bioRxiv preprint doi: https://doi.org/10.1101/2020.05.30.122077; this version posted May 31, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Accurate prediction of genetic circuit behavior requires multidimensional
characterization of parts

Authors:
Galen Dods'**, Mariana Gémez-Schiavon"**, Hana EI-Samad'#3*, Andrew H. Ng>**

'Department of Biochemistry and Biophysics, University of California, San Francisco, San
Francisco, CA, USA.

2Chan-Zuckerberg Biohub, San Francisco, CA, USA.
3Cell Design Institute, University of California, San Francisco, CA, USA.

3Department of Cellular and Molecular Pharmacology, University of California, San Francisco,
CA, USA.

*Correspondence should be addressed to A. H. N. (andrew.ng@ucsf.edu) or H. E.-S.
(hana.el-samad@ucsf.edu)

**These authors contributed equally to this work.


mailto:andrew.ng@ucsf.edu
mailto:hana.elsamad@ucsf.edu
https://doi.org/10.1101/2020.05.30.122077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.30.122077; this version posted May 31, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Mathematical models can aid the design of genetic circuits, but may yield inaccurate
results if individual parts are not modeled at the appropriate resolution. To illustrate the
importance of this concept, we study transcriptional cascades consisting of two
inducible synthetic transcription factors connected in series. Despite the simplicity of this
design, we find that accurate prediction of circuit behavior requires mapping the dose
responses of each circuit component along the dimensions of both its expression level
and its inducer concentration. With such multidimensional characterizations, we were
able to computationally explore the behavior of 16 different circuit designs. We
experimentally verified a subset of these predictions and found substantial agreement.
This method of biological part characterization enables the use of models to identify
(un)desired circuit behaviors prior to experimental implementation, thus shortening the
design-build-test cycle for more complex circuits.
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Introduction

Synthetic biology utilizes biological parts such as transcription factors to build circuits that
perform useful signal processing functions [1,2]. Advancements in DNA synthesis technology
have rapidly grown the library of biological parts, but the construction of predictably performing
circuits has lagged behind [3]. This lag is due in large part to two factors. First, it is now faster to
build new DNA constructs than to characterize them experimentally, leading to the creation of
many poorly characterized biological parts [4]. Second, simple phenomenological models of
individual parts often fail to predict the behavior of circuits composed of these parts, even in the
absence of contextual effects [5] or retroactivity [6]. Building more useful mathematical models
of biological parts would greatly facilitate the forward design of genetic circuits with predictable
behavior [7—10].

A common feature of genetic circuits is the use of inducible synthetic transcription factors
(iSynTFs) [11-13] as facile input nodes that can activate downstream elements in a
dose-responsive manner. In Saccharomyces cerevisiae, a common architecture for iSynTFs
consists of a fusion of a DNA binding domain (DBD), human hormone receptor (HR), and
activating domain (AD) [11,14-16]. Absent their corresponding hormones, these iSynTFs are
sequestered in the cytosol via interaction of the HR with Hsp90 [17,18]. This interaction inhibits
nuclear localization until hormone is added, enabling dose-responsive control of transcription
from a cognate promoter. iSynTFs are an indispensable part of the synthetic biology toolbox.
Circuits containing iSynTFs have been used to probe the behavior of synthetic
degradation-based feedback [19,20], investigate noise in transcription [11], and study the
topology of endogenous circuits [15,21,22].

iSynTFs are commonly characterized via their inducer dose response for one expression
level of the transcription factor, but this represents only one dimension of their functionality.
Genetic circuits often perform computation by modulating the expression level of transcription
factors in a network. Thus, accurate prediction of circuit behavior should be contingent on
understanding the behavior of these inducible transcription factors as they change expression
level within a circuit.

In this work, we developed a model to predict the behavior of a simple genetic circuit: a
transcriptional cascade consisting of two iSynTFs in which the first iSynTF activates expression
of a second iSynTF. A simple Hill model reproduced the inducer dose response of an iSynTF at
a single expression level, but failed at different iSynTF expression levels due to nonlinearities in
the behavior of these biological parts. We overcame this challenge by developing a mechanistic
model to account for these nonlinearities and by fitting this model using a two-dimensional
inducer and expression level dose response characterization. With this multidimensional
characterization, we were able to predict the relationship between inducer concentration and
expression level for three different iSynTFs. These models enabled the computational
exploration of the full design space of two-step transcriptional cascades, totalling 16 possible
circuits. We experimentally validated these simulations for a subset of circuits, confirming the
predictive power of the model. These results serve as an example of the type of
multidimensional biological part characterization that is required to accurately predict genetic
circuit behavior.
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Results and Discussion

To predict the behavior of iSynTFs in genetic circuits, we attempted to fit a simple Hill model
to the hormone dose response of an iSynTF in isolation. We first studied GEM, a previously
described iSynTF that consists of the Gal4 DBD, estrogen HR, and Msn2 AD, which activates
transcription from the pGAL1 promoter in response to estradiol (E2) [11]. We constitutively
expressed GEM from pRNR2—a medium strength constitutive promoter previously
characterized in the yeast toolkit (YTK) [23]—and measured its dose response, as quantified by
the fluorescence output of pGAL1-yellow fluorescent protein (YFP) as a function of E2. A simple
Hill model accurately reproduced the basal activity, output saturation, and curvature of this
pRNR2-GEM dose response (Fig. 1A; see Methods).

The output of GEM is dependent on its ligand input, but this hormone dose response
relationship may be modulated in non-trivial ways by the expression level of GEM itself. This
effect could become significant if GEM is used in a circuit in which its expression level changes.
We therefore next sought to understand the relationship between GEM expression level and its
hormone dose response. Using the simple Hill model fit to the pPRNR2:GEM data, we simulated
the dose response of GEM at multiple expression levels around pRNR2 (Fig 1B). Changing the
GEM expression level (represented by X in the simple Hill model) simply changed the sensitivity
(the half-max point of the sigmoidal curve) of the hormone dose response curve, while
maintaining the same basal activity, output saturation, and curvature.

We experimentally tested this prediction by measuring the dose response of GEM at several
different expression levels using promoters of different strengths picked from the YTK part
library [23]. We selected two promoters, pREV1 and pTEF1, that have lower and higher
expression levels than pRNR2, and confirmed their relative expression levels using a promoter
fusion to YFP (Fig. 1C). We then used these promoters to drive expression of GEM and
experimentally measured each hormone dose response. Contrary to the prediction of the simple
Hill model, changing the expression level of GEM did not just shift the hormone dose response
sensitivity (Fig. 1D). We also observed a direct effect of GEM expression level on the basal
activity (Fig. 1D, red highlight), the output saturation (Fig. 1D, orange highlight), and the
curvature of each hormone dose response. These results demonstrate that iSynTFs are dose
responsive in two dimensions: hormone concentration and iSynTF expression level. This
prompted us to re-examine the choice of model and data used to fit the model.

We hypothesized that the Hill model predictions failed because this simple model did not
have sufficient resolution to describe the nonlinear effect of expression level on iSynTF
behavior. Furthermore, we hypothesized that we used insufficient data to fit the original model.
To address the former, we constructed a mechanistic model that takes into account the
allosteric activation of the iSynTF [24], as well as the saturation on the promoter occupancy and
elongation rate [25] (Fig. 2A; see Methods). To address the latter, we fit the mechanistic model
with the hormone dose responses of GEM at three different expression levels: pREV1:GEM,
pRNR2:GEM, and pTEF1:GEM. This new model was able to recapitulate all three of the
experimental hormone dose responses (Fig. 2A), and predicted a clear relationship between
GEM expression level and the basal activity, output saturation, and curvature (Fig. 2B).
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To test the accuracy of the mechanistic model, we selected a constitutive promoter of
intermediate expression level from the YTK part library, pRPL18B, to drive expression of GEM.
We measured the pRPL18B expression level relative to pREV1, pRNR2, and pTEF1 via a YFP
promoter fusion (Fig. 2C, red) and input this information into the mechanistic model to predict
the dose response of pRPL18B:GEM. Gratifyingly, we found that the model accurately
reproduced the basal activity, output saturation, and curvature of the experimental
pRPL18B:GEM hormone dose response on which it was not trained (Fig. 2D).

To generalize these results beyond GEM, we examined two other iSynTFs: Z3PM (a fusion
of the Zif268 DBD, progesterone HR, and Msn2 AD) and Z4EM (a fusion of the Z4 synthetic zinc
finger DBD, estrogen HR, and Msn2 AD) [15]. Z3PM activates transcription from pZ3 in a dose
responsive fashion to progesterone (Pg), and Z4EM activates transcription from pZ4 in a dose
responsive fashion to estradiol (E2). To characterize these iSynTFs, we repeated the workflow
developed for GEM: we expressed Z3PM and Z4EM from pREV1, pRNR2, and pTEF1,
experimentally measured each hormone dose response, and used these data to fit specific
parameters for each iSynTF to the same mechanistic model as above (Fig. S1A). Using the
fitted models, we next simulated the effect of iSynTF concentration on the hormone dose
response (Fig. S1B). Simulations of Z3PM and Z4EM displayed similar trends to GEM, but they
showed a much greater effect of iSynTF expression level on the basal activity and output
saturation. Lastly, we validated the accuracy of the Z3PM and Z4EM models against the
pRPL18B expression level dose response (Fig. S1C). The Z4AEM model accurately captured the
basal activity, output saturation, and shape of the pRPL18B dose response curve.The Z3PM
model reproduced the output saturation, but it underestimated the basal activity and
overestimated the sharpness of the curve.

When comparing the model fittings for each iSynTF, we found that multiple parameter sets fit
the observed data equally well, producing similar dose response profiles (Fig. S2). The 100 best
fitting parameter sets for each iSynTF showed that some kinetic parameter values were very
well constrained (e.g. basal activity o), while others appeared undetermined (e.g.
hormone:iSynTF affinity constant, K, ). It may be possible to further resolve differences
between the simulations and experiments with a more detailed description of the hormone
regulation.

Using these multidimensional, fitted, mechanistic models of GEM, Z3PM, and Z4EM, we
explored all possible variants of a two-step transcriptional cascade: a circuit configuration where
the constitutively expressed first iSynTF induces expression of a second iSynTF, which in turn
induces expression of a YFP reporter (Fig. 3A). With two orthogonal HRs, there are four
possible configurations of the three iSynTFs (GEM — Z3PM, Z4EM — Z3PM, Z3PM — GEM,
Z3PM — ZAEM). Taking into account four possible expression levels for the first iSynTF
(PREV1, pRNR2, pRPL18B, pTEF1), in total there are sixteen possible circuit variants. Because
GEM, Z3PM, and Z4EM each have a unique response to hormone and changing expression
level, we expected that each circuit variant would behave differently in response to the two
hormone inducers. In agreement, the simulations displayed different responses to both
inducers, basal activities, and output saturations (Fig. S3). These multidimensional, fitted
models enable efficient screening of these circuit variants, guiding the selection of designs to be
tested experimentally.
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We sought to verify the accuracy of the model simulations by experimentally measuring the
hormone dose responses of a subset of circuit variants. First, we studied the effect of changing
the first iSynTF expression level for a single configuration by measuring the output of GEM —
Z3PM at all four expression levels of GEM (Fig. 3B). We found that the model accurately
predicted several key aspects of the circuit behavior such as the changing output saturation and
curvature. Notably, the simulations underestimated the effect of E2 on the basal activity in the
absence of Pg. For comparison, we simulated the output of these circuits using the simple Hill
model fit only to the pPRNR2:iSynTF dose responses (Fig. S4A) or the mechanistic model fit only
to the pRNR2:iSynTF dose responses (Fig. S4B). The predictions with the simple Hill model
show no change in output saturation or basal activity (Fig. S4D), while the predictions with the
mechanistic model with no multidimensional characterization show excessive basal activity and
leaky expression (Fig. S4E). Neither match the experimental results, indicating that the
multidimensional characterization is necessary for the accurate prediction of circuit behavior.

Next, we compared three circuit configurations (GEM — Z3PM, Z4EM — Z3PM, Z3PM —
GEM) at the pRNR2 expression level of the first iSynTF (Fig. 3C). As predicted by the model
simulations, the Z3PM — GEM configuration displayed the greatest responsiveness to the
second TF inducer in the absence of the first TF inducer. The simulations were also able to
qualitatively predict the curvature of the second TF inducer dose response curves, as well as
the effect of the first TF inducer on output saturation. As before, the simulations underestimated
the effect of the first TF inducer on circuit output in the absence of the second TF inducer.

This slight quantitative discrepancy can likely be explained by a shortcoming in the model’s
ability to predict the expression level of the second TF as a function of the first TF inducer. The
model assumes that expression of the second TF will be equivalent to expression of a YFP
reporter, despite the fact that contextual factors such as transcript length (e.g. YFP vs. iSynTF),
5 UTR, or terminator sequence (e.g. tPGK1 vs. tSSA1) have a known effect on output [26—28].
Unfortunately, directly measuring the expression level of the second iSynTF via a fluorescent
protein fusion is challenging, as this also alters these variables. Despite this shortcoming, the
simulations were still able to predict key qualitative aspects of the experimental data based on
the circuit configuration and expression level. Taken together, these data indicate that models
can serve as a guide to genetic circuit design when an appropriate characterization of individual
parts is performed.

Quantitative model fits can be important in certain scenarios, such as building models to
automate genetic circuit design. Recently an algorithm was developed to automate the design of
genetic logic gates given a set of user constraints and a library of transcriptional repressors [29].
The algorithm was successful at designing most circuits, but was not perfect; failed circuits
adopted intermediate states that did not meet the digital threshold as a result of unexpected part
behavior. This issue of unpredictable part behavior plagues synthetic biology in general and is a
thorn in the side of many modeling efforts.

An alternative application of part models, given the universal issue of unpredictable part
behavior, is theory-guided exploration of potential circuit behavior. Theory can reveal circuit
topologies that produce a desired phenotype, and has been used in the past to study
biochemical adaptation [30,31]. However, insights gained from these studies can often be
difficult to translate into actual designs because there is no guarantee that biological parts exist
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in the required parameter regimes to implement such circuit designs. It may be possible to use
our part characterization methodology to constrain the parameter space of theoretical
explorations, biasing the results towards circuits that can be constructed using existing parts.
However, our results suggest that parts would need to be characterized based on the design
goal of the circuit. For example, dynamic part data would need to be collected if dynamic circuit
behavior is desired, and functionality of parts under stressors such as glucose depletion may be
important if the circuit is expected to function under stress-inducing conditions.

Model based simulation of genetic circuit behavior can guide circuit designs and limit the
number of constructs that need to be tested to achieve a desired behavior. In this work, we
focused on a two-step transcriptional cascade of iSynTFs where the expression level of the
second iSynTF in the cascade changes in response to input from the first iSynTF. We presented
a methodology for model design and fitting that considered the effect of both inducer
concentration and expression level on iSynTF output, thus enabling the accurate prediction of
genetic circuit behavior. Our results highlight the necessity of understanding biological part
behavior in the functional context of potential circuit designs. Such multidimensional
characterization requires an upfront investment of time, but it can pay dividends in the long-term
by shortening the design-build-test cycle for more complex circuits.
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Figure 1: Simple Hill model fit to a single hormone dose response fails to capture the full
behavior of iSynTF. (A) Left, A constitutively expressed (pC, constitutive promoter) inducible
synthetic transcription factor (iSynTF) is bound by its hormone inducer and activates
transcription of a downstream YFP reporter (output). Right, Inducer dose response of GEM at a
single expression level (pPRNR2, constitutive promoter) as a function of hormone, here estradiol.
A simple Hill model (see inset: n, , maximum synthesis rate, a, basal activity level; X', iSynTF
concentration; H, hormone concentration; K, activation coefficient; =, Hill coefficient) was fit to
the observed data. (B) Left, Expression level of iSynTF can change in response to inputs in a
genetic circuit. Right, Simple Hill model prediction (inset for used parameter values) of inducer
dose response for different expression levels of GEM (see legend for fold-change values). (C)
Measurement of constitutive promoter expression levels using a pC-YFP fusion (where pC
represents pREV1, pRNR2, or pTEF1). (D) Comparison of model predictions and experimental
data for GEM inducer dose response at three different expression levels of GEM. Insets in Red
and Orange boxes highlight the differences in basal activity and output saturation. Solid lines
represent model predictions, open circles and filled squares represent experimental mean, and
error bars represent s.d. of three biological replicates.
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Figure 2: Mechanistic model fit to hormone dose responses at multiple iSynTF
expression levels enables accurate prediction of part behavior. (A) Left, Schematic of a
mechanistic model where iSynTF activation, promoter occupancy, and synthesis dynamics are
considered (see Methods for details). Right, Inducer dose response of GEM at three expression
levels (PRNR2, pRNR2, and pTEF1 constitutive promoters). The mechanistic model (described
in the left) was fit to the observed data. Insets in Red and Orange boxes highlight the
recapitulation of the basal activity and output saturation (compare to Fig. 1D). (B) Mechanistic
model prediction (inset for used parameter values) of inducer dose responses for different
expression levels of GEM (see legend for fold-change values). (C) Measurement of constitutive
promoter expression levels using a pC-YFP fusion including pRPL18B (where pC represents
one of pREV1, pRNR2, pRPL18B, or pTEF1). (D) Comparison of model prediction and
experimental data for pRPL18B:GEM inducer dose response as validation. Solid lines represent
model predictions, open circles and filled squares represent experimental mean, and error bars
represent s.d. of three biological replicates. See Supplementary Figure 1 for the equivalent
analysis using the Z3PM and Z4EM iSynTFs.
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Figure 3: Using refined models to explore circuit designs. (A) A constitutively expressed
(pC, constitutive promoter) iSynTF (1st TF) is bound by its hormone inducer (1st TF inducer)
and activates transcription of a second downstream iSynTF (2nd TF), which in turn binds its
hormone inducer (2nd TF inducer) and activates transcription of the downstream YFP reporter
(output). (B) Comparison of the mechanistic model predictions (top row) and experimental data
(bottom row) for circuit output as a function of 2nd TF inducer (x-axis, Pg) at four different
expression levels of the 1st TF (see plot titles). The 2nd TF inducer dose responses were
simulated or measured at eight different concentrations of the 1st TF inducer (see legend in the
top). (C) Analogous to panel B, but varying the circuit configuration instead of the promoter
strength (see plot titles). Solid lines represent model predictions, open circles and dotted lines
represent experimental mean, and error bars represent s.d. of three biological replicates. See
Supplementary Figure 3 for simulations of all circuit designs.
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Methods
Construction of DNA Constructs

Hierarchical golden gate assembly was used to assemble plasmids for yeast strain construction
[23]. Individual parts were ordered as gBlocks (IDT) or PCR amplified (NEB Q5 High-Fidelity 2x
Master Mix). PCR products were purified with a GeneJET PCR Purification Kit (Thermo Fisher
Scientific). These sequences were domesticated with FastDigest Esp3l (Thermo Fisher
Scientific). Transcriptional cassettes were constructed using Bsal-HF v2 (NEB). Multigene
plasmids were constructed using FastDigest Esp3l. Plasmids are listed in Supplementary Table
1, and oligos are listed in Supplementary Table 2. The pZ4 sequence was modified from
Mclssac et al. [15] to remove a Gal4 binding site (sequence in supplement).

Chloramphenicol and Ampicillin resistant plasmids were transformed into chemically competent
Mach1 E. coli (QB3 Macrolab), while Kanamycin resistant plasmids were transformed into
chemically competent XL1 Blue E. coli (QB3 Macrolab). Cultures were grown over the course of
the day (Mach1) or overnight (XL1) before prep. Following growth, cultures were prepared using
a GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific). Part plasmids were verified by
sequencing (Elim Biopharmaceuticals) using the listed sequencing primers, while all other
plasmids were verified by restriction enzyme digestion.

Yeast Growth Media

Overnight yeast cultures were grown in YPD (1% w/v bacto-yeast extract; 2% wl/v
bacto-peptone; and 2% w/v dextrose). Yeast transformation cultures were diluted into fresh
YPD. Cultures for flow cytometry were diluted into SDC (0.67% w/v Difco yeast nitrogen base
without amino acids; 0.2% complete supplement mixture (MP Biomedicals); and 2% w/v
dextrose). For prototrophic selection following yeast transformation, SDC agar plates with the
appropriate selection were used (Teknova).

Construction of Yeast Strains

All DNA constructs were transformed into a yeast strain derived from BY4741 (MATa his3A1
leu2A0 met15A0 ura3A0) that had the HIS3 locus repaired. Yeast transformations were
performed as described previously [23] with modifications. One wash with 100 nM lithium
acetate was performed. DNA was combined with 115 microliters of transformation mixture and
incubated at 42 °C for 30 minutes. All DNA constructs were genomically integrated. Three
microliters of prepared plasmid were linearized for integration in a twenty microliter Notl-HF
(NEB) reaction for one hour and then added to the transformation mixture without purification.
Strains are listed in Supplementary Table 3.
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Flow Cytometry experiments

Yeast strains were streaked out onto YPD plates from glycerol stocks. Individual colonies were
picked into 1 mL of YPD in a 2-mL V-bottom 96-well block (Corning/Costar) for overnight growth
at 30 °C and 900 rpm in a Multitron shaker (Infors HT). For the individual iSynTFs experiments,
overnight cultures were diluted 1:500 in 12 mL of fresh SDC in an 8-row block and 450
microliters were aliquoted into a row across 2 new 96 well blocks. For the cascade experiments,
overnight cultures were diluted 1:500 in 45 mL of fresh SDC in a 50 mL trough (Corning) and
400 microliters were aliquoted into all wells of a new 96 well block. The YFP-promoter fusion
strains were diluted 1:500 in 500 pL of fresh SDC in a new 96 well block. Following dilution,
blocks were returned to the shaker for a 2 hour outgrowth.

During the 2 hour outgrowth, estradiol (Sigma-Aldrich) and progesterone (Fisher Scientific)
induction gradients were prepared. Ten-times concentrated solutions were prepared in fresh
SDC from 36 micromolar (estradiol) and 32 micromolar (progesterone) stock solutions.
Gradients were then prepared by a one-to-one serial dilution from the maximum induction
solution. For the individual iSynTF experiments, 50 microliters of the corresponding solution
were added to the appropriate wells. For the cascade characterizations, 50 microliters of each
solution were added to each well in the corresponding combinations. Blocks were then returned
to the shaker for 4 hours.

Following the 4 hour induction, the cultures were prepared for flow cytometry. One hundred
microliters of culture were mixed with 100 microliters of fresh SDC in a 96-well U-bottom
microplate (greiner bio-one). Samples were measured on a BD LSRFortessa X20 (BD
Biosciences) using a high-throughput sampler. YFP-Venus fluorescence was measured using
the FITC-H channel (voltage = 434). Measurements were normalized by dividing by SSC-H
(voltage = 200). Analysis was performed with Python 3.7, custom scripts, and the
FlowCytometryTools package. All experiments were performed in triplicate, with replicates
collected on separate days. Reported values represent the mean and standard deviation of
median normalized fluorescence values of the triplicates.

Model: Simple Hill Function

Under this model, we assume that the iSynTF is constitutively produced and has reached its
steady state concentration (X). The concentration of hormone in the media is denoted by H.

Then the steady-state concentration of the reporter protein is described as a simple Hill function
with maximum synthesis rate p, , basal activity a € [0, 1], dissociation constant K, and Hill
coefficient n:

S X H) = py (0 + (1~ ) gz (Eq. 1)
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Model: Mechanistic

As shown in Fig. 1, the simple Hill model described above fails to capture the effect of the
iSynTF concentration (X') on the basal expression level and saturation of the inducer dose
response output. To better recapitulate the observed behavior, we propose a mechanistic model
including the following considerations:

1. In the absence of hormone (H = 0), increasing iSynTF expression (e.g. using a stronger
constitutive promoter) increases the output expression level, suggesting some leaky or
basal activation of the regulated promoter by free iSynTF.

2. As the iSynTF expression decreases, a minimum output expression level is observed for
low hormone concentrations, suggesting some leaky expression of the regulated
promoter independent of the iSynTF.

3. As both iSynTF and hormone concentration increase, the output expression level
saturates at a maximum value. This can be explained both by the saturation of the
regulated promoter occupancy, and by the saturation of the number of polymerases
simultaneously transcribing the output gene.

4. With low iSynTF expression, the output expression level saturates at a lower level as
hormone concentration increases, suggesting that the stoichiometric relationship of the
iSynTF and hormone molecules might play an important role in output regulation.

Then, the proposed model is:

0=X,’—(H+X,+K,) X, +HX, such that X,, <X, (Eq. 2)
XyHBX,)"
X, = gt €10,1] (Eq. 3)
—kzX,
JnXo) = py (1 = (1 = 0) exp(==)) (Eq. 4)

Where X, is the concentration of free (inactive) iSynTF, X, is the active iSynTF (i.e. X,
bound to the hormone), and X, =X, +X, is the total iSynTF concentration in the cell (e.g.
determined by the used promoter driving iSynTF expression). H is the total intracellular

hormone concentration, which is assumed constant throughout the experiment, and proportional
to the amount added to the media. X, is the regulated promoter occupancy, which is modeled

as a Hill function of the active iSynTF and a fraction (B ) of the inactive iSynTF in the nucleus,
with Hill coefficient » and dissociation constant K. Finally, the synthesis rate of the regulated
promoter f, (X,) is modeled as proposed in Ben-Tabou de-Leon & Davidson (2009), where p,
is the maximum synthesis rate given the translocation rate and gene, k; is the efficiency rate of
the transcription factor, and o € [0,1] is the basal expression of the output gene (in the
absence of iSynTF). Here, (1) the parameter B represents the basal activation by free iSynTF;
(2) the parameter o represents the leakiness of the regulated promoter; (3) both Egs. 3 & 4

consider the two possible sources of saturation; and (4) Eq. 2 incorporates the stoichiometric
relationship between the free iSynTF, hormone, and active iSynTF. This model recapitulates
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most of the qualitative behavior of the iSynTF regulation for several constitutive promoter
strengths and hormone concentrations (see Fig. 2 & Fig. S1).

Model: Fitting

The goal is to minimize the error between the observed data (D) and the model prediction (Y)
for a given model and parameter set (8). We define our error function simply as the sum of
squared errors in logarithmic scale:

Xz — Z( Z(l(7g1()(D)710g1()(Y))2)

2010g,(D)

Then we use a Metropolis Random Walk algorithm to explore the parameter space implemented
as follows:
1. Choose some initial parameters 6, and calculate its fitting error Xz(l)-
2. lterate over r={1,2, .., t,,,} as follows:
a. Draw a random proposal ¢ ~ 6, x2"*» where N, (0,%) is a Multivariate
Normal distribution with the same dimension as 6, , mean zero and covariance
matrix £ =0.1. We enforce that the parameters stay in a realistic range with the
following limits: K, =[1x107*100]; Pp=[2x10"7,02]; n=[1x10",10];
K=[1x10"100]; a=[2x10",02]. And y, =0.0lmin 'and y, =max(D) v,
have fixed values.
b. We construct a likelihood function using a Gaussian function:
P(DI0) = exp(=x*)
where 0 is the set of parameter to be optimized, D is the optimal data, and ¥* is

the error function. Note the likelihood is maximal when the error is minimal. Then

we calculate the likelihood ratio:

POW _ oy,
Po,) P e T A ()

Accept the proposed ¢ if the ratio is larger than a random number ~ U[0, 1].The

proposed value is always accepted if the error is smaller (i.e. it is better).

c. Update parameters 6., < ¢ with probability min(l,}i(DL‘(Li))); otherwise,

Oy = Oy -
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