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8 Abstract

9 In high-dimensional regression problems, often a relatively small subset of the features
10 are relevant for predicting the outcome, and methods that impose sparsity on the solution are
1 popular. When multiple correlated outcomes are available (multitask), reduced rank regression
12 is an effective way to borrow strength and capture latent structures that underlie the data.
13 Our proposal is motivated by the UK Biobank population-based cohort study, where we are
14 faced with large-scale, ultrahigh-dimensional features, and have access to a large number of
15 outcomes (phenotypes): lifestyle measures, biomarkers, and disease outcomes. We are hence
16 led to fit sparse reduced-rank regression models, using computational strategies that allow us
17 to scale to problems of this size. We use an iterative algorithm that alternates between solving
18 the sparse regression problem and solving the reduced rank decomposition. For the sparse
19 regression component, we propose a scalable iterative algorithm based on adaptive screening
20 that leverages the sparsity assumption and enables us to focus on solving much smaller sub-
21 problems. The full solution is reconstructed and tested via an optimality condition to make
2 sure it is a valid solution for the original problem. We further extend the method to cope
23 with practical issues such as the inclusion of confounding variables and imputation of missing
2 values among the phenotypes. Experiments on both synthetic data and the UK Biobank
25 data demonstrate the effectiveness of the method and the algorithm. We present multiSnpnet
26 package, available at http://github.com/junyangq/multiSnpnet|that works on top of PLINK2
27 files, which we anticipate to be a valuable tool for generating polygenic risk scores from human
28 genetic studies.
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« 1 Introduction

e The past two decades have witnessed rapid growth in the amount of data available to us. Many areas
e such as genomics, neuroscience, economics and Internet services have been producing increasingly
7 larger datasets that have high dimension, large sample size, or both. A variety of statistical methods
n and computational tools have been developed to accommodate this change so that we are able to
2 extract valuable information and insight from these massive datasets (Hastie et al.l [2009; [Efron,
7 |[Hastie, |2016; [Dean, Ghemawat), [2008} |Zaharia et al. 2010; [Abadi et al., [2016]).

7 One major motivating application for this work is the study of data from population-scale cohorts
s like UK Biobank with genetic data from over one million genetic variants and phenotype data from
7 thousands of phenotypes in over 500,000 individuals (Bycroft et al., |2018|). These data present
77 unprecedented opportunities to explore very comprehensive genetic relationships with phenotypes
7 of interest. In particular, the subset of tasks we are interested in is the prediction of a person’s
7 phenotype value, such as disease affection status, based on his or her genetic variants.

8 Genome-wide association studies (GWAS) is a very powerful and widely used framework for
a1 identifying genetic variants that are associated with a given phenotype. See, for example, [Visscher
& et al.| (2017) and the references therein. It is based on the results of univariate marginal regression
ss over all candidate variants and tries to find a subset of significant ones. While being computa-
s tionally efficient and easy to interpret, GWAS has fairly limited prediction performance because at
s most one predictor can present in the model. If prediction performance is our main concern, it is
s mnatural to consider the class of multivariate methods, i.e. that which considers multiple variants
&7 simultaneously. In the past, wide data were prevalent where only a limited number, like thousands,
s of samples were available. In this regime, some sophisticated multivariate methods could be appli-
s cable, though they have to more or less deal with dimension reduction or variable selection. In this
o setting, we handle hundreds of thousands samples and even more variables. In such cases, statistical
o1 methods and computational algorithms become equally important because only efficient algorithmic
e design will allow for the application of sophisticated statistical modeling. Recently, we introduced
s some algorithms addressing these challenges. In particular, Qian et al.| (2019) proposed an iterative
w screening framework that is able to fit the exact lasso/elastic-net solution path in large-scale and
os ultrahigh-dimensional settings, and demonstrate competitive computational efficiency and superior
o prediction performance over previous methods.

o7 In this paper, we consider the scenarios where multivariate responses are available in addition
e to the multiple predictors, and propose a suite of statistical methods and efficient algorithms that
o allow us to further improve the statistical performance in this large n and large p regime. Some
wo characteristics we want to leverage and challenges we want to solve include:

w Statistics There are thousands of phenotypes available in the UK Biobank. Many of them
102 are highly correlated with each other and can have a lot of overlap in their driving factors. By
03 treating them separately, we lose this information that could have been used to stabilize our model
s estimation. The benefit of building a joint model can be seen from the following simplified model.
s Suppose all the outcomes y*. k = 1,...,q are independent noisy observations of a shared factor
ws u = X/ such that y* = u+e”. It is easy to see that by taking an average across all the outcomes,
w7 we obtain a less noisy response y, and this will give us more accurate parameter estimation and
s better prediction than the model built on any of the single outcome. The assumption of such latent
w9 structure is an important approach to capturing the correlation structure among the outcomes and
o can bring in a significant reduction in variance if the data indeed behave in a similar way. We will
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m  formalize this belief and build a model on top of it. In addition, in the presence of high-dimensional
2 features, we will follow the “bet on sparsity” principle (Hastie et al., |2009), and assume that only
us  a subset of the predictors are relevant to the prediction.

114 Therefore, the statistical model we will build features two major assumptions: low-rank in the
us signal and sparse effect. Furthermore, we will introduce integrated steps to systematically deal
us  with confounders and missing values.

uwr  Computation On a large-scale dataset, building a multivariate model can pose great computa-
us tional challenges. For example, loading the entire UK Biobank dataset into memory with double
1o precision will take more than one terabyte of space, while typically most existing statistical com-
120 puting tools assume that the data are already sitting in memory. Even if large memory is available,
1 one can always encounter data or construct features so that it becomes insufficient. Hence, instead
12 of expecting sufficient memory space, we would like to find a scalable solution that is less restricted
123 by the size of physical memory.

124 There is a dynamic data access mechanism provided by the operating system called memory
s mapping (Bovet, Cesati, 2005) that allows for easy access to larger-than-memory data on the disk.
s In essence, it carries a chunk of data from disk to memory when needed and swap some old chunks
127 of data out of memory when it is full. In principle, we could add a layer of memory mapping on
s top of all the procedures and then access the data as if they were in memory. However, there is
e one important practical component that should never be ignored: disk I/O. This is known to be
1w expensive in the operating system and can greatly delay the computation if frequent disk I/Os are
1 involved. For this reason, we do not pursue first-order gradient-based methods such as stochastic
1 gradient descent (Bottoul, |2010|) or dual averaging (Xiaol |2010; [Duchi et al., [2011) because it can
133 take a large number of passes over the data for the objective function to converge to the optimum.
134 To address this, we design the algorithm so that it needs as few full passes over the data as
135 possible while solving the exact objective. In particular, by leveraging the sparsity assumption,
136 we propose an adaptive screening approach that allows us to strategically select a small subset of
w7 variables into memory, do intensive computation on the subset, and then verify the validity of all
s the left-out variables. The last step is important because we want to guarantee that the solution
130 obtained from the algorithm is a valid solution to the original full problem.

w 1.1 Reduced-Rank Regression for Multiple Responses

In the standard multivariate linear regression model, given a model matrix X = (x1,...,%,) € R»*P
and a multivariate response matrix Y = (y1,...,¥q) € R™*9, we assume that
Y =XB+E,
w where each row of E = (e1,.. ., ;) is assumed to be an independent sample from some multivariate

w2 Gaussian distribution E® % A7 (0,Xg). When n > ¢, it is easy to see that an maximum likelihood

1z estimator (MLE) can be found by solving a least squares problem with multiple outcomes, i.e.

A 1
B € argmin - ||Y — XB||%, (1)
BeRpxa 2

us where [|A||3 =77 Y™ AZ; is the squared Frobenius norm of a matrix A € R**™. When n > p
s and X has full rank, has the closed-form solution B = (XTX)"'XTY. Notice that this is
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us equivalent to solving ¢ single-response regression problems separately.
147
However, in many scenarios, there can be some correlation structure in the signals that we

can capture to improve the statistical efficiency of the estimator. One approach to modeling the
correlation is to assume that there is a set of latent factors that act as the drivers for all the
outcomes. When we assume that the dependencies of the latent factors on the raw features and the
outcomes on the latent factors are both linear, it is equivalent to making a low-rank assumption
on the coefficient matrix. Reduced-rank regression (Anderson), 1951 hereafter RRR) assumes that
the coefficient matrix B has a fixed rank r < min(p, ¢), or

B=UV',

ws  where U = (uy,...,u,) € RP*" 'V = (v,...,v,)| € Rq”ﬂ With the decomposed coefficient
ue  matrices, an alternative way to express the multivariate model is to assume that there exists a set
w0 of latent factors {z, € R™ : 1 < ¢ < r} such that for each ¢,

zZy = )(le7
Y = Zvi+e.

151 Figure[I]gives a visualization of the dependency structure described above. It can also be seen as a a

152 multilayer perceptron (MLP) with linear activation and one hidden layer, or multitask learning with

153 bottleneck. We notice that under the decomposition, the parameters are not identifiable. In fact, if

15« we apply any nonsingular linear transformation M € R™*" such that V' = VM and U’ = UM},

15 it yields the same model but different parameters. As a result, we also have an infinite number of

156 MLESs.

157 Under the rank constraint, an explicit global solution can be obtained. Let MDN T be the singu-

s lar value decomposition (SVD) of (X X)~2X Y, a set of solution is given by U = (XTX) !X TYN,
s V =N. Velu, Reinsel| (2013) has a comprehensive discussion on the model under classical large n

1o settings.

Figure 1: Diagram of the reduced rank regression. The nodes in grey are latent variables. The arrows
represent the dependency structure. Known as multitask learning in the machine learning community.

IWe use V;— to represent the kth row of V for convenience.
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w 1.2  Sparse Models in High-Dimensional Problems

In the setting of high-dimensional problems where p > n, the original low-rank coefficient matrix
B can be unidentifiable. Often sparsity is assumed in the coefficients to model the belief that
only a subset of the features are relevant to the outcomes. To find such a sparse estimate of the
coefficients, a widely used approach is to add an appropriate non-smooth penalty to the original
objective function to encourage the desired sparsity structure. Common choices include the lasso
penalty (Tibshirani, [1996), the elastic-net penalty (Zou, Hastie, 2005) or the group lasso penalty
(Yuan, Lin| 2006). There has been a great amount of work studying the consistency of estimation
and model selection under such settings. See |Greenshtein, Ritov| (2004); |[Meinshausen, Bithlmann
(2006)); Zhao, Yul (2006)); Bach| (2008]); |Wainwright| (2009)); Bickel et al.| (2009); [Obozinski et al.
(2011); Bithlmann, Van De Geer| (2011)) and references therein. In particular, the group lasso, as
the name suggests, encourages group-level sparsity induced by the following penalty term:

J
Py(B) =D 1Bz
j=1

w2 where 3; € RPi is the subvector corresponding the jth group of variables and ||, = /> 72, 6]2- ’

w65 is the vector £y-norm. The fy-norm enforces that if the fitted model has ||3;]|2 = 0, all the elements

14 in ﬁj will be 0, and otherwise with probability one all the elements will be nonzero. This yields a
165 desired group-level selection in many applications. Throughout the paper, we will adopt the group
166 lasso penalty, defining each predictor’s coefficients across all outcomes as a distinct group, in order
17 to achieve homogeneous sparsity across multiple outcomes. In addition to variable selection for
168 better prediction and interpretation, we will also see the computational advantages we leverage to
10 develop an efficient algorithm.

» 2 Sparse Reduced-Rank Regression

wm Given a rank r, we are going to solve the following penalized rank-constrained optimization problem:

1 P

minimize §HY—XBH%+)\ E 1Bj.|2, (2)
, 2
Jj=1

s.t. rank(B) < r.

2 Alternatively, we can decompose the matrix explicitly as B = UV where U € RPX", V € R?*", It
w3 can be shown that the problem above is equivalent to the Sparse Reduced Rank Regression (SRRR)
e proposed by |(Chen, Huang (2012):

1 P

minimize §||Y—XUVTH%+)\ E U512, (3)
— 3
j=1

s.t. vViv=L

s Alternating minimization was proposed by |Chen, Huang| (2012) to solve this non-convex optimiza-
s tion problem, where two algorithms were considered: subgradient descent and a variational method.
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w7 The subgradient method was shown to be faster when p > n and the variational method faster
s when n > p. However, in each iteration, the computational complexity of either method is at
o least quadratic in the number of variables p. It makes the problem almost intractable in ultrahigh-
1o dimensional problems, which is common, for example, in modern genetic studies. Moreover, to
w1 obtain a model with good prediction performance, we are interested in solving the problem over
1.2 multiple \’s rather than a single one. For such purposes, we design a path algorithm with adaptive
183 variable screening that will be both memory and computationally efficient.

« 3 Fast Algorithms for Large-Scale and Ultrahigh-Dimensional
a5 Problems

186 First, we present a naive version of the path solution, which will be the basis of our subsequent
17 development. The path is defined on a decreasing sequence of A values Apax = A1 > Ay > -+ >
s Az > 0, where A\ax is often defined by one that leads to the trivial (e.g. all zero) solution and the
189 rest are often determined by an equally spaced array on the log scale. In particular, for Problem
w  (|2)), we are able to figure out the exact lower bound of Apax for which the solution is trivial.

Lemma 1. In problem (@, if r > 0, the mazimum X\ that results in a nontrivial solution B()\) is

Amax = max ||X;FYH2
1<j<p

101 The proof is straightforward, which is a result of the Karush-Kuhn-Tucker (KKT) condition
102 (See [Boyd et al.| (2004) for more details). We present the full argument in Appendix The
193 naive path algorithm tries to solve the problem independently across different A values.

w 3.1 Alternating Minimization

165 The algorithm is described in Algorithm [I] For each A value, it applies alternating minimization
106 to Problem till convergence.

197 In the V-step , we will be solving the orthogonal Procrustes problem given a fixed UK,
18 An explicit solution can be constructed from the singular value decomposition, as detailed in the
w9 following Lemma.

Lemma 2. Suppose p > 1 and Z € RP*". Let Z = MDN' be its (skinny) singular value decom-
position, where M € RP*" D = R™" and N € R"™". An optimal solution to

maximize Tr(Z ' V)
V:VTV=I

w0 is given by V.= MNT, and the objective function has optimal value |Z]|, the nuclear norm of Z.
20 Proof. See in Appendix [A22] O

202 To analyze the computational complexity of the algorithm, we see a one-time computation of
x5 Y TX that costs O(npq). In each iteration, there is O(pgr) complexity for the matrix multiplication
2 YTXU® and O(gr?) for computing the SVD and the final solution. Therefore, the per-iteration
s computational complexity for the V-step is O(pqr + ¢r?), or O(pgr) when p > q.
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Algorithm 1 Alternating Minimization

1: Define a sequence of X\ values \; > --- > A > 0.

2: for {=1to L do

3. Let k = 0, and initialize U© V()

4 while k =0or [UNV® T _glk-DyE-DT| 5 ¢ do

5 V-step: Fix U®) solve V: the orthogonal Procrustes problem

minimize ||Y — Xu®vyT H% (4)
V:VTV=I

Let YT XU® = MDNT (skinny SVD) and solve V(*+1) = MINT.

6: U-step: Fix V# D solve U: the group lasso problem
1 P
minjmize 5|\Yv<k+1> — XU|% + M\ Zl U, ||2. (5)
=
7: k=k+1
8: end while
9: end for
206 In the U-step, we are solving a group lasso problem. Computing YV #+1 takes O(ngr) time.

2v The group-lasso problem can be solved by glmnet (Friedman et al.| [2010) with the mgaussian
xs  family. With coordinate descent, its complexity is O(kpgn), where k is the number of iterations
200 until convergence and is expected to be small with a reasonable initialization, for example, provided
20 by warm start. Thus, the per-iteration complexity for the U-step is O(ngr+knpq), which is O (kpgn)
an when p>>r.

212 Therefore, the overall computational complexity scales at least linearly with the number of
a3 features, and will have a large multiplier if the sample size is large as well. While subsampling
2 can effectively reduce the computational cost, in high-dimensional settings, it is critical to have
25 sufficient samples for the quality of estimation. Instead, we seek for computational techniques that
26 can lower the actual number of features involved in expensive iterative computation without giving
27 up any statistical efficiency. Thanks to the induced sparsity by the objective function, we are able
28 to achieve it by variable screening.

20 3.2 Variable Screening for Ultrahigh-Dimensional Problems

20 In this section, we discuss strategic ways to find a good subset of variables to focus on in the
a1 computation that would allow us to reconstruct the full solution easily. In particular, we would like
2 to iterate through the following steps for each A:

23 1. Screen a strong set S and treat all the left-out variables S¢ as null variables that potentially
224 have zero coefficients;

25 2. Solve a significantly smaller problem on the subset of variables S

226 3. Check an optimality condition to guarantee the constructed full solution B= (]§ S5 Bgc) with
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207 Bge = 0 is indeed a valid solution to the original problem. If the condition is not satisfied,
28 go back to the first step with an expanded set S.

29 3.2.1 Screening Strategies

z0  We have seen Lemma [I] that determines the entry point of any nonzero coefficient on the solution
an path. Furthermore, there is evidence that the variables entering the model (as one decreases the A
22 value) tend to have large values by this criterion. (Tibshirani et al.| (2012)) developed on this idea
213 and proposed the strong rules as a sequential variable screening mechanism. The strong rules state
2 that in a standard lasso problem with the model matrix X = (x1,...,x%,) € R"*? and a single
25 response y € R™, assume B (Ak—1) is the lasso solution at Ag_1, then the jth predictor is discarded
26 at Ap if )

%] (v = XBAe-1))] < A = (As—1 = Ax)- (6)

2 The key idea is that the inner product above is almost “non-expansive” in terms of A. As a result,
2 the KKT condition suggests that the variables to be discarded by @ would have coefficient 0 at
29 Ag. However it is not a guarantee. The strong rules can fail, though failures occur rarely when
20 p>mn. In any case, the KKT condition is checked to ensure the exact solution is found. Although
2 [Tibshirani et al.| (2012)) focused mostly on the lasso-type problem, they also suggested extension to
22 general objective functions and penalties. For general objective function f(3) with p;-norm penalty
23 ||Bjllp, for the jth group, the screening criterion will be based on the dual norm of its gradient
s [V,5(8)l, where 1/p; + 1/q; = L.

25 Inspired by the general strong rules, we propose three sequential screening strategies for the
xus  sparse reduced rank objective , named after their respective characteristics: Multi-Gaussian,
27 Rank-Less and Fix-V. They are based either on the solution of a relaxed convex problem at the
2 Same A, or on the exact solution at the previous \p_1.

249 e (Multi-Gaussian) Solve the full-rank convex problem at A; and use its active set as the candi-
250 dates for the low-rank settings. The main advantage is that the screening is always stable due
251 to the convexity. However this approach often overselects and brings extra burden to the com-
250 putation. By assuming a higher rank than necessary, the effective number of responses would
253 become more than that of a low-rank model. As a result, more variables would potentially
254 be needed to serve for an enlarged set of responses.

255 e (Rank-Less) Find variables that have large ¢; = [|X] (Y — XU(A—1)V(Ar—1)")[l2. This is
256 analogous to the strong rules applied to the vanilla multi-response lasso ignoring the rank
257 constraint.

258 e (Fix-V) Find variables that have large ¢} = X7 (YV(Ar—1) — XU(Xg_1))l2. This is similar
250 to the strong rules applied in the U-step with V assumed fixed. To see the rationale better,
260 we take another perspective. The squared error in SRRR ([3]) can also be written as

Y -XUVT||Z =Tr(Y'Y) - 2Tr(Y'XUV') + Tr(XUV'VU'XT)
Since VTV =1, the optimization problem becomes

1 p
inimize ~||XU||% — Tr(Y'XUVT)+ 1) U,
Ur,n\llr;lxlfmggl 2” I ( )+ 15112

j=1
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For any given U, we can solve V.= MNT, where Y'XB = MDN' is its singular value

decomposition. Let f(U) = 3||XUJ|% — ||[Y "XUl||,. The problem is reduced to

p
minjmize f(U) + AZ; U2
=

The general strong rule tells us to screen based on the gradient; that is
Vef(B)=X'XU-X'YMN' =X"(XU-YV).
Therefore, the general strong rules endorse the use of this screening rule.

We do some experiments to compare the effectiveness of the rules. We simulate the model matrix
under an independent design and an equi-correlated design with correlation p = 0.5. The true
solution path is computed using Algorithm [I] with several random initializations and the convex
relaxation-based initialization (as in the Multi-Gaussian rule). Let S(A) be the true active set at
A. For each method ¢ above, we can find, based on either the exact solution at A\x_; or the full-
rank solution at A, the threshold it needs so that by the screening criterion, the selected subset
S(A\)® contains the true subset at Ag, i.e. S(A|Ar_1)® D S(A\x). This demonstrates how deep
each method has to search down the variable list to include all necessary variables, and thus how
accurate the screening mechanism is — the larger the subset size, the worse the method is.

200 200
variable variable
Rank-Less Rank-Less
g Fix-V. 8 Fix-V
—— Fix- —— Fix-
& 50 ‘™ 50
—— Truth —— Truth
Multi-Gaussian Multi-Gaussian
o
ol ~
10 / 10
20 30 40 50 20 30 40 50
lambda lambda

Figure 2: Size of screened set under different strategies. Left: independent design. Right: equi-correlated
design with p = 0.5. Signal-to-noise ratio (SNR) = 1, and we use the true rank = 3.

We see from both plots that the curve of the Fix-V method is able to track that of the exact
subset fairly well, while the Rank-Less and Multi-Gaussian methods both choose a much larger
subset in order to cover the subset of active variables in the exact solution. In the rest of the paper,
we will adopt the Fix-V method to do variable screening.

3.2.2 Optimality Condition

Although the Fix-V method turns out to be most effective in choosing the subset of variables, in
practice we have no access to the true subset and have to take an estimate. Instead of trying to find
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s a sophisticated threshold, we will do batch screening at a fixed size (this size can change adaptively
2o though). Given a size K, we will take the K variables that rank the top under this criterion. Clearly
20 we can make mistakes by having left out some important variables in the screening stage. In order
2 to make sure that our solution is exact rather than approximate in terms of the original problem,
x2  we need to check the optimality condition and take in more variables when necessary.

283 Suppose we find a solution Ug, Vs on a subset of variables X g by alternating minimization. We
2 will verify the assembled solution U = (Ug,0), V = Vg is a limit point of the original optimization
25 problem. The argument is supported by the following lemma.

xe Lemma 3. In the U-step (1 (.) given V and A\, if we have an exact solution Ug for the sub-problem
wr with Xg, then U = (US, 0) is a solution to the full problem if and only if for all j € S¢,

||X YV XSUS)||2 <\ (7)

% Proof. Since this is a convex problem, U is a solution if and only if 0 € df(U) where f is the
20 objective function in and Of is its subdifferential. For the vector f;-norm, we know that the
20 subdifferential of ||x||2 is {s € R? : [|s|a < 1} if x = 0 and {x/|x|2} if x # 0. Notice that
w1 XgUg = XU by the definition of U. Since we have an exact solution on S, we know 0 € 0f(U )

2 for all j € S. On the other hand, for j € ¢, 0 € 9f(U) if and only if 0 € {x (XU - YV) + )s; :

21 ||s;[l2 < 1}, which is further equivalent to [x, (YV — XsUg)ll2 = I/ (YV — XU)|]2 <A O

204 Therefore, once we obtain a solution Ug, VS for the sub-problem and get condition 7)) verified,
25 we know in the V—step, by the lemma above, U= (US7 0) is the solution given V= VS In the
26 U-step, since XU = XSUS, U is the solution to the full problem. We see that (U V) is a limiting
27 point of the alternating minimization algorithm for the original problem. However if the condition
s fails, we expand the screened set or bring in the violated variables, and do the fit again. We should
200 note that when we say an exact solution to the original problem, we do not claim it to be a local
s0 minimum or global minimum, unless under some regularity conditions as will be briefly discussed
so later. It is a limiting point of the vanilla alternating minimization algorithm, i.e. Algorithm
52 In other words, if we start from the constructed solution (with zero coefficients for the leftout
303 variables), the algorithm should converge in one iteration and return the same solution.

304 We have seen the main ingredients of the iterative algorithm: screening, solving and checking.
s Next we discuss some useful practical considerations and extensions.

w 3.3 Computational Considerations
w7 3.3.1 Initialization and Warm Start

ws Recall that in the training stage our goal is to fit an SRRR solution path across different A values.
w0 It is easy to see that with a careful choice of parameterization, the path is continuous in A. To
a0 leverage this property, we adopt a warm start strategy. Specifically, we initialize the coefficients of
an  the existing variables at A1 using the solution at \; and zero-initialize the newly added variables.
sz With warm start, much less iterations will be needed to converge to the new minimum.

313 However, this by no means guarantees that we are all on a good path. It’s likely that we
sie  are trapped into a neighborhood of local optimum and end up with much higher function value
a5 than the global minimum. One way to alleviate this, if affordable, is to solve the corresponding
sis  full-rank problem first, and initialize the coefficients with low-rank approximation of the full-rank

11
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si7 - solution. We can compare the limiting function values with the warm-start initialization and see
sis which converges to a better point. Although we didn’t use in the actual implementation and
a9 experiments, one could also do random exploration — randomly initialize some of the coefficients,
s20 run the algorithm multiple times and find one that achieves the lowest function value. That said,
21 we lose the advantage of warm start though. The good news is, in the experiments we have done,
22 we didn’t observe very clear suboptimal behavior by the warm start and full-rank strategies.

2 3.3.2 Early Stopping

24 Although we pre-specify a sequence of A values A\; > A > --- > A where we want to fit the SRRR
s2s  models, we do not have to fit them all given our goal is to find the best predictive model. Once the
126 model starts to overfit as we move down the A list, we can stop our process since the later models
sz will have no practical use and are expensive to train. Therefore, in the actual computation, we
w8 monitor the validation error along the solution path and call it a stop if it shows a clear upward
a9 trend. One other point we would like to make in this regard is that the validation metric can
s be defined either as an average MSE over all phenotypes or a subset of phenotypes we are most
s interested in. This is because practically the best A value can be different for different phenotypes
s in the joint model.

= 3.4 Extensions
s34 3.4.1 Standardization

s We often want to standardize the predictors if they are not on the same scale because the penalty
1 term is not invariant to change of units of the variables. However we emphasize that some thought
s has to be put into this before standardizing the predictors. If the predictors are already on the
;s same scale, standardizing them could bring unintended advantages to variables with smaller variance
39 themselves. It is more reasonable not to standardize in such cases.

340 In terms of the outcomes, since they can be at different scales, it is important to standardize
s them in the training stage so that no one dominates in the objective function. At prediction (both
s training and test time), we scale back to the original levels using their respective variances from
a3 the training set. In fact, the real impact an outcome has to the overall objective is determined by
sa the proportion of unexplained variance. It would be good to weight the responses properly based
us on this if such information is available or can be estimated, e.g. via heritability estimation for
us  phenotypes in genetic studies.

awr 3.4.2 Weighting

us  Sometimes we have strong reasons or evidence to prioritize some of the predictors than the oth-
uo  ers. We can easily extend the standard objective and reflect this belief in a weighted penalty
30 A Z?:l w;||U;.|l2 where the weight w; controls inversely the relative importance of the jth variable.
351 For example, w; = 0 implies jth variable will always be included in the model, while a large w; will
32 almost exclude the variable from the model.

353 In the response space, we can also impose a weighting mechanism to priortize the training of
34 certain responses. For a given set of nonnegative weights wi,1 < k < ¢, the SRRR objective (3))
s can be modified to (1/2) Y {_, wi||[Y.x — XUV, |3 + A>5—1 [[Uj.]]2 with the same constraint, or

12
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6 equivalently,

1 . u
minimize = [YW?Z = XUV + 1) |[U; |2,
2 st (8)
st.  VIWlv=I,

sz where the weight matrix W = diag(ws,...,w,). To solve the problem with our alternating min-
s imization scheme, we can see that in the V-step, instead of solving the standard orthogonal Pro-
9 crustes problem with an elegant analytic solution derived from the SVD, we have to deal with a
30 so-called weighted orthogonal Procrustes problem (WOPP). Finding the solution of the WOPP is
s far more complicated. See, for instance, |Mooijaart, Commandeur| (1990)), Chu, Trendafilov| (1998)
sz and |Viklands| (2006). An iterative procedure is often needed to compute the solution. For better
3 computational efficiency, we instead solve the problem with the original orthonormal constraint:

1 p
minimize  =[|[YW? = XUV 3+ (U2,
2 = (9)
st.  V'V=L

s That is, we amplify the magnitude of some responses so that the objective value is more sensitive
s to the loss incurred on these responses. When making prediction, we will need to scale them back
36 to the original units.

7 3.4.3 Adjustment Covariates

ss  In some applications such as genome-wide association studies (GWAS), there may be confounding
w0 variables Z € R™*™ that we want to adjust for in the model. For example, population stratification,
s defined as the existence of a systematic ancestry difference in the sample data, is one of the common
sn factors in GWAS that can lead to spurious discoveries. This can be controlled for by including some
s leading principal components of the SNP matrix as variables in the regression (Price et al., [2006).
sz In the presence of such variables, we solve the following problem instead. With a slight abuse of
s notation, in this section, we use W to denote the coefficient matrix for the covariates instead of a
a5 weight matrix:

1 oy
minimize §||Y—ZW —XUVTH%:—&-)\ g U2, (10)
— 10
Jj=1

s.t. vViv=L

s The main components don’t change except two adjustments. When determining the starting A
w7 value, we use Lemma [4]

Lemma 4. In problem (@, if r > 0, the maxzimum X\ that results in a nontrivial solution E()\) is

Ta
Amax = max [|x; R,
1<j<p
s where R =Y —ZW and W is the multiple outcome regression coefficient matriz.

13
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The proof is almost the same as before. The other nuance we should be careful about is when
fitting the model, we should leave those covariates unpenalized because they serve for the adjustment
purpose and should not be experiencing the selection stage. In particular, in the U-step (group
lasso) given V| direct computation would reduce to solving the problem

1 ) Lo
e 1 _ _ j
mipimize 5 YV -ZWV - XU| 7 + )\Zl T2,
j=
which is not as convenient as standard group lasso problem. Instead, we find that W can always be

solved explicitly in terms of other variables. In fact, the minimizer W = (ZTZ)~'ZT (Y —XUVT).
Plug in and we find that the problem to be solved can be written as

N 1 ) P ,
minimize §||(I —Hz)YV — (I-Hz)XU|% + )\Z 07|z,

j=1

s where Hz = Z(ZTZ)7'Z" is the projection matrix on the column space of Z. This becomes a
s standard group lasso problem and can be solved by using, for example, the glmnet package with
s the mgaussian family.

s 3.4.4 Missing Values

In practice, there can be missing values in either the predictor matrix or the outcome matrix. If
we only discard samples that have any missing value, we could lose a lot of information. For the
predictor matrix, we could do imputation as simple as mean imputation or something sophisticated
by leveraging the correlation structure. For missingness in the outcome, there is a natural way to
integrate an imputation step seamlessly with the current procedure, analogous to the softImpute
idea in|Mazumder et al.| (2010). We first define a projection operator for a subset of two dimensional
indices Q C {1,...,n} x {1,...,p}. Let Pq : R"*P — R™*P be such that

Yi,j7 (7’73) € Qv
0, (1,7) & Q.

3 Let ) be the set of indices where the response values are observed; in other words, £2¢ is the set of
s missing locations. Instead of , now we solve the following problem.

1 S
minimize §||PQ(Y)—PQ(XUVT)|\2F+)\ZHU3H2,

= (11)

s.t. vViv=L

s We can easily see that an equivalent formulation of the problem is

o 1 T2 -
minimize o [[Y' = XUV [ +A> U, ),

j=1

st.  VIV=I Po(Y') = Po(Y).

14
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This inspires a natural projection step to deal with the additional constraint. It can be well
integrated with the current alternating minimization scheme. In fact, after each alternation between
the U-step and the V-step, we can impute the missing values from the current predictions XUV T,
and then continue into the next U-V alternation with the completed matrix.

3.4.5 Lazy Reduced Rank Regression

There is an alternative way to find a low-rank coefficient profile for the multivariate regression.
Instead of pursing to solve the non-convex problem ((3]) directly, we can follow a two-stage procedure:

1. Solve a full-rank multi-gaussian sparse regression, i.e.,

1 p
minimizes 5 |[Y - XB[%+ A B2

Jj=1

2. Conduct SVD of the resulting coefficient matrix B and use its rank r approximation as our
final estimator.

The advantage of this approach is that it is stable. The first stage is a convex problem and can be
handled efficiently by, for example, glmnet. A variety of adaptive screening rules are also applicable
in this situation to assist dimension reduction. The second stage is fairly standard and efficient
as long as there are not too many active variables. However, the disadvantage is clear too. The
low-rank approximation is conducted in an unsupervised manner, so could lead to some degrade in
the prediction performance.

That said, as before, we should still evaluate the out-of-sample performance as the penalty
parameter \ varies and pick the best on the solution path as our final estimated model. In many
cases, we compute the full-rank model under the exact mode anyways, so the set of lazy models
can be thought of as an efficient byproduct for our choice.

3.5 Full Algorithm
We incorporate the options above and present the full algorithm in Algorithm [2]

15
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Algorithm 2 Large-scale and Ultrahigh-dimensional Sparse Reduced Rank Regression

1: Standardize or weight the responses. Define a sequence of A values Ay > --- > Ap. Initialize
U()\()) = O,V(Ao) =0 and YQc.
2: for /=1to L do
3: Initialize t = O, U(/\g) = U()\g_l),V(/\g) = V(/\g_l),W()\g) = W(/\g_l), and A(/\g) be the
active set at A\g_1.
while t = 0 or KKT Check at t — 1 failed do
[Variable Screening] Find M variables Sy C Q\ A()\y) with largest values in ||x;'— (Y -

ZW (\r) = Xaoa) U (A)V(A) T, and let

A(Xe) = A(Ae) U Sir.

6: [Alternating Minimization] Let k = 0 and U®) = U 4,,)(A), VIO = V(),), W©® =
W(\) and YO =Y.

7. while k=0 or [UPNVE® T _ugk-DvE-DT) < ¢ do

8: V-step: Fix U(k), solve V: the orthogonal Procrustes problem

T

inimize [|[Y® —ZW® — X 4, UPVT|2.
wigize | Ao UV

Let (Y®) —ZW®)TX 4y, ) UK = MDNT (skinny SVD) and solve V*+1) = MINT.
9: U-step: Fix V1D solve U and W: the group lasso problem

, 1 . u
Ukt = argmin S I@= Hz) YO VED (T Hz)X 40, Ull7 + X D U]l (12)

j=1

and WEHD = (27Z) 12T (YW — Xy, UETDVETD),
10: Y-step: Impute the missing values

Y8c+1) _ ch)7 chc—kl) _ (Zw(k+1) + XA(MU(Hl)(V(kH))T)QC

11: k=k+1
12: end while
13: Let U0, (M) = UR Uy, (M) =0, V(A) = VI W(A) = W and Y = Y.
14: [KKT Check] Check the criterion for all j € @\ A(A¢),
%) (Y = ZW(Ar) = X 400,) Uan) M) V(A) DI < Ae
15: t=t+1
16: end while
17: end for
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« 4 Convergence Analysis

In this section, we present some convergence properties of the alternating minimization algorithm
(Algorithm [I)) on sparse reduced rank regression. Let

1 P
9(U, V) = Z[[Y - XUVT|| + AU .

j=1
Theorem 1. For any k > 1, the function values are monotonically decreasing:
g(UF, V) > g(UHL, V) > g(UF, Vi,

Furthermore, we have the following finite convergence rate:

1
: k ky _ k+1 k+1y 1 1y _ oo
1gllc1§an(U , V) — (U V )7K(9(U»V) 9%)s

ws  where ¢ = limg_,o0 g(U*, VF). It implies that the iteration will terminate in O(1/€) iterations.

409 The proof is straightforward and we won’t detail here. It presents the fact that alternating
a0 minimization is a descent algorithm. In fact, this property holds for all alternating minimization
an  or more general blockwise coordinate descent algorithms. However it does not say how good the
a2 limiting point is. In the next result, we show a local convergence result that under some regularity
a3 conditions, if the initialization is closer enough to a global minimum, it will converge to a global
2 minimum at linear rate. It is based on similar results on proximal gradient descent by [Dubois et al.
as (2019). To define a local neighborhood, it would be easier if we eliminate V by always setting it to
a6 a minimizer given U. That is, the objective function becomes F)\(U) = || XU|3 — ||[Y"XU|. +

2
a7 /\Zé’:l |U;.|l2. We define a sublevel set S.(\) = {U € RP*" : F,(U) < c}.

Theorem 2. Assume XX is invertible and o2, > o2, > 0 be its smallest and largest eigen-
values. Let s; be the jth singular value of (XTX)’%XTY. There exists A > 0 such that for all
0<A<Aand 0 < p <ol (1—s2,,/s%), there is a sublevel set S(\, ) where the level depends

on A and p such that if U* € S(\, 1), we have

A(UF Vi) < <1 — min (1, “)) A(U*, V),
2 12113)(

ws  where A(U, V) =g(U,V) — g(U*, V*) and (U*, V*) is a global minimum.

419 From a high level, the proof is based on the fact that under the conditions, the function is strongly
20 convex near the global minima. If we starting from this region, we achieve good convergence rate
2 with alternating minimization algorithm. The full proof is given in Appendix

e It is easy to see that the theorem above implicitly assumes the classical setting where n > p
w2 since otherwise X "X would not be invertible. However, it is still applicable to our algorithm. The
a0 algorithm does not attempt to solve alternating minimization at the full scale, but only does it
s after variable screening. With screening, it is very likely that we will again be working under the
w6 classical setting. Moreover, with warm start, there is higher chance that the initialization lies in the
w27 local region as defined above. Therefore, this theorem can provide useful guidance on the practical
23 computational performance of the algorithm.
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» B Simulation Studies

10 We conduct some experiments to gain more insight into the method and compare with the single-
a1 response lasso method. Due to space limit, we demonstrate the results in one experiment setting
2 and include results for other settings such as correlated features, deviation from the true low-rank
s structure etc., in Appendix [C] We experiment with three different sizes and three different signal-
s to-noise ratio (SNR): (n,p, k) = (200, 100, 20), (200, 500, 20), (200, 500, 50), where k is the number
a5 of variables with true nonzero coefficients, and the target SNR = 0.5, 1, or 3. The number of
a6 responses ¢ = 20 and the true rank r = 3. We generate the X € R™*P with independent samples
s from some multivariate Gaussian N (0,Xx) where ¥x = I, in this section. More results under
s correlated designs are presented in the appendix. The response is generated from the true model
w0 Y = XUV +E, where each entry in the support of U € RPX" (sparsity k) is independently drawn
wo  from a standard Gaussian distribution, and V € R?7*" takes the left singular matrix of a Gaussian
w1 ensemble. Hence B = UV is the true coefficient matrix. The noise matrix is generated from
w2 N(0,0%1,), where o2 is chosen such that the signal-to-noise ratio

Tr(BTSxB)

SNR = )

(13)

is set to a given level. The performance is evaluated by the test R?, defined as follows:

Y —XBJJ3

R?=1 L
1Y — Y3
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Figure 3: R? each run is evaluated on a test set of size 5000. “oracle” is the result where we know the
true active variables and solve on this subset of variables. “glmnet” fits the responses separately. “SRRR-r”
indicates the SRRR results with assumed rank 7.

a3 The main insight we obtain from the experiments is that the method is more robust to over-
ws  estimating than underestimating the rank. A significant degrade in performance can be identified
s even if we are only off the rank by 1 from below. In contrast, the additional variance brought along
w«s by overestimating the rank doesn’t seem to be a big concern. This, in essence, can be ascribed to
4«7 bias and variance decomposition. In our settings, the bias incurred in underestimating the rank
wus and thus 1/3 loss of parameters contributes a lot more to the MSE compared with the increased
wo  variance due to 1/3 redundancy in the parameters.

«~ 6 Real Data Application: UK Biobank

s The UK Biobank (Bycroft et al., [2018) is a large, prospective population-based cohort study with
s individuals collected from multiple sites across the United Kingdom. It contains extensive genetic
43 and phenotypic detail such as genome-wide genotyping, questionnaires and physical measures for a
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s wide range of health-related outcomes for over 500,000 participants, who were aged 40-69 years when
s recruited in 2006-2010. In this study, we are interested in the relationship between an individual’s
w6 genotype and his/her phenotypic outcomes. While genome-wide association studies (GWAS) focus
7 on identifying SNPs that may be marginally associated with the outcome using univariate tests,
s we would like to leverage the additive effect of all SNPs to make good prediction. Recently there
wo 18 a line of work (Qian et all|2019; |Sinnott-Armstrong et all 2019} [Lello et al.;|2018) that builds a
w0 lasso solution on the large dataset and shows that the prediction is much improved over previous
w1 methods. Furthermore, a number of phenotypes present nontrivial correlation structures and we
2 would like to further improve the prediction and stabilize the variable selection by building a joint
43 model for multiple outcomes.

264 We focused on 337,199 White British unrelated individuals out of the full set of over 500,000 from
w5 the UK Biobank dataset (Bycroft et all |2018)) that satisfy the same set of population stratification
s criteria as in [DeBoever et al.| (2018)). Each individual has up to 805,426 measured variants, and
w7 each variant is encoded by one of the four levels where 0 corresponds to homozygous major alleles, 1
w8 to heterozygous alleles, 2 to homozygous minor alleles and NA to a missing genotype. In addition,
wo  we have available covariates such as age, sex, and forty pre-computed principal components of the
a0 SNP matrix. Among them, we use age, sex and the top 10 PCs for the adjustment of population
w  stratification (Price et al., |2006]).

an There are binary responses in the data such as many disease outcomes. Although in principle
w3 we can solve for a mixture of Gaussian and binomial likelihood using Newton’s method, for ease of
¢ computation in this large-scale setting, it is a reasonable approximation to treat them as continuous
a5 responses and fit the standard SRRR model. However, after the model is fit, we will refit a logistic
a6 regression on the predicted score to obtain a probability estimation. Notice that the refit is still
a7 trained on the training set at each \ value.

478 The number of samples is large in the UK Biobank dataset, so we afford to set aside an inde-
a9 pendent validation set without resorting to costly cross-validation to find an optimal regularization
w0 parameter. We also leave out a subset of observations as test set to evaluate the final model.
@ In particular, we randomly partition the original dataset so that 70% is used for training, 10%
s for validation and 20% for test. The solution path is fit on the training set, whereas the desired
«3 regularization is selected on the validation set, and the final model is evaluated on the test set.

In the experiment, we compare the performance of the multivariate-response SRRR model with
the single-response lasso model. To fit the lasso model, we rely on fast implementation of the
snpnet package (Qian et al. 2019), and we also refer to the lasso results as snpnet in the results
section. For continuous responses, we evaluate the prediction by R-squared (R?). Given a linear
coefficient vector 3 (fitted on the training set) and a subset of data {(x;,1:),1 < i < n}, it is defined

as R
Z?:l(yi - IZ-T/B)Q
Sy —9)?
s  We compute R? respectively on the training, validation and test sets. For binary response, mis-
a5 classification error could be used but it would depend on the calibration. Instead the receiver
w5 operating characteristic (ROC) curve provides more information and demonstrates the tradeoff be-
7 tween true positive and false positive rates under different thresholds. The area under the curve
s (AUC) computes the area under the ROC curve — a larger value indicates a generally better classi-
s0 fier. Therefore, we will evaluate AUCs on the training, validation and test sets for binary responses.
w0 When comparing different methods, we evaluate both absolute change and relative change over the

R*=1-
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w1 baseline method (in particular the already competitive lasso in our case), where the relative change
w2 for a given metric is defined as (metrichew — MetTiClags0)/|MetTiClasso]-

493 Computationally, in the UK Biobank experiments, the SNP data are stored in a compressed
ws  PLINK format with two-bit encodings. PLINK 2.0 (Chang et al., [2015) provides an extensive set
a5 of efficient operations including very fast, multithreaded matrix multiplication. In particular, this
a6 matrix multiplication module is heavily used in the steps of screening and KKT check in this work
s and other lasso-based results (Li et al., [2020; |Qian et al., |2019) on the UK Biobank.

0w 6.1 Asthma and 7 Blood Biomarkers

wo Here, we defined asthma based on a mixture of self-reported questionnaire data and hospital in-
s0 patient record data described in [DeBoever et al. (2018); [Tanigawa et al.| (2019). Furthermore, we
s focused on 7 additional blood count measurements from Category 100081 in UK Biobank containing
so2  results of haematological assays that were performed on whole blood.

503 We apply the SRRR to the set of phenotypes and expect some performance improvement by
s leveraging the correlation structure. Choice of the phenotypes: monocyte count, neutrophill count,
sos  eosinophill count, basophill count, forced vital capacity (FVC), peak expiratory flow (PEF), and
ss forced expiratory volume in 1 second (FEV1).

507 Overall, we see small rank representation can maintain predictive power for specific phenotypes
ss  (see Figure [4]) and that overall the multiresponse model improves the prediction over the single-
s0  response lasso model (see Figure [5)).
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Figure 4: Asthma and Basophil count prediction performance plots. Different colors correspond to lower
rank predictive performance across (x-axis) training data set and (y-axis) validation data set for (left)
asthma and (right) basophil count.
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Figure 5: Change in prediction accuracy for multiresponse model compared to single response model.
(top) (y-axis 1 bar) R? relative change (%) for each phenotype (x-axis) and R? absolute change (y-axis 2).

s0 6.2 35 Biomarkers

su [In addition, we used 35 biomarkers from the UK Biobank biomarker panel in [Sinnott-Armstrong
512 , and apply SRRR to the dataset. Noticeably, for the liver biomarkers including alanine
si3  aminotransferase and albumin, and the urinary biomarkers including Microalbumin in urine and
se - Sodium in urine, we see an improvement in prediction performance for the SRRR application beyond
si5  the single-response snpnet models (see Figures |§| and E[)

516 We can represent the lower rank representation as a biplot of the singular value decomposition
sz of the coefficient matrix (Gower et al.,|2011; |Gabriel, [1971; Tanigawa et al., 2019). Specifically, we
sis  display phenotypes projected on phenotype principal components as a scatter plot. We also show
si9 variants projected on variant principal components as a separate scatter plot and added phenotype
s  singular vectors as arrows on the plot using sub-axes. In scatter plot with biplot annotation, the
s inner product of a genetic variant and a phenotype represents the direction and the strength of the
s22  projection of the genetic association of the variant-phenotype pair on the displayed latent compo-
s3  nents. For example, when a variant and a phenotype share the same direction on the annotated
s scatter plot, that means the projection of the genetic associations of the variant-phenotype pair on
s the displayed latent components is positive. When a variant-phenotype pair is projected on the
s same line, but on the opposite direction, the projection of the genetic associations on the shown
s7  latent components is negative. When the variant and phenotype vectors are orthogonal or one of
s:s the vectors are of zero length, the projection of the genetic associations of the variant-phenotype
s20  pair on the displayed latent components is zero. We focused on the top five key SRRR components
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s0  for AST to ALT ratio (see Figure [g).

Alanine_aminotransferase

Albumin
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o
o
=

metric (val)
metric (val)

0.02-
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metric (train)

01 02
metric (train)

type - exact 4 lazy rank 5 - 10 — 20 — 35 snpnet type - exact 4 lazy rank 5 - 10 — 20 — 35 snpnet
Figure 6: Alanine aminotransferase and albumin prediction performance plots. Different colors correspond
to lower rank predictive performance across (x-axis) training data set and (y-axis) validation data set for

(left) alanine aminotransferase and (right) albumin. For lower rank representation we applied lazy rank
evaluation.
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Figure 8: The latent structures of the the top five key SRRR components for AST to ALT ratio. Using
trait squared cosine score described in |Tanigawa et al.| (2019), the top five key SRRR components for AST
to ALT ratio (components 9, 18, 20, 8, and 3) are identified from a full-rank SVD of coefficient matrix C
from SRRR (C = UDVT) and shown as a series of biplots. In each panel, principal components of genetic
variants (rows of UD) are shown in blue as scatter plot using the main axis and singular vectors of traits
(rows of V') are shown in red dots with lines using the secondary axis, for the identified key components.
The five traits and variants with the largest distance from the center of origin are annotated with their
name.

« 7 Related Work

s2 There are many other methods that were proposed for multivariate regression in high-dimensional
s settings. (Chen, Huang| (2012)) compares the SRRR with rank-free methods including LSVS
su  [Tikkal (2007), LooSVS (Turlach et al., 2005) that replaces the f-norm with ¢o.-norm of each row,
s3  and RemMap (Peng et al.| 2010 that imposes an additional elementwise sparsity of the coefficient
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s matrix. It also compares with the SPLS |Chun, Keleg (2010)) and points out that the latter does not
s target directly on prediction of the responses so the performance turns out not as good. Another
38 important category of methods Canonical Correlation Analysis (CCA) (Hotelling [1936]) that tries to
s  constructed uncorrelated components in both the feature space and the response space to maximize
se0  their correlation coefficients also falls short in the aspect, even though some connection can be
sa  established with the reduced rank regression as seen in Appendix

542 More recently, there is a line of new advances in sparse and low-rank regression problems. For
s3  example, [Ma, Sun| (2014) proposed a subspace assisted regression with row sparsity and studied
s« its near-optimal estimation properties. Ma et al.| (2020) furthered this work to a two-way sparsity
s setting, where nonzero entries are present only on a few rows and columus. |Li et al.| (2019) proposed
ss6  an integrative multi-view reduced-rank regression that encourages group-wise low-rank coefficient
sv  Mmatrices with a composite nuclear norm. [Dubois et al.| (2019) developed a fast first-order proximal
sis gradient algorithm on the SRRR objective reparameterized by a single matrix and proves linear
se0  local convergence. Luo et al| (2018) proposed a mixed-outcome reduced-rank regression method
sso  that deals with different types of responses and also missing data, though it does not aim for
ss1  high-dimensional settings with variable selection.

55 In genetics, some approaches proposed to decompose genetic associations from summary level
553 data using LD-pruning along with p-value thresholding for variable selection in an approach referred
s« t0 as DeGAs (Tanigawa et all [2019) and MetaPhat (Lin et all |2019)). DeGAs was extended for
sss  genetic risk prediction and to ”paint” an individual’s risk to a disease based on genetic component
6 loadings in an approach referred to as DeGAs-risk (Aguirre et al., |2019)).

= 8 Summary and Discussion

sss  In this paper, we propose a method that takes into account both sparsity in high-dimensional regres-
sso  sion problems and low-rank structure when multiple correlated outcomes are present. A screening-
s based alternating minimization algorithm is designed to deal with large-scale and ultrahigh-dimensional
ss1  applications, such as the UK Biobank population cohort. We demonstrate the effectiveness of the
s method on both synthetic and real datasets focusing on asthma and 7 related blood count biomark-
s ers, in addition to the 35 biomarker panel made available by UK Biobank (Sinnott-Armstrong et al.,
ses 2019)). We anticipate that the approach presented here will generalize to thousands of phenotypes
ss  that are currently being measure in UK Biobank, e.g. metabolomics and imaging data that are
s currently being generated in over 100,000 individuals.

567 Methodologically, in the UK Biobank experiments, we use continuous approximation to binary
sss  outcomes. This is a reasonable assumption but ideally one would like to solve the exact problem
ss0  based on their respective likelihood. In principle, there is no theoretical challenge in the algorithmic
s design. We can use Newton’s method and enclose the procedure with an outer loop that conducts
sn quadratic approximation of the objective function. However, the quadratic problem involving both
s penalty and low-rank constraint can be very messy. We might need some heuristics to find a more
si3 - convenient approximation. We see this as future work along with extending the SRRR algorithm
st to other families including time-to-event multiple responses that can be used for survival analysis.
s5 Furthermore, for an individual we can project a variant and phenotype loading across the reduced
ste rank to their risk to arrive at a similar analysis of outlier individuals with unusual painting of
sz genetic risk and to quantify the overall contribution of a component which may aid in disease risk
sis interpretation. Overall, we see the method and algorithms presented here as an important toolkit
s to the prediction problem in human genetics.
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~ A Additional Proofs
= A.1 Proof of Lemma [1

76 This is intuitively the same as one without the rank constraint because when the coefficients just
7 start to become nonzero, the coefficient matrix is low-rank in its nature. Therefore, for the purpose
s of finding the maximum meaningful A, we can ignore the rank constraint unless r = 0. Without the
79 constraint, it follows from the KKT condition that having all coefficients to be zero is equivalent

o0 to setting

> = TY|l,.
A > Amax lr%a%(p ||x] Y2 (14)

71 Therefore, the maximum A that accommodates a nontrivial solution is Amax = maxi<;j<p ||ijY||2.

w A.2 Proof of Lemma [2

#s We plug in the SVD of Z and have Tr(Z'V) = Tr(NDM V) = Tr(DM " VN) = >, _, Dii Sy,
2 where S = M T VN and the last equality is due to the fact that D is a diagonal matrix. Notice that
us by the skinny SVD, SST = MTVINNTVM = I. We thus know S is an orthogonal matrix and the
us  magnitude of its diagonal elements cannot exceed 1. Since Dy are all non-negative. To maximize
747 27,;:1 DSk, we let Spr = 1 for all 1 < k < r. This is equivalent to setting S = MTVN = L
s Therefore, one solution is given by V.= MNT. The maximum value of the objective is thus
no Y 1_1 Dgi = ||Z]|+, the nuclear norm of Z.

s A.3 Proof of Theorem [2

We notice that in Problem we can solve explicitly for V and plug back into the objective
function. It yields the objective function (after dropping the constant term (1/2)Y|%):

1 P
F\(U) = 5| XU[5 - [Y XU + AUz,
j=1
We let f,(U) = (1/2)||XU||2 — ||[Y TXU||, without the penalty term so that F(U) = fy(U) +
A>0_1I[Uj]l2. Define a local smooth approximation of Fy as
) P
F{(U50) = /2(0) + (VA(U), U = U) + (1/20)[|U" = UlJ: + A D [[Uj 2,
j=1

m and Ut = argming, [F{(U’;U) — F5(U)]. Dubois et al| (2019) showed that if ¢ is small enough
sz such that F(UT;U) > F\(U"), we have

R(UY) - F} < (1 ~ min (;m)) (FA(U) - F). (15)
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3 Consider the iterates (U*, V¥);>1 in the alternating minimization algorithm. Notice that V f(U*) =
s XTXUF — XTYVE We have

1
E\(UM) = guhtt vkt - §HY||% (g is the SRRR objective function)
1
< g(UMLVE = SIYE
1
— : ky = 2
= ming(U, V") - o|[Y[[¢
1
= min <2||Y —XU¥(VH T2 + (XT(XU* - YVF), U - UY) +
1 KNT~T k S 1 2
5 Tr((U-U%) X X(U-UY)) +AY U llo - 1Yl
j=1
1 p
< o (A0 4 (TAULU = U)+ 3R U= U ) 4230 [0,
j=1
= minFi/Ui‘ax(U;Uk),

U

755 where the fourth line is the quadratic expansion of g(U, V¥) at U*, the second to last is by the fact
s that Tr((U — UF)TXTX(U — U*)) < 02, ||U — U*||%, and the last equality is by the definition
~ ~ 2
s of F} function. Therefore, if we let UM+ = argming [Fi/om““‘ (U; U) — F\(U*)], we have
F\(URY) — Ff < Fy(UR) — Fy. (16)

~ 2
s We need to show that U satisfies the condition Fy/“mex(Uk+; U*) > Fy(US+). To see this,
70 notice that in fact for any U,

SIXUI3 = CIXUF[ + (XTXUY U - U¥) 4 L [X(U - U¥)]
< SIXUJE + (XTXURU - UR) 4 202, U - U
Since X TYV* is a subgradient of ||[Y T XU|, at U*, we have
—|YTXU|. < —|YTXU*||, - (XTYV* U - U).

~ 2
Adding the two inequalities up, and we have F)(U) < Fi/om" (U; U*) for all U. In particular, it
holds for U¥*+. Therefore, by and (|16)), we have

* E3 . 1 M *
F\(UMY — Fy < FB\(UMY - Fy < (1 — min (27 2)) (FA\(U") = F}),
max

w0 and the convergence is linear.

« B Connection with CCA

72 Canonical Correlation Analysis (CCA) has an internal connection with Reduced-Rank Regression
w3 (RRR). In particular, it can be shown that the low-rank components constructed on the X space
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e turn out to be the same by a relaxed CCA and a generalized RRR. CCA finds linear combinations
s XU € R™ " of variables in X € R™*? and linear combinations YV € R"*" of variables in Y € R"*¢
w6 that attain the maximum correlation. We assume both X and Y have been centered. CCA solves
w7 the following optimization problem:

maximize ~ Tr(U'X'YV),
st. U X'XUu=v'Y'YV=L.

ws In particular, in the one dimensional case, this reduces to the problem of maximizing our familiar
70 correlation coefficient. An equivalent representation to (17)) can be written as

minimize YV - XU||%,
u.v (18)
st. UX'XU=V'Y'YV=I,.
7 The solution to the problem is U = S;a}/zQ(T),V = S;ylmP(’“) where P(") and Q) are the r

m  leading left and right singular vectors of matrix R = S;yl / 2Sny;£ 2. P is also the r leading
. —-1/2 1
2 eigenvectors of Sy, "S,.S

3 solves

SIyS;yl/ ®. A relaxed form of CCA problem ignoring the U-constraint

minimize YV - XU|%,
UV
(19)
st. VY'YV =I,.

7 The solution is U = S;;SwyS;yl/zP(’“),\Af = S;;/QP(T), where P(") is the r leading eigenvectors
75 of S;yl / 25749[‘,89;961SgDyS;y1 /2 Therefore, the solution for V remains unchanged, though U is different
76 due to the constraint.
m On the other hand, in the (generalized) reduced rank regression, given a given positive-definite
s matrix I', the problem becomes

minimize Te(TY3(Y - XUVT)T(Y - XUVT)I/2), (20)
770 This can be derived, for example, as an maximum likelihood estimator under the Gaussian assump-
70 tion with known covariance I'"!. One solution (Velu, Reinsel, [2013)) is given by

U = S;l!s,,I/2p0),

A

vV = 1 ¥2p),

7 where P(") is the leading eigenvectors of R = F1/2SyzS;lsxyF1/2. We see that the solution when

x

w [ = S;yl is closely related to the relaxed CCA solution. U is the same while V is the so-called
w3 reflexive inverse of V there.

= C Additional Experiments

s We conduct some experiments to gain more insight into the method and compare with other meth-
7 ods. We generate the X € R"*P with independent samples from some multivariate Gaussian
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7w N(0,Xx). For the first several cases, we generate the response from the true, most favorable model
7 Y = XUV +E, where each entry in the support of U € RPX" (sparsity k) is independently drawn
70 from a standard Gaussian distribution, and V € R?*" takes the left singular matrix of a Gaussian
w0 ensemble. Hence B = UVT is the true coefficient matrix. The noise matrix is generated from
w N(0,028g), where o2 is chosen such that the signal-to-noise ratio

Tr(BTExB)

NR =
SNR o2 -Tr(Xg)

(21)

is set to a given level. The performance is evaluated by the test R?, defined as follows:

_IlY - XBJ3

RZ=1 — £
1Y = Y[z

2 We consider several sets of experiments.

703 1. Scenario 1-9 Small experiments: (n,p,k) = (200,100, 20), (200, 500, 20), (200, 500, 50),q =

704 20,7 = 3. The X has independent design, and the noise across different responses are all
795 independent, i.e. ¥x =1I,,3g = I;. Target SNR = 0.5, 1, 3. The results are evaluated on
796 test sets of size 5000.

797 2. Scenario 10-18 Same as Scenario 1-9. The true coefficient matrix is no longer exact low
708 rank. It is perturbed by Gaussian noise with mean 0 and standard deviation 0.5.

3. Scenario 19-27 Same as Scenario 1-9, except that the predictors are correlated. In particular,

1, j =4
COV(Xj,Xj’)Z{ A

P, J# 7
799 We let p = 0.5 in this set of simulation.
800 4. Scenario 28-36 Same as Scenario 10-18, except that the predictors are correlated as in
801 Scenario 19-27.

sz From the simulations, we find that underestimating the rank can degrade the performance instantly.
g3 Overestimating the rank will give one a variance penalty, but it seems to be rather robust compared
ss  With the other direction.
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ss  Scenario 1-9 Small experiments: (n,p, k) = (200, 100, 20), (200, 500, 20), (200, 500, 50), ¢ = 20,r =
ss 3. The X has independent design, and the noise across different responses are all independent, i.e.
wr Lx =1, X =I,;. Target SNR = 0.5, 1, 3. The results are evaluated on test sets of size 5000.
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Figure C.1: Scenario 1-9. R? each run is evaluated on a test set of size 5000.
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s Scenario 10-18 Same as Scenario 1-9. The true coefficient matrix is no longer exact low rank.
so It is perturbed by Gaussian noise with mean 0 and standard deviation 0.5.
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Figure C.2: Scenario 10-18. R? each run is evaluated on a test set of size 5000. The oracle here does not

take into account the noise in true coefficient matrix, and do reduced rank regression on the true support
and the true rank.
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Scenario 19-27 Same as Scenario 1-9, except that the predictors are correlated. In particular,

L oi—
Cov(xj,x;) = ’J, j,/’
py JF#J
si0 We let p = 0.5 in this set of simulation.
p
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Figure C.3: Scenario 19-27. R? each run is evaluated on a test set of size 5000.
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su  Scenario 28-36 Same as Scenario 10-18, except that the predictors are correlated as in Scenario

sz 19-27.
0 n =200, p = 100, k = 20 n =200, p = 500, k = 20 n =200, p = 500, k = 50
0.28- *++ 1 +** R
. . . wn
. d =2
0.24- DR T
o
[6)]
0.20- :
0.16-
0.45- + + <.
2 0.40- 1 - 2
£ H Pyl
o~ I
® 0.35- =
0.30-
0.70-*"' ** *-h *** + -
w | L - ek,
=z
. Pyl
0.60- 1]
w
0.55-
0.50- 1
s 3y p7h o 3ETYPLOLTOBRETYOLOLOCL
§ £ x o x « § £ o x o § £ o o x «
5 £ @ @ o 5 £ ¥ o o o 5 £ @ o o
o n g o [a e o a4 n a4 n o e o n g a4
] (%] n " (%] n (%] ] " (9] " (%]
method
method B3 oracle BE SRRR-2 B SRRR-4

B3 gimnet B SRRR-3 B SRRR-5

Figure C.4: Scenario 28-36. R? each run is evaluated on a test set of size 5000.

« D Additional Information on the Methods

a2« D.1  Compliance with ethical regulations and informed consent

sis  This research has been conducted using the UK Biobank Resource under Application Number
sis 24983, “Generating effective therapeutic hypotheses from genomic and hospital linkage data” (http:
a7 |//www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf)). Based
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sis  on the information provided in Protocol 44532 the Stanford IRB has determined that the research
so  does not involve human subjects as defined in 45 CFR 46.102(f) or 21 CFR 50.3(g). All participants
220 of UK Biobank provided written informed consent (more information is available at https://www.
s ukbiobank.ac.uk/2018/02/gdpr/).

2 .2 Population stratification in UK Biobank

223 We used genotype data from the UK Biobank dataset release version 2 and the hgl9 human genome
s2a  reference for all analyses in the study. To minimize the variabilities due to population structure in
o5 our dataset, we restricted our analyses to include 337,151 White British individuals (Figure [D.1])
26 based on the following five criteria (DeBoever et al., [2018} |Tanigawa et all 2019) reported by the
sz UK Biobank in the file “ukb_sqc_v2.txt”:

828 1. self- reported white British ancestry (“in_white British_ancestry_subset” column)

820 2. used to compute principal components (“used_in_pca_calculation” column)

830 3. not marked as outliers for heterozygosity and missing rates (“het_missing_outliers” column)
831 4. do not show putative sex chromosome aneuploidy (“putative_sex_chromo- some_aneuploidy”
832 column)

833 5. have at most 10 putative third-degree relatives (“excess_relatives” column).

s D.3 Variant annotation and quality control

a5 We prepared a genotype dataset by combining the directly-genotype variants, copy number variants
s (CNVs) and HLA allelotype datasets.

837 We annotated the directly-genotyped variants using the VEP LOFTEE plugin (https://github.
ss com/konradjk/loftee) and variant quality control by comparing allele frequencies in the UK
g0 Biobank and gnomAD (gnomad.exomes.r2.0.1.sites.vcef.gz) as previously described28. We focused
a0 on variants outside of the major histocompatibility complex (MHC) region (chr6:25477797-36448354)
sa  as previously described. We focused on the variants according to the following criteria:

842 e Missigness of the variant is less than 1%, considering that two genotyping arrays (the UK
843 BIiLEVE array and the UK Biobank array) which covers a slightly different set of variants.
844 e Minor-allele frequency is greater than 0.01%, given the recent reports casting questions on
845 the reliability of ultra low-frequency variants.

846 e The variant is in the LD-pruned set

847 e Hardy-Weinberg disequilibrium test p-value is less than 1.0 x 1077

848 e Manual cluster plot inspection. We investigated the cluster plots for subset of variants and
849 removed 11 variants that have unreliable genotype calls.

850 e Passed the comparison of minor allele frequency with gnomAD dataset as described before
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851 CNVs were called by applying PennCNV v1.0.4 on raw signal intensity data from each array
g2 within each genotyping batch as previously described. We applied a filter on minor-allele frequency
s (MAF > 0.01%), which resulted in 8,274 non-rare (MAF > 0.01%) CNVs.

854 The HLA data from the UK Biobank contains all HLA loci (one line per person) in a specific
ess order (A, B, C, DRB5, DRB4, DRB3, DRB1, DQB1, DQA1, DPB1, DPA1). We downloaded these
ess  values, which were imputed via the HLA:IMP*2 program (Resource 182); the UK Biobank reports
sz one value per imputed allele, and only the best-guess alleles are reported. Out of the 362 alleles
sss  reported in UKB, we used 175 alleles that were present in >0.1% of the population surveyed.

Genotype PCs
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F‘.L;,‘.L
FALSE
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Figure D.1: The identification of unrelated White British individuals in UK Biobank. The first two
genotype principal components (PCs) are shown on the x- and y-axis and the identified unrelated White
British individuals (Methods) are shown in red.
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