining 84% of the total variation) was constructed
using Gower’ s distance via the vegan *? and fastcluster **° packages. This dendrogram was used to
calculate FD as the sum of the total branch lengths connecting a set of speciesin the 110 x110 km

grid cell. Both PD and FD were calculated using the letsR and picante **° packages.

To investigate the bivariate relationships between FD and PD, an ordinary least squares model was

implemented. We further plotted the residuals of model to show any deviation between FD and PD.
Statistical analyses

To test the long-term climate stability hypothesis, we calculated the anomaly for MAT and AP
between the four paleo-time periods and the present-day, i.e., past minus present, to represent the
amplitude of the climate changes within each time-scale (Fig. S1) %2318 On average,
compared to the present, mean annual temperature (MAT) was much higher in the Miocene, slightly
higher in the Pliocene M2 period, much lower in the LGM, and similar in the IG (Fig. S2a). During
Pliocene M2 and |G, annual precipitation (AP) was similar to the present-day, while the Miocene
and LGM had slightly higher or lower precipitation, respectively than the contemporary
precipitation (Fig. S2b). The paleo-time periods selected, thus, represent (on average) cold, warm,

and similar paleo-climates compared to present-day conditions.

Pearson correlation coefficients showed alow level of correlations between MAT, AP, and their

respective anomaly variables (Fig. S6). However, MAT and AP of Pliocene M2 and Pleistocene |G
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anomaly showed relatively high correlations (Fig. S7) with or without accounting for the spatial

131
)

autocorrelation (using the Spatial Pack package ~**). Consequently, we removed the two Pliocene

M2 variables from further analyses.

We used ordinary least squares models (OLSs) and simultaneous autoregressive models (SARS), if
the OLS model residuals exhibited spatial autocorrelation (SAC), to evaluate the relative
importance of the predictor variables in determining the variation in each of the three diversity
indices and the residuals of bivariate relationships between FD and PD. We used the SAR error
model because of its superior performance compared to other SAR model types *2. The SAR error
model adds a spatial weights matrix to an OLS regression to accounts for SAC in the model
residuals. A series of spatial weights, i.e., k-means neighbor of each site, were tested and k= 1.5
was used for all SARs models as it can successfully account for the SAC (see Supplementary results
of statistical analyses). Residual SAC was examined in all models (both OLS and SAR) using
Moran's | test, and Moran’'s | correlograms were also used to visualize the spatial residuals of the
models. Model explanatory power was represented by adjusted R? (OLSs) and Nagelkerke pseudo-
R? (SARs) *3, while the Akaike Information Criterion (AIC) and Bayesian information criterion
(BIC) were used to compare the models for each diversity index ***, SARs and Moran’s | tests were
carried out using the spdep package **. Both OLS and SAR models were run by including current
MAT and AP, the six anomaly variables, and the other non-climate predictors (elevation range and
HMc) to investigate their relative contributions to each diversity index. In addition to the global
models, we ran the same models for each biogeographic region to test whether the global
relationships varied among regions. Moreover, we ran three additional global models for the FD and
PD indices, selecting only one paleoclimate (both MAT and AP) from the three paleo-time periods
at the time, and keeping other variables the same in each model to investigate whether the effects of

the different paleoclimate predictors changed compared to the full models (including all paleo
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climatic predictors). Before running the models, we inspected the normality of all predictors and
logio-transformed variablesif needed. All response variables (three diversity indices) were [0gio-
transformed. Thereafter, we standardized all predictor variables by transforming all variablesto a

mean of zero and a standard deviation of one to derive more comparable estimates **,
Supplementary results of statistical analyses

We found that for all models (both global and regional), SAR models performed better than the
corresponding OLS models, regarding to AIC, BIC, and R? (Tables S2-S3), and al SAR models
successfully accounted for SAC in model residuals (p >> 0.05, Figs. S8-S11). Thus, we only
represented the results from SARs models in the text, even though the significance of some
predictors varied between OLS and SAR models (Fig. S12). In addition, we found that the effects of
pal eoclimate variables showed no change between the full models, including all paleoclimate
variables and models using paleoclimate of each paleo-period (Fig. S13-S14). This clearly shows

the robustness of their relationships with the tree diversity indices.
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Fig. 2 Effects of the tested environmental variables on tree (@) specie richness (SR), (b) functional diversity
(FD) and (c) phylogenetic diversity (PD). Estimates (+ 1standard error) of effects were obtained from
simultaneous autoregressive (SAR) models. Different colors and shapes indicate biogeographic regions.
Non-significant variables (p > 0.05) are indicated in grey. Results from OLS models are shown in Table S2.
HMc: human modification index; MAT: mean annual temperature; AP: Annual precipitation; | G: Pleistocene

Interglacial; LGM: Lagt Glacial Maximum. Anomaly was calculated as the past minus the present state.
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875  Fig. 3 Global patterns of the residuals (deviation) from the ordinary least regression between functional

876 diversity (FD) and phylogenetic diversity (PD) (FD = 0.90PD, R = 0.987, p < 0.0001). Brown (positive)
877  areasareareas of higher FD than expected based on PD, whereas blue (negative) areas depict areas with
878  lower FD than expected from the observed PD. Map uses the Behrmann projection at 110 km x 110 km

879  gpatia resolution.
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Fig. 4 Effects of the tested environmental variables on the residual s from the regression between functional
diversity (FD) and phylogenetic diversity (PD) (Fig. 3). Estimate (= 1standard error) of effects were obtained
from simultaneous autoregressive (SAR) models. Different colors and shapes indicate biogeographic regions.
Non-significant variables (p > 0.05) are indicated in grey. Results from OLS models are shown in Table S3.
HMc: human modification index; MAT: mean annual temperature; AP; Annual precipitation; | G: Pleistocene

Interglacial; LGM: Lagt Glacial Maximum. Anomaly was calculated as the past minus the present state.
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