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Summary 

Despite  bread  being  one  of  the  most  historically  and  culturally  important  fermented

products, its history and influence on the evolution of associated microbial species remains

largely unknown.  The first evidence of leavened bread dates to the second millenium BCE

in Egypt and since, the art of bread-making developed and spread worldwide. Nowadays,

leavened  bread  is  made  either  by  using  a  pure  commercial  culture  of  the  yeast

Saccharomyces cerevisiae or by propagating a sourdough, which is a mix of flour and water

spontaneously  fermented  by  yeast  and  bacteria.  We  studied  the  domestication  of

S. cerevisiae populations originating from industry and sourdough and tested whether these

different bread-making processes led to population divergence. We found that the origin of

S.  cerevisiae bakery strains  is  polyphyletic  with 67 % of  strains clustering  in  two main

clades: most commercial strains were tetraploid and clustered with strains having diverse

origins, including beer. By contrast, most sourdough strains were diploids and found in a

second  clade  of  strains  having  mosaic  genomes  and  diverse  origins  including  fruits,  or

clinical and wild environments. When compared to the others, sourdough strains harboured

in average a higher copy number of genes involved in maltose utilization, a common sugar

produced from dough starch. Overall, a high level of gene flow from multiple contributors

was detected. Phenotyping of bakery and non bakery strains further showed that sourdough

and  industrial  bakery  populations  have  undergone  human  selection  for  rapidly  starting

fermentations and for high CO2 production. Interestingly, sourdough strains also showed a

better adaptation to a sourdough mimicking environment, suggesting that natural selection

occurred as well. In summary, our results revealed that the domestication of bakery yeast

populations  has  been  accompanied  by  dispersion,  hybridization  and  divergent  selection

through industrial and artisanal bakery processes. In addition, they unveiled for the first time

a  case  of  fungus  domestication  where  species  divergence  occurred  through

autotetraploidisation.
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Introduction 

The domestication of microbes is an ancient process that has accompanied fermented food

processing since at least Neolithic times, when plant and animal domestication first occurred

[1–7].  Until  recently,  the  evolutionary  history  of  domesticated  microbes  was  poorly

documented[2,3]. Most studies focused on the filamentous fungi Aspergillus oryzae used in

rice and soya fermentation and Penicillium roqueforti used for making blue cheese  [8–10]

as well as on the Saccharomyces cerevisiae yeast model species. This last species is found in

many  natural  habitats  (soil,  tree  bark,  water…  )  and  has  been  domesticated  for  the

production  of  a  large  diversity  of  fermented  drinks  (wine,  beer,  sake,  cachaça,  coffee,

fermented  milk)  and foods (bread,  cocoa,  olives)  [4,11].  Wild populations  isolated from

natural  habitats  present a broader  and distinct  genetic  diversity  than populations  isolated

from anthropogenic environments, suggesting that the latter were selected from the wild by

humans for food processing [12,13]. The China/far East Asia area may likely be one center

of origin of the domesticated populations [14]. 

The domestication of  S. cerevisiae has been well described for wine, beer, sake, cachaça,

cocoa, and coffee but surprisingly not for bread [14–16]. Domestication for making different

products has led to a genetic diversification of strains that group together according to the

fermentation type, but it also led to phenotypic divergence. Indeed, parallel domestication

processes  occurred  for  different  beverages  and foods although some gene flow between

domesticated strains have been detected [12]. Wine strains and the closely related group of

flor strains likely have a single origin [17–20]. Sake strains also appear to have evolved from

a  single  origin  [12,15,21] while  cachaça  strains  evolved  from  wine  strains  through  a

secondary domestication process [22]. Coffee, cocoa and beer strains have a more complex

evolutionary history where both migration and selection played major roles [23–27]. Several

genetic  signatures  associated  with  human  selection  have  been  detected  in  all  these

domesticated  populations,  including  SNPs   [19,23,27],  gene  duplication  [23,28,29],

horizontal gene transfer [17–19,30], and genome hybridization [21]. Despite the cultural and

historical importance of bread, the study of bakery strains domestication has been neglected.

This might be related to the fact that several industrial bakery yeast starters have been found

to be autotetraploid [31], which renders population genomic analysis complicated [32,33]. 

The earliest evidence of leavened bread was found during antiquity in the second millennium

BCE in Egypt [34] and in the first millenium BCE in North West China [35]. Since then, the

art  of  making  leavened  bread  developed  during  ancient  and  medieval  ages  and  was

disseminated throughout the Mediterranean and in Middle East countries (Carbonetto et al.

2018). At that time, bread making consisted in mixing flour, water, and sourdough, a mix of
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flour and water containing fermenting microbes. In the 19th century, the industrialization of

food production and the advent of microbiology as a science resulted in the production of

pure yeast cultures that were used as starter to make bread. The production of bread made

with commercial  S. cerevisiae yeast starter soon spread all over the world. Yet, nowadays,

global changes and the increase in the frequency of non-communicable diseases related to

modern  diets  (including  type  2  diabetes,  obesity,  food allergies)  have  led  to  a  renewed

interest in traditional methods of bread making and in its local production. The appeal of

traditionally  prepared  breads  is  underpinned  by research  showing improved  flavour  and

nutritional benefits in sourdough bread made by artisanal bakers  [36–38]. Therefore, both

ways of making leavened bread are currently found and bakers either use commercial yeasts,

or natural sourdoughs. 

Natural sourdough is made from flour and water and maintained by recurrent addition of

flour and water, a process called backslopping. Sourdough contains a microbial community

consisting of lactic acid bacteria and yeasts with a ratio of 100:1 on average [39]. One or two

prevailing species of lactic acid bacteria and one prevailing yeast species are usually found.

The yeast species found in sourdough mainly belong to the genera  Saccharomyces sensus

stricto, Kazachstania, Pichia, Torulaspora. Worldwide, S. cerevisiae is the most widespread

species found in sourdoughs [40] made by bakers, but also in sourdough made by farmers-

bakers  [41,42]. It can be found as the dominant  species in sourdough, even in bakeries

where no industrial starter is used, suggesting that the species may colonize a sourdough

from the bakery’s environment or the baker’s hands  [43]. Therefore, bakery strains of  S.

cerevisiae may have undergone different  domestication processes.  While  industrial  bread

production may have led to the breeding and selection of homogeneous lineages of yeast

starters,  artisanal bread making may have selected strains through the continuous, long-term

maintenance  of  sourdough  microbial  communities.  These  two  types  of  domestication

processes also apply to many different fermented foods. [2]. Until recently however, study of

fungi  domestication  mostly  revealed  footprints  of  industrial  selection  [9].  The  renewed

interest  in  traditional  sourdough  bread  production  makes  the  S.  cerevisiae bakery

populations an excellent model for the study of the impact of both artisanal and industrial

practices on fungi evolution and adaptation.  

The  objective  of  this  study  was  to  investigate  the  evolutionary  history  of  S. cerevisiae

isolated  in  bakeries.  We examined whether  bakery strains  had either  a  single or several

genetic origins and studied the genetic diversity and genetic relationship of commercial and

natural  sourdough  strains.  In  addition,  we  studied  to  what  extent  gene  and  genome

duplication have been involved in the domestication of S. cerevisiae in bakeries. We found

that bakery strains are polyphyletic and found in clades that also contain strains from other

domesticated environments, suggesting no specific origin for bakery strains. Except for a

few strains that clustered with wine or African beer fermentation strains, bakery strains were
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mostly grouped in two main clades, each composed of two subgroups. One mostly grouped

commercial strains while the other mostly contained sourdough strains, suggesting different

domestication roads for commercial and sourdough strains. Commercial strains appeared to

be most often tetraploid and to display a shorter fermentation latency phase while sourdough

strains  appeared  to  have  most  often  duplication  of  Maltose  and Isomaltose  maltase  and

permease  genes,  revealing  different  genetic  and phenotypic  signatures  for  industrial  and

artisanal  selection.   A  overall  high  proportion  of  admixture  was  detected  and  some

sourdough strains clustered together with commercial strains, suggesting that gene flow is

also an important process in the evolution of bakery strains. 
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Results 

Prevalent tetraploidy and aneuploidy in commercial bakery strains

Polyploidization, which refers to the multiplication of a complete chromosome set, has been

found to be associated with domestication in plants, but also in  Saccharomyces cerevisiae

beer strains [23,44]. A previous analysis of 26 S. cerevisiae strains originating from diverse

fermented  products  showed  that  most  bakery  strains  analyzed  were  autotetraploid,

suggesting that bakery yeast domestication  was also associated with polyploidization  [31].

We therefore analysed the ploidy of a set of 229 bakery  S. cerevisiae  strains (Table S1)

using a combination of microsatellite typing and flow cytometry analysis. Thirty-one strains

were commercial yeasts and 198 were isolated from European sourdoughs collected in Italy,

Belgium and France. An overall high level of tetraploidy (40%) and aneuploidy (17%) was

observed (Table 1). We found that commercial strains were significantly (two sided Fisher’s

exact test, p < 0.001) more frequently tetraploid (68%) than sourdough strains (35%). On the

other hand, we did not observe any significant difference in ploidy distribution between the

198 sourdough strains isolated in Belgium, France and Italy (two sided Fisher’s exact test, P

> 0.05,  Table 2). 

To  study  whether  tetraploidy  promoted  the  adaptation  of  S.  cerevisiae to  a  bakery

environment, competition experiments between tetraploid and diploid strains were carried

out in synthetic sourdough media. Commercial and sourdough strains of each ploidy level

(Table S2) were included in the analysis to test not only the effect of ploidy but also the

effect of commercial/sourdough origin. No evidence of fitness gain for tetraploids was found

(t43=-1,4288, P=0.16,  Figure 1).  To test  whether tetraploids provide a benefit  for bakers’

practices,  the effect of ploidy on fermentation kinetics was then analyzed.  There was no

significant effect of ploidy level on the maximum cumulative CO2 production released at the

end of fermentation (CO2max, F1,68=0.1, P=0.749), maximum CO2 production rate (Vmax,

F1,68=0.62,  P=0.434)  and  time  at  Vmax  (tVmax,  F1,68=0.067,  P=0.797)  parameters

(Figure 2A,C,D). By contrast, there was a significant effect of ploidy on the latency phase

of  CO2 production  (time necessary to  release  1g of  CO2;  F1,68= 7.01,  P=0.01),  while  no

significant effect of the origin of the strain (sourdough/commercial) was found (F1,68= 3.48,

P=0.07).  On average, tetraploids started fermentation earlier than diploids  (Figure 2B).  

Bakery strains are polyphyletic and present admixture

The evolutionary history of bakery strains was first studied on diploids using genomics.  We

examined the genomes of 68 bakery S. cerevisiae strains that included 17 newly sequenced
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diploid sourdough strains and a representative set of 51 previously sequenced bakery strains

(Table S5). We studied the population structure of bakery strains based on 33,032 biallelic

SNPs using fastStructure (Figure 3). This analysis yielded a most-likely population structure

with 6 groups (likelihood -0.756).  Groups P3 and P4 both contained sourdough strains, with

a minority of other strains however for group P4. On the other hand, groups P2 and P6 were

mostly  composed  of  commercial  strains.  Finally,  groups  P1  and  P5  comprised  both

sourdough  and  commercial  strains.  This  genetic  structuration  was  also  observed  using

DAPC,  which  do  not  rely  on  any  life-history  traits  and  evolutionary  assumptions

(Figure S1)  and  on a  maximum-likelihood  phylogenetic  tree  (Figure 4),  except  for  five

strains that clustered on one side of the tree, outside of their group defined by fastStructure.

Overall, there was no clustering according to the country of origin of the strains. 

We then analyzed the genetic relationship of bakery strains with the previously analysed

1,011 worldwide collection of S. cerevisiae [12]. Adding extra bakery genomes to the 1,011

genomes  tree  did  not  change  the  clustering  defined  in  [12] (Figure 5).  The  bakery

strains/genomes  were  distributed  between  the  “Wine/European”,  “African  beer”,  “Mixed

origin”, “Mosaic region 3”, “Asian fermentation”,  and “Mosaic region 1” clades. The P1

bakery  group  defined  by  fastStructure  (7  bakery  strains)  was  included  in  the

“Wine/European” clade, while group P5 (3 bakery strains) was found in the “African beer”

clade. The bakery groups P2 and P6 (23 strains, 7 from sourdough) were both located within

the ”Mixed origin” clade that also included beer strains, clinical strains, and strains isolated

from water, fruits, tree leaves and natural environment. These two groups are indeed closely

related and were not distinguished by fastStructure when the number of assumed ancestral

groups K equalled 4 (Figure 3). Finally, the bakery groups P3 and P4 (19 strains, 16 from

sourdough) were located within a group of mosaic strains that includes strains isolated from

wine, sake, insect, palm wine, fruit, or clinical, fermentation, distillery, natural environment.

These two groups are also closely related and were not distinguished when K equalled 5

(Figure 3).

To analyse the  degree  of  admixture  of  bakery  strains,  we ran Admixture  on the  bakery

genomes as well as on 90 genomes chosen across the 1,011 genomes tree clades [12]. The

strains were chosen among all the clades except those not found to contribute to the bakery-

strains  containing  clades  (Figure 6,  Table S6).  A total  of  48 bakery  strains  out  of  68

presented some level  of admixture varying between strains,  and reaching up 70% of the

genome. For a single strain, from 2 to  11 ancestral populations were admixed. There was

evidence of admixture between bakery strains of “Mosaic region 3” and “Mixed origin”

clades. In addition, there was evidence of admixture with other clades and contributors were

found to belong to the genetic clades “Asian fermentation”, “Wine/European”, “Ale beer”,

“Brazilian bioethanol”, “Mosaic beer” and “African beer”. One contributor however could

not  be  identified,  suggesting  the  presence  of  an  extinct  or  otherwise  uncharacterized

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.28.120584doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.120584
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. cerevisiae population. Novel alleles derived from unknown or extinct populations were

also found in ale beer strains (Fay et al. 2019). The high degree of admixture suggested that

dispersion and hybridization were parts of the main drivers of bakery strains evolution. 

The bakery strains of the “Mixed origin” and  “Mosaic region 3” clades differed by the

origin of some introgressions.  Introgression from the “Ale beer” clade was only detected in

commercial and sourdough strains of the “Mixed origin” clade (28% of the “Mixed origin”

bakery strains; Figure 6). Introgression from the “Asian fermentation” population was only

found in bakery strains of  the “Mosaic region 3” clade (60% of the “Mosaic region 3”

bakery strains;  Figure 6). This last result was confirmed by an analysis with Treemix [45]

that evidenced a gene flow between “Asian fermentation” and “Mosaic region 3” bakery

populations (w = 38%, three-population f3 test, Z = -27; Figure S2). 

An increased  copy number of  maltase  and isomaltase,  transporter  and

regulator genes in the sourdough strains clade

Large copy number variations were previously detected in  S. cerevisiae [12]. We analysed

large  CNV  on  our  bakery  strains  (Table S7)  and  found  that  twenty-six  strains  (40%)

displayed major chromosomal rearrangements or aneuploidies. Chromosome 9 was the most

affected by CNV (10 strains out of 26). In addition, we analyzed the copy number of genes

involved in maltose, iso-maltose and sucrose assimilation. These carbohydrates are common

in cereal products which may have led to the selection of an increased number of genes

involved in their assimilation in bakery strains. Gene copy number was compared between

bakery and non-bakery strains within each clade containing bakery strains to eliminate the

genetic structuration bias (Figure S3). Analysis was first performed on the MAL maltose

gene cluster  [46,47]. In  S. cerevisiae, the maltose gene cluster is composed of three genes,

encoding  the  maltose  transporter  (permease,  MAL1),  maltase  (MAL2)  and  transcription

regulator (MAL3).  The genes involved in maltose utilization are represented in five well-

described MAL loci located on subtelomeric regions [46,47]. The presence of just one MAL

locus is sufficient to allow for maltose fermentation [48,49]. In the “Mosaic region 3” clade,

where  most  bakery  strains  were  isolated  from sourdough,  the  number  of  copies  of  the

MAL12 (Wilcoxon rank sum test, p-value < 10-3) and MAL32 (p-value < 10-4) maltase genes

was  on  average  significantly  higher  in  bakery  strains  than  in  non-bakery  strains

(Figure S3A,B). The same was observed for the maltose permease gene MAL31 (p-value <

10-4).  The  same analysis  was  then  performed for  the  isomaltase  genes  (Figure S3C).  A

significant increase in copy number for  IMA1 (p-value < 10-6),  IMA3 (p-value < 10-4) and

IMA4 (p-value < 10-4) in bakery strains compared to non-bakery strains was also observed in

the “Mosaic region 3” clade. In the “Mixed origin” clade where many commercial bakery

strains were located,  we did not detect any increase in of copy number for genes in the
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maltose and isomaltose gene clusters in bakery strains compared to others. These results

suggest selection for a better assimilation of maltose and isomaltose  in sourdough, where

starch degradation  release maltose.  In the same way, adaptation to beer environment was

found to be associated to an increased copy number of the maltase gene cluster [50]. 

Phenotypic signatures of domestication

To test further whether sourdough strains have undergone human selection, we compared

fermentation performance between bakery and non-bakery strains and analyzed phenotypic

convergence among bakery strains. Fourteen sourdough strains, six commercial strains and

six non-bakery strains of diverse origins and genetic groups were fermented in a synthetic

sourdough  medium  (Table S8).  As  previously,  four  fermentation  parameters  relevant  to

bread-making were studied: time necessary to release 1g of CO2,  the maximum cumulative

CO2 production released at the end of fermentation (CO2max), maximum CO2 production

rate  (Vmax)  and  time  at  Vmax  (tVmax).  In  addition,  the  number  of  cells  after  27h  of

fermentation was used as proxy for absolute fitness. We found that non-bakery strains had

significantly lower maximum cumulative CO2 production, lower maximum CO2 production

rate and started fermentation later than sourdough and commercial bakery strains (Table S9,

Figure 7) showing that both sourdough and commercial strains have been selected for better

performance in fermentation. Commercial bakery strains performed better than sourdough

strains in terms of fermentation onset and CO2 production. However, sourdough strains had a

maximum CO2 production rate as high as commercial strains. Moreover, sourdough strains

reached  a  significantly  higher  population  size  than  commercial  strains  suggesting  they

display increased fitness in a  synthetic  sourdough medium compared to industrial  yeasts

(Figure S4). Overall, these results confirmed that sourdough strains were domesticated by

artisanal and farmer-bakers and are better adapted to their environment than other strains.

Genetic relationships between diploids and tetraploids

To analyse the  genetic  relationship  between diploids  and tetraploids,  we studied  genetic

diversity in 229 bakery strains (31 commercial and 198 isolated from sourdough; Table S1)

with 15 microsatellite markers. A total of 31 strains were analyzed using both microsatellites

and genomic sequences, which allowed the comparison of genomic and microsatellite data.

The microsatellite genetic relatedness tree based on the Ritland relatedness coefficient [51]

showed a clustering concordant with the genomic groups (Figure 8).  Commercial  strains

clustered  in  groups P2 and P6 while  sourdough strains  were scattered  all  over  the  tree.

Groups P3 and P4, mostly represented by sourdough strains, contained mostly diploids (76

diploids  strains  and  5  tetraploids  strains)  while  groups  P2  and  P6  contained  mostly
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tetraploids.  Genotypes  were clustered  according to  the  sourdough from which they have

been isolated. Strains from the same sourdough were either all diploids (sourdoughs B9b,

Al) or all tetraploids (sourdough F).  Interestingly two sourdoughs (B9c, B10L) contained

both diploids and tetraploids. In one case, there was one tetraploid and seven diploids. In the

other case, there was four diploids and 9 tetraploids. The diploids and tetraploids were very

closely  related  suggesting  they  derived  from  each  other  rather  than  from  different

introduction events.  

Further analysis of population structure using an Analysis of Molecular Variance (AMOVA)

[52] allowed  the  joined  analysis  of  diploids  and  tetrapoids  [53].  First,  we  studied  the

differences  between  bakery  origin  (commercial  vs sourdough strains).  Only  11% of  the

variation was found between bakery origins (Table S10) while the variation within bakery

origin  was  89%.  However,  there  was  a  significant  structuration  by  bakery  origin

(permutation test p-value < 10-3), confirming the genomic and microsatellite clustering of

most sourdough strains on one side and most commercial  strains on the other.  Then we

focused on sourdough strains isolated in France, Belgium and Italy and examined whether

there was any geographical structuration of sourdough strains according to their country of

origin.  To  avoid  unequal  sampling  between  country,  three  strains  per  sourdough  were

randomly  sampled.  Most  of  the  variance  arose  within  each  country  (89%).  However,  a

permutation test revealed significant differentiation between countries (permutation test p-

value  <  10-3).  Significant  differentiation  between  countries  and  similar  distribution  of

variation were also found when all analyzed strains from France, Italy and Belgium were

included. Finally, the distribution of genetic diversity within and between sourdoughs was

analyzed for France, where a large number of yeast strains per sourdough were available.

Most of the observed variance  occurred between sourdoughs (76%),  showing that genetic

variation  between  sourdoughs  exceeded  genetic  variation  within  sourdough.  Permutation

tests revealed a significant structuration according to the sourdough of origin (simulated p-

value <  10-3).  However,  some  intra-genetic  sourdough  diversity  was  also  found  as  for

example in sourdough B9b and Al, where a strain (B9b, Al28) clustered far from most of the

strains of the sourdough revealing a dispersion event. 
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Discussion 

We report here the first broad analysis of bakery yeast domestication using a collection of

229 Saccharomyces cerevisiae bakery strains collected worldwide from industry or natural

sourdoughs. We found that the origin of bakery strains is polyphyletic. Most bakery strains

clustered in two main clades, suggesting that bakery strains have undergone at least two

main domestication trajectories: one domestication trajectory appeared to have led to most

commercial strains, while the other led to sourdough strains. 

The  domestication  of  commercial  bakery  strains  was  associated  with  at  least  one

tetraploidization event and the selection for a shorter latency phase of fermentation. To our

knowledge, this is the first time that selection and dispersion of widespread autotetraploids

are associated with the domestication of fungi. Beer strains of  S. cerevisiae were found to

have a high rate of ploidy variation associated in addition to aneuploidy, but there was no

evidence of worldwide spread of autotetraploids  [12,50]. A change in chromosomal copy

number  is  often  observed  in  yeast  whenever  they  adapt  to  new,  stressful  environments

[44,54,55].  However,  several  studies  showed  genome  instability  in  yeast  polyploids.

Chromosome loss, aneuploid mis-segregation event,  chromosome translocation,  and large

chromosome  rearrangement  all  occurred  during  the  evolution  of  yeast  polyploids  [44].

Experimental evolution results showed that tetraploid ancestors converged into diploids in

1800 mitotic generations [56,57]. Here we found that the vast majority of commercial yeasts

are autotetraploid as are also some strains isolated from sourdough. Bakery autotetraploids

are in reproductive isolation with diploids and thus represent a new species (Albertin et al.

2009).  The  high  proportion  of  tetraploids  among  commercial  strains  as  well  as  the

association  of  tetraploids  with  shorter  fermentation  latency phase  suggest  that  deliberate

artificial selection by industrial yeast geneticists could be at the origin of tetraploid bakery

strains  and  that  worldwide  industrial  distribution  of  these  selected  strains  might  have

disseminated tetraploids in bakery environments. The high level of aneuploidy observed in

bakery strains could result from the known instability of tetraploid genomes. 

The domestication of sourdough strains was associated with an increase in copy number of

the  maltose  and  isomaltose  transporter  (permease)  and  maltase,  isomaltase  transcription

regulator encoding genes.  While CNVs are generally deleterious, they also appear to be a

key mechanism that can enable adaptation during an episode of stringent selection. CNVs

are widespread in domesticated plant and animal species  [58] as well as in domesticated

yeast populations (Legras and Sicard,  2011; Steensels et  al.  2018).  Because maltose and

isomaltose are released through amylolytic starch breakdown, they represent an important

carbon source in dough and may directly be linked to fermentation performance (duration

and CO2 production).  Therefore,  natural  selection  in  sourdough as  well  as  unintentional
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selection by bakers for increased fermentation rate may both have selected for strains having

an increased copy number of genes related to maltose and isomaltose utilization. A slight but

significant  geographic  structuration  of  the  genetic  diversity  was  found  according  to

sourdough  and  its  country  of  origin  suggesting  an  effect  of  bakery  practices  and

environments. 

Some sourdough strains were found in the commercial  strains”Mixed origin” clade,  and

vice versa, suggesting that commercial starters may disseminate in natural sourdoughs. Some

bakers  may indeed add commercial  starter  to  their  sourdough or  may contaminate  their

sourdough by using commercial yeast in the bakery house for making other bakery products

such as pastries.  Admixture between these two clades was also detected, suggesting gene

flow occurrence between commercial and sourdough strains. 

Bakery strains have been hypothesized to be genetically related to beer strains (Legras et al.

2007, Gallone et al. 2016). In the XVIIth century, baker’s yeast was reportedly provided by

brewers  [4].  Yet,  although beer  strains were found in seven clades  out of the 26 clades

structuring the 1,011 S. cerevisiae worldwide strain collection  [12], only two of these clades

also  contained  bakery’s  strains.  First,  the  African  beer  clade  contains  sourdough strains

isolated from maize dough coming from Ghana, suggesting that the same strains are used

both to ferment maize dough and to brew beer. Second, the ”Mixed origin” clade contains

beer strains, commercial  bakery strains from all  over the world, a few sourdough strains

from Belgium and France as well as strains from diverse other habitats (fruits, soil, water,

humans,  …). None of the bakery strains clustered with the “Ale beer” clades.  However,

some introgression from the Ale beer clade was detected in ten out of the 36 bakery strains

of the ”Mixed origin” clade indicating the presence of some gene flow between “Ale beer”

and bakery strains. This clade mostly contained commercial strains suggesting that some Ale

beer strains have been used as progenitors in the industrial breeding of bakery strains.

A previous study also proposed that bakery strains could originate from a tetraploidization

event between ale beer and wine strains [16]. Moreover, a recent study found that ale beer

strains were derived from admixture between populations closely related to European grape

wine strains and Asian rice wine strains  [59]. Here, all bakery strains but  three clustered

separately  from  the  well-defined  wine  and  sake  lineages,  clearly  suggesting  a  distinct

evolutionary history. The admixture analysis provided no evidence of gene flow between

bakery and sake strains.  However,  there was evidence  of  small  introgression from wine

populations and from “Asian fermentation” populations. Interestingly, sign of introgression

from  wine  populations  were  found  both  in  sourdough  and  commercial  strains  while

introgressions  from  “Asian  fermentation”  populations  were  detected  only  in  sourdough

strains  (Figure 4). Artisanal bakers often experiment other fermentation processes, among

which “Asian fermentation”, which may explain this finding. 

Sourdough is a human-made habitat. One may consider that any yeast population originating
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from sourdough is  domesticated  since  this  environment  would  not  exist  without  human

intervention. Alternatively, one may consider that sourdough yeast populations can only be

considered domesticated if some human selection has indeed occurred. Here, we provided

evidence that sourdough strains are not only present in their environment by chance or by

recurrent  introduction  but  have  been selected  for  better  fermentation  performance.  They

compared to commercial strains in terms of maximum CO2 production rate but reached a

higher population size at the end of fermentation. These results suggested that sourdough

strains  are  better  adapted  to  a  sourdough  environment  and  provided  interesting  genetic

resources for improving sourdough bread making process. 

In  summary,  our  study  revealed  that  bakery  strains  have  undergone  at  least  two  main

domestication trajectories that mobilized different genetic events (tetraploidization, CNV),

and selection  targets  (shortened  latency  phase of  fermentation  in  industry,  adaptation  to

maltose utilization and sourdough environment in artisanal bakery). We also showed that

dispersion and gene flow is an important driver of bakery strains evolution and that different

sources of introgression have occurred in sourdough and commercial strains (respectively

“Asian” and “Ale beer” sources). Overall, this is the first time that the analysis of fungal

domestication  revealed  that  artisanal  and  industrial  domestication  led  to  divergent

populations.  This demonstrates the need of conserving different fermentation practices to

maintain microbial genetic diversity.
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Materials and Methods 

Yeast collection and cultivation procedure 

The collection  of  strains  analysed  is  presented  on  Tables S1, S5,  S8.  One hundred and

twenty-nine  strains  were  collected  from  sourdoughs  in  France  as  previously  described

[42,60]. Twenty sourdough strains from Belgium isolated by [61] were kindly provided by

the Belgium MUCL collection. Finally, 47 sourdough strains isolated by [62] in Italy were

kindly  provided  by  Fabio  Minervini  through  the  University  of  Perugia  yeast  collection

(Minervini et al. 2012) and two sourdough strains from Sicily were kindly provided by Jean-

Luc Legras  [19]. Thirty-one commercial strains were ordered from different international

yeast collection or bought as starters. 

Cultures were performed in 10 mL of liquid YE medium and were inoculated with yeast

cells  either  from frozen stocks  (stored at  -80 °C) or  by picking a  single  colony from a

previous culture plate. 

Ploidy analysis by flow cytometry 

Strain ploidy was analyzed by flow cytometry.  Namely,  107 yeast cells, recovered at the

beginning of stationary phase, were fixed in 70% ethanol for 16 h at 4 °C. They were washed

with 200 μL sodium citrate buffer (50 mM, pH 7) and then dispersed in 1 mL of the sameL sodium citrate buffer (50 mM, pH 7) and then dispersed in 1 mL of the same

buffer. 100 μL sodium citrate buffer (50 mM, pH 7) and then dispersed in 1 mL of the sameL of cell  suspension were transferred to a microtube and treated with 1 μL sodium citrate buffer (50 mM, pH 7) and then dispersed in 1 mL of the sameL

RNAse A (100 mg/mL) for 2 h at 37 °C. Labelling was performed by addition of 400 μL sodium citrate buffer (50 mM, pH 7) and then dispersed in 1 mL of the sameL of

a staining solution (50 μL sodium citrate buffer (50 mM, pH 7) and then dispersed in 1 mL of the sameg/mL propidium iodide in citrate buffer), and incubating for 40 min

at 20 °C in the dark. Cells were recovered by centrifugation and resuspended in 500 μL sodium citrate buffer (50 mM, pH 7) and then dispersed in 1 mL of the sameL

citrate buffer. 

Flow cytometry analysis of 30,000 cells was carried out using the MACSQuant® Analyzer

from  Miltenyi  Biotec  GmbH  (Germany)  and  the  data  analysis  by  the  MACSQuant®

software.  A haploid  strain  (S288C)  and a  tetraploid  strain (Levante;  (W.  Albertin  et  al.

2009)) were used as calibration controls. 

Fitness and fermentation analysis

GFP labelling

To study the impact of ploidy and strain origin (sourdough/commercial)  on fitness, three

diploid  and  three  tetraploid  strains  were  tagged  with  GFP.  The  pFA6a-TEF2Pr-eGFP-

ADH1-NATMX4 plasmid [63] was used as a template to amplify a cassette containing the
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TEF2 promoter, eGFP, ADH1 terminator and NATMX4 conferring resistance to clonNat.

The  PCR  fragment  obtained  with  primers  GFPNATMXtoHO-for  (5’-

GCTATTGAGTAAGTTCGATCCGTTTGGCGTCTTTTGGGGTGTAACGCCAAGATCTGTTTAGCTTGC

CTTGTC-3’)  and  GFPNATMXtoHO-rev  (5’-GAGGCCCGCGGACAGCATCAAACTGTAAGATTC

CGCCACATTTTATACACTCATGAATTCGAGCTCGTTGTC-3) was inserted into the HO locus of

the selected strains. All S. cerevisiae strains used here are listed in Table S3. The fitness and

fermentation cost of carrying the GFP construction was assessed by competing the GFP-

labelled and its unlabelled ancestral strain, as well as by comparing fermentation kinetics of

these two strains. Relative fitness of the GFP-labelled strain relative to the unlabelled one

was not significantly different from 1 (One-sample t-test, two-sided, Table S4) and neither

did GFP labelling change fermentation kinetics parameters (ANOVA, Table S4).

Competition and Fermentation conditions

Competition  between GFP-labelled  and unlabeled  strains  and single  strain  fermentations

kinetics were performed in a sourdough synthetic medium (SSM) that was adapted from [64]

to better mimic the average composition of sourdoughs. The SSM contained, per liter: wheat

peptone, 24 g; MgSO4.7H20, 0.2 g; MnSO4.H2O, 0.05 g; KH2PO4, 4 g; K2HPO4, 4 g; Tween

80,  1  mL;  glucose,  15  g;  maltose,  35  g;  cobalamine,  0.2  mg;  folic  acid,  0.2  mg;

nicotinamide, 0.2 mg; pantothenic acid, 0.2 mg; pyridoxal-phosphate, 0.2 mg and thiamine,

0.2 mg. The pH was adjusted to 4.5 with citric acid and the solution was sterilized by steam

pasteurization  for  15  min.  Sterile-filtered  vitamin  and  sugar  solutions  were  added  after

pasteurization.  Overnight  pre-cultures  in  YPD  were  titrated  with  a  C6  flow  cytometer

(Accuri, BD Biosciences). For competition experiments, 5.105 cells/mL of each strain were

then inoculated in 15 mL SSM medium. For single strain analysis of fermentation kinetics,

106 cells/mL of pre-culture were inoculated in 15 mL SSM media. 

Fermentations were carried out at 24 °C with constant magnetic stirring (300 rpm) in 20 mL

glass tubes closed with a filter tip to allow release of CO2. Fermentations were monitored

during 24 h for CO2 release, by measuring weight loss every 40 min using an automated

robotic system [65]. 

At the end of fermentation, cultures were centrifuged and pellets were resuspended in PBS

for flow cytometry analysis (C6 cytometer, Accuri, BD Biosciences). Population size and

cell viability were determined as described in [66].  Relative fitness of tetraploid vs diploid

strains was estimated based on the proportion of GFP-labelled vs unlabelled strains in mixed

cultures. GFP fluorescence (excitation 488 nm, emission 530 nm) was collected in the FL1

channel.

Statistical analysis

All competition and single strain fermentation were carried out with 3 or 4 replicates.
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Relative fitness was calculated as

w=

ln(
Af
Ai

)

ln(
Bf
Bi

)

where w is fitness, A and B are the population sizes of the two competitors, while subscripts

i and f indicate the initial and final time point (24h) of the competition kinetics  [67].  To

statistically  compare  the  fitness  of  tetraploids  and diploids,  the  mean  relative  fitness  of

tetraploids  relative  to  diploids  was  compared  to  1  using  a  one-sample  t-test,  two-sided

(Table S4). 

To  test  the  effect  of  ploidy  and  strain  origin  (commercial/sourdough)  on  fermentation

kinetics,  the  cumulative  CO2 production  curve  was  calculated  and  the  kinetics  of  CO2

production  rate  over  time  was  estimated.  Four  parameters  were  then  estimated:  the

maximum  CO2 release  (g),  the  fermentation  latency-phase  time  (h)  (time  between

inoculation  and the  beginning  of  the  fermentation  calculated  as  1g  of  CO2 release),  the

maximum CO2 production rate Vmax (g/L/h) and the time of the maximum CO2 production

rate. The effect of ploidy and strain origin was tested for each kinetic parameter using the

following linear model:  Y ijk=μ + ploidyi+origin j+ ploidy x originij+ε ijk ,  where Yijk is the

kinetics parameter variable,  ai is the fixed ploidy effect,  bj the fixed origin effect,  gij the

interaction effect and εijk the residual error. 

To test the “habitat of origin” effect (sourdough/commercial/other) on fermentation kinetics,

the  same  four  kinetics  parameters  were  estimated.  The  number  of  cells  after  27h  of

fermentation was also analyzed as a proxy of absolute fitness. The following mixed linear

model  was  used  Y ijk=μ +Bloci+Strain j+origink+ε ijk ,  where  Yijk is  the  fermentation

kinetics or population size variable, Bloci is the random bloc effect, Strainj the random strain

effect,  origink the habitat of origin fixed effect and εijk the residual error. Tukey tests were

used to compare pair of means.

Genomic DNA extraction 

Cells from an overnight culture were recovered by centrifugation of 5 mL of culture medium

at 4500 rpm for 3 min. The yeast pellet was suspended in a sorbitol solution containing 20

μL sodium citrate buffer (50 mM, pH 7) and then dispersed in 1 mL of the sameL Zymolyase  20T (1 mg/mL).  Cell  wall  lysis  was performed  at  37 °C for  1  h.  DNA

extraction was carried out using the DNAeasy Blood & Tissue Kit (Qiagen). 

Microsatellite typing and analysis 

In  order  to  study  the  genetic  diversity  of  diploid  and  tetraploid,  15  microsatellites  loci

previously described in [68] were used: C3, C4, C5, C6, C8, C9, C11, ScAAT1, ScAAT3,
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SCYOR267C, YKL172w,  YKR072c, YLL049, YLR,  YPL009c. Multiplexing was used in

order to amplify 4 or 5 microsatellites per PCR run, with two distinct markings, one at 700

nm and the second at 800 nm. Once amplified, amplicons were diluted 1/20 in formamide,

denatured  for  5  minutes  at  85 °C,  then  separated  by  electrophoresis  on  a  13  %

polyacrylamide gel containing 39 % urea in 1.2X TBE buffer at 2000 V for 15 h (50 °C) on

an automatic sequencer. 

Analyses  of  microsatellite  data  were  performed  using  Poppr  version  2.8.2  [69].  A

microsatellite  genetic  relatedness  tree  was  constructed  based  on  the  Ritland  relatedness

coefficient  [51].  Analysis  of  Molecular  Variance  (AMOVA)  was  used  as  a  method  of

estimating population differentiation (Excoffier, Smouse, et Quattro 1992).

Genome sequencing and read processing 

Genome  sequencing  data  were  obtained  for  68  yeast  strains  from  numerous  sources

according to  Table S2. For the present study, 17 yeast genomes were newly sequenced in

our laboratory: DNA samples were processed to generate libraries of short 400-bp inserts.

After passing quality control, the libraries were sequenced using an Illumina HiSeq 2000

platform. Sequencing from both ends generated paired-end reads of 2 x 100 bp, resulting in

an  average  sequencing  depth  of  100X.  This  dataset  was  deposited  in  the  European

Nucleotide  Archive  (ENA)  under  study  accessions  PRJEB36058.  Trimming  low quality

regions and adapters in Illumina data was performed using Trimmomatic version 0.322 [70]

with  sequencing  parameters:  ILLUMINACLIP:adapterFile:2:30:7,  LEADING:20,

TRAILING:20, SLIDINGWINDOW:20:25, MINLEN:75. 

Variant calling 

We used the Genome Analysis Toolkit (GATK) [71] version 3.6 for SNP and indel calling.

Briefly, the workflow is divided into four sequential steps: initial mapping, refinement of the

initial  reads,  multi-sample  indel  and  SNP  calling,  and  finally  variant  quality  score

recalibration. 

First,  reads  were  aligned  to  the  S288c  reference  genome  (release  number  R64-1-1,

downloaded from SGD) using BWA version 0.7.12 [72] resulting in aligned reads in a BAM

file format. 

Second, optical  and PCR duplicates were removed using MarkDuplicate  from the Picard

Tools  version  2.6.0  (http://picard.sourceforge.net).  Base  quality  scores  were  recalibrated

using BaseRecalibrator/PrintReads (GATK). These recalibrated scores in the output BAM

file are closer to their actual probability of mismatching to the reference genome, and are

subsequently more accurate. Moreover, the recalibration tool attempts to correct for variation

in quality with machine cycle and sequence context. At the end of this step we obtained
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analysis-ready reads. 

Third,  we  performed  SNP and  indel  discovery  using  HaplotypeCaller  (GATK)  on each

sample separately in  BP_RESOLUTION mode, to produce an intermediate file format termed

GVCF  (for  Genomic  VCF).  These  per-sample  GVCFs  were  then  run  through  a  joint

genotyping  step  using  GenotypeGVCFs  (GATK)  to  produce  a  raw  multi-sample  VCF

callset. 

Fourth,  we used Variant  Quality  Score Recalibration  (VQSR) to build an adaptive  error

model (VariantRecalibrator tool) using an unpublished dataset of known SNPs and Indels

obtained from 86 genomes [19]. Then this model was applied (ApplyRecalibration tool) to

estimate the probability that each variant in the callset is a true genetic variant or a machine /

alignment artifact. This step assigns a VQSLOD score to each variant that is much more

reliable than the raw QUAL score calculated by the caller. We used this variant quality score

to filter the raw call set, thus producing a subset of calls with our desired level of quality,

fine-tuned to balance specificity and sensitivity. This genotyping pipeline resulted in VCF

file containing 302,290 biallelic SNPs and 21,045 indels discovered across 68 samples to

which were associated a genotyping quality for each strain. 

Population structure 

The set 302,290 biallelic SNPs sites identified above was further filtered by removing SNPs

with missing genotypes above 0.10, minimum alternate allele frequency (MAF) below 0.03

and SNPs in linkage-disequilibrium using PLINK [73] version 1.9-beta3j with a window size

of 50 SNPs, a step of 5 SNPs at a time and a r2 threshold of 0.5. The resulting filtered dataset

contained 32,379 SNPs positions. 

Twenty independent runs of fastStructure version 1.0 [74] were performed varying ancestral

population from 1 to 10 using the simple prior. The number of iterations varied from 10 (K =

1)  to  70  (K  =  10).  The  highest  likelihood  was  obtained  for  the  solution  at  6  ancestral

populations  (likelihood:  -0.75599;  total  iterations:  30).  CLUMPAK  [75] was  used  for

analyzing the result of multiple independent runs of fastStructure. CLUMPAK identifies an

optimal  alignment  of  inferred  clusters  across  different  values  of  K,  simplifying  the

comparison of clustering results  across different  K values.  Structure plots  were obtained

using the interactive web application Structure Plot [76]. 

Structuration was also studied using discriminant analysis of principal components (DAPC)

[77] a multivariate method designed to identify clusters of genetically related individuals.

This analysis was performed using the R package adegenet version 2.1.1 [78].  DAPC was

performed (function dapc) using clusters defined by K-means where we specified a number

of clusters from 4 to 7. 
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Phylogenetic tree imputation 

The set of 302,290 biallelic SNPs sites was filtered by removing SNPs at  positions with

missing genotypes above 0.10 and minimum alternate allele frequency (MAF) below 0.10.

The resulting filtered dataset containd 99,128 SNPs positions. The VCF file was converted

into Fasta sequences using generate_snp_sequence.R from the R-package SNPhylo [79].

A phylogenetic tree was computed with RAxML version 7.2.8 [80] performing a complete

analysis (ML search + 100 bootstrapping) using the GTRGAMMA evolution model. 

For the microsatellite typing obtained from 229 baker yeasts, Ritland relatedness coefficient

[51] was estimated using PolyRelatedness, a software able to estimating pairwise relatedness

between  individuals  with  different  levels  of  ploidy  [81].  A  neighbor  joining  tree  was

obtained using the nj function from the ape R package.

Analysis across the 1,011 genomes data

A genotyping matrix was constructed with the GenotypeGVCFs function of GATK that was

run with 1,011 gvcf files constructed in [12] as well as the 26 bakery strains gvcf files that

were not  included in this  previous study (17 newly sequenced diploid sourdough strains

genomes and a 9 previously sequenced bakery strains). This extended the dataset to a total of

68 bakery yeast genomes. 

The neighbor-joining tree was constructed with the R packages ape and SNPrelate. The gvcf

matrix was first converted into a gds file and individual dissimilarities were estimated for

each pair of individuals with the snpgdsDiss function. The bionj algorithm was then run on

the distance matrix that was obtained.

A set of 552,093 biallelic SNPs was obtained from the gvcf matrix  selecting 157 genomes

(including 68 bakery strains; Table S6). SNPs were further filtered by removing SNPs with

missing genotypes above 0.10, minimum alternate allele frequency (MAF) below 0.03 and

SNPs in linkage-disequilibrium using PLINK version 1.9-beta3j with a window size of 50

SNPs, a step of 5 SNPs at  a time and r2 threshold of 0.5.  The resulting filtered  dataset

contains 49,482 SNPs positions. Twenty independent runs of Admixture version 1.3.0 [82]

were performed varying ancestral population from 2 to 20. The value of K = 17 exhibited the

lowest  cross-validation  error  compared  to  other  K  values.  CLUMP  [83] was  used  for

analysis the results of multiple independent runs of Admixture. Structure plots were obtained

using the interactive web application Structure Plot [76].

To evaluate the bakery strains admixture, we also used the TreeMix algorithm [45], which

builds population trees and tests for the presence of gene flow between populations.  We

estimated  a  maximum-likelihood  tree  (Figure S2)  rooted  using  the  China  population

(CHNV), the likely ancestral population of S. cerevisiae [13]. To test for gene flow, we used

the three-population f3 test [84] as suggested by [45].
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Figures

Figure 1:  Effect of ploidy on fitness. A diploid and a tetraploid strains were cultivated in

competition and relative fitness of 4N over 2N was computed after 24 h of fermentation in

synthetic sourdough medium. 

Figure 2: Effect of ploidy on fermentation kinetics. Diploids or tetraploids were cultivated

in  synthetic  sourdough  medium  and  CO2 released  was  monitored  by  weight  loss.  Four

parameters  were then estimated:  A,  maximum CO2 release  (g);  B,  fermentation  latency-

phase time (h) (time elapsed between inoculation  and the beginning of  the fermentation

calculated as 1g of CO2 release); C, the maximum CO2 production rate Vmax (g/L/h) and D,

the time of the maximum CO2 production rate (h). 

Figure 3: Population structure obtained from 33,032 biallelic SNPs from 68 bakery strains 

using fastStructure. The vertical axis depicts the fractional representation of resolved 

populations (colors) within each strain (horizontal axis) for K assumed ancestral populations.

K = 6 maximizes the marginal likelihood (-0.756) and best explains the structure.

Figure 4: Maximum likelihood phylogenetic tree obtained from 33,032 biallelic SNPs from 

68 bakery strains using RAxML (evolution model: GTRGAMMA). The most likely tree 

from 100 bootstrap replicates is presented. Groups P1-6 are defined in Figure 1.

Figure 5:  Phylogenetic  tree obtained from SNPs from strains of the  S. cerevisiae 1,011-

genomes project (Peter et al. 2018). 17 newly sequenced diploid sourdough strains genomes

and a representative set of 51 previously sequenced bakery strains extended the dataset to a

total of 68 bakery yeast genomes (Table S5). Groups P1-6 are the same as in Figure 1. The

names of the clades are taken from the 1,011-genomes project as described in [12].

Figure  6:  Population  structure  obtained  from 48,482 biallelic  SNPs  from 157 genomes

(including 68 bakery strains; Table S6) using Admixture software. The vertical axis depicts

the fractional representation of resolved populations (colors) within each strain (horizontal

axis) for K assumed ancestral populations. The value of K = 17 exhibited the lowest cross-

validation error compared to other K values and best explained the structure. Groups P1-6

are defined in  Figure 1. The clades from the 1,011-genome project are those described in

[12].

Figure 7:  Phenotypic variation of fermentation kinetics in a sourdough synthetic medium
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among  sourdough,  commercial  and  non-bakery  strains  (other).  Four  parameters  were

estimated:  the  maximum CO2 release  (g),  the  fermentation  latency-phase  time  (h)  (time

between inoculation and the beginning of the fermentation calculated as 1g of CO2 release),

the  maximum  CO2 production  rate  Vmax  (g/L/h)  and   the  time  of  the  maximum  CO2

production rate. 

Figure 8: NJ tree computed using the Ritland coefficient of relatedness obtained from 

microsatellite typing of the 229 bakery strains. Groups P1-6 are defined in Figure 1. Grey 

stars indicate strains for which a genome sequence was obtained. 

Figure S1: Structure-like plot of the probability of membership obtained from 33,032 

biallelic SNPs from 68 bakery strains using DAPC. Function dapc was used with clusters 

defined by K-means where we specified a number of clusters from 4 to 7. The comparison of

the final assignments of individuals to groups obtained with fastStructure revealed that the 

same genetic groups could be recovered.

Figure S2: Maximum-likelihood tree of genetic relationships among populations. Branch 

lengths are proportional to drift in allele frequencies between populations. The scale with the

standard error (s.e.) was extracted from the sample covariance matrix. The red arrow shows 

a migration event resulting in admixture that passed the significance threshold of the three-

population test (f3).

Figure S3: Relative sequencing depth measured for genes involved in maltose, iso-maltose 

and sucrose assimilation. Data were obtained for strains selected in the ”Mixed origin” clade 

(49 controls and 35 bakery yeasts) and “Mosaic region 3” clade (79 controls and 18 bakery 

yeasts). A, maltose genes cluster MAL1-3; B, maltose genes cluster MAL3-3; C, iso-maltases

genes IMA1-5 and D, invertase gene SUC2. 

Figure S4:  Population  size variation  after  27h of  fermentation  in  a sourdough synthetic

medium among sourdough, commercial and non-bakery strains (other). 
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Table

Table 1: Ploidy variation in studied strains as revealed by fow cytometry and microsatellite 

typing

origin ploidy total

2n 4n aneuploid

commercial 5 21 5 31

sourdough 94 70 34 198

total 99 91 39 229

Table 2: Ploidy variation in sourdough strains isolated from France, Italy and Belgium, as 

revealed by both flow cytometry and microsatellite typing

origin ploidy total

2n 4n aneuploid

France 66 37 26 129

Italy 18 24 7 49

Belgium 10 9 1 20

total 94 70 34 198
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