

The impact of genetic diversity on gene essentiality within the *E. coli* species

François Rousset^{1,2}, José Cabezas Caballero¹, Florence Piastra-Facon¹, Jesús Fernández-Rodríguez³, Olivier Clermont⁴, Erick Denamur^{4,5}, Eduardo P.C. Rocha⁶ & David Bikard^{1,*}

- 1- Synthetic Biology, Department of Microbiology, Institut Pasteur, Paris, France
- 2- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
- 3- Eligo Bioscience, Paris, France
- 4- Université de Paris, IAME, INSERM UMR1137, Paris, France
- 5- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
- 6- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France.

*To whom correspondence should be addressed: david.bikard@pasteur.fr

Abstract

Bacteria from the same species can differ widely in their gene content. In *E. coli*, the set of genes shared by all strains, known as the core genome, represents about half the number of genes present in any strain. While recent advances in bacterial genomics have enabled to unravel genes required for fitness in various experimental conditions at the genome scale, most studies have focused on model strains. As a result, the impact of this genetic diversity on core processes of the bacterial cell largely remains to be investigated. Here, we developed a new CRISPR interference platform for high-throughput gene repression that is compatible with most *E. coli* isolates and closely-related species. We applied it to assess the importance of ~3,400 nearly ubiquitous genes in 3 growth media in 18 representative *E. coli* strains spanning most common phylogroups and lifestyles of the species. Our screens highlighted extensive variations in gene essentiality between strains and conditions. Unlike variations in gene expression level, variations in gene essentiality do not recapitulate the strains' phylogeny. Investigation of the genetic determinants for these variations highlighted the importance of epistatic interactions with mobile genetic elements. In particular, we showed how mobile genetic elements can trigger the essentiality of core genes that are usually nonessential. This study provides new insights into the evolvability of gene essentiality and argues for the importance of studying various isolates from the same species in bacterial genomics.

1 Introduction

2 Essential genes can be defined as genes required for the reproduction of an organism¹. The
3 investigation of gene essentiality is key in bacterial genetics for various reasons: (i) in molecular
4 biology, it reveals the most fundamental processes of living cells; (ii) in medical applications, it
5 informs on potential drug targets²; (iii) in synthetic biology, it contributes to metabolic engineering
6 efforts³ and orients the design of minimal genomes⁴; (iv) in evolutionary biology, it enlightens the
7 gene repertoire of the last universal common ancestor of cellular organisms and provides key
8 phylogenetic markers to establish a tree of Life. Essential genes are thought to be rarely lost because
9 of their essentiality and evolve at a lower rate than other genes^{5,6}, a phenomenon likely linked to
10 their higher expression level⁷. However, previous work showed that closely-related taxa have
11 different essential genes⁸⁻¹⁴. Rapid variations in the essential character of a gene might have
12 outstanding implications for the four points raised above.

13 It is well understood that essential genes depend on growth conditions. Auxotrophic strains
14 lacking genes involved in the synthesis of organic compounds are unable to grow unless the missing
15 compound is available in the medium. The study of single-gene deletion mutant collections such as
16 the Keio collection^{15,16}, and transposon-sequencing methods¹⁷⁻¹⁹ has enabled the determination of
17 genes required for growth in various conditions. However, most studies in *E. coli* were limited to the
18 laboratory-evolved model strain K-12. This strain is not representative of the broad diversity of the *E.*
19 *coli* species which is characterized by an open pangenome with high rates of horizontal gene transfer
20 (HGT)²⁰⁻²². The pangenome of *E. coli* comprises a large majority of accessory genes (i.e. not present in
21 all strains) while genes present in more than 99% of isolates represent less than 50% of the average
22 gene content²². This broad genetic diversity results in the adaptation of *E. coli* strains to multiple
23 ecological niches and lifestyles. *E. coli* can be found in the environment as well as in association with
24 humans and animals where it can behave as a gut commensal or as an opportunistic intestinal and
25 extra-intestinal pathogen²³. This highlights the importance of studying gene essentiality beyond the
26 strain K-12²⁴. A few studies have used transposon-based methods to determine the genetic
27 requirements of clinical *E. coli* isolates for *in vitro* growth or colonization of animal models²⁵⁻²⁹. This
28 showed that clinical strains associated with different pathologies require different genes for
29 colonization and virulence. Although these findings represent an important insight into the
30 mechanisms of infection, a direct comparison of growth requirements of *E. coli* strains is still lacking.
31 In particular, the broad genetic diversity of *E. coli* provides the opportunity to assess how the genetic
32 background influences gene essentiality.

33 Several reasons could explain why genetic diversity may impact gene essentiality. A gene that
34 is essential in a strain might be dispensable in another strain if the latter carries a homolog or an
35 analog that performs the same function. In this situation, the pair of genes is known as synthetic
36 lethal. Another example is the situation of prophage repressors and antitoxins³⁰. These horizontally-
37 transferred elements typically belong to the accessory genome and are only essential when the
38 cognate prophage or toxin is also present. However, it is unclear if there are significant variations in
39 the essential character of core genes across the *E. coli* species. A recent investigation of a panel of 9
40 *Pseudomonas aeruginosa* strains showed that gene essentiality indeed varies between strains¹¹, but
41 the underlying mechanisms and the relevance of these findings to other bacterial species remain to
42 be investigated.

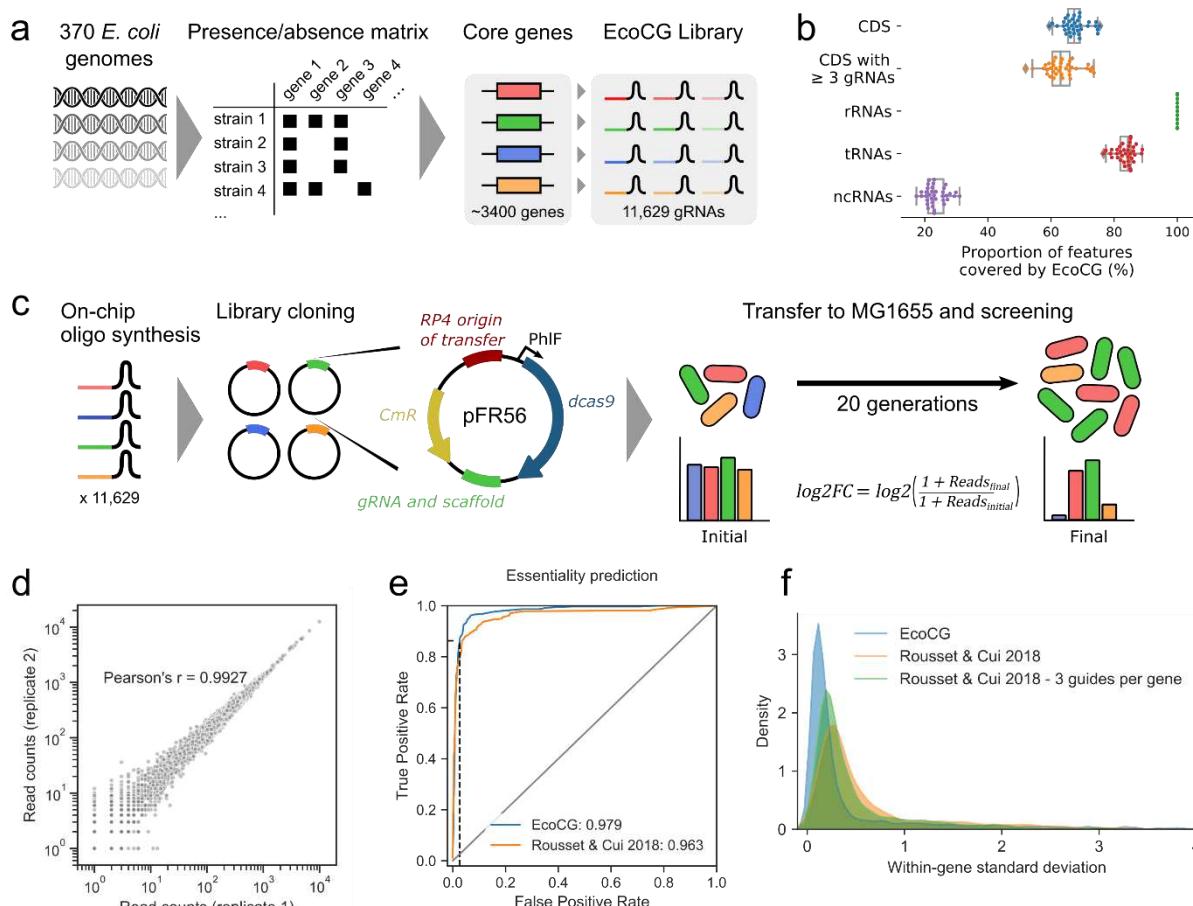
43 To tackle this question, we turned to CRISPR interference (CRISPRi). This method is based on
44 the catalytically-inactivated variant of Cas9, dCas9, which can be directed by a single-guide RNA
45 (sgRNA) to bind a target gene and silence its expression^{31,32}. Genome-wide CRISPRi screens were
46 recently employed in *E. coli*³³⁻³⁵ and in a few other bacterial species^{36,37}. A custom sgRNA library can
47 be designed to target genes of interest and introduced into a pool of cells. The impact of silencing
48 individual genes on cell growth can then be measured by monitoring the fold-change in the
49 abundance of each sgRNA. Here, we first developed an easy-to-use CRISPRi screening platform
50 compatible with most *E. coli* isolates and closely-related species. We then designed a compact sgRNA
51 library targeting the *E. coli* core genome (here taken as genes present in more than 90% of isolates)
52 in order to compare the essentiality of core genes in different genetic backgrounds and growth
53 conditions. Our results reveal how the essentiality of core genes can substantially vary at the strain
54 level. Further investigation of the underlying mechanisms showed that HGT and gene loss events can
55 modulate the essentiality of core genes.

56 Results

57 A broad CRISPRi platform for *Escherichia* and closely-related species.

58 We first designed an easy-to-use single plasmid vector for CRISPRi called pFR56, comprising a
59 constitutively expressed sgRNA, a *dCas9* expression cassette controlled by a DAPG-inducible PhIF
60 promoter and an RP4 origin to enable transfer by conjugation. In order to ensure plasmid stability in
61 most strains, protein-coding sequences from pFR56 were recoded to avoid the restriction sites that
62 are recognized by the most common restriction-modification systems of *E. coli*³⁸. In a previous study,
63 we identified a sequence-specific toxicity of dCas9 in *E. coli*, termed the “bad-seed” effect, which can
64 be alleviated by decreasing dCas9 concentration³³. In order to avoid this toxicity effect, we optimized
65 the dCas9 expression level from pFR56 to maintain a strong on-target repression while ensuring that
66 sgRNAs bearing a bad-seed sequence induce no visible fitness defect (**Supplementary Fig. 1a**). pFR56
67 achieved a high conjugation rate and was stable for >24 generations without antibiotic selection in
68 various strains from species belonging to the *Escherichia*, *Klebsiella* and *Citrobacter* genera
69 (**Supplementary Fig. 1b-c**). We tested dCas9-mediated repression with a sgRNA targeting the
70 essential gene *rpsL* in these strains. In all of them, induction of dCas9 expression strongly inhibited
71 growth. (**Supplementary Fig. 1d**). This demonstrates the usefulness of our CRISPRi system in a broad
72 range of *E. coli* isolates and in closely related species.

73 A compact sgRNA library targeting ~3,400 nearly-ubiquitous genes from *E. coli*


74 While most studies of *E. coli* rely on lab-evolved derivatives of strain K-12, we aimed at
75 investigating gene essentiality in the *E. coli* species as a whole. The size of the pangenome makes it
76 impossible to target all genes from the species. Instead, focusing on persistent genes enables a direct
77 comparison of the same genes under different genetic backgrounds. We analyzed 370 complete *E.*
78 *coli* genome sequences and identified 3380 protein-coding genes present in > 90 % of genomes (**Fig.**
79 **1a**). We then selected 3-4 sgRNAs per gene following rules designed to favor targets that are
80 conserved across strains while minimizing off-target activity and avoiding toxic seed sequences³³ (**see**
81 **Methods**). We also used a model of dCas9 on-target activity to select the most active guides³⁹. Our
82 library also includes guides targeting rRNAs, tRNAs and widespread ncRNAs. The resulting *E. coli* core

83 genome (EcoCG) library comprises 11,629 sgRNAs targeting ~60 to 80% of the protein-coding genes
84 of any *E. coli* strain as well as 100% of rRNAs, 75-85% of tRNAs and 15-25% of annotated ncRNAs (**Fig.**
85 **1b**). The EcoCG library was cloned into pFR56 and transferred to K-12 MG1655 by conjugation in
86 order to evaluate its performance in the prediction of essential genes. The library was grown in LB
87 supplemented with DAPG to induce dCas9 and re-diluted twice to achieve 20 generations of growth.
88 The pFR56 plasmid was extracted at the beginning and at the end of the experiment followed by
89 sequencing of the library to monitor changes in the frequency of each sgRNA (**Fig. 1c**). Our screen
90 achieved a very high biological reproducibility (Pearson's $r > 0.99$) (**Fig. 1d**). For each sgRNA, we
91 calculated the log2-transformed fold change (log2FC) in sgRNA abundance as a measure of sgRNA
92 effect on cell fitness and the median log2FC value was used to score genes. As expected, most
93 depleted sgRNAs corresponded to known essential genes of K-12 MG1655¹⁷ and our library
94 predicted essential genes better than our previous randomly-designed genome-wide library³⁴ (AUC =
95 0.979 vs 0.963) despite being much smaller (~9 vs 3.4 sgRNAs per gene on average) (**Fig. 1e**). This is
96 partly explained by the improved library design which results in a lower within-gene standard-
97 deviation of the log2FC values (**Fig. 1f**). Overall, this shows the efficiency of our library to predict
98 essential genes with high confidence.

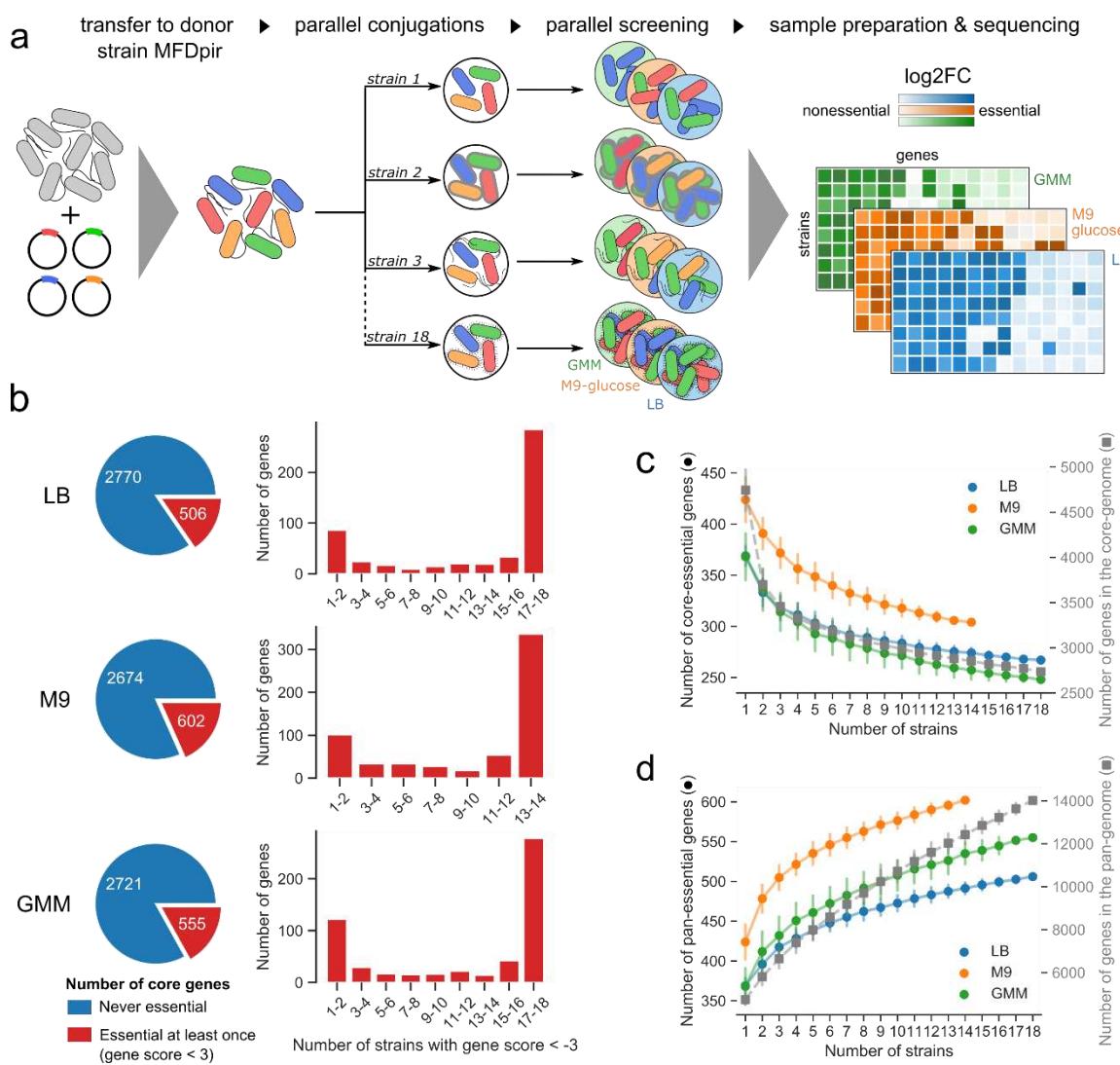
99 **Distribution of gene essentiality in an *E. coli* strain panel**

100 We selected a panel of 18 *E. coli* isolates from a collection of 92 *E. coli* natural isolates
101 spanning most common *E. coli* phylogroups (A, B1, B2, D, E and F) and lifestyles in order to compare
102 the essentiality of their conserved genes (**Supplementary Table 1**, see **Methods**). This panel includes
103 the lab-derived strain K-12 MG1655, environmental isolates (E1114, E1167 and E101), commensals
104 from humans (HS) and other mammals (M114, ROAR8, TA054, TA249, TA280 and TA447), an
105 intestinal pathogen associated with Crohn's disease (41-1Ti9) and extra-intestinal pathogens isolated
106 from blood, lungs, urine and cerebrospinal fluid from humans and poultry (H120, JJ1886, APEC O1,
107 S88, CFT073, UTI89). In order to compare genetic requirements for growth in various experimental
108 contexts, we performed CRISPRi screens with each strain in two biological replicates during aerobic
109 growth in LB or in minimal M9-glucose medium (M9), as well as during anaerobic growth in gut
110 microbiota medium (GMM) (**Supplementary Table 2**, **Fig. 2a**), yielding a total of 100 CRISPRi screens
111 on ~3400 genes (four strains were discarded in M9 due to insufficient growth). After 20 generations
112 with dCas9 induction, cells were collected and the library was sequenced. Biological replicates
113 achieved a very high reproducibility (median Pearson's $r = 0.988$), demonstrating the robustness of
114 the method (**Supplementary Fig. 2a**). For each screen, we calculated the log2-transformed fold-
115 change (log2FC) and the gene score as described above (**Supplementary Tables 3-4**), resulting in a
116 gene-strain scoring matrix for each of the three tested media. In the following analyses, we
117 considered genes with a score lower than -3 as essential in a given strain and condition. This
118 stringent threshold recovers 86.3% of known essential genes from K-12 in LB¹⁷ with a false-positive
119 rate of only 2.7% (**Fig. 1e**), mostly due to expected polar effects³⁴.

120 We first investigated the overall genetic requirements of the *E. coli* species for growth in
121 each medium by considering the median gene score across all strains. We identified 366 essential
122 protein-coding genes in LB, 427 in M9 and 372 in GMM (median gene score < -3). Genes involved in
123 the biosynthesis of amino acids, nucleotides and cofactors are required in M9 due to the absence of
124 these compounds in the medium. This largely explains the higher number of genes required for

125

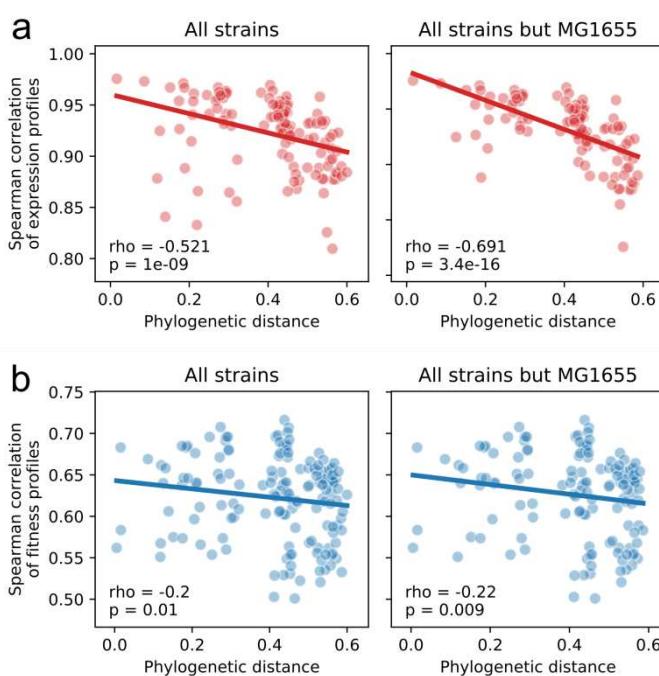
126 **Figure 1 | Robust screening of ~3400 conserved *E. coli* genes with the EcoCG library.** **a**, Starting from 370
 127 complete *E. coli* genomes, a gene presence/absence matrix was computed to deduce 3,380 protein-coding
 128 genes that are present in > 90% *E. coli* strains. For each gene, 3 or 4 sgRNAs were selected based on the
 129 proportion of targeted strains and on the predicted off-target activity, efficiency and bad-seed effect. We also
 130 added sgRNAs targeting rRNAs, tRNAs and widespread ncRNAs (see Methods), yielding the EcoCG library
 131 comprising 11,629 sgRNAs. **b**, The EcoCG library was mapped to the genome of 42 strains. On average, it
 132 targets 67.7% of the protein-coding gene content (with 100% nucleotide identity), and 63.4 % with at least 3
 133 sgRNAs. **c**, The EcoCG library was synthesized and cloned onto pFR56, our single-vector CRISPRi system. The
 134 library was transferred to K-12 MG1655 by conjugation and the abundance of guides in the library was
 135 monitored by deep sequencing before and after 20 generations of growth with dCas9 induction. **d**, The
 136 correlation of experimental replicates suggests an excellent reproducibility. **e**, The $\log_{2}FC$ value was calculated
 137 for each sgRNA and the median $\log_{2}FC$ value was used as a gene score to predict gene essentiality using the
 138 TrAdIS dataset¹⁷ as ground truth. The plot shows the receiver operating characteristic (ROC) curve of the
 139 prediction model. The dashed black line marks the threshold chosen in further analysis (gene score < -3). **f**, For
 140 each gene, the standard-deviation of $\log_{2}FC$ values of the different sgRNAs was calculated for the EcoCG library
 141 and for our previous genome-wide library^{33,34}. In order to account for the difference in library size, we also
 142 calculated for each gene the mean standard-deviation of $\log_{2}FC$ values obtained from all permutations of 3
 143 sgRNAs from our previous library.


144 growth in M9 compared to LB or GMM (**Supplementary Fig. 3a**). Some genes are specifically
 145 nonessential in GMM, in particular genes involved in aerobic respiration (*cydAB*, *cydX*, *cydCD*) and
 146 TCA cycle (*lpd*, *icd*, *acnB*) which are probably attributable to the anaerobic condition of the screen in
 147 GMM (**Supplementary Fig. 3b**). Conversely, some genes are specifically essential in GMM such as the
 148 fermentation gene *adhE* (alcohol dehydrogenase / aldehyde-dehydrogenase) and the ATP synthase
 149 genes. Indeed, in aerobic conditions, the ATP synthase uses the H⁺-gradient to synthetize ATP from
 150 ADP, which is not a strictly essential process since ATP can be obtained from other sources. However,

151 in anaerobic conditions, the ATP synthase hydrolyzes ATP to create the H⁺-gradient required for
152 membrane function⁴⁰. Interestingly, other genes that are specifically essential in GMM include the
153 ribosome assembly factor *bipA*, the alanine racemase I *alr* and components of the Tol/Pal system.
154 Overall, these results better define the most common genetic requirements of *E. coli* across growth
155 media.

156 We then explored how many genes are essential in at least one strain and how frequently
157 these genes are essential (Fig. 2b). We found many more genes that are essential in at least one
158 strain than genes that are essential in all tested strains (506 vs 267 in LB, 602 vs 364 in M9 and 555 vs
159 248 in GMM). Most essential genes are either essential in most strains or in a small number of them.
160 This shows that the essentiality of core genes varies substantially at the strain level. We can
161 tentatively use this data to define a core-essential genome, i.e. genes that are virtually essential in all
162 strains of the species, and a pan-essential genome, i.e. genes that are essential in at least one strain
163 of the species. We performed a rarefaction analysis by computing the core-essential genome and the
164 size of the core- essential genome converge at a similar pace (Fig. 2c). As a result, the fraction of the
165 core genome that is essential in all strains is roughly independent from the number of strains under
166 consideration (e.g. ~9-10% of the core genome in LB) (Supplementary Fig. 4a). The set of core genes
167 that are essential in at least one strain keeps increasing with the addition of new strains (Fig. 2d,
168 Supplementary Fig. 4b), showing that our results probably only reveal a fraction of the existing
169 differences at the species level: when all strains are considered, up to 18.5% of their core genome is
170 essential in at least one strain in LB (21.4% in M9 and 20.3% in GMM). This suggests that a significant
171 part of the nonessential core genome is likely to become essential in certain genetic backgrounds.
172

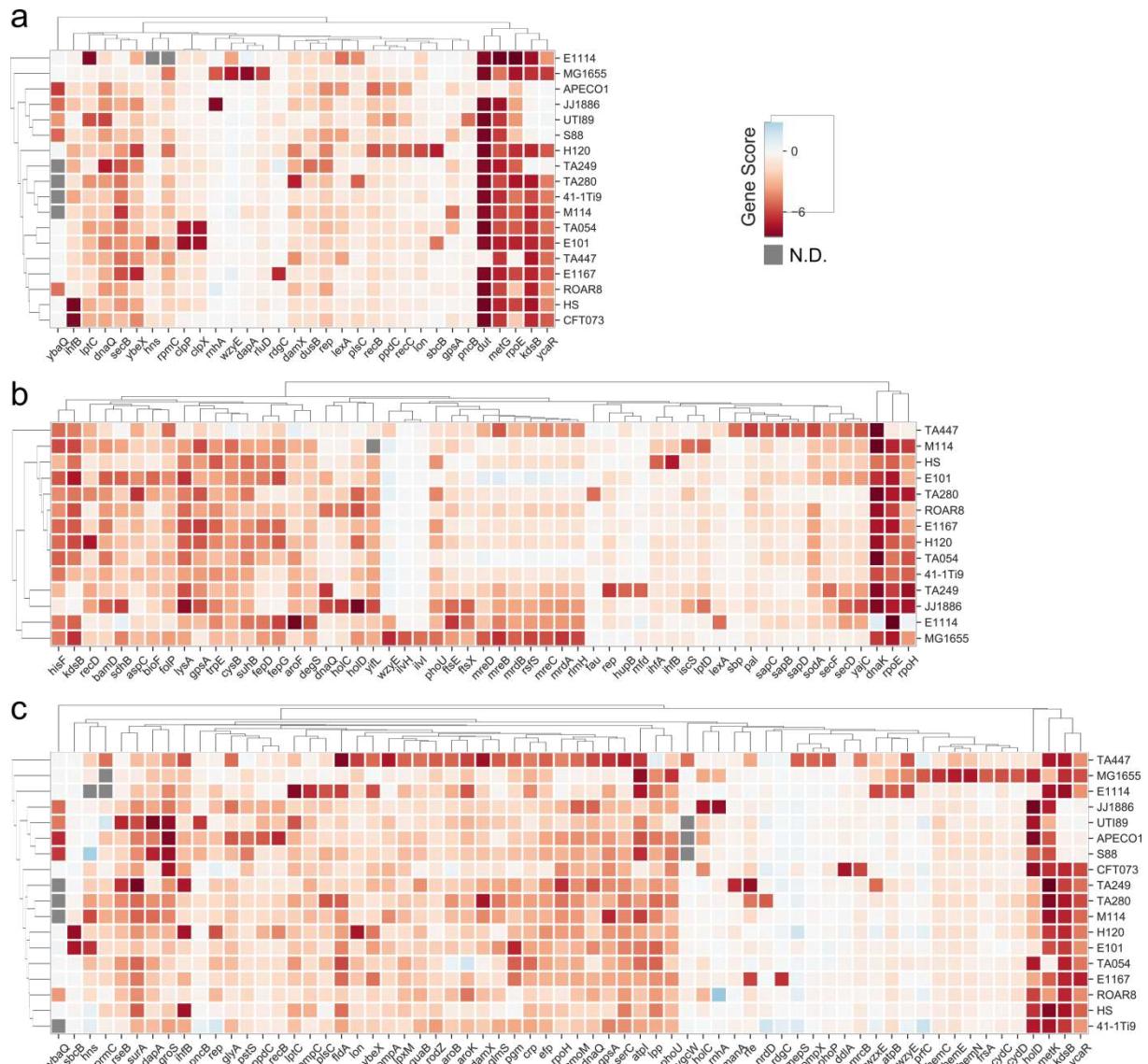
173 **Phylogeny explains differences in gene expression profiles but not in gene
174 essentiality**


175 We then tried to gain insight into the factors shaping these differences. Since gene
176 essentiality has been linked to a higher gene expression level⁴¹, we wondered to what extent changes
177 in gene essentiality are reflected by changes in gene expression level. We generated RNA-sequencing
178 (RNA-seq) data for 16 strains during growth in exponential phase in LB and compared the expression
179 of core genes (Supplementary Table 5, see Methods). As previously observed, expression level and
180 essentiality were correlated, with a higher expression level for essential genes (Supplementary Fig.
181 5a). We wondered whether this was also the case for genes whose essentiality varies, i.e. if a shift in
182 essentiality is associated with a shift in expression. We selected 87 genes that were variably essential
183 between the 16 strains assayed in RNA-seq experiments (see Methods). Considering all strains
184 together, these “variably essential” genes tend to be more expressed than genes that are never
185 essential but less expressed than genes that are always essential (Supplementary Fig. 5b). When
186 considering each “variably essential” gene individually, we found no correlation between CRISPRi
187 fitness and its gene expression level across the 16 strains (Supplementary Fig. 5c). This suggests that
188 a shift in essentiality is not associated with a shift in expression level.

189

190 **Figure 2 | Distribution of fitness defects after CRISPRi screens in 18 *E. coli* strains and 3 media. a**, The MFDpir
191 conjugation strain⁴² was used to transfer the EcoCG library to a panel of 18 *E. coli* isolates. Each strain was then
192 grown for 20 generations with dCas9 induction in aerobic condition in LB and M9-glucose medium and in
193 anaerobic condition in gut microbiota medium (GMM). Log2FC and gene score values were computed (see
194 **Methods**). Only 14 strains were screened in M9-glucose due to poor growth of 4 strains. **b**, For each medium,
195 we selected core genes whose repression induces a fitness defect in at least one strain (gene score < -3) (left)
196 and reported the number of strains where this defect can be seen (right). **(c-d)** Evolution of the number of core
197 genes that are essential in all strains **(c)** or in at least one strain **(d)** as a function of the number of selected
198 strains (circle markers). The error bars indicate the standard-deviation of up to 250 random permutations. The
199 grey dashed curves represent the size of the core genome **(c)** or the size of the pangenome **(d)** (Square
200 markers) with the scale shown on the right.

201 We then investigated the relevance of vertical evolution to the variations in gene expression
202 and essentiality. Strikingly, we observed a strong negative correlation between the phylogenetic
203 distance of pairs of strains and the similarity in their gene expression profile (Spearman's rho = -0.52,
204 p = 10⁻⁹), i.e. closely-related strains have more similar expression profiles (**Fig. 3a**). Interestingly, K-12
205 MG1655 seems to be an outlier and discarding it from this analysis markedly improved the
206 correlation (rho = -0.69, p < 10⁻¹⁵) (**Fig. 3a and Supplementary Fig. 6a**). This is possibly linked to the
207 high number of mutations acquired during laboratory evolution. We then conducted the same
208 analysis with the CRISPRi fitness profiles. In contrast with the gene expression profiles, the
209 correlation between phylogenetic distance and similarity in gene essentiality was very weak and


Figure 3 | Changes in gene expression but not in gene essentiality recapitulate phylogeny. a, RNA-seq data obtained in 16 strains during exponential growth in LB was used to calculate Spearman correlation coefficients of all pairs of gene expression profiles. This showed a strong correlation between the similarity in gene expression and the evolutionary distance of pairs of strains ($\rho = -0.521$, $p = 1.10^{-9}$, $N = 120$) (left). Removing the lab strain MG1655 from this analysis substantially improved this correlation ($\rho = -0.691$, $p < 4.10^{-16}$, $N = 105$) (right). b, Similarly, pairwise Spearman correlation coefficients in gene essentiality were calculated from CRISPRi screens in LB, showing a weak correlation with phylogenetic distance ($\rho = -0.2$, $p = 0.01$, $N = 153$ with MG1655 (left), $\rho = -0.22$, $p = 0.009$, $N = 136$ without (right)).

210 barely significant in LB ($\rho = -0.2$, $p = 0.01$) (Fig. 3b) and was absent in M9 and GMM
211 (Supplementary Fig. 6b-c), regardless of the inclusion of K-12 MG1655. Altogether, this suggests that
212 while changes in the expression level of core genes are strongly linked to vertical inheritance,
213 changes in gene essentiality are not.

214 Homologs rarely provide functional redundancy

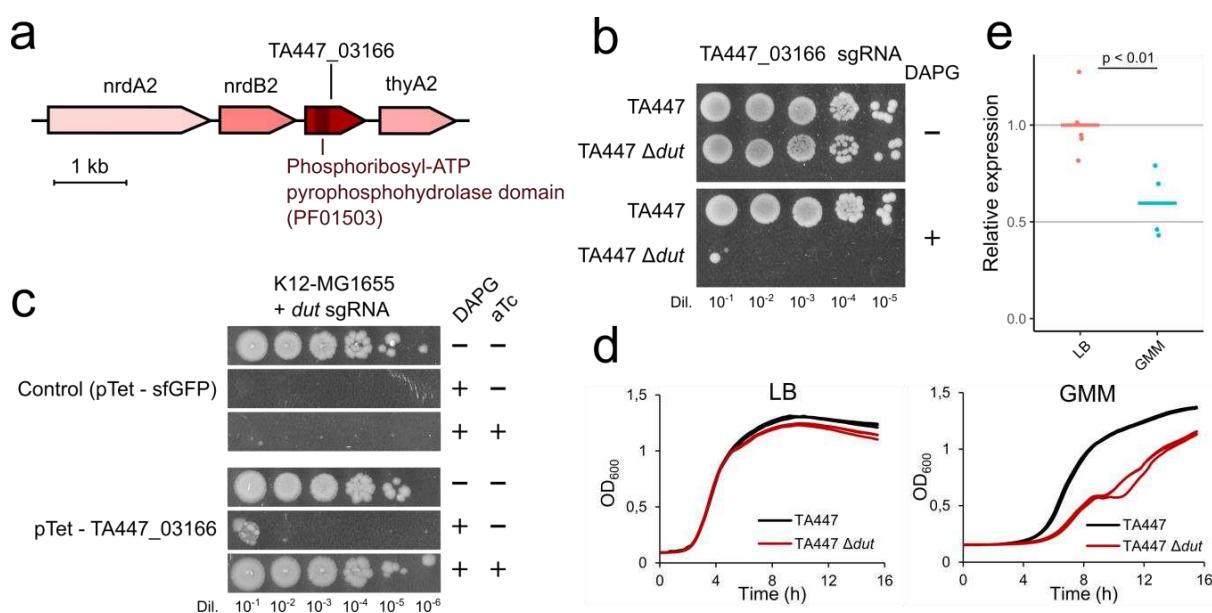
215 In order to investigate the genetic mechanisms that explain the differences in essentiality, we
216 focused on cases where the difference is very strong by selecting genes whose repression induces a
217 strong fitness defect (stringent gene score < -5) in at least one strain, while having no effect (gene
218 score > -1) in at least one strain (see Methods). This resulted in 32 protein-coding genes in LB, 55 in
219 M9 and 66 in GMM which displayed very distinct degrees of essentiality across strains (Fig. 4). We
220 then tried to determine the genetic basis explaining some of these differences.

221 A gene that is essential in a genetic background may be lost in another background without
222 loss of cell viability for several reasons. The loss may be rescued (i) by the presence of a homologous
223 or analogous gene of similar function, (ii) by another system performing the same function, or (iii) by
224 epistatic interactions such as in toxin-antitoxin systems or phage repressor genes. We first
225 investigated whether some of the differences in essentiality could be linked to the presence of
226 functional homologs of essential genes in some strains. Our screens showed that all strains where
227 the *ycaR-kdsB* transcriptional unit (expressing the essential CMP-KDO synthetase KdsB) is dispensable
228 carry another CMP-KDO synthetase gene, *kpsU*, whose product shares 46% of identity with KdsB.
229 Simultaneous repression of both *kdsB* and *kpsU* induced a strong fitness defect in strains that are
230 resistant to *kdsB* knockdown (Supplementary Fig. 7). Interestingly, CFT073 and 41-1Ti9 also carry
231 *kpsU* but remain sensitive to *kdsB* knockdown suggesting that *kpsU* might not be expressed or
232 functional in these strains.

240 We investigated if a similar mechanism could explain the case of *metG* (methionine-tRNA
 241 ligase) which is essential in all strains except APEC O1 (**Fig. 4**). While resequencing the genome of
 242 APEC O1, we observed the presence of an unreported plasmid carrying an almost identical copy of
 243 *metG*. Hence, the gene is not essential in this strain because its loss is compensated by a close
 244 homolog. Interestingly, the same plasmid was also found in one other strain (TA447) where the gene
 245 remains essential. This can likely be explained by the fact that sgRNAs present in the library target
 246 both copies of *metG* in this strain, while in APEC O1 there are single-nucleotide variants between the
 247 two homologs preventing dCas9 from targeting the plasmidic copy of the gene. We could identify
 248 another case of genetic redundancy likely missed by our screen because dCas9 targets both copies of
 249 the gene: strain TA249 carries two copies of *glnS* (glutamine-tRNA ligase) sharing 96.7% of

250 nucleotide identity. Gene duplications are frequent and transient in bacteria such that duplicates are
251 typically identical⁴³. In this context, the ability of dCas9 to silence several copies of a gene means that
252 this duplication phenomenon does not affect the identification of essential genes by our method.

253 We attempted to assess how frequently the existence of homologs makes an essential gene
254 dispensable. Overall, the strains we tested carry 10 to 17 (median = 13.5) homologs (>40% identity)
255 of core genes that are essential in *E. coli* K-12 in LB¹⁷, including 3 to 7 (median = 4) with >60%
256 identity. This shows that homologs of essential genes are relatively frequent. We might therefore
257 expect more cases of essential genes that become nonessential in some strains because of genetic
258 redundancy. However, this seems to be the case only for the genes detailed above. As an example,
259 *nrdA* and *nrdB* remain essential in APEC O1 and TA447 despite the presence of two homologs whose
260 product shares 63% and 60% identity to NrdA and NrdB respectively. RNA-seq data showed that
261 these homologs are poorly expressed in our experimental conditions (< 2% of the expression level of
262 *nrdA* and *nrdB*) which likely explains their inability to make *nrdAB* nonessential. In addition, putative
263 homologs of essential genes may not be functionally redundant since sequence homology does not
264 necessarily imply functional redundancy⁴⁴. Altogether, our data shows that with a few exceptions
265 documented here, the presence of a homolog does not provide functional redundancy.


266 **Functional redundancy provided by a non-homologous gene**

267 A gene may also become non-essential because of the acquisition of genes of analogous
268 function by HGT. The product of *dut* (dUTPase) hydrolyses dUTP into dUMP in order to avoid its
269 incorporation into DNA⁴⁵. This gene is essential except in APEC O1 and TA447 (Fig. 4), but we did not
270 find any sequence homolog of Dut in these two genomes. We successfully built a TA447Δ*dut* strain
271 and verified the absence of compensatory mutations, confirming that *dut* is indeed nonessential in
272 this strain. Further investigation showed that the plasmid that is shared between APEC O1 and TA447
273 contains nucleotide biosynthesis genes (Fig. 5a). In particular, a hypothetical protein (TA447_03166,
274 accession : WP_085453089.1) that is present in ~2.6% of available *Escherichia* genomes has an ATP-
275 pyrophosphohydrolase-like domain and shows structural homology to a MazG-like protein from
276 *Deinococcus radiodurans* and other NTP-pyrophosphatases. This gene became essential in TA447
277 when *dut* was deleted (Fig. 5b), and rescued the growth of K-12 MG1655 when *dut* was repressed
278 (Fig. 5c). Interestingly, *dut* repression induced a fitness defect in TA447 in GMM (Fig. 5d). We showed
279 that in this medium, TA447_03166 is expressed at only ~60% of its expression level in LB (Fig. 5e),
280 which may be insufficient to complement the loss of *dut*. Taken together, these results show that
281 TA447_03166 is probably able to convert dUTP into dUMP. In this case, compensation is provided by
282 a functional analog sharing no sequence homology with the essential protein and the compensation
283 depends on the level of expression of the analog.

284 **A conserved transcriptional regulator controls the expression of a clade-specific 285 toxin**

286 Elements that are essential because they suppress an accessory toxin or phage are typically
287 found in the accessory genome rather than in the core genome. We could nonetheless identify a
288 conserved antitoxin displaying variable essentiality. It is one of the rare cases of a gene essential in an
289 intermediate number of strains (5/18). *ybaQ* encodes a DNA-binding transcriptional regulator of
290 unknown function. The analysis of the genetic organization and conservation of its locus suggests

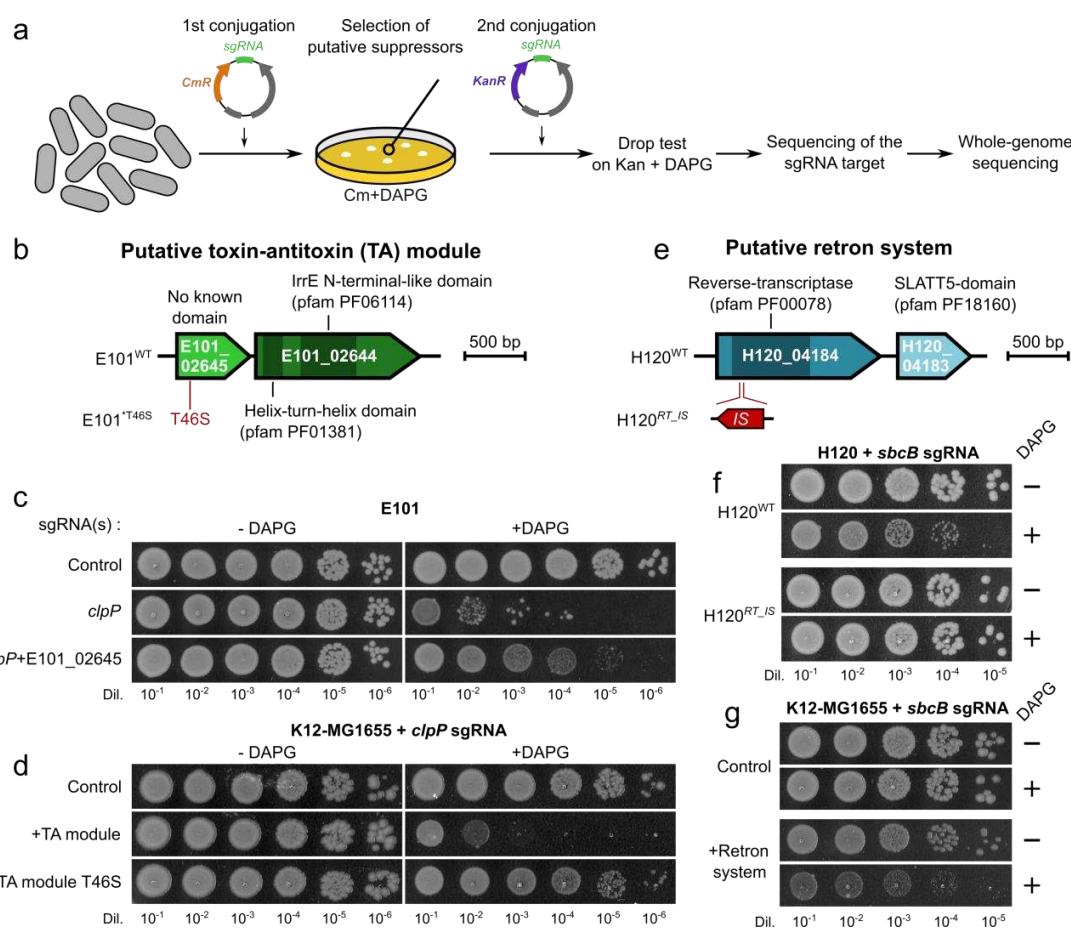
291

292

Figure 5 | A plasmid-borne dUTPase makes *dut* nonessential in strains TA447 and APEC01. **a**, A region encoding nucleotide biosynthesis genes was identified in TA447 and contains a gene encoding a hypothetical protein (TA447_03166) with a Phosphoribosyl-ATP pyrophosphohydrolase domain (pfam 01503). **b**, Drop assay showing that targeting this gene with dCas9 is lethal when *dut* is deleted from TA447. **c**, This protein was cloned and expressed from an aTc-inducible pTet promoter in K12-MG1655. dCas9-mediated silencing of *dut* has no effect when this protein is expressed. **d**, Growth curves were performed in triplicates in LB or GMM with TA447 and TA447 Δ dut. **e**, The relative expression of TA447_03166 was measured in LB and in GMM. The horizontal bars show the mean of 3 biological replicates and 2 technical replicates.

301 that *ybaQ* is essential in strains from phylogroups B2 and F that carry the *higB-1* toxin upstream
 302 *ybaQ*, except in CFT073 where *higB-1* is truncated by a stop codon (**Supplementary Fig. 8a-b**). In
 303 these strains, the promoter of *higB-1* contains the YbaQ binding motif⁴⁶ and we found that *ybaQ*
 304 knockdown strongly overexpresses *higB-1* in the pathogenic strain S88 (**Supplementary Fig. 8c**).
 305 Interestingly, *higB-1* is absent in most phylogroups, including in K-12, while both *higB-1* and *ybaQ*
 306 were lost in the phylogroup D. Taken together, these findings suggest that the main role of *ybaQ* was
 307 originally to control the expression of the *higB-1* toxin which was then lost in some clades. The
 308 conservation of the *ybaQ* antitoxin even in the absence of the cognate toxin suggests that this gene
 309 might have other functions that remain to be investigated.

310 Epistatic mutations can trigger the essentiality of core genes


311 In contrast with *kdsB*, *metG*, *dut* and *ybaQ*, most “variably essential” genes are essential in
 312 very few strains (**Fig. 2b** and **Fig. 4**). This suggests that genes can frequently become essential in a
 313 few genetic backgrounds. Most strains (72%, 13/18) had at least one strain-specific or near-specific
 314 (in ≤ 2 strains) essential gene in at least one medium and K-12 MG1655-specific essential genes were
 315 the most abundant. We first looked for evidence explaining such differences in the literature. For
 316 instance, *rluD* (23S rRNA pseudouridine^{1911/1915/1917} synthase) is known to be essential in K-12 because
 317 of an epistatic interaction with a mutation acquired in *prfB* during laboratory evolution that is absent
 318 in other strains⁴⁷. Other cases of epistatic interactions include the acetohydroxy acid synthase III
 319 (AHAS III) encoded by *ilvHI* in K-12 in M9 medium (**Fig. 4b**). An isozyme encoded by *ilvGM* can
 320 perform the same reaction in other strains but is disrupted in K-12 by a frame-shift, making AHAS III

321 essential. We could expect a similar mechanism in the uropathogenic strain UTI89 regarding *pncB*
322 (nicotinate phosphoribosyltransferase), a gene involved in the biosynthesis of NAD. UTI89 is known
323 to require nicotinamide for growth because of a mutation in *nadB*^{48,49}. This mutation could also make
324 *pncB* essential by epistatic interaction.

325 **Mobile genetic elements can trigger the essentiality of core genes.**

326 In order to better understand why some genes become essential under certain genetic
327 backgrounds, we then set up a pipeline to isolate mutants that suppress strain-specific essentiality.
328 Briefly, we implemented a two-step selection process using CRISPRi vectors with different resistance
329 markers in order to ensure that the selected mutants did not just inactivate the CRISPRi system (**Fig.**
330 **6a, see Methods**). We then sequenced the genome of a few mutants after verifying the absence of
331 mutation in the chromosomal target of the sgRNA which may abrogate repression. In this way, we
332 isolated mutants of the environmental strain E101 that are able to grow with an sgRNA targeting the
333 AAA+ protease *clpP* which is essential in E101 and TA054 (**Fig. 4**). Whole-genome sequencing of 4
334 suppressor mutants revealed that a prophage also present in TA054 was excised in 3/4 clones and
335 that a hypothetical protein (E101_02645, accession: WP_001179380.1) from the same prophage had
336 a non-synonymous (T46S) mutation in the last clone (**Fig. 6b**). This protein has no predicted domain
337 but seems to be the toxic component of a putative toxin-antitoxin (TA) module with the downstream
338 protein E101_02644 (accession: WP_000481765.1) (these proteins respectively share 33% and 42%
339 of identity to the two components of a putative TA module from *Vibrio mimicus*⁵⁰). Targeting
340 E101_02645 with dCas9 partially rescued the toxicity associated with *clpP* repression in E101 (**Fig.**
341 **6c**), while heterologous expression of this system made *clpP* essential in K-12 unless the T46S mutant
342 was expressed (**Fig. 6d**). This confirms that the essentiality of *clpP* in E101 (and probably in TA054) is
343 caused by this putative TA module whose biological role remains to be elucidated.

344 Using the same strategy, we isolated mutants of the uropathogenic strain H120 that can
345 grow in the presence of an sgRNA targeting *lon* (Lon protease) or *sbcB* (exodeoxyribonuclease I).
346 While *sbcB* is essential in H120 and E101, *lon* is essential in H120 only (**Fig. 4**). Similarly to *clpP* in
347 E101, suppressors of *lon* essentiality in H120 had a prophage excised. Two suppressors of *sbcB*
348 essentiality had an insertion element in a protein from the same prophage (H120_04184, accession:
349 WP_000344414.1) that has a reverse-transcriptase domain (pfam 00078) (**Fig. 6e-f**). This gene is
350 believed to be part of a retrorvirus system together with the downstream protein (H120_04183,
351 accession: WP_001352776.1) which contains transmembrane helices and a SLATT domain (pfam
352 18160) that is predicted to function as a pore-forming effector initiating cell suicide⁵¹. Heterologous
353 expression of this system in K-12 induced a fitness defect when *sbcB* was repressed (**Fig. 6g**).
354 Interestingly, a similar system is present in E101 in the same prophage but associated with a different
355 effector protein. We can hypothesize that this system is also responsible for the essentiality of *sbcB*
356 in E101. The mechanism responsible for the observed fitness defect and the interaction between
357 SbcB and this system remain to be elucidated.

358

359 **Figure 6 | Mapping the genetic determinants of strain-specific gene essentiality.** **a**, Suppressor mutants for
360 strain-specific essential genes were isolated by conjugating pFR56 expressing the corresponding sgRNA and
361 selecting transconjugants with chloramphenicol and DAPG to express dCas9. Growing clones were selected and
362 conjugated with a second plasmid with the same sgRNA but with a kanamycin resistance cassette. The
363 resistance to knockdown was verified with a drop assay on kanamycin with DAPG. This ensures that selected
364 clones do not simply carry a mutation in the CRISPRi components. The chromosomal target of the sgRNA was
365 then Sanger-sequenced to verify the absence of mutations abrogating dCas9 binding, before whole-genome
366 sequencing. **b**, Suppressors of *clpP* essentiality in E101 involved a putative toxin-antitoxin module comprising a
367 putative toxin (E101_02645) and its antidote (E101_02644). **c**, Drop assay showing that the toxicity associated
368 with *clpP* repression in E101 is alleviated when E101_02645 is repressed simultaneously. **d**, The putative TA
369 module from E101 WT or from the *clpP* suppressor (harboring the T46S mutation in E101_02645) was
370 transferred to K-12 MG1655. *clpP* knockdown induces a fitness defect with the wild-type TA module but not
371 with the T46S variant. **e**, Suppressors of *sbcB* essentiality in H120 involved a putative retrorviral system encoded by
372 H120_04184 and H120_04183. A suppressor mutant (H120^{RT_IS}) acquired an insertion element (IS) in the
373 putative reverse-transcriptase gene. **f**, Drop assays showing that the mutant is indeed resistant to *sbcB*
374 knockdown. **g**, Once transferred in K12-MG1655, this system induces a fitness defect when *sbcB* is repressed.

375 Finally, we identified suppressors of *rnhA* (RNase HI) essentiality in the ExPEC strain JJ1886.
376 RNase HI cleaves DNA-RNA duplexes and is involved in DNA replication and repair. We found a
377 suppressor of *rnhA* essentiality in JJ1886 that carries a mutation in the *mfd* gene (transcription-repair
378 coupling factor) and an insertion element in the *rnhA* toxin. This toxin is part of the *rnhAB* TA system
379 and shares 72% of identity with the *E. coli* K-12 RnLA toxin where it is carried by the CP4-57 prophage.
380 In K-12, RnLA has an endoribonuclease activity that is activated upon phage infection to trigger the
381 degradation of phage T4 mRNAs⁵². Strikingly in our strain panel, this TA system is only present in

382 JJ1886 and in K-12 MG1655 (with 72% of identity) which are the only strains where *rnhA* is essential
383 (**Fig. 4**). A recent study in K-12 showed that RNase HI is required not only to activate the RnIA toxin
384 during phage infection but also to recruit the antitoxin RnIB in uninfected cells to repress RnIA
385 toxicity⁵³. The toxicity of *rnhA* knockdown in JJ1886 and K-12 MG1655 is therefore probably caused
386 by the activation of RnIA. The other mutation in *mfd* may also be involved in the suppression of *rnhA*
387 essentiality. Taken together, these findings show that the acquisition of genes by HGT can modify the
388 essentiality of core genes.

389 Discussion

390 We developed a new CRISPRi platform that is compatible with most *E. coli* isolates and with
391 closely-related species of Enterobacteria such as *E. albertii*, *E. fergusonii*, *K. pneumoniae* and *C.*
392 *freundii*. One of the main advantages of CRISPRi over previous techniques is the possibility to design
393 custom sgRNA libraries targeting a subset of genes of interest. CRISPRi screens offer the possibility to
394 easily assess the effect of the same perturbations in different genetic backgrounds. We exploited this
395 feature to design the EcoCG library, a compact library targeting *E. coli* genes that are present in >90%
396 of sequenced isolates. This library is smaller than typical transposon libraries by an order of
397 magnitude. This facilitates multiplexing and substantially decreases sequencing costs. In fact, all
398 screening results presented in this study were obtained from a single Illumina NextSeq 500 run,
399 representing a cost of less than 20€ per sample. We used this library in a panel of 18 isolates from
400 various origins and pathogenicity levels to investigate how the genetic diversity of *E. coli* at the strain
401 level influences the essentiality of conserved genes. Our screens highlighted that the essential
402 character of a gene depends on the genetic background and growth condition, extending recent
403 results in bacteria and in yeast^{8-14,18}. The analysis of strains representative of *E. coli* genetic diversity
404 was essential since we found that many phenotypes associated with CRISPRi knockdowns in the
405 model strain K-12 do not translate to other strains.

406 While screening experiments typically focus on laboratory media, the use of a diverse set of
407 growth conditions is crucial to unveil conditional essential genes. Importantly, many genes that are
408 dispensable in rich laboratory medium are required for *in vivo* growth and conversely²⁵⁻²⁹. Growth
409 media that mimic *in vivo* conditions, such as the GMM⁵⁴ used here, are a valuable alternative to *in*
410 *vivo* screening experiments that remain difficult to implement on a large scale with a high number of
411 isolates. A recent study in *P. aeruginosa* showed that combining several isolates and growth
412 conditions can highlight essential genes that are specific from infection types, a useful insight for the
413 design of improved therapies¹¹. Here, the sets of “variably essential” genes were different across
414 growth conditions and were often associated with a broad range of fitness defects. Instead of a
415 binary trait, gene essentiality should be considered as an extreme fitness defect within a range of
416 continuous values associated with gene disruption. Variations in environmental conditions and
417 genetic backgrounds may modulate the fitness defect of a mutant, or even make the mutation
418 neutral. Our screen, by effectively looking at fitness effects, is a powerful tool to query how natural
419 selection is impacted by these two factors.

420 We used this data to define the core-essential and the pan-essential genome of *E. coli*
421 comprising genes that are essential in all strains or in at least one strain respectively. Our screens
422 highlighted that when adding new strains, more core genes are susceptible to be found as essential

423 in at least one isolate. As revealed in Figure 2, this trend does not reach a plateau with 18 strains and
424 additional screens of other strains are likely to reveal novel essential genes. This suggests that we are
425 only scratching the surface of the existing differences in gene essentiality at the species level. Note
426 that here we do not report strain-specific essential genes present in the pangenome such as
427 antitoxins and phage repressors, as by design our sgRNA library only targets core genes. We thus
428 underestimate the size of the pan-essential genome.

429 Differences in gene essentiality correlated poorly with the phylogenetic distance between
430 strains, suggesting that they are not caused by simple processes of vertical evolution and genetic
431 drift. This is in sharp contrast with the strong effect of vertical evolution in the observed variations of
432 gene expression level in our experimental conditions. The investigation of specific differences in gene
433 essentiality revealed three main cases: (i) a few genes such as *kdsB* and *dut* are essential in most
434 strains but dispensable in one or a few strains; (ii) conversely, some genes such as *lon*, *clpP*, *sbcB* and
435 *rnhA* are dispensable in most strains but are essential in one or a few strains; (iii) finally some genes
436 such as *rpoE* show a wide range of fitness defects when repressed. In most of the cases that we
437 investigated, gene loss and accretion by horizontal transfer had a key role in providing genetic
438 backgrounds that explain the observed differences.

439 A gene carrying out an essential function can be dispensable if functional redundancy is
440 provided by another gene. Acquisition or loss of genetic redundancy can thus lead to variations in
441 essentiality. For instance, the inactivation of the core gene *ilvG* in K-12 makes the core operon *ilvHI*
442 essential in minimal medium. This specific event might be linked to the laboratory evolution of strain
443 K-12, as a change in essentiality due to the loss of redundancy between a pair of core genes is likely a
444 rare event. We hypothesized that changes of functional redundancy due to genes of the accessory
445 genome would be more frequent. Homologs of essential genes are indeed common in the accessory
446 genomes of the strains assayed in this work, but we found few cases where this led to changes in
447 essentiality. There are probably several causes for the rarity of effective compensation of an essential
448 gene by a homolog: in several cases, homologs were insufficiently expressed to compensate the loss
449 of the essential gene. In addition, many homologs actually have different molecular functions and are
450 not exchangeable, precluding the compensation of gene loss^{44,55}. The search for functionally-
451 redundant genes is also made harder by the fact that compensation can be provided by non-
452 homologous genes. For instance, we describe here how a MazG-like dUTPase (WP_085453089.1) can
453 make *dut* nonessential. In the few cases detailed here, the accessory genes compensating the loss of
454 an essential gene were acquired in mobile genetic elements. The residence time of mobile elements
455 in the genome is usually short. As a result, the permanent replacement of an essential gene by a
456 functionally-redundant gene could be thought as an unlikely contingency. Yet, cases of non-
457 orthologous gene displacement, i.e. replacement of a key gene by a distant homolog or an analog,
458 are frequent at the macro-evolutionary scale⁵⁶. The functional redundancy provided by incoming
459 mobile elements that we describe here might thus be a first step towards actual gene replacement
460 on a longer evolutionary timescale.

461 Beyond gain and loss of functional redundancy, the essentiality of a function itself might
462 change due to genetic differences between strains. For instance, a mutation in the ribosome release
463 factor 2 encoded by *prfB* in K-12 MG1655 leads to dramatically impaired translation termination in
464 the absence of a modification of the 50S ribosome subunit carried out by the product of *rluD*, making
465 this gene essential⁴⁷. Previous studies also showed that the loss of some essential genes can be

466 compensated by the overexpression of genes carrying a different function^{57,58}. We found here that
467 gene loss and accretion can also modify the essentiality of functions carried in the core genome. The
468 isolation of suppressor mutants of strain-specific essential genes led us to the identification of genes
469 encoded on mobile elements that make genes such as *clpP*, *sbcB*, or *rnhA* essential. Overall, our data
470 shows the ability of some core genes to become essential on a recurrent basis after HGT events, a
471 phenomenon that could favor the evolutionary conservation of these genes despite their
472 dispensability in most conditions. Since this phenomenon is likely linked to the high rate of HGT in *E.*
473 *coli*, we could expect extensive differences in gene essentiality in any species with an open pan-
474 genome.

475 Methods

476 Bacterial cultivation

477 Unless stated otherwise, lysogeny broth (LB) broth was used as a liquid medium and in LB + 1.5 %
478 agar as a solid medium. Kanamycin (Kan) was used at 50 µg / mL, chloramphenicol (Cm) was used at
479 20 µg/mL, erythromycin (Erm) was used at 200 µg/mL and carbenicillin was used at 100 µg / mL. The
480 composition of media used for screening is described in **Supplementary Table 2**. *E. coli* K-12 MG1655
481 was used for cloning and MFDpir was used for plasmid transfer by conjugation⁴².

482 Plasmid construction

483 The dCas9-sgRNA plasmid expression system, pFR56, was derived from plasmid pJF1, a gift from Eligo
484 Bioscience, harbouring a constitutively expressed sgRNA and cas9 under the control of a DAPG-
485 inducible PhlF promoter. This plasmid was recoded to avoid restriction sites in order to ensure
486 plasmid stability in a maximum of *E. coli* strains³⁸. We further modified this plasmid to inactivate Cas9
487 into dCas9 and add the RP4 origin of transfer. Novel sgRNAs can be cloned on pFR56 using Golden
488 Gate assembly⁵⁹ with Bsal restriction sites. The expression level of dCas9 on pFR56 was optimized to
489 avoid the previously reported toxicity effect, known as the bad-seed effect³³. Briefly, we used the RBS
490 calculator⁶⁰ to randomize 4 positions of the dCas9 RBS and cloned the resulting library on the plasmid
491 harboring an sgRNA with a bad-seed sequence (5'-TTGTATCAAACCATCACCCA-3') using the Gibson
492 assembly method⁶¹. Candidate clones that grew normally in the presence of dCas9 induction were
493 selected. In order to select clones that retain a sufficient dCas9 expression level for efficient
494 repression of target genes, an sgRNA targeting the essential gene *rpsL* cloned onto the psgRNACos
495 vector (Addgene accession 114005) was introduced in the selected candidates. We discarded clones
496 that were not killed in the presence of dCas9 induction. Finally the sgRNA was modified to include a
497 *ccdB* counter-selection cassette in between two Bsal restriction sites⁶². This ensures the selection of
498 clones in which a guide was successfully added to the plasmid during library cloning.

499 Library design

500 We retrieved all *E. coli* complete genomes from GenBank Refseq (available in February 2018). We
501 estimated genome similarity calculating the pairwise Mash distance (M) between all genomes using
502 Mash v.2.0⁶³. Importantly, the correlation between the Mash distances (M) and Average Nucleotide
503 Identity (ANI) in the range of 90-100% has been shown to be very strong, with $M \approx 1 - (\text{ANI}/100)$. All
504 the resulting Mash distances between *E. coli* genomes are well below 0.05, in agreement with the
505 assumption that they all belong to the same species. We just removed some genomes that were too
506 similar (MASH distance < 0.0001). In this case, we picked the one present for a longer period of time

507 in the databases. This resulted in a dataset of 370 completely assembled genomes for comparison²².
508 Pan-genomes are the full complement of genes in the species (or dataset, or phylogroup) and were
509 built by clustering homologous proteins into families. We determined the lists of putative homologs
510 between pairs of genomes with MMseqs2 v.3.0⁶⁴ by keeping only hits with at least 80% identity and
511 an alignment covering at least 80% of both proteins. Homologous proteins were then clustered by
512 single-linkage⁶⁵. From the resulting pangenome, we selected 3380 proteins present in more than
513 333/370 genomes (90%) in up to 4 copies per genome.

514 For each gene and strain, all possible sgRNAs were listed by selecting the 20 NGG-proximal
515 nucleotides on the coding strand. In order to avoid sgRNAs targeting regions with single-nucleotide
516 variants, a first pre-selection step was performed for each gene in order to select up to 12 sgRNAs
517 based on the number of targeted strains: (i) sgRNAs targeting the highest number of strains (N_{max})
518 were first selected; (ii) if less than 12 guides were obtained, sgRNAs targeting $N_{max}-1$ strains were
519 selected, then $N_{max}-2$ strains, etc until $90\% \times N_{max}$ strains; (iii) if less than 3 sgRNAs were selected after
520 this process (possibly due to high rates of variants), the 3 sgRNAs with the highest number of
521 targeted strains were selected; (iv) in order to select sgRNAs targeting the strains that may have been
522 missed, we then selected the strains targeted by less than 3 sgRNAs and performed a similar
523 selection procedure: sgRNAs targeting the maximum number of missed strains (N_{max_missed}) were
524 selected, followed by sgRNAs targeting $N_{max_missed}-1$ strains, etc, until $80\% \times N_{max_missed}$ strains. Finally,
525 sgRNAs targeting less than 30 strains (~8%) were discarded.

526 After the preselection process, a penalty score was calculated from each sgRNA in order to select the
527 best 3 sgRNAs targeting each gene. This score takes into account, (i) off-target effects, (ii) predicted
528 efficiency, (iii) number of targeted strains.

529 (i) For each sgRNA, we calculated the fraction of strains having another 11-nt match on the
530 coding strand of a gene and the fraction of strains having a 9-nt match on any strand in a
531 promoter (loosely defined as 100 nt before gene start). The 1st score was calculated as
532 the sum of these fractions.
533 (ii) We used a recent model³⁹ which predicts the repression efficiency of sgRNAs based on
534 fitness data obtained in a previous CRISPRi screen³³. For each gene, the predicted sgRNA
535 activity was normalized from 0 (highest activity) to 1 (lowest activity) and was then used
536 as a 2nd score.
537 (iii) The number of targeted strains (with a full-length match) was reported for each sgRNA.
538 For each gene, this number was normalized from 0 (sgRNA targeting the most strains) to
539 1 (virtually no strain targeted) and was then used as a 3rd score.

540 For each gene, all preselected sgRNAs were attributed a global penalty score by summing the 3
541 scores described above. A strong penalty was applied to guides carrying a 5-nt seed sequence among
542 the 10 strongest bad-seed sequences identified by Cui *et al.* (2018)³³ (AGGAA, TAGGA, ACCCA,
543 TTGGA, TATAG, GAGGC, AAAGG, GGGAT, TAGAC, GTCCT), so that they were only selected as a last
544 resort. For each gene, sgRNAs were ranked by increasing global penalty score and the 3 best sgRNAs
545 were selected (if available). If one of these 3 sgRNAs targeted less than 350 strains (95%), a 4th sgRNA
546 was added. This process resulted in a library of 11,188 sgRNAs targeting conserved protein-coding
547 genes.

548 We also designed sgRNAs targeting rRNAs, tRNAs and ncRNAs. Since rRNAs are highly conserved
549 between all strains, it is very simple to select sgRNAs targeting all strains. However, it is complicated

550 to assess their potential off-target activity due to their presence in many copies. We therefore
551 selected all 109 sgRNAs targeting all strains. Similarly, homologous tRNAs have very similar
552 nucleotide sequences, which makes it difficult to assess the off-target activity of each sgRNA. We
553 therefore selected 131 sgRNAs targeting > 90% of strains (> 333 strains). ncRNAs are very diverse and
554 their annotation can substantially differ between genomes. All annotated ncRNAs in all genomes
555 were first listed. Then, ncRNAs which sequence is present in > 100 genomes were kept. For each of
556 these ncRNAs, all possible sgRNAs were listed and assessed for off-target activity. For each ncRNA,
557 we determined the off-target size s for which at least 3 guides had no off-target activity (or in < 5% of
558 strains). We then selected all the guides having an off-target of size s in < 5% of strains.

559 Finally, we generated 20 non-targeting control sgRNAs. These guides should not have any activity nor
560 off-target in any strain. To ensure a minimal off-target activity, we first generated all possible random
561 8-mers and kept those which never occur next to a PAM in a subset of 20 strains. We then generated
562 20 sgRNAs whose 8 last 3' bases were randomly chosen from this subset, and whose 12 first 5' bases
563 were random. We verified that each control sgRNA does not have an off-target in more than 1% of
564 strains.

565 **Library construction**

566 The resulting library of 11,629 sgRNAs was generated as single-stranded DNA through on-chip oligo
567 synthesis (CustomArray). Pooled oligo extension was performed with KAPA HiFi DNA polymerase
568 (Roche) with primer FR222. The library was then amplified by PCR (KAPA HiFi polymerase; 95°C - 3'; 6
569 cycles 98°C – 20'', 60°C – 15'', 72°C – 20''; 72°C – 10') with primers FR221 and FR222 and purified by
570 gel extraction. The pFR56-ccdB vector was digested with Bsal (New England Biolabs) and gel purified.
571 The plasmid library was then assembled using the Gibson method⁶¹.

572 During transformation, the initial absence of repressor proteins in the cell can result in a transient
573 dCas9 expression which can introduce a bias in the library. To avoid this, we built a library cloning
574 strain, FR-E03, by integrating a constitutively-expressed PhIF repressor gene in the chromosome of
575 MG1655. Briefly, a phIF expression cassette was cloned onto the pOSIP backbone⁶⁶ and integrated
576 into HK022 *attP* site. The pOSIP backbone was then excised using the pE-FLP plasmid which was
577 cured by serial restreaks. For transformation of the library, FR-E03 cells were grown in LB (200 mL) to
578 OD ~ 1, washed 3 times in ice-cold pure water and resuspended in 250 μ L ice-cold water. Ten
579 electroporations were performed with 20 μ L cells and 0.5 μ L of dialyzed Gibson assembly product
580 and pooled. After 1h at 37°C, cells were plated on 10 large LB-Cm plates (12x12 cm) and incubated
581 overnight at room temperature. The next day, each plate was washed twice with 5 mL LB-Cm and
582 pooled. Plasmids were extracted by miniprep (Mancherey-Nagel) before further transformation into
583 the conjugation strain MFDpir. This *pir*⁺ strain is auxotrophic to diaminopimelic acid (DAP) and
584 contains the RP4 conjugation machinery⁴². We attempted to integrate the same construction as in
585 FR-E03 in the conjugation strain MFDpir but this was unsuccessful. Instead, we used pFR58, a low-
586 copy pSC101 Kan^R plasmid with the same PhIF expression system. We confirmed that pFR58 cannot
587 be mobilized during conjugation since it does not contain the RP4 transfer machinery. The library was
588 therefore electroporated into MFDpir+pFR58 as described above. Transformants were selected on LB
589 agar supplemented with Cm and 300 μ M DAP and pooled before conjugation.

590 **Strain selection**

591 Starting from a collection of 92 *E. coli* natural isolates encompassing the phylogenetic diversity of the
592 species and originating from various habitats in diverse conditions (environment, birds, non-human
593 mammals and humans; gut commensalism, intestinal and extra-intestinal infections), we performed
594 growth curves to identify natural resistance to chloramphenicol which is the selection marker used in
595 pFR56. Briefly, overnight cultures were diluted 100-fold in LB or in LB-Cm and OD600 was measured
596 every 10 min for 8 h at 37°C with shaking on a Tecan Infinite M200Pro. Successful growth in Cm was
597 observed in seven strains which were discarded. dCas9-mediated repression was then tested by
598 conjugating pFR56 bearing an sgRNA targeting the essential gene *rpsL* into each strain. Plating on LB-
599 Cm + 50 µM DAPG induced strong killing in all strains, suggesting that dCas9-mediated repression is
600 functional in all strains. From the remaining isolates, we selected a panel of 18 strains including K-12
601 MG1655 from diverse origin and pathogenicity spanning most common *E. coli* phylogroups (A, B1,
602 B2, D, E and F). Phylogroups were verified by quadruplex PCR with the Clermont method⁶⁷. Strains
603 selected for screening are listed in **Supplementary Table 1**.

604 **Bacterial conjugation**

605 MFDpir cells carrying the plasmid library were grown to OD~1 in LB-Cm supplemented with 300 µM
606 DAP. Cells were then washed (2,000g – 10') to remove traces of Cm. Recipient strains were grown to
607 stationary phase. Donor and recipients cells were mixed 1:1 (v/v, 0.1 to 1mL), pelleted (2,000g – 10
608 min), resuspended in 10-100 µL LB + 300 µM DAP, pipetted onto a LB + 300 µM DAP plate and
609 incubated at 37°C for 2 h. As a negative control, donor and recipient strains were plated on a LB-Cm
610 plate. For conjugation of individual sgRNAs, cells were then restreaked on LB-Cm to select individual
611 transconjugants. For conjugation of the EcoCG library, cells were collected, resuspended in 1 mL of
612 LB-Cm and plated on a large LB-Cm plate (12 x 12 cm) followed by overnight incubation at room
613 temperature. Ten-fold dilutions were also plated for CFU counting. We obtained >10⁷ clones for each
614 of the 18 strains assayed in this study, ensuring a > 1000-fold coverage. After overnight incubation at
615 room temperature, plates containing nascent colonies were washed twice in 5 mL LB-Cm and stored
616 at -80°C with 7.5% DMSO.

617 **Screen design**

618 Strains conjugated with the library were arrayed by mixing 150 µL of the -80°C stock with 1350 µL LB-
619 Cm in duplicates on a 96-deepwell plate (Masterblock 96 well, 2ml, V-bottom plates by Greiner Bio-
620 one). The plate was incubated overnight at 37°C in a Thermomixer (Eppendorf) with shaking (700
621 rpm). The next day, cultures were washed 1:1 in M9 medium before inoculation of 15 µL into 1485 µL
622 of either LB, M9-glucose or GMM, supplemented with 50 µM DAPG without antibiotic selection. The
623 remaining cultures were harvested and plasmids were extracted by miniprep to obtain reference
624 samples for each strain. All screens were then performed in a Thermomixer at 37°C with shaking (700
625 rpm). Screens in LB and M9-glucose were performed in aerobic condition while screens in GMM were
626 performed in an anaerobic chamber (80% N₂, 10% CO₂ and 10% H₂). In all three cases, 3 passages
627 were performed by diluting 15 µL of cells into 1485 µL of DAPG-containing fresh medium (1:100
628 dilution) in the same conditions, every 3.5 h for LB and every 12 h for M9-glucose and GMM. This
629 represents a total of ~20 generations (log₂(100³)≈19.9). Plasmids were finally extracted with a 96-
630 well miniprep kit (Macherey-Nagel) to obtain the final distribution of the library for each strain and
631 medium.

632 **Illumina sample preparation and sequencing**

633 Library sequencing was performed as previously described^{33,34}. Briefly, primers listed in
634 **Supplementary Table 6** were used to perform two consecutive PCR reactions with KAPA HiFi
635 polymerase (Roche). Starting from 100 ng of library plasmid, the first PCR (95°C – 3 min; 9 cycles
636 [98°C – 20 s; 60°C – 15 s; 72°C – 20 s]; 72°C – 10 min) is performed in a 30-µL reaction with 8.6 pmol
637 of each primer. For the second PCR, a 20-µL mix containing 100 pmol of primers is added to the first
638 PCR and the resulting 50-µL reaction is incubated (95°C – 3 min ; 9 cycles [98°C – 20 s; 66°C – 15 s;
639 72°C – 20 s]; 72°C – 10 min) to add the 2nd index and the flow cell attachment sequences. The
640 resulting 354 bp-PCR DNA fragments were gel extracted. Samples were pooled (150 ng of each
641 reference samples and 100 ng of other samples) and the final library concentration was determined
642 by qPCR (KAPA Library Quantification Kit, Roche). Sequencing was performed on a NextSeq 500
643 benchtop sequencer (Illumina) using a custom protocol as previously described³⁴. We obtained an
644 average of 3 million reads per sample, representing an average coverage of ~ 260X.

645 **Data analysis**

646 Index sequences were used to de-multiplex the data into individual samples with a custom Python
647 script. Reproducibility between experimental duplicates was very high (median Pearson's $r = 0.988$)
648 except for a replicate of strain ROAR 8 in LB that had very low read counts. This sample was
649 discarded, while biological replicates from other strains were pooled into a single sample per strain
650 for subsequent analyses. sgRNAs with less than 20 reads in the initial time point of a given strain
651 were discarded in the corresponding strain (1.9% of the library on average). Samples were then
652 normalized by sample size. The log2FC value was calculated for each guide g and strain s as follows
653 ($s_{initial}$ and s_{final} represent the normalized reads counts of strain s in the initial and final time
654 point respectively):

$$\log2FC_{g,s} = \log2\left(\frac{Reads_{g,s_final} + 1}{Reads_{g,s_initial} + 1}\right)$$

655 We mapped the EcoCG library to each genome to identify sgRNAs which do not have a full-length
656 match (e.g. because of single-nucleotide variants), and their log2FC value was set to NaN in the
657 corresponding strain in order to avoid false negatives. Finally, the median log2FC were centered on
658 the median log2FC of 20 control non-targeting sgRNAs, and the resulting values were used as a gene
659 scores. We selected genes as “variably essential” in **Supplementary Fig. 5** when repression induced a
660 fitness defect in at least one strain (gene score < -3) and no fitness defect in at least one strain (gene
661 score > -1). For the heatmaps drawn in **Fig. 4**, we used a more stringent threshold: for each gene, we
662 calculated the minimum and maximum gene scores across strains after excluding those that had
663 more than 50% of sgRNAs with missing values. We then kept genes whose minimal gene score was
664 lower than -5 and whose maximal gene score was greater than -1 across all strains.

665 **Comparative genomics**

666 The genomes of the 18 strains used for screening were reannotated with Prokka 1.14.2 using default
667 settings⁶⁸. Proteins from these 18 strains were clustered using MMseqs2 v.3.0 with default
668 parameters⁶⁴. The resulting clusters were used to generate the core and pan-genome shown in **Fig. 2**
669 using up to 250 permutations of sets of strains. To obtain pairwise phylogenetic distances between
670 strains, we generated a core genome alignment with Parsnp⁶⁹ which was used to build a phylogenetic
671 tree with FastTree2⁷⁰. To evaluate the presence of homologs of essential genes, we clustered

672 proteins from all 18 strains with a 40%-identity threshold with MMseqs2 v.3.0⁶⁴ (--min-seq-id 0.4) to
673 obtain groups of sequence homologs. We then selected clusters containing essential proteins from
674 K12-BW25113 in LB¹⁷. To do so, we clustered proteins from BW25113 and MG1655 (--min-seq-id
675 0.95) to obtain a correspondence table between the names of BW25113 essential genes and
676 MG1655 locus tags. We finally selected protein clusters containing at least one sequence per strain
677 with at least one strain having more than one sequence.

678 We used sequences searches on the web interface of InterPro⁷¹ and pfam⁷² databases to look for
679 known domains in protein candidates. Structural predictions were performed with Phyre2⁷³.

680 Screen results validation

681 **sgRNA cloning.** Individual sgRNAs listed in **Supplementary Table 7** were cloned into pFR56 using
682 Golden Gate assembly⁵⁹. All constructions were validated by Sanger sequencing. Cloning was
683 performed in MG1655 or MFDpir before transfer to the appropriate strains by conjugation.

684 **Gene deletions.** Genes *dut* and *rpoE* were deleted from strain TA447 using the λ-red system
685 recombination system as described previously³⁴ using primers listed in **Supplementary Table 6**. We
686 performed whole-genome sequencing (WGS) to verify the absence of compensatory mutations. We
687 used breseq (v. 0.33.2) for variant calling⁷⁴.

688 **Growth curves.** For growth curves, an overnight culture was washed in the appropriate medium to
689 avoid nutrient carryover and diluted 1000-fold. Growth was monitored in triplicates by measuring
690 optical density at 600 nm on an Infinite M200Pro (Tecan) at 37°C with shaking.

691 **RT-qPCR.** Overnight cultures of S88 carrying pFR56 or pFR56.27 (i.e. pFR56 with *ybaQ* sgRNA) in LB +
692 Cm were diluted 1000-fold in 2 mL of LB + Cm + 50 μM DAPG. An overnight culture of TA447 was
693 diluted 1000-fold in 2 mL of LB and 100-fold in 2 mL of GMM to account for the slower growth rate in
694 GMM. After 3h at 37°C, RNA were extracted using Trizol. RNA samples were treated with DNase
695 (Roche) and reverse-transcribed into cDNA using the Transcripter First Strand cDNA Synthesis Kit
696 (Roche). qPCR was performed in two technical replicates with the FastStart Essential DNA Green
697 master mix (Roche) on a LightCycler 96 (Roche). Relative gene expression was computed using the
698 ΔΔCq method after normalization by 5S rRNA (*rrsA*). qPCR primers are listed in **Supplementary Table**
699 **8**.

700 **Isolation of suppressor mutants.** To isolate suppressors mutants, we conjugated pFR56 harboring
701 the corresponding guide into the appropriate strain and we selected clones that grew robustly with
702 50 μM DAPG. In order to avoid selecting mutations on the plasmid that inactivate the CRISPRi
703 system, we conjugated a second plasmid (pFR59) identical to pFR56, but carrying a kanamycin
704 resistance cassette instead of the chloramphenicol resistance cassette. The resistance to repression
705 was verified by plating serial dilutions of the transconjugants on LB agar plates with Kan ± 50 μM
706 DAPG. In the case of JJ1886, this strain is naturally resistant to kanamycin. We therefore built a third
707 plasmid (pFR72) with a gentamycin resistance cassette and used it for the first selection step
708 together with pFR56 in the second selection step. Finally, to avoid selecting clones that acquired
709 mutations in the chromosomal sgRNA target, we performed Sanger sequencing on the genomic
710 region flanking the sgRNA binding site and discarded clones with mutations in the target. Genomic
711 DNA was extracted from selected clones as well as in the parental clone using the Wizard Genomic
712 DNA Purification Kit (Promega). NGS was performed using Nextera XT DNA Library Preparation kit

713 and the NextSeq 500 sequencing systems (Illumina) at the Mutualized Platform for Microbiology
714 (P2M) at Institut Pasteur. Mutations were identified by mapping raw reads to the appropriate
715 genome using breseq v. 0.33.2⁷⁴. Among the genomes we sequenced, APEC O1 had a previously
716 unreported plasmid. The new genome was deposited on the European Nucleotide Archive (ENA)
717 under the accession GCA_902880315. We also found that the previously reported genome sequence
718 of H120 (GCF_000190855.1) had a high number of sequencing errors introducing frameshifts and
719 premature stop codons. We resequenced this strain to correct these errors and deposited the
720 resulting corrected genome sequence on the ENA with the accession GCA_902876715.

721 **RNA-seq**

722 Overnight cultures were diluted 100-fold in 1 mL of LB in a 96-deepwell plate (Masterblock 96 well,
723 2ml, V-bottom plates by Greiner Bio-one). After 2.5 h at 37°C, cultures were diluted to OD ~ 0.02 in
724 1.4 mL of LB and were further grown for 2 h at 37°C on a Thermomixer (Eppendorf) with shaking (700
725 rpm). Each culture was then transferred to a 2-mL Eppendorf containing 170 µL of stop solution (5%
726 acid phenol in ethanol) and cooled down for 10 seconds in a bath of dry ice and ethanol. Cells were
727 harvested by centrifugation at 0°C (1 min – 16,000 g) and the pellets were frozen at -80°C. For RNA
728 extraction, pellets were thawed on ice, resuspended in 200 µL of pre-warmed lysozyme solution and
729 incubated for 3 min at 37°C before addition of 1 mL of Trizol. Samples were vigorously vortexed and
730 incubated at room temperature for 5 min followed by addition of 200 µL of chloroform. After
731 vigorous vortexing, samples were incubated for 5 min at room temperature and centrifuged (10 min
732 – 12,000 g) to separate phases. The upper aqueous phase was collected and RNA was precipitated by
733 addition of 500 µL of isopropanol. Samples were incubated for 10 min at room temperature before
734 centrifugation (10 min – 12,000 g). Pellets were washed with 1 mL of 75% ethanol and centrifuged (5
735 min – 7,500 g). The pellets were finally air-dried and resuspended in 50 µL of pure water. RNA
736 samples were DNase-treated using TURBO DNA-free Kit (Thermo Fisher Scientific) and sample quality
737 was assessed on an Agilent Bioanalyzer 2100. Samples were prepared for sequencing using the
738 TruSeq® Stranded Total RNA Kit (Illumina) and sequenced on a NextSeq 500 benchtop sequencer
739 (Illumina). Raw reads were aligned on each genome using Bowtie2 v2.3.4.3⁷⁵. Alignment files were
740 converted with Samtools v1.9⁷⁶ and read counts for each gene were obtained using HTseq v0.9.1⁷⁷.
741 Raw read counts were normalized by sample size and by gene length to obtain reads-per-kilobase-
742 per-million (RPKM). The log2-transformed median RPKM value of each across biological replicates
743 was used as a measure of gene expression in each strain.

744 **Data availability**

745 Raw sequencing reads from CRISPRi screens are available at the European Nucleotide Archive under
746 the accession PRJEB37847. Raw reads from RNA-seq experiments were deposited on ArrayExpress
747 with the accession E-MTAB-9036. Processed data is available in Supplementary Tables.

748 **References**

- 749 1. Rancati, G., Moffat, J., Typas, A. & Pavelka, N. Emerging and evolving concepts in gene
750 essentiality. *Nat. Rev. Genet.* **19**, 34–49 (2017).
- 751 2. Kohanski, M. A., Dwyer, D. J. & Collins, J. J. How antibiotics kill bacteria: from targets to
752 networks. *Nat. Rev. Microbiol.* **8**, 423–435 (2010).
- 753 3. Jarboe, L. R. Improving the success and impact of the metabolic engineering design, build,

754 test, learn cycle by addressing proteins of unknown function. *Curr. Opin. Biotechnol.* **53**, 93–
755 98 (2018).

756 4. Hutchison, C. A. *et al.* Design and synthesis of a minimal bacterial genome. *Science (80-.).* **351**,
757 aad6253 (2016).

758 5. Rocha, E. P. C. & Danchin, A. An Analysis of Determinants of Amino Acids Substitution Rates in
759 Bacterial Proteins. *Mol. Biol. Evol.* **21**, 108–116 (2004).

760 6. Jordan, I. K., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Essential genes are more evolutionarily
761 conserved than are nonessential genes in bacteria. *Genome Res.* **12**, 962–8 (2002).

762 7. Thomason, M. K. *et al.* Global transcriptional start site mapping using differential RNA
763 sequencing reveals novel antisense RNAs in *Escherichia coli*. *J. Bacteriol.* **197**, 18–28 (2015).

764 8. Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Essential genome of
765 *Pseudomonas aeruginosa* in cystic fibrosis sputum. *Proc. Natl. Acad. Sci. U. S. A.* **112**, 4110–
766 4115 (2015).

767 9. Le Breton, Y. *et al.* Essential Genes in the Core Genome of the Human Pathogen *Streptococcus*
768 *pyogenes*. *Sci. Rep.* **5**, 9838 (2015).

769 10. Freed, N. E., Bumann, D. & Silander, O. K. Combining *Shigella* Tn-seq data with gold-standard
770 *E. coli* gene deletion data suggests rare transitions between essential and non-essential gene
771 functionality. *BMC Microbiol.* **16**, 203 (2016).

772 11. Poulsen, B. E. *et al.* Defining the core essential genome of *Pseudomonas aeruginosa*. *Proc.*
773 *Natl. Acad. Sci. U. S. A.* **116**, 10072–10080 (2019).

774 12. Galardini, M. *et al.* The impact of the genetic background on gene deletion phenotypes in
775 *Saccharomyces cerevisiae*. *Mol. Syst. Biol.* **15**, (2019).

776 13. Dowell, R. D. *et al.* Genotype to phenotype: a complex problem. *Science* **328**, 469 (2010).

777 14. van Opijnen, T., Dedrick, S. & Bento, J. Strain Dependent Genetic Networks for Antibiotic-
778 Sensitivity in a Bacterial Pathogen with a Large Pan-Genome. *PLOS Pathog.* **12**, e1005869
779 (2016).

780 15. Baba, T. *et al.* Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants:
781 the Keio collection. *Mol. Syst. Biol.* **2**, 2006.0008 (2006).

782 16. Nichols, R. J. *et al.* Phenotypic Landscape of a Bacterial Cell. *Cell* **144**, 143–156 (2011).

783 17. Goodall, E. C. A. *et al.* The Essential Genome of *Escherichia coli* K-12. *MBio* **9**, e02096-17
784 (2018).

785 18. Price, M. N. *et al.* Mutant phenotypes for thousands of bacterial genes of unknown function.
786 *Nature* **557**, 503–509 (2018).

787 19. Wetmore, K. M. *et al.* Rapid quantification of mutant fitness in diverse bacteria by sequencing
788 randomly bar-coded transposons. *MBio* **6**, e00306-15 (2015).

789 20. Rasko, D. A. *et al.* The pangenome structure of *Escherichia coli*: comparative genomic analysis
790 of *E. coli* commensal and pathogenic isolates. *J. Bacteriol.* **190**, 6881–93 (2008).

791 21. Touchon, M. *et al.* Organised Genome Dynamics in the *Escherichia coli* Species Results in

830 39. Calvo-Villamañán, A. *et al.* On-target Activity Predictions Enable Improved CRISPR-dCas9
831 Screens in Bacteria. *Nucleic Acids Res.* (2020). doi:10.1093/nar/gkaa294

832 40. Trchounian, A. & Trchounian, K. Fermentation Revisited: How Do Microorganisms Survive
833 Under Energy-Limited Conditions? *Trends in Biochemical Sciences* **44**, 391–400 (2019).

834 41. Zhang, J. & Yang, J.-R. Determinants of the rate of protein sequence evolution. *Nat. Rev. Genet.* **16**, 409–420 (2015).

836 42. Ferrières, L. *et al.* Silent mischief: bacteriophage Mu insertions contaminate products of
837 Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids
838 mobilized by broad-host-range RP4 conjugative machinery. *J. Bacteriol.* **192**, 6418–27 (2010).

839 43. Andersson, D. I. & Hughes, D. Gene Amplification and Adaptive Evolution in Bacteria. *Annu. Rev. Genet.* **43**, 167–195 (2009).

841 44. Tian, W. & Skolnick, J. How well is enzyme function conserved as a function of pairwise
842 sequence identity? *J. Mol. Biol.* **333**, 863–882 (2003).

843 45. Tye, B.-K. & Lehman, I. R. Excision repair of uracil incorporated in DNA as a result of a defect in
844 dUTPase. *J. Mol. Biol.* **117**, 293–306 (1977).

845 46. Gao, Y. *et al.* Systematic discovery of uncharacterized transcription factors in Escherichia coli
846 K-12 MG1655. *Nucleic Acids Res.* **46**, 10682–10696 (2018).

847 47. Schaub, R. E. & Hayes, C. S. Deletion of the RluD pseudouridine synthase promotes SsrA
848 peptide tagging of ribosomal protein S7. *Mol. Microbiol.* **79**, 331–341 (2011).

849 48. Li, Z., Bouckaert, J., Deboeck, F., De Greve, H. & Hernalsteens, J.-P. Nicotinamide dependence
850 of uropathogenic Escherichia coli UTI89 and application of nadB as a neutral insertion site.
851 *Microbiology* **158**, 736–745 (2012).

852 49. Bouvet, O., Bourdelier, E., Glodt, J., Clermont, O. & Denamur, E. Diversity of the auxotrophic
853 requirements in natural isolates of Escherichia coli. *Microbiology* **163**, 891–899 (2017).

854 50. Luo, P., He, X., Liu, Q. & Hu, C. Developing Universal Genetic Tools for Rapid and Efficient
855 Deletion Mutation in Vibrio Species Based on Suicide T-Vectors Carrying a Novel
856 Counterselectable Marker, vmi480. *PLoS One* **10**, e0144465 (2015).

857 51. Burroughs, A. M., Zhang, D., Schäffer, D. E., Iyer, L. M. & Aravind, L. Comparative genomic
858 analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts,
859 immunity and signaling. *Nucleic Acids Res.* **43**, 10633–54 (2015).

860 52. Otsuka, Y., Ueno, H. & Yonesaki, T. Escherichia coli endoribonucleases involved in cleavage of
861 bacteriophage T4 mRNAs. *J. Bacteriol.* **185**, 983–990 (2003).

862 53. Naka, K., Qi, D., Yonesaki, T. & Otsuka, Y. RnlB antitoxin of the escherichia coli RnlA-RnlB toxin-
863 antitoxin module requires RNase HI for inhibition of RnlA Toxin activity. *Toxins (Basel)*. **9**, 29
864 (2017).

865 54. Goodman, A. L. *et al.* Extensive personal human gut microbiota culture collections
866 characterized and manipulated in gnotobiotic mice. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 6252–7
867 (2011).

868 55. Schnoes, A. M., Brown, S. D., Dodevski, I. & Babbitt, P. C. Annotation Error in Public
869 Databases: Misannotation of Molecular Function in Enzyme Superfamilies. *PLoS Comput. Biol.*

870 5, e1000605 (2009).

871 56. Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common
872 ancestor. *Nat. Rev. Microbiol.* **1**, 127–136 (2003).

873 57. Bergmiller, T., Ackermann, M. & Silander, O. K. Patterns of Evolutionary Conservation of
874 Essential Genes Correlate with Their Compensability. *PLoS Genet.* **8**, e1002803 (2012).

875 58. Patrick, W. M., Quandt, E. M., Swartzlander, D. B. & Matsumura, I. Multicopy Suppression
876 Underpins Metabolic Evolvability. *Mol. Biol. Evol.* **24**, 2716–2722 (2007).

877 59. Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden Gate Shuffling: A One-Pot DNA
878 Shuffling Method Based on Type IIs Restriction Enzymes. *PLoS One* **4**, e55553 (2009).

879 60. Salis, H. M. The ribosome binding site calculator. in *Methods in Enzymology* **498**, 19–42
880 (Academic Press Inc., 2011).

881 61. Gibson, D. G. *et al.* Enzymatic assembly of DNA molecules up to several hundred kilobases.
882 *Nat. Methods* **6**, 343–345 (2009).

883 62. Hartley, J. L., Temple, G. F. & Brasch, M. A. DNA cloning using in vitro site-specific
884 recombination. *Genome Res.* **10**, 1788–95 (2000).

885 63. Ondov, B. D. *et al.* Mash: fast genome and metagenome distance estimation using MinHash.
886 *Genome Biol.* **17**, 132 (2016).

887 64. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the
888 analysis of massive data sets. *Nat. Biotechnol.* **35**, 1026–1028 (2017).

889 65. Steinegger, M. & Söding, J. Clustering huge protein sequence sets in linear time. *Nat.*
890 *Commun.* **9**, 1–8 (2018).

891 66. St-Pierre, F. *et al.* One-step cloning and chromosomal integration of DNA. *ACS Synth. Biol.* **2**,
892 537–541 (2013).

893 67. Clermont, O., Christenson, J. K., Denamur, E. & Gordon, D. M. The Clermont Escherichia coli
894 phylo-typing method revisited: improvement of specificity and detection of new phylo-
895 groups. *Environ. Microbiol. Rep.* **5**, 58–65 (2013).

896 68. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–2069
897 (2014).

898 69. Treangen, T. J., Ondov, B. D., Koren, S. & Phillippy, A. M. The Harvest suite for rapid core-
899 genome alignment and visualization of thousands of intraspecific microbial genomes. *Genome*
900 *Biol.* **15**, 524 (2014).

901 70. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees
902 for Large Alignments. *PLoS One* **5**, e9490 (2010).

903 71. Mitchell, A. L. *et al.* InterPro in 2019: improving coverage, classification and access to protein
904 sequence annotations. *Nucleic Acids Res.* **47**, D351–D360 (2019).

905 72. El-Gebali, S. *et al.* The Pfam protein families database in 2019. *Nucleic Acids Res.* **47**, D427–
906 D432 (2019).

907 73. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal

908 for protein modeling, prediction and analysis. *Nat. Protoc.* **10**, 845–858 (2015).

909 74. Deatherage, D. E. & Barrick, J. E. Identification of Mutations in Laboratory-Evolved Microbes
910 from Next-Generation Sequencing Data Using breseq. in *Engineering and analyzing*
911 *multicellular systems* 165–188 (Humana Press, New York, NY, 2014). doi:10.1007/978-1-4939-
912 0554-6_12

913 75. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**,
914 357–359 (2012).

915 76. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–
916 2079 (2009).

917 77. Anders, S., Pyl, P. T. & Huber Wolfgang. HTSeq—a Python framework to work with high-
918 throughput sequencing data. *Bioinformatics* **31**, 166–169 (2015).

919

920 **Acknowledgement**

921 We thank Bruno Dupuy for sharing the use of the anaerobic chamber, as well as Olivier Tenailleon,
922 Pierre-Alexandre Kaminsky, Guennadi Sezonov, Antoine Danchin and Alicia Calvo-Villamañan for
923 useful discussions. We thank the P2M platform (Institut Pasteur, Paris, France) for genome
924 sequencing and the Biomics platform (Institut Pasteur, Paris, France) for preparing RNA samples for
925 sequencing. This work was supported by the European Research Council (ERC) under the Europe
926 Union's Horizon 2020 research and innovation program (grant agreement No [677823]), by the
927 French Government's Investissement d'Avenir program and by Laboratoire d'Excellence 'Integrative
928 Biology of Emerging Infectious Diseases' (ANR-10-LABX-62-IBEID), F.R. is supported by a doctoral
929 scholarship from Ecole Normale Supérieure. E.D. was partially supported by the "Fondation pour la
930 Recherche Médicale" (Equipe FRM 2016, grant number DEQ20161136698). E.R. was partially
931 supported by the "Fondation pour la Recherche Médicale" (Equipe FRM EQU201903007835).

932 **Author contributions**

933 F.R. and D.B. designed the project. E.R. performed bioinformatic computation of the *E. coli*
934 pangenome. E.D. and O.C. provided strains and genome sequences. F.R. performed experiments and
935 analyzed data. J.R.F. and F.P.F. participated in the design of pFR56. J.C.C. provided experimental
936 assistance. F.R., E.R. and D.B. wrote the manuscript. D.B. supervised the project.

937 **Competing interests**

938 The authors declare no competing interests.