

1 Genome and transcriptome analysis of the mealybug *Maconellicoccus hirsutus*: A model for
2 genomic Imprinting

3 Surbhi Kohli ^{1¶}, Parul Gulati ^{1¶}, Jayant Maini ¹, Shamsudheen KV², Rajesh Pandey², Vinod
4 Scaria², Sridhar Sivasubbu², Ankita Narang^{1 * #}, Vani Brahmachari^{1*}

5

6

7 ¹ Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India

8 ² CSIR-Institute of Genomics and Integrative Biology, Delhi, India

9 # Current Address: Departments of Medical Genetics, Psychiatry, and Physiology &
10 Pharmacology, University of Calgary, 254 HMRB, 3330 Hospital Dr NW Calgary, AB T2N
11 4N1, CANADA

12

13

14 * Corresponding authors.

15 Email: ankita.narang86@gmail.com, ankita@ucalgary.ca (AN)

17

18 Email:vani.brahmachari@gmail.com (VB)

19

20

21 ¶ These authors contributed equally to this work

22

23 **Key words:** Genomic Imprinting, epigenetics, mealybug, genome annotation, expansion,
24 horizontal gene transfer, transcriptome

25

26

27 **Abstract**

28 In mealybugs, transcriptional inactivation of the entire paternal genome in males, due to
29 genomic imprinting, is closely correlated with sex determination. The sequencing, *de-novo*
30 assembly and annotation of the mealybug, *Maconellicoccus hirsutus* genome and its
31 comparison with *Planococcus citri* genome strengthened our gene identification. The expanded
32 gene classes, in both genomes relate to the high pesticide and radiation resistance; the
33 phenotypes correlating with increased gene copy number rather than the acquisition of novel
34 genes. The complete repertoire of genes for epigenetic regulation and multiple copies of genes
35 for the core members of polycomb and trithorax complexes and the canonical chromatin
36 remodelling complexes are present in both the genomes. Phylogenetic analysis with
37 *Drosophila* shows high conservation of most genes, while a few have diverged outside the
38 functional domain. The proteins involved in mammalian X-chromosome inactivation are
39 identified in mealybugs, thus demonstrating the evolutionary conservation of factors for
40 facultative heterochromatization. The transcriptome analysis of adult male and female
41 *M.hirsutus* indicates the expression of the epigenetic regulators and the differential expression
42 of metabolic pathway genes and the genes for sexual dimorphism. The depletion of
43 endosymbionts in males during development is reflected in the significantly lower expression
44 of endosymbiont genes in them.

45

46

47

48

49

50 **Author summary**

51 The mealybug system offers a unique model for genomic imprinting and differential regulation
52 of homologous chromosomes that pre-dates the discovery of dosage compensation of X
53 chromosomes in female mammals. In the absence of robust genetics for mealybugs, we
54 generated and analysed the genome and transcriptome profile as primary resources for effective
55 exploration. The expanded gene classes in the mealybugs relate to their unique biology; the
56 expansion of pesticide genes, trehalose transporter, SETMAR and retrotransposons correlate
57 with pesticide, desiccation and radiation resistance, respectively. The similarity in the genomic
58 profile of two species of mealybugs strengthens our gene prediction. All the known epigenetic
59 modifiers and proteins of the primary complexes like the PRC1,2 and the trithorax are
60 conserved in mealybugs, so also the homologues of mammalian proteins involved in X
61 chromosome inactivation. The high copy number of genes for many partners in these
62 complexes could facilitate the inactivation of a large part of the genome and raise the possibility
63 of formation of additional non-canonical complexes for sex specific chromosome inactivation.
64 In adult males and females, the status of epigenetic regulation is likely to be in a maintenance
65 state; therefore, it is of interest to analyze the expression of epigenetic regulators during
66 development.

67

68

69

70

71

72

73 **Abbreviations**

74 Mhir- *Maconellicoccus hirsutus*, Pcit- *Planococcus citri*, Dmel- *Drosophila melanogaster*,
75 Apis-*Acyrthosiphon pisum*, Clec- *Cimex lectularius*, Bmor- *Bombyx mori*, Hsap- *Homo*
76 *sapiens*, HPD- high priority domain, HMT- Histone methyltransferases, HDM- Histone
77 demethylases, HATs- Histone acetyltransferases, HDACs- Histone deacetylases, CRMs-
78 Chromatin remodelers, DE-differential expression

79

80

81 **Introduction**

82

83 The mealybugs (Hemiptera:Pseudococcidae), such as *Maconellicoccus hirsutus* (Mhir) and
84 *Planococcus citri* (Pcit), commonly feed on plant sap. They are considered as invasive species
85 having a wide host-range and are spread in all parts of the world. *M. hirsutus* and *P. citri*
86 commonly reproduce sexually, though parthenogenesis is reported in *M. hirsutus*[1, 2]. The
87 life cycle is completed in around 29 days at 27°C. The insect predators are most often used for
88 the control of these invasions.

89 The adult mealybugs are sexually dimorphic with males being small & winged and the females
90 being much larger, wingless & sedentary. The immature males and females (commonly known
91 as crawlers) are morphologically similar. The males undergo four stages of metamorphosis to
92 become adults while the female passes through only three stages along with the growth in size
93 [3].

94 The chromosomal cycle of the mealybugs is a point of interest(Fig 1) as the diploid genome of
95 mealybugs consists of five pairs of chromosomes ($2n=10$) and do not have any morphologically
96 distinct sex chromosomes. However, there is sex-specific heterochromatization and
97 transcriptional silencing of the paternally inherited chromosomes in males. Thus, genomic
98 imprinting and the differential regulation of homologous chromosomes operate on 50% of the
99 genome. The heterochromatization and transcriptional silencing of paternal chromosomes in
100 male mealybugs is comparable to X chromosome inactivation in female mammals [4-7]. Unlike
101 X chromosome inactivation, paternal genome inactivation is non-random in the mealybugs. X
102 chromosome inactivation in mammals and the paternal genome inactivation in mealybugs both
103 result in physiological haploidy and differential regulation of homologous chromosomes within
104 the same nucleus. The attributes of genomic imprinting in the mealybugs are described through

105 elegant cytological and molecular studies [5, 6]. The mealybugs have holocentric chromosomes
106 and exhibit extreme meiotic drive. During spermatogenesis in males, it is only the maternally
107 inherited chromosomes, which contribute to the active sperms, while the paternally inherited
108 chromosomes undergo heteropycnosis, leading to their disintegration [8]. Mealybugs are also
109 important model organisms to study responses to high doses of ionizing radiation as they can
110 tolerate radiation doses ~1100Gy [9].

111 The various molecular features relating to genomic imprinting and epigenetics in mealybugs
112 have been investigated by different groups. Both DNA methylation and post-translational
113 modification of histones are predicted to be involved in imprinting in this system [10-13]. In
114 *P. lilacinus*, DNA methylation was detected in CpA and CpT dinucleotides in addition to CpG
115 [14]. The role of post-translational modification of histones in heterochromatin in paternal
116 nuclei is highlighted in multiple studies [13, 15]. The presence of a male specific chromatin
117 organization designated as Nuclease Resistant Chromatin (NRC) is demonstrated in two
118 species of mealybugs, *Planococcus lilacinus* and *Maconellicoccus hirsutus* [13, 16]. NRC is
119 predicted to include potential centers of inactivation for heterochromatin formation in male
120 mealybugs [5, 16].

121 All mealybug species live in symbiosis with the β -proteobacterium *Tremblaya* and this β -
122 proteobacterium harbours additional γ -proteobacterial species (like *Moranella* Pcit; *Doolittlea*
123 *endobia* in Mhir) [17, 18]. The detailed genomic analysis of the microbiome of mealybugs has
124 revealed extensive metabolic cooperation between mealybugs and their endosymbionts [17,
125 18]. In the work described here, we generated the primary data by sequencing and annotating
126 the mealybug genome with a focus on genes involved in epigenetic regulation and genomic
127 imprinting. This will complement the molecular and the immuno-microscopic studies that are
128 pursued, in absence of a robust genetic analysis in this system. We sequenced and annotated

129 the genome of the pink mealybug, *Maconellicoccus hirsutus* (Mhir). We annotated the
130 sequence of *Planococcus citri* (Pcit) genome sequence given by Husnik and McCutcheon [18].
131 We annotated predicted genes using BLASTp and identified functional domains using InterPro
132 and compared the annotation of both methods. This enabled a better prediction of function of
133 genes which BLASTp could not annotate. We analyzed specific classes of genes related to
134 different aspects of the biology of mealybugs, mainly epigenetic regulation.
135 We analysed the genome for horizontal gene transfers (HGTs) and expansion and contraction
136 of gene classes. Along with the HGTs identified earlier, we found novel HGTs coding for
137 antioxidant enzymes, protease inhibitors, bacterial toxins and carbohydrate metabolism
138 proteins. The pesticide resistance gene classes are identified as one of the expanded classes in
139 the genome. We performed comparative analysis of selected gene classes between Mhir, Pcit,
140 *A.pisum* (Apis), *C. lectularius* (Clec) and *D.melanogaster* (Dmel), which showed that the
141 epigenetic machinery in the mealybug is complete, including the writers, readers and the
142 erasers. A comparative transcriptome analysis indicates that these genes are expressed in both
143 adult males and females, while some are differentially expressed.

144 **Results and discussion**

145 **Genome assembly, evaluation and validation**

146 The de novo assembly of mealybug genome was carried out using a hybrid approach using the
147 MaSuRCA pipeline as described under methods. The length distribution of PacBio reads are
148 provided in Table 1. Error correction of low coverage PacBio reads (5.48x) was done using
149 high coverage Illumina data (56.3X) in a sensitive mode. Further, error corrected PacBio reads
150 were merged with Illumina super-reads using Celera assembler. There were 214,820 error
151 corrected reads which have length \geq 500bp that were assembled with Illumina super-reads to
152 generate the final assembly. There were 7747 scaffolds that contributed to 168.28 Mb assembly

153 with N50 of ~57 Kb. Other parameters of assembly statistics are provided in Table 1. This
154 estimate is very close to the predicted genome size of ~163 Mb for *M. hirsutus* genome [18].
155 In addition, 27,885 degenerate (degen) contigs were also added to the main assembly to ensure
156 the completeness of assembly in terms of genes. The degen contigs were not part of scaffolds
157 due to low coverage. We mapped back Illumina reads to degen contigs and found that ~95%
158 of degen contigs mapped to the Illumina reads which contributed ~21.8 Mb to the assembly.
159 Thus, confirming that degen contigs are derived from Mhir genome.

160 We further evaluated the completeness of assembly using different approaches. Mhir genome
161 was also sequenced and assembled using IonTorrent (S1 Table). We aligned 18,816 Ion Torrent
162 contigs from 10,814,178 filtered reads on the mealybug genome assembly. 96.38% of contigs
163 aligned to the genome assembly, substantiating its completeness. The presence of single copy
164 orthologs from phylum Arthropoda in Mhir was estimated using BUSCO. There were 72%
165 complete BUSCOs while 10% were missing. The genome sequence can be accessed at NCBI,
166 Genbank accession number GCA-003261595.1.

167 We predicted 22,723 transcripts (21,623 unique genes) in the mealybug genome using
168 BRAKER out of which we could annotate 17,661 genes using BLASTp with NR database.
169 After applying a filter of 30% identity and 50% query coverage to remove erroneous hits,
170 15,142 transcripts remained. There were 14,010 transcripts retained after removing 1,132
171 truncated entries. Those transcripts that did not have any domain and had coverage of less than
172 30% of reference sequence in BLAST were considered as truncated.

173 The assembly was validated using Sanger sequencing following amplification of the histone
174 gene cluster by tiling PCR (Fig 2). A scaffold (scf7180000076114) containing all the core
175 histone genes was identified and eight pairs of primers were designed, each spanning a region
176 of approximately 2Kb with overlapping end sequences, covering a total length spanning

177 13Kb(Fig 2). The amplicons were sequenced and mapped back to the scaffold in the assembly,
178 to confirm their organization. The gene organization was also confirmed by long PCR (Fig 2
179 I).

180

181 **Horizontal Gene Transfer (HGT) identification and Validation**

182 Horizontal gene transfer (HGT) which refers to the lateral movement of genetic material
183 between different species as opposed to direct descent, is very common in sap feeding insects.
184 In addition, sap-feeders have obligate endosymbionts and this tripartite nested arrangement of
185 obligate endosymbionts in mealybug, provide nutritional benefits to the host [17]. This may
186 lead to lateral transfer of genes more frequently in those insects.

187 We analysed the HGTs in Mhir genome as well as reanalysed HGTs in *M. hirsutus* genome
188 assembly provided by Husnik [18] . We identified 98 HGTs after applying all the QC criteria.
189 These HGTs contain proteins involved in amino acid metabolism, vitamin biosynthesis and
190 peptidoglycan metabolism (Fig3I). The identified HGTs were compared with the known HGTs
191 reported by Husnik and McCutcheon [18]. In addition to those reported earlier, 29 novel HGTs
192 coding for antioxidant enzymes, protease inhibitors, bacterial toxins and carbohydrate
193 metabolism proteins were detected (Fig 3I). We validated five HGTs in Mhir using long PCR
194 method with primers mapping in the adjacent host genes (arthropoda origin) and the HGTs (Fig
195 3II-IV).

196 Seven out of eight HGTs identified earlier are involved in amino acid and vitamin metabolism,
197 while *tdcF* (reactive intermediate deaminase), involved in threonine metabolism, is detected
198 only in our analysis. These HGTs are important as they participate in metabolic patchwork
199 along with endosymbiont genes to complete the biosynthetic pathways of essential amino acids
200 and vitamins [18]. Three bacterial genes involved in peptidoglycan metabolism were detected

201 as HGTs, which may have a role in the maintenance of mutualistic relationship between the
202 host and the endosymbionts. LD-carboxypeptidase (*ldcA*) and a rare lipoprotein A (*rlpA*) are
203 HGTs in *A. pisum* and are absent in their endosymbiont, *Buchnera aphidicola*[19, 20]. Three
204 bacterial toxin genes and an antibiotic resistant gene are among the HGTs in *M. hirsutus* genome,
205 which may confer resistance to bacterial pathogens. One such example is found in vinegar flies
206 (Diptera: *Drosophilidae*) and aphids where, *cdtB* (cytolytic distending toxin B) coding for
207 eukaryote-targeting DNase I toxin is a HGT that confers resistance against parasitoid wasps
208 [21]. Other HGTs identified in our analysis include AAA-ATPase, serine protease inhibitor,
209 ankyrin repeat domain protein, inclusion body protein and thioredoxin. 91 out of the 98 HGT
210 genes are expressed in both adult males and females while nine genes showed differential
211 expression based on transcriptome analysis. All the nine DE HGTs exhibited higher expression
212 in females (S2Table). The HGTs having differential expression included genes coding for
213 protein degradation (AAA-ATPases), Vitamin B metabolism (*ribD*, *bioB*) and amino acid
214 metabolism (*tdcF*). As all of them showed higher expression in females, suggesting their
215 possible role in completing the metabolic network existing in mealybugs between host genes,
216 β and γ -proteobacteria endosymbionts and HGTs for amino acids and vitamins biosynthetic
217 pathways.

218 **Gene classes expanded and contracted in the mealybug genome**

219 The evolutionary gain and loss of genes contribute to adaptation of organisms to their habitat.
220 In insects like the mealybugs, the expansion and contraction of genes may be linked to their
221 widespread geographical distribution and broad host range, thus it is interesting to analyse the
222 gene classes that have expanded or contracted. To identify such gene classes, we compared the
223 proteome of *M. hirsutus* and *P. citri* with five other insect species, namely, *D. melanogaster*, *A.*
224 *pisum*, *R. prolixus*, *C. lectularius* and *B. mori* using OrthoFinder [22]. In this analysis, we

225 identified orthogroups (cluster of orthologous genes) which were further classified as -
226 Expanded, contracted and mealybug-specific based on the gene counts and a consolidated list
227 of all the three classes is given in S3Table.

228 **Expanded gene classes; pesticide and desiccation resistance genes**

229 Gene orthogroups involved in biological processes related to insecticide resistance, desiccation
230 resistance, radiation resistance and hormone signaling are expanded in both Mhir and Pcit (Fig
231 4).

232 The entire carboxylesterase gene family is expanded in the mealybugs, having the highest
233 number of genes combining all the orthogroups of this gene family, Mhir has 104 and Pcit 208
234 genes, while the number of genes in other insect genomes ranged from 20-40 (Fig4, S3 and S4
235 Table). Cytochrome P450 family also shows similar expansion, with mealybugs having the
236 maximum number of genes in all the orthogroups put together, 95 genes in Mhir and 148 in
237 Pcit, as compared to other insectsexcept *Rhodnius* (102 genes) (S3&S5 table). The Cytochrome
238 P450 monooxygenases and Carboxylesterases enzymes are involved in first phase of
239 insecticide detoxification, acting on a broad range of insecticides are expanded [23, 24]. One
240 or more orthogroups of other genes associated with different phases of insecticide
241 detoxification including phase II enzymes UDP-glycosyltransferases (UGTs) (Mhir-17, Pcit-
242 38 genes) and Sulfotransferases (Mhir-9, Pcit-6 genes) and phase III enzymes, the ABC (ATP-
243 binding cassette) transporters (Mhir-12, Pcit-25 genes) and solute carrier proteins are also
244 expanded in mealybugs. *M. hirsutus* causes brief but noticeable pest outbreaks, which can be
245 attributed to its high reproductive potential, large brood size, high dispersal ability (at the
246 crawler stages) and wide host range. The identification and expansion of the insecticide
247 degradation and detoxification genes in the mealybug genome can be correlated with
248 insecticide resistance known and hence their infestation in cultivated plants [25, 26]. In addition

249 to the expansion of genes for insecticide metabolism, fatty acid metabolism enzymes, fatty acid
250 synthase and acylglycerol-o-acyltransferase are also expanded in the mealybugs. These genes
251 could be associated with the production of the waxy coating in mealybugs, majorly composed
252 of trialkyl glycerols and wax esters. The waxy covering poses serious impediment for
253 permeability of pesticides and protects mealybugs from desiccation and also predators [26, 27].
254 Thus, expansion of these genes could also contribute to resistance against insecticides.

255 The mealybugs, being universal pests, have the ability to tolerate extreme environmental
256 conditions. The trehalose transporter gene, *Tret1*-like, is another expanded gene class in the
257 mealybug genome (Fig4 and S3Table). Trehalose is an important disaccharide that functions
258 as a cryo-protectant, important for desiccation tolerance in insects and cannot enter the cells
259 without a transporter[28]. One Orthogroup of *Tret1* gene is expanded in mealybugs while
260 another orthogroup of *Tret1* is represented as a specific class, present only in Mhir and Pcit and
261 not in other genomes that we analysed. These findings suggest that mealybugs may show better
262 tolerance to desiccation and may survive in xeric regions as well. *SETMAR* and the
263 retrotransposon proteins are the other major expanded gene classes, which are associated with
264 DNA repair and telomere maintenance, respectively, that may contribute to radiation resistance
265 in mealybugs [29, 30]. Further, one of the *SETMAR* orthogroups (OG0009645), containing 4
266 copies is specific to Mhir.

267
268 The other genes expanded in the mealybug are metallopeptidases (aminopeptidase, neprilysin)
269 and farnesol dehydrogenase (S3Table). Neprilysins are M13 zinc metallopeptidase involved in
270 reproduction in *Drosophila* and mammals [31]. Aminopeptidase N is known to interact with
271 insecticidal CryIA toxin (*Bacillus thuringiensis*) in lepidopterans and also participates in
272 digestion and parasite vector interactions [32]. Farnesol dehydrogenase, another expanded
273 class, is involved in biosynthesis of juvenile hormones that play essential role in reproduction,

274 metamorphosis, development, polyphenism, and behavioral changes of insects and thus serve
275 as good targets of insecticides [33, 34].

276

277 **Gene classes specific to Mhir and Pcit**

278 Apart from expanded gene classes certain orthogroups are specific to mealybug genomes Mhir
279 and Pcit, and are absent in other insect species chosen for comparison (S3Table). Gene
280 orthogroups specific to mealybugs are mainly associated with olfactory sensation and oxidative
281 stress/radiation resistance.

282 The orthogroups of proteins for chemosensory systems like odorant binding proteins, odorant
283 receptors and olfactory receptors are not only expanded, but some are specific to mealybugs.
284 These genes play an important role in the sophisticated olfactory system of insects through
285 identification and binding of various odorants followed by signal transduction thereby affecting
286 insect behavior [35]. The metabotropic glutamate receptor, specific to the mealybugs, is
287 another gene associated with sensory perception. Considering the expansion of genes related
288 to olfactory perception, one could speculate that these might help in detecting food sources and
289 avoiding toxins. Some orthogroups of genes, carbonic anhydrase 3 and vitellogenin receptor
290 are specifically present in the mealybug genome. Carbonic anhydrase 3 has a protective role
291 against oxidative stress [36] and may serve as an antioxidant, contributing to radiation
292 resistance in mealybugs. Vitellogenin receptor is critical for oocyte development as it mediates
293 uptake of vitellogenin [37].

294

295 **Contracted Gene Classes**

296 The genes of circadian rhythm pathway are identified as contracted gene classes in Mhir and
297 Pcit, with the genes period (*per*), cycle (*cyc*), timeless (*tim*), *CRY1* and *CRY2* being absent. In
298 contrast, the *Clk*, *Vri* and *Pdp1* genes are present (S1 Fig, S3Table). The circadian rhythm

299 pathway in mealybug shares similarities with that of *Drosophila* and mammalian pathway
300 (S1Fig). The absence of many of the core components of the circadian clock pathway, suggest
301 lack of circadian rhythm in mealybugs, but several studies have suggested otherwise. Studies
302 on flight activity in male mealybugs are dependent on the onset or exposure to light as well as
303 an endogenous circadian rhythm [38]. The daily flight activity revealed that males of *P. citri*,
304 *P. ficus* and *Ps.comstocki* are morning fliers while *M. hirsutus* and *N.viridis* (Newstead) fly
305 around sunset time [38]. *Timeout* and *timeless* are two paralogous genes, considered to have
306 originated by a duplication event, with mealybug containing only *timeout*. Hymenopterans like
307 ants, bees and wasps similarly have the *timeout* gene, and have lost *timeless*. As in
308 hymenopterans, *timeout* is under a strong positive selection in the absence of *timeless* and
309 compensates for its function [39], similar functional substitution could also occur in mealybug.
310 In the light of these observations, it is unclear whether circadian rhythm is operative in
311 mealybugs.

312 Several epigenetic modifier genes are absent in the mealybug genome, these include
313 components of ATAC histone acetyltransferase complex namely *Ada2a*, *Atac2*, *Atac1* and
314 *Dl2*. ATAC complex mediates acetylation of histone preferably H4 and is essential in
315 *Drosophila melanogaster*. This complex containing two catalytic subunits i.e. *Gcn5* and *Atac2*
316 plays important roles in signal transduction, cell cycle progression and facilitate nucleosome
317 sliding catalysed by ISWI and SWI-SNF chromatin remodelers [40, 41]. Though ATAC
318 complex components are absent in mealybugs (Mhir and Pcit), all other components of the
319 complex (*Gcn5*, *Ada3*, *Hcf*, *wds*, *Chrac-14*, *NC2 β* , *CG30390*, *Atac3*, and *Mocs2B*) are present.
320 Considering the essential role of this complex both in *Drosophila* and mammalian development
321 [40, 42], and the absence of its core components in mealybugs, it is possible that other HAT
322 complexes might take over its role. The absence of these genes in both Pcit and Mhir largely
323 rules out genome sequence error. Other epigenetic modifiers missing in mealybugs include

324 RNA methyltransferases *METTL9*, Samtor; histone methyltransferase *Ntmt* and WD40 repeat
325 protein *WDY* (part of Set1/COMPASS complex). Apart from epigenetic modifiers, some of the
326 genes for DNA repair, oxidative stress response belong to the contracted class and the mode of
327 compensation for such functions needs to be investigated (S6Table).

328 **Analysis of selected gene classes in mealybug genome**

329 **HOX gene clusters in the mealybug genome**

330 The homeotic (Hox) genes form a distinct class of transcription factors, belonging to the
331 homeobox gene superfamily, involved in the cell fate decisions during development and are
332 highly conserved[43]. In the Mhir genome, except *Antp* and *Scr* which are single copy genes,
333 all other hox genes are present in 2 or more copies compared to the other insect species (Fig
334 5). The hox genes in Mhir lack the cluster-like arrangement seen in *Drosophila* or *Tribolium*,
335 and are scattered throughout the genome with some genes present in pairs or triplets on the
336 same scaffold, while some are on the same scaffold but interspersed with other gene classes
337 (Fig 5). This kind of arrangement of hox genes is called the “atomized or no clustering” which
338 is also observed in flatworm *Schistosoma mansoni* and nematodes[44]. *Anopheles gambiae*,
339 *Tribolium castaneum* and *Cimex lectularius* have a single large cluster of all hox genes,
340 *Drosophila* and *Bombyx mori* consists of split cluster with hox genes divided between the two
341 sub-clusters [44, 45].

342 Iroquois-family of genes are another conserved group of homeodomain containing
343 transcription factors which play a major role in defining the identity of large and diverse
344 territories of the body such as the dorsal region of head, eye and mesothorax in *Drosophila*.
345 They are usually present as one or two clusters of three genes. *Drosophila* has three genes
346 belonging to Iroquois family- *mirror* (*mirr*), *araucan* (*ara*) and *caupolican* (*caup*) which
347 together form Iroquois-Complex (Iro-C) [46]. In Mhir genome only two members of the Iro-C

348 family, *ara* and *caup* are present while the *mirror* gene is absent. Benoit et al,[45] reported the
349 presence of two Iro-C genes in *C. lectularius*, *mirror* and *Iroquois (Iro)* which they found to
350 be orthologous to tandem paralogs of *araucan* and *caupolican* of *Drosophila*, though we failed
351 to find *mirror* gene in mealybugs.

352 **Identification of epigenetic modifiers in mealybug genome; retrieval and analysis of
353 functional classes**

354 In the absence of sex chromosomes, sex determination in mealybugs is very closely correlated
355 with genomic imprinting. We have mined the components of the epigenetic machinery in
356 Mhir and Pcit, as important players in developmental regulation and also the differential
357 regulation of homologous chromosomes. The machinery for methylation of DNA and histones
358 is analysed considering the presence of the writers, readers and the erasers of epigenetic
359 marking of the genome.

360 The genes coding for histones, the primary substrates of epigenetic modification, and their
361 variants were identified in the mealybug genome along with other genomes for comparison
362 (Fig 6A, B). Mhir contains only a single complete quintet cluster of histone genes, while in
363 two of its other quintets, the histone H1 is absent (Fig 6C). The remaining histone genes are
364 present in scaffold either singly or with some of the other histone genes, but not all the histones.
365 For instance, H2A may be present as an isolated gene in one scaffold or in combination with
366 some of the core histone genes in another scaffold (Fig 6C). This organization has some
367 similarity with the other hemipteran, *Acyrthosiphon pisum* [47]. The number of alleles for core
368 histones vary with only two copies of histone H1 gene present in Mhir while 9 copies in Pcit.

369 Mhir and Pcit have multiple copies of the genes for the variant histones H2A.V and H3.3. The
370 histone H2A.V is required for heterochromatin assembly and DNA damage response in
371 *Drosophila*[48]. Mhir has two copies while Pcit has nine copies of histone H3.3, which is

372 evolutionarily conserved and is associated with pericentromeric and telomeric regions where
373 it replaces the canonical histone H3 during transcription [49].

374 **DNA methylation machinery in mealybug**

375 DNA methylation is associated with several epigenetic phenomena like genomic imprinting,
376 X-chromosome inactivation and transposon repression in mammals [50]. It is one of the key
377 molecular mechanisms associated with mammalian imprinted genes containing differential
378 methylated regions (DMRs) which are methylated in parental-origin specific manner [51, 52].
379 Differential methylation of the genome in males and females is detected in different species of
380 mealybugs [11, 14]. The major DNA modification associated with imprinting and other
381 epigenetic processes is cytosine methylation (5mC), predominantly at CpG dinucleotides;
382 however, non-CpG DNA methylation has also been reported [14, 50]. We analyzed the DNA
383 methyltransferases and demethylases in *Mhir* and *Pcit* genome and compared them with those
384 in other genomes (S7Table). Since, *Drosophila* lacks canonical DNA methyltransferases 1 and
385 3 homologs [53], we included human DNMT proteins as reference for comparative analysis.
386 We found two types of DNA methyltransferases: cytosine-specific and adenine-specific DNA
387 methyltransferases in all the insect species analysed. These methyltransferases contain S-
388 adenosyl-L-methionine-dependent methyltransferase (IPR029063) as the functional domain
389 while adenine specific DNA methyltransferases, contain an additional signature IPR007757
390 representing MTA-70-like protein family. Multiple copies of cytosine methyltransferase
391 *DNMT1* genes are found in *P. citri*, while *M. hirsutus* has a single copy.. The adenine DNA
392 methyltransferase, *METTL4* gene is present as a single copy in both. We also generated
393 phylogenetic trees of DNMTs of all insects to assess their evolutionary conservation with
394 human proteins (Fig 7).

395 We observed that DNMT proteins of *M. hirsutus*, *P. citri* and *C. lectularius* and *A. pisum*
396 clustered with DNMT1, while only one methyltransferase of *A. pisum* clusters with DNMT3.
397 *P. citri* proteins (g3941, g42301), remained outliers, as they are partial sequences lacking
398 functional domains. Except for *A. pisum*, the *de novo* methyltransferases are absent in all the
399 other insects including the mealybugs.

400 Though mealybug lacks DNMT3, the presence of cytosine DNA methylation was established
401 in *Planococcus lilacinus*[14]. The study estimated the frequency of occurrence of 5mC in CpG
402 as well as other dinucleotides and found that 5mC in CpG, CpA and CpT dinucleotides occurs
403 at comparable frequency while the frequency of CpC methylation is lower [14]. Bewick et al,
404 [54] showed the loss of *DNMT3* and presence of only maintenance methyltransferase genes in
405 several insect species which nevertheless have DNA methylation. These findings suggest that
406 DNMT3 may be expendable for DNA methylation or DNMT1 could compensate for DNMT3.
407 In the light of these observations, we compared the domain architecture of DNMTs in Mhir
408 and Pcit with that of humans. DNMTs of Mhir and Pcit contain all the domains associated with
409 DNMT1 along with C-5 cytosine-specific DNA methylase domain essential for function, but
410 lacked the characteristic PWWP domain of *DNMT3*.

411 We found DNA methyltransferase for 6mA in Mhir, Pcit and other insects which clustered with
412 human METTL4. Another group of proteins formed a separate cluster with human N6AMT1
413 protein, a 6-methyladenine-specific DNA methyltransferase later shown to be involved in
414 methylation of elongation factor protein, suggesting dual substrate specificity[55]. Greer et al,
415 [56] [43] detected 6mA DNA modification in *C. elegans* and demonstrated its role in trans-
416 generational epigenetic inheritance. They identified 6mA methyltransferase, Damt-1 along
417 with demethylase NMAD-1 in *C. elegans*. Their work suggested a cross-talk between DNA
418 and histone methylation [56].

419 The presence of 6-methyl adenine (6mA) along with the genes for methyltransferase and
420 demethylase (DMAD) is reported for *Drosophila* [57]. Demethylation of 6mA in transposon
421 leading to repression demonstrated in *Drosophila*, implies that 6mA is a marker for active state
422 [57]. The presence of methyltransferase (N6AMT1) and demethylase(ALKBH1) for adenine
423 methylation in humans and the enrichment of 6mA in exonic regions in the genes is known
424 [58]. Thus the identification of genes for methylation and demethylation of adenine in both
425 *Mhir* and *Pcit* suggests a novel mechanism of differential enrichment of 6mA in females
426 contributing to imprinting in mealybugs. The low density of 6mA in human X and Y
427 chromosomes which have high 5mC levels is noteworthy [58]. The presence 6mA and 7mG
428 has been demonstrated in mealybugs by Chandra and co-workers in *Planococcus lilacinus*[10].
429 DNA methyltransferase that could methylate poly (dC-dG) as well as poly (dC-dA) was also
430 reported in *P. lilacinus*[59].

431 **DNA demethylation machinery in mealybugs**

432 We analysed *Mhir*, *Pcit* and other insect genomes for 5-methylcytosine- and 6-methyladenine-
433 specific demethylases. In humans, TET and ALKBH are two major protein families that
434 participate in demethylation of 5mC and 6mA DNA modifications, respectively [58, 60, 61].
435 Using BLASTp analysis, we identified genes for both the protein families in all insects. TET
436 proteins are methylcytosine dioxygenases which regulate global levels of 5-methylcytosine
437 and/or 5-hydroxymethylcytosine through active DNA demethylation [53, 60]. The TET protein
438 family has 3 members: TET1, 2 and 3, all containing catalytic C terminal domain called
439 2OGFeDO, oxygenase domain (IPR024779), with TET1 and 3 containing additional N
440 terminal Zinc finger, CXXC-type domain (IPR002857).

441 In humans, ALKBH1 is identified as 6mA demethylase [58]. The AlkB family of proteins are
442 Fe(II)- and α -ketoglutarate-dependent dioxygenases that perform alkylated DNA damage

443 repair through oxidative dealkylation [62]. Apart from DNA repair, these enzymes are also
444 implicated in nucleotide demethylation, with ALKBH1 and ALKBH4 majorly associated with
445 removal of 6mA DNA modification [58, 61, 63]. We generated a phylogenetic tree of DNA
446 demethylases including human DNA demethylases and identified 3 major clusters (Fig8); two
447 clusters containing human ALKBH proteins and a third big cluster C, for human TET proteins.
448 Within this cluster, the human TET proteins formed a separate branch and the others segregated
449 into two groups, one with Mhir, Pcit, Dmel TET proteins clustering together (Group I) and the
450 other with N6 adenine DNA demethylases proteins from all insects (Group II). It was
451 interesting to note that proteins identified as N6 DNA demethylases in BLASTp clustered with
452 the TET protein family. To further dissect this issue, we compared the domain architecture of
453 proteins forming two different branches but observed no significant difference as all proteins
454 contained 2OGFeDO, oxygenase domain (IPR024779) and Zinc finger, CXXC-type domain
455 (IPR002857) with the exception of 3 proteins g79 (Pcit), g6287 (Mhir) and XP_008183448
456 (Apis) which are partial sequences containing only Zinc finger, CXXC-type domain
457 (IPR002857). Multiple sequence alignment with human TET proteins revealed that Group I
458 proteins shared higher sequence similarity with human TET proteins than Group II proteins as
459 shown in percentage identity matrix (S8Table), suggesting that group II proteins shared
460 similarity only in domain regions and are variable in regions outside the domains. As
461 mentioned earlier the group II proteins were identified as N6 DNA demethylases, could indeed
462 be orthologues of TET proteins that serve as 6mA demethylases, as demethylation of 6mA in
463 *Drosophila* is regulated by its TET homolog [57].

464 The ALKBH family formed two clusters in the phylogenetic tree with one cluster (cluster A)
465 containing ALKBH4 proteins of all insects grouping with human ALKBH4 protein and other
466 cluster (cluster B) containing alkbh1 proteins of all insects grouping with human ALKBH1.
467 Both ALKBH1 and ALKBH4 proteins shared the Alpha-ketoglutarate-dependent dioxygenase

468 domain (IPR027450) while ALKBH4 proteins contained an additional Oxoglutarate/iron-
469 dependent dioxygenase domain (IPR005123). ALKBH2 and ALKBH3 formed a separate
470 cluster; we could not find orthologs for these proteins in Mhir and Pcit as well as in other insect
471 species.

472 **Mining the genes for epigenetic modification of histones**

473 The various classes of genes were curated based on the presence of functional signatures or
474 domains using InterProScan (<https://www.ebi.ac.uk/interpro>) from the annotated genome of
475 *Drosophila melanogaster* as reference for the newly sequenced genome of Mhir. Based on the
476 frequency of occurrence of the domains in different genes of a given functional class in the
477 genome of *D.melanogaster*, we selected domains which we designate as high priority domains
478 (HPD; [64]). In a similar analysis, the SET and Pre-SET domains were identified as high
479 priority domains for histone methyltransferase as described earlier [64].

480 In-house PERL script was used to fetch genes containing high priority domains in Mhir and
481 also in the other genomes that were used for comparative analysis. The gene classes were also
482 mined using BLASTp (www.blast.ncbi.nlm.nih.gov). After manual curation, these genes were
483 divided into three groups-(i) Interproscan only - genes which harbor the HPD but has not been
484 annotated/assigned any function in BLASTp (ii) BLASTp only- those genes that lack HPD
485 even though a function is assigned in BLASTp (iii) Concordant- those that are annotated by
486 BLASTp and contain the HPD as well (common to both InterProScan and BLASTp). A
487 representative profile for histone acetyl transferases (HATs) shows the Acyl CoA acyl
488 transferase and histone acetyltransferase_MYST_type domain as the high priority domains.
489 The Chromatin remodelling proteins have four high priority domains viz. Helicase ATP-
490 binding, SNF2_N, Helicase-C and the P-loop NTPase (S2Fig). A similar criterion was utilized
491 to identify the different classes of histone modifiers.

492 In all the genomes, there are a few genes having the high-priority domain(s), but not annotated
493 in BLASTp. We consider these as potentially novel genes. The number of genes in this category
494 is least in *C. lectularius* (8), while it is high in Mhir and Pcit at 26 and 12. In Mhir (71) genes
495 are predicted to be histone modifiers by BLASTp only, lacking the high-priority domains (Fig
496 9A; S9Table). On manual curation, we find that these are partial sequences. Pcit has a
497 significantly larger genome compared to Mhir and has a higher number of almost all the genes
498 that we analysed.

499 **Writers of epigenetic imprint**

500 **Histone methyltransferases (HMT)**

501 The modification of histones is one of the major and better analyzed epigenetic markings [65].
502 The SET and Pre-SET are the high-priority domains for HMTs [64]. All the three categories,
503 SET proteins, DOT1 proteins and the arginine methyltransferases involved in histone
504 methylation were annotated in the Mhir and Pcit genome. Mhir has 19, Pcit 35 while *A. pisum*
505 with 40 genes has the maximum number of histone lysine methyltransferase genes (Fig 9A,
506 S9Table). Besides this, many genes with HPD are recognized (Mhir- 13, Pcit- 5, Apis- 9), but
507 were not annotated in BLASTp (Fig 9A). These are potentially novel methyltransferases, to be
508 investigated further. The number of genes for specific modification as well as activating and
509 repressive modifications is not high in mealybugs relative to that in others though a large part
510 of genome is under epigenetic regulation (Fig 9B and 9C). This is not unexpected considering
511 that these are catalytic functions.

512 We used phylogenetic clustering with *Drosophila* HMTs, to assign specificity of the coded
513 enzymes (Fig 10). The low confidence annotations (identified by BLASTp only) are due to
514 partial sequences, but the identity of some of them could be deciphered based on their clustering
515 pattern. For example between the two E(z)-like genes, Mhir_g5597 is complete and

516 Mhir_g18633 is fragmented, similarly additional copies of genes for trr detected (Mhir_g13137
517 & Mhir_g20142) are also partial sequences (Fig 10, S3A, B, C, D Fig). The key-word based
518 identification of BLASTp annotated genes also led to error as in the case of trl and Ash2, which
519 was detected by phylogenetic clustering (Fig 10). These proteins are not catalytic histone
520 modifiers in *Drosophila*, but are associated with epigenetic regulatory complexes, like
521 COMPASS containing histone methyltransferase for H3K4 trimethylation, while trl codes
522 GAGA protein [66, 67]. There are multiple genes coding for almost all the methyltransferases
523 in both Mhir and Pcit (Fig 10, S10Table).

524 The methyltransferases are involved in the regulation of several pathways in almost all
525 eukaryotes including yeast (S10Table). Their function is mediated through different
526 multiprotein complexes that determine the site of action and the target genes. Among the
527 various pathways modulated by histone methylation, those that result in silencing of genes and
528 whole chromosomes are the most relevant in mealybugs.

529 The silencing histone methylation marks (H3K9me2,me3) are enriched in heterochromatin in
530 nuclei from mealybug males and retained during spermatogenesis and further in the male
531 pronucleus in Pcit [68]. Therefore it was considered as a candidate for male specific imprinting
532 mark [68]. In *Drosophila*, there are multiple methyltransferases mediating H3K9 methylation:
533 egg(SETDB1), G9a and Su(var)3-9 [69]. All the three genes were annotated in mealybugs
534 (S10Table). The function of egg(SETDB1) is important for maintenance of heterochromatin in
535 *Drosophila* and a balance between egg and Su(var)3-9 genes is essential asmutation in both the
536 two genes is less deleterious than single gene mutation ([70]). This suggests an interaction
537 between the two genes and in this context the higher copy number of genes in mealybugs is of
538 significance. Their tissue specific and developmental stage specific expression has to be
539 explored.

540 Similarly, there are two genes Pr-SET7 and the Suv4-20 that catalyse H4K20 modification, yet
541 another repressive histone mark (Fig10). There is a functional cooperation between these two
542 enzymes; Pr-SET7 catalyses the H4K20 monomethylation and Suv4-20 brings about
543 trimethylation of H4K20 in *Drosophila* [71, 72]. H4K20 methylation is important for chromatin
544 condensation (during interphase) and position-effect variegation in *Drosophila* [73]. In
545 mealybugs, H4K20 methylation is localized on the heterochromatized paternal chromosomes
546 in males and in females no specific distribution was observed [12]. Mathur et al,[13] reported
547 the presence of H4K20 in both male and female mealybugs, it was enriched in soluble
548 chromatin fraction, that was not associated with nuclear matrix. Heterochromatin protein 1
549 (HP1) is essential for maintaining the normal levels of H4K20me3 [72, 74]. The identification
550 of multiple copies of several of these genes in the mealybugs suggest shared components
551 between constitutive heterochromatin seen in all organisms and the facultative
552 heterochromatization observed in mealybugs and the inactive X chromosome of mammals.
553 H3K36 methylation antagonizes Polycomb silencing and has a role in DNA repair and mRNA
554 splicing [75]. There are multiple enzymes that bring about H3K36 methylation, among which
555 Set2 is the only enzyme responsible for trimethylation of H3K36 [76]. Ash1 is H3K36me2-
556 specific methyltransferase associated with trithorax complex and is also required for H3K4
557 methylation [76-78]. The Ash1 and Set2 genes are well conserved in mealybugs (Fig 10, S4C
558 Fig). MLL5 also methylates H3K36 in mammals, Mhir and Pcit is similar to mammalian
559 MLL5([79]; S10 Table). SETMAR genes, identified as an expanded class of genes in
560 mealybugs dimethylate H3K36 and are important for DNA repair activity [29].
561 SMYDs, bring about lysine methylation of non-histone proteins and some of them methylate
562 histones also [80]. Among them SmydA genes are specific to arthropods [81]. There is
563 evidence for the role of Smyd5 controlling expression of proinflammatory genes through

564 histone methylation with the interface of the NCoR complex in mammals [82]. Both Mhir and
565 Pcit have Smyd genes and Smyd5 is identified as a differentially expressed gene (Fig 10).
566 A single ortholog of gpp/DOT-1 (H3K79 specific) is present both in Mhir and Pcit (Fig 10).
567 DOT1L associated with the Dot complex is important for DNA damage response [83-85].
568 H3K4 methylation is brought about by the Set1, Smyd1,trr and the trx genes [86-90]. The Mhir
569 trithorax-related (trr) has PHD finger domains and a HMG box (high mobility box domain)
570 similar to the human MLL3 ortholog and not of Drosophila, where lpt and trr are two separate
571 genes [91]. Mhir has one copy as a composite gene with both lpt and trr in addition to another
572 where the two are coded by separate genes. The alignment of the trr gene in various insects is
573 shown in S3C, DFig. The trr genes are highly conserved (Fig10; S3C, D Fig). In Apis, Pcit and
574 Clec, the composite gene resembles the human homologue (MLL3). The bootstrapped trees
575 for the lysine methyltransferases are given in S4 Fig.
576 Arginine methyltransferases are also present in Mhir (10 genes) and Pcit (9 genes, S9 Table).
577 Most of the genes of a given function cluster together but a few are clustering away from their
578 paralogues. Art9 of Mhir and Pcit are clustering with Art7 and they are far from the Drosophila
579 Art9 showing sequence variability between dipteran and hemipteran Art9 (S5Fig). The
580 detection of various modifications of histones reported in mealybugs, the detection of multiple
581 genes coding for the enzymes facilitates their tissue and stage specific expression studies. In
582 the absence of sex chromosomes in mealybugs, epigenetic mechanisms are important part of
583 sex determination and differential regulation of the homologous chromosomes.

584 **Histone acetyltransferase**

585 The acetylation of histones is widely encountered in almost all eukaryotes and is associated
586 with transcriptional activation and open chromatin state. The HATs (Histone
587 acetyltransferases) are divided into two superfamilies, the MYST-type and Gcn5-related. As
588 described under the methods section, the genes were annotated using BLASTp and

589 InterProScan in Mhir and Pcit along with other species. The phylogenetic analysis of these
590 proteins led to the formation of a super-cluster comprising of MYST-type HATs namely MOF,
591 Tip60, CHM, ENOK and CG1894 along with a number of Mhir and Pcit proteins (Fig11). The
592 MOF sub-cluster includes two Mhir proteins (g14997 and g16369) along with Pcit genes
593 (g7142, g40821). MOF is an H4K16-specific acetyltransferase that participates in dosage
594 compensation in *Drosophila* [92, 93]. The H4Ac16 leads to hyper-transcription of X-
595 chromosome in male flies whereas the female X-chromosome shows decreased enrichment of
596 H4Ac16 [94]. The differential enrichment of H4 acetylation on active maternal and the
597 heterochromatic male genome in Pcit is reported earlier ([95]).

598 The Mhir proteins (g9382 and g9310) and Pcit protein (g36521) cluster with Dmel Tip60,
599 which is closely related to MOF and participates in acetylation of histone H4 and H2A ([96,
600 97]; Fig.11). Mhir g4136 and Pcitg39105 cluster with Dmel CHM and ENOK proteins, which
601 acetylate histone H3 and are involved in position effect variegation. The haploinsufficiency
602 leading to a phenotype indicates that the dosage of this gene is also critical [98]. Thus, the
603 physiological haploidy resulting from the inactivation of the paternal genome in mealybugs
604 might be correlated to differential histone acetylation. Chm which is involved in Pcg mediated
605 silencing, clustered in a super-cluster that included MOF, Tip60, CHM, ENOK and CG1894,
606 ([98, 99] [93,94],Fig11). Mhir proteins g14997 & g16369 along with Pcit proteins g7142 &
607 g40821 that cluster with MOF harbour Chromo-like domain. Though, the length of the
608 homologous proteins in Mhir and Pcit is reduced, they are similar to the C-terminal regions of
609 Dmel protein.

610 The Gcn5-related HAT1 forms a distinct cluster with Mhir (g10554) and Pcit (g4576) proteins
611 (Fig 11). The Dmel Gcn5 clusters also include Mhir (g20555) and Pcit (g6490) proteins. HAT1
612 is important for the *de novo* histone deposition and chromatin assembly which is in turn

613 associated with HAT1-mediated cycle of H3 and H4 acetylation and deacetylation [100].
614 HAT1 also contributes to cellular tolerance to double strand breaks which are induced by
615 replication blocks [101]. *Drosophila* Gcn5 catalyzes H3K9 and K14 acetylation and is a key
616 player regulating metamorphosis and oogenesis [102]. The association of Gcn5 mutation with
617 decondensation of the X-chromosome, similar to that found in case of mutations in Iswi and
618 Nurf301, link X-chromosome condensation with histone acetylation [103]. Another well-
619 known histone acetyltransferase, Nej harbours CBP/p300-type HAT domain and acetylates
620 H3K18, H3K27 and H4K8. The products of Mhir g429 and Pcit g11547 and g38362 genes
621 cluster with Dmel Nejire protein (Fig 11). A number of other Mhir and Pcit proteins cluster
622 with lesser known class of Gcn5-related KATs called N(Alpha)-Acetyltransferases which are
623 members of the NAT (N-terminal acetyltransferase) complexes (Fig 11)[104]. Not much is
624 known about these GNAT domain-containing N(Alpha)-Acetyltransferases but their depletion
625 alters global H3 and H4 acetylation levels [105]. HATs and HDACs cooperate to regulate
626 allele-specific histone acetylation at the DMRs (Differentially Methylated Regions) [106].
627 Thus, the activating marks are important players in regulation of parental-origin-specific
628 transcription.

629 The comparison of HAT genes between different species points towards expansion of this gene
630 class in *Apis*(17), Dmel (16) and Mhir (16) with Pcit and Clec carrying only 10 and 7 HAT
631 genes, respectively (S9 Table) . Since, HATs participate in dosage compensation and
632 imprinting, the large number of HAT genes in Mhir can be predicted to play a key role in
633 dosage compensation associated with paternal chromosome-specific heterochromatinization
634 via hyperacetylation of the maternal chromosomes, which is to be investigated. The various
635 bootstrap phylogenetic trees for the HATs are given in S6A-G Fig.

636 **Erasers of epigenetic imprint**

637 **Histone demethylases**

638 Histone demethylation confers reversibility to histone methylation which is important for
639 selective activation and repression and also for meiotic memory as in genomic imprinting.
640 These serve as erasers of epigenetic marks. There are two kinds of demethylases- those that
641 demethylate through the activity of the amine oxidase domain, using FAD as a cofactor and
642 those where JmjC domain participate in demethylation [107, 108]. The histone demethylase
643 enzymes were mined based on the presence of HPD, JmjC domain in Mhir, Pcit and other
644 insects.

645 The highest number of demethylases are present in *A. pisum*(26) followed by Dmel and Pcit
646 having equal numbers of demethylases (13), Mhir has 12 and Clec has 16. A large number of
647 demethylases are found in the BLASTp only class in mealybugs- Mhir (12) and Pcit (20) which
648 need further validation (Fig9A, S9 Table). We used phylogenetic clustering with *Drosophila*
649 HDMs and found multiple genes coding for the almost all demethylases in both Mhir and Pcit.
650 Based on this clustering, the putative novel genes are identified as *JMJD4*, *Kdm4a/b*, *jarid2*,
651 *JMJ14* and *HSPBAP1* (Fig12).

652 The amine oxidase family of demethylases consisting of LSD1/su(var)3-3 are found in Mhir
653 (2 genes) and Pcit (3 genes; Fig12). Lsd1 mediates H3-K4 demethylation and in *Drosophila*,
654 the mutants are sterile and defective in ovary development. The mutant alleles of Lsd1 in
655 *Drosophila*, suppress position-effect variegation, suggesting a disruption of the balance
656 between euchromatin and heterochromatin [109]. Both lid and dKdm2 target H3K4me3 and
657 regulate transcription of essential developmental genes. They are required for different
658 developmental processes but may have some redundant functions [110]. Mhir has 2 and Pcit
659 has 1 copy of lid, whereas both Mhir and Pcit have 1 copy each of Kdm2. Kdm2 also
660 demethylates H3K36 [111].

661 Kdm4a and Kdm4b genes, demethylate H3K9me3. In *Drosophila*, Kdm4A showed strong
662 association at heterochromatin which led the authors to propose that Kdm4A is a structural
663 component of heterochromatin [112]. Kdm4a regulates heterochromatin position-effect
664 variegation (PEV), organization of repetitive DNA, and DNA repair [112]. Mhir has 1 copy of
665 Kdm4 while Pcit has 2 copies (Fig 12). JHDM2 (JmjC domain-containing histone
666 demethylation protein 2)/ Kdm3 is known to have demethylation activity at H3K9. Mhir
667 contains 1 copy of each of Utx and Jarid2 (JmjC genes) while Pcit has two copies of Utx and
668 one copy of Jarid2. In Dmel, mutation in three out of 13 Histone demethylases shows lethality
669 [113].

670 JMJD7 demethylating arginine residues of histones H2, H3 and H4 in *Drosophila*[114] is
671 absent in Mhir and Pcit. Both Mhir and Pcit have 1 copy each of JMJD4, JMJD5 and
672 HSPBAP1/CG43320. JMJ14 encoding histone H3K4 demethylase is present in Mhir, but is
673 absent in Dmel. NO66 specifically demethylating H3K4me and H3K36me of histone H3, plays
674 a central role in histone code [115]. Both Mhir and Pcit have one copy of the gene (Fig12). The
675 various bootstrapped trees for the histone demethylases are given in S7 Fig.

676 Since the demethylases act on specific residues of specific histones and absence of any report
677 of genes to demethylate H3K79 and H4K20; it remains unclear how the histone demethylation
678 is carried out at these sites in the Dmel, Mhir and Pcit genomes. The writers and erasers of
679 histone methylation are detected in the mealybug genome conferring reversibility to histone
680 methylation as an epigenetic signature.

681 **Histone deacetylases**

682 Histone deacetylases (HDACs), associated with transcriptional repression are categorized into
683 four classes on the basis of DNA sequence similarity and function. Class I, II and IV enzymes

684 are inhibited by trichostatin A (TSA) and known as the classical HDACs while class III
685 members are NAD⁺-dependent proteins which are not inhibited by TSA and are known as
686 Sirtuins. We have analysed the classical HDACs of Class I, II and IV in Mhir and Pcit using
687 *D.melanogaster* as the reference.

688 HDAC1 plays a crucial role in imprinting and X-chromosome inactivation, via its interaction
689 with NuRD chromatin remodelling and deacetylase complex [116, 117]. HDAC inhibition by
690 TSA, leads to the loss of hypoacetylation associated with inactive X [118]. In *Drosophila*,
691 HDAC1 and SU(VAR)3-9 co-operate to methylate pre-acetylated histones to bring about
692 transcriptional silencing. The HDAC3 of Mhir (g3497) and Pcit (13687) cluster with HDAC3
693 of Dmel (Fig 13). The HDAC1 and HDAC3 clusters form a part of a larger cluster that includes
694 other Mhir (g5630) and Pcit (g31540) proteins (Fig 13). HDAC3 binds to putative enhancers
695 on the X-chromosome and promotes histone deacetylation upon *Xist* induction, promoting
696 transcriptional silencing [119]. Global deacetylation by HDAC3 is a prerequisite for chromatin
697 compaction during mitosis [120]. HDAC3 via its association with linker histone H1.3 also
698 regulates polar microtubule dynamics in mitosis thus controlling spindle formation and
699 chromosome alignment [121]. The expression of this gene during development would be of
700 interest in the mealybugs, where mono-polar spindle is formed during spermatogenesis [8].

701 Mhir (g17194) and Pcit (g7102) proteins are orthologues of HDAC4, while Mhir (g966) and
702 Pcit (g8244) cluster with HDAC6. Dmel HDAC11 clusters with Mhir (g827) and Pcit (g34275)
703 proteins (Fig 13). HDAC11, the lone member of Class IV, is an unusual type, which is present
704 in Mhir and Pcit, although it has not been identified in *A. pisum* [47]. Apart from its histone
705 deacetylase activity, HDAC11 also acts as a fatty acyl-hydrolase [122]. All the clusters
706 described above form a part of a supercluster that also includes Pcit proteins (g13167 and

707 g37172) and Mhir protein (g2353). The bootstrapped trees for the HDACs indicate high
708 conservation and potential functional similarity (Fig14).

709 In mealybugs, where the paternal genome is heterochromatized, a complete repertoire of
710 classical HDACs working along with histone methyltransferases would be a pre-requisite. It is
711 interesting to speculate that this repertoire for the heterochromatization of paternal
712 chromosomes in mealybugs and X-chromosome inactivation in mammals are shared. HDACs
713 appear as an expanded class in Mhir, Pcit, *Apis* and Clec with *A. pisum* harbouring maximum
714 number of HDACs, when compared to Dmel. Evolutionary pressures such as genome
715 expansions along with parahaploidy in mealybugs may have led to the expansion of chromatin
716 modifier gene families, regulating high density chromatin packaging [123].

717 **Protein complexes mediating epigenetic modification in mealybugs:**

718 The epigenetic modifier proteins are recruited to their site of action through protein complexes
719 that bring about chromatin accessibility and also mediate the recognition of the modified
720 histones to translate the signal for either transcriptional activation or repression [124]. The
721 genome of Mhir and Pcit contain almost all the catalytic activity required for epigenetic
722 modifications of DNA and histones as well as those required for reversal of the modification.
723 The target specificity of these enzymes is governed by protein complexes that recruit the
724 writers and erasers. In light of these observations, the involvement of Pcg-like (Polycomb) and
725 TrxG/COMPASS-like complex in mealybugs is also necessary. These complexes are well
726 conserved from yeast to mammals [125]. Our current analysis aims to identify and compare the
727 composition of Polycomb and Trithorax and Chromatin remodelling complexes in mealybugs,
728 Pcit and Mhir. Using the well-studied complexes in *D. melanogaster* as the reference we
729 analysed genes involved in these complexes in the Mhir and Pcit genome.

730

731 **Polycomb and Trithorax complexes**

732 The Polycomb and Trithorax complexes are highly conserved across species although the DNA
733 elements that recruit these complexes (PRE/TRE) are not conserved [126, 127]. We find that
734 they are conserved in Mhir and Pcit with some of the being multi-copygenes. For example, in
735 PRC2 complexes there are three Enhancer of zeste-like proteins in Mhir(g5597, g5598 and
736 g1288) and two in Pcit (g13871 and g37973) indicating redundancy compared to Dmel(Fig
737 15). Similarly, in case of PRC1 complexes there are two RING finger protein 3-like proteins
738 in Mhir (g14582 and g15883) as opposed to one dRING in Dmel PRC2 complex. There are
739 cases where the Mhir and Pcit polycomb members are closer in sequence to human homologues
740 than to the Dmel homologues; Mhir and Pcit YY1-like proteins (g4392 in Mhir and g1376 in
741 Pcit) and RING finger protein-3 like (g14582 and g15883; Fig 15. Upon alignment, these
742 proteins were found to share 60.5% and 61% similarity with human YY1 protein, respectively,
743 whereas their similarity to Pho (*Drosophila* homologue for YY1) is 46.67% and 48.98%,
744 respectively.

745 The DNA binding domain of YY1, Pho, YY1-like protein of Mhir and Pcit are highly similar
746 ($\geq 94\%$) and they are different outside this domain. All the four proteins have four well
747 conserved C2H2-type Zinc fingers and ZF2 and ZF3, which are essential for YY1-mediated
748 transcription [128]. YY1 has a histidine cluster which is a nuclear speckle-directing sequence
749 and is missing in Pho and the YY1-like proteins of Mhir and Pcit. The nuclear speckles are the
750 centre of RNA synthesis and processing. The histidine clusters appeared after the duplication
751 event associated with the vertebrate evolution [129]. The HAT/HDAC interacting domain
752 varies between YY1 and other proteins, even though the REPO domain, that participates in
753 P^cG recruitment to DNA and is essential for P^cG mediated repression, is well conserved
754 between YY1, g4392 and g1367 [130]. The spacer sequence in YY1 and Mhir/Pcit YY1-like

755 proteins share greater similarity and differs significantly from that of Pho protein. The spacer
756 regions act as accessory regions to transactivation function and the deletion of the spacer at the
757 C-terminal end, perturbs the DNA binding and transactivation activity [131].

758 RING finger proteins are members of the PRC1 complex, which bring about E3-ubiquitin
759 ligase activity. The zinc finger associated with the RING finger domain is highly conserved
760 between *Drosophila* dRing/Sce, Mhir (g14582 and g15883) and Pcit (g26121) RING finger 3-
761 like protein, even though the rest of the sequence is not conserved. Another interesting feature
762 is the complete absence of the RAWUL (Ring Finger/WD40 association ubiquitin-like) domain
763 at the C-terminal in the RING finger 3-like proteins of Mhir and Pcit. The RAWUL domain
764 contains a ubiquitin fold and is important for interaction with the Cbx members of the PRC1
765 complex [132]. The Dmel E(z) protein and E(z)-like proteins of Mhir (g5597, g5598 and
766 g1288) and Pcit (g13871 and g37973) have high sequence similarity, except for the partial
767 deletion in the SANT-Myb domain. The SANT-Myb domain interacts with the nucleosome
768 and the inter-nucleosomal DNA. It would be interesting to see how the partial deletion of the
769 SANT-Myb domain affects the activity of Mhir E(z) and whether it is compensated by another
770 accessory protein harbouring the SANT-Myb domain.

771 The Polycomb complex is a writer as Ezh2 catalyses H3K27 di/trimethylation, leading to
772 condensed chromatin and gene silencing. These complexes are recruited to the chromatin with
773 the help of transcription factors (example Pho/ YY1 binding to GCCAT/ACCAT) [133] or
774 short- and long-non-coding RNAs [134, 135]. The presence of YY1 like proteins in the
775 mealybug genome is significant in this context. The analysis of the non-coding RNA is
776 underway.

777 The writer for signalling activation is the Trithorax Complex, also known as the COMPASS
778 complex which brings about H3K4 di/trimethylation leading to an open chromatin state and

779 transcriptional activation (Fig 16). The trithorax complexes are also well conserved in Dmel,
780 Pcit and Mhir. But there are examples where the Mhir or Pcit homologues were not identified
781 for example, dNcoA6 of Trithorax-related dCOMPASS-like complex is missing in Mhir and
782 Pcit, complexes (Fig 16). Ash2 is missing in the Pcit in Trithorax dCOMPASS-like complexes.
783 The absence of the genes in both Pcit and Mhir genome may indicate true absence in mealybug
784 genome, while absence in only one of the two, like absence of Sh2, suggests sequence gaps.

785 There are multiple genes which are dCBP-like in Mhir and Pcit suggesting functional
786 redundancy or tissue specific expression. The *Drosophila* dCBP (CREB-binding protein) is
787 also known as Nejire that harbours CBP/p300-type HAT domain and acetylates H3K18,
788 H3K27 and H4K8. Nejire-mediated H3K18 and H3K27 acetylation controls male sterility in
789 *Drosophila* [136]. Thus, its role in sexual dimorphism in mealybugs can be speculated. Thus,
790 the current analysis points towards the presence of a complete repertoire of Polycomb and
791 Trithorax complex members in Mhir and Pcit with few exceptions.

792 **Chromatin remodelling complexes- the readers of epigenetic signals**

793 The structure of chromatin and its dynamics is essential for active transcription as well as for
794 the selective compaction of the chromatin in transcriptionally silent regions. In epigenetic
795 regulation, the readers (chromatin remodelers) recognize the histone modification as one of the
796 signals and remodel nucleosomes thereby facilitating the compaction/expansion of the
797 nucleosomal arrays.

798 The high-priority domains utilized to identify the chromatin remodeling genes (CRM) are the
799 Helicase ATP binding, SNF2 N-terminal, Helicase C and the P-loop NTPase domains (S2 Fig).
800 The InterProScan and the BLASTp analysis of Mhir genome led to the identification of 30
801 chromatin remodelling proteins, including 2 putative novel chromatin remodelers (S11 Table).
802 We carried out a comparative analysis of all the genes in Mhir with other insect genomes (S11

803 Table). *D.melanogaster* has well defined candidates for CRM genes along with some
804 predicted chromatin remodelers that contain the HPD (S11 Table). It is known that the *A. pisum*
805 genome is duplicated for the epigenetic modifiers including the chromatin remodeling proteins
806 [137]. Pcit genome has several genes that are annotated as chromatin remodelers only in
807 BLASTp analysis.

808 The chromatin remodelers are classified into 4 families, namely SWI/SNF, ISWI, CHD and
809 INO80. Proteins of these four chromatin remodeling complexes identified in Mhir and Pcit
810 compared with *Drosophila* complexes are shown in Fig17, S8 A-C Fig. BLASTp analysis
811 identified a complete repertoire of these proteins in Mhir genome indicating functional
812 conservation. A number of proteins in these complexes harbour additional domains that
813 recognize various histone modifications and bring about nucleosome sliding, histone variant
814 exchange and/or nucleosome ejection [138, 139].

815 The core proteins of the various chromatin remodeling complexes present in Mhir and Pcit are
816 shown in Fig17 (SWI/SNF) and S8Fig. It is observed that there are multiple copies of genes
817 for several proteins within the complex, as in the case of BRM protein in BAP and PBAP
818 complexes of the SWI/SNF family (Fig 17) and Domino of SWR1 complex (S8AFig).
819 Similarly, there are 3 NURF38 coding genes in Mhir and 2 in Pcit (S8B Fig). These proteins
820 are similar to the Dmel proteins in having the HPD, but may have additional domains. The
821 Mi-2 protein has a potential DNA binding domain [140]. It is possible that the expression of
822 these genes is either tissue specific or developmental-stage specific. The increase in copy
823 number also suggests the importance of the function of the gene and hence, the evolution of
824 redundancy.

825 Apart from the core complex, which is highly conserved across species, the composition of the
826 accessory proteins varies in tissue and developmental stage-specific manner. The recruitment

827 of the various complexes to their site of activity is generally through recognition of the histone
828 modification of the site. A summary of selected examples of histone modifications recognized
829 by various chromatin remodeling complexes is given (S12 Table). The writers for all the
830 histone modifications that mediate the recruitment of the chromatin remodelling complex are
831 coded in the Mhir and Pcit genome, as discussed earlier. This shows that the mechanisms of
832 epigenetic regulation known in other systems can be functional in the mealybug system. It is
833 interesting that some of their gene structure is similar to the human genes rather than that of
834 *Drosophila*.

835 **Transcriptome analysis for differential gene expression**

836 Transcriptome sequencing of adult females and males was performed and the data statistics is
837 given in Table 2. Analysis of the transcriptome indicated concordance between the biological
838 replicates (Fig18). We analyzed the transcriptome of endosymbionts (mapped genes
839 contributed by endosymbionts) and *M.hirsutus* nuclear genome. It was found that on an average
840 endosymbionts (*Candidatus Tremblaya princeps* and *Doolittlea endobia*) have
841 higher expression in females than males (Fig 18). This correlates with the earlier observation
842 that the endosymbiont load is reduced in the non-feeding adult males of mealybugs. In two
843 mealybug species (*Planococcus kraunhiae* and *Ps.comstacki*), the analysis of the dynamics of
844 infection of both beta and gamma proteobacteria indicated comparable level in both males and
845 females in the early stages of development, while it was detected only in adult females.
846 Similarly in *Planococcus lilacinus* 16s rRNA was found only in adult females [141, 142]. The
847 elimination of endosymbionts from adult males could be due to their reduced metabolism as
848 they do not feed, they mate with several females and die after a few days [143]. Unlike the
849 endosymbiont transcripts, host gene transcripts showed no significant difference between adult
850 male and female mealybugs (Fig 18).

851 Differential gene expression (DGE) analysis was performed using the Kallisto-Sleuth pipeline
852 and 1183 genes were found to be differentially expressed in males and females after applying
853 multiple filters (S9 Fig). Hierarchical clustering of the differentially expressed (DE) shows
854 similarity between the biological replicates and variation in the expression of genes among
855 males and females (Fig 19). Out of the 1183 genes, 652 genes have higher expression in males
856 and 531 genes show higher expression in females, these will be referred to as male enriched
857 and female enriched genes hereafter in this manuscript.

858 We used a combination of approaches to find functionally enriched pathways and processes in
859 males and females. We found genes related to metabolic and oxidative phosphorylation
860 pathway enriched in males, while genes of ribosome biogenesis pathway are enriched in
861 females (S10 Fig). Further we removed the genes related to oxidative phosphorylation and
862 ribosomes from genes overexpressed in males and females respectively and performed GO
863 annotation. Biological processes show enrichment of genes related to “translation” and
864 “response to oxidative stress” specifically present in females while genes related to
865 “cytoskeletal organization” and “cellular protein modification” were present in males (S11Fig).
866 In addition, we performed manual curation of all DE genes (S12 Fig, Fig20&21) which
867 indicated enrichment of genes involved in metabolism, signal transduction, transporters
868 sensory transduction and insecticide resistance in both males and females. Biological functions
869 specifically enriched in males include cytoskeletal organization, cuticle development, protein
870 ubiquitination and autophagy; while in females, genes involved in translation, ribosomes, RNA
871 processing and wax biosynthesis were enriched. The significance of these observations was
872 considered in the light of life-cycle and the sexual dimorphism of the mealybugs in terms of
873 their size and morphology.

874 In both males and females, the most prominent pathways with increased expression are those
875 for metabolism (Males: 177; Females: 100) though the nature of metabolic pathways varied.
876 In males oxidative phosphorylation genes (70), lipid metabolism (16), fat metabolism (16) and
877 TCA cycle genes (14) are over-represented. In females a relatively high number of DE genes
878 are from carbohydrate (21), lipid (15) and fat metabolism(15). This enrichment can be
879 attributed to high energy requirements for flight in adult males for which lipids and fats are
880 utilized, and oxidative phosphorylation pathway is involved in energy production. On the other
881 hand females are constantly feeding to provide for growth and development of eggs thus would
882 require genes for carbohydrate metabolism.

883 Manual annotation of DE genes highlighted gene classes involved in metamorphosis, insect
884 flight and chitin synthesis over-expressed in males. These include four copies of trehalase
885 genes which play a critical role in metamorphosis, insect flight and chitin synthesis [144].
886 Motor proteins like flightin, myosin, tropomyosin, paramyosin, troponin C and alpha-actinin
887 which form part of the insect flight muscle [145] also show elevated expression in male
888 mealybugs.

889 The enrichment of transcripts in males that correlate with sexual dimorphism are the following:
890 flightin gene, specifically found in flight muscles and essential for flight, with fold change of
891 8.8, takeout (g1473) involved in courtship behaviour and autophagy pathway which is induced
892 by starvation and is one of the mechanisms adopted for elimination of endosymbionts in cereal
893 weevil *Sitophilus* [146]. Higher expression of flightin gene is also observed in winged morphs
894 in *Aphis gossypii*[147, 148].

895 Reciprocally in females, increased expression of genes correlating with oocyte development is
896 seen. The genes involved in ribosome function, RNA processing, RNA binding, transcriptional
897 regulation and translation also can be attributed to deposition of maternal transcripts and

898 proteins during oocyte development. One of the ribosomal proteins RPL12, interacts with
899 trithorax and polycomb complexes and deregulates heat-response and ribosomal protein genes
900 [149]. Mhir has one copy of the RPL12 gene (g17594) and its transcription is higher in females
901 than in males. Apart from this, genes for wax biosynthesis are enriched, correlating with
902 secretion of wax filaments by adult females to form ovisac [150].

903 As mentioned earlier, several horizontally transferred genes (HGTs) identified in mealybug
904 involved in protein degradation, Vitamin B and amino acid metabolism showed increased
905 expression in females. This enrichment of HGTs and endosymbiont specific transcripts in
906 females correlated with their lifespan and growth, in contrast to males.

907 We divided the DE genes into 3 categories based on fold change (FC): FC 1.5-2.9, FC 3.0-4.9
908 and FC 5.0-10. There were more genes (30 genes) from males in the high fold change category
909 (FC5.0-10) of differential expression compared to females (4 genes). The GO classification of
910 these genes indicated that the four genes overexpressed in females are for carbohydrate
911 metabolism. On the other hand the genes highly expressed in males belonged to multiple
912 functional categories (Fig 22) and consist of a variety of genes relating to energy production
913 which in turn can be related to sexual dimorphism including flight, courtship and mating which
914 are male specific attributes.

915 **Expression of epigenetic regulators**

916 All the epigenetic regulatory genes in Mhir are expressed and a few genes show differential
917 expression (S13Table). *SMYDA-5*, *SMYDA-4* and *SDS3* have increased expression in males,
918 *SMYDA-5* and *SMYDA-4* share homology with human SMYD3 protein, that can methylate
919 H3K4me3 and histone H4 at lysine 5 (H4K5) and lysine 20 (H4K20) [151]. In *Drosophila*,

920 they are associated with histone deacetylase binding activity and negative regulation of gene
921 expression.

922 SMYD5, *SMYDA-5* and nucleoplasmin show increased expression in females. *SMYD5* over-
923 expressed in females, brings about H4K20me3 modification [152]. This modification is
924 associated with DNA damage repair, chromatin compaction and heterochromatin formation.
925 The establishment of heterochromatin depends on the recruitment of H4K20 histone
926 methyltransferase by H3K9me3 bound HP1 [153]. This H3K9me3-HP1-H4K20me3 pathway
927 is shown to regulate facultative heterochromatization in *Planococcus citri*, with both repressive
928 methylations localizing to the heterochromatin in male mealybug nuclei [15]. SDS3 forms an
929 integral component of Sin3 histone deacetylase corepressor complex playing a critical role in
930 its integrity and is essential for its deacetylase activity [154].

931 Apart from the DE genes, other epigenetic modifier genes identified in Mhir genome, are
932 expressed in both adult males and females. We analyzed the expression of these genes and
933 identified genes that showed differences in expression between males and females based on
934 TPM values (S13 Fig). Several genes such as *SUV420H1* (*Su(var)4-20*, g12552), *PR-Set7*
935 (g14923), *SUV39H2* (*Su(var)3-9*, g6525), *E(z)* (g5598) and *Jarid2* (g10716) associated with
936 repressive histone methylation show increased expression in males along with *JMJ14*(g9351)
937 involved in demethylation of active histone mark H3K4me3. However, these did not cross the
938 threshold criteria of fold change (FC) ≥ 1 . Overall the expression of all epigenetic modifier
939 genes is moderate to low as seen in terms of relative TPM values (S14 Table). This low
940 expression in adult males and females may be an indication of the maintenance state of already
941 established epigenetic marks. It is important to investigate the transcription of these genes at
942 different developmental stages to correlate their activity with genomic imprinting mechanisms.

943 In X chromosome inactivation in female mammals repressive histone marks like methylation
944 and also the removal activating marks by histone deacetylation are essential [116, 117, 119]. It
945 remains to be investigated if SMYD proteins along with H4K20 methyltransferase like
946 Su(var)4-20 are part of the imprinting machinery in the mealybugs, for maintenance if not for
947 initiation.

948 **X-chromosome inactivation, a comparable paradigm**

949 The differential regulation of homologous chromosomes in mammals and the mealybugs are
950 well known examples of facultative heterochromatization in two evolutionarily distant species.
951 The process of X inactivation in mammals is random as opposed to that in the mealybugs,
952 though the similarities in late replication, transcriptional repression, and the establishment of
953 inactivation occurring around a similar developmental timeline, suggest evolutionary
954 conservation of the process [4, 155]. The mechanisms for the selection of the homologue for
955 inactivation in diploid cells differ in the two systems. However, the mechanisms of formation
956 of heterochromatin and its maintenance through mitosis may bear similarities, beyond the
957 epigenetic modifiers of histone and DNA. In this context, we examined proteins involved in
958 facultative heterochromatization of chromosomes for differential regulation in mammals and
959 the mealybugs.

960 Based on the available literature on X chromosome inactivation, we considered the protein
961 factors that interact with the long non-coding RNA as assembly factors to establish
962 inactivation. The presence of homologues of genes coding for these proteins in the mealybug
963 genome are identified (S15 Table and Fig 23). We have considered the molecular process
964 leading to chromosome condensation and transcriptional inactivation in three different phases,
965 however this does not correlate to the temporal sequence of these events.

966 I: Removal of activation marks is an essential step to achieve inactivation as seen in different
967 systems, including the mealybugs [95]. The SPEN protein (SMRT/HDAC1-associated
968 repressor protein) carries out HDAC mediated histone deacetylation leading to transcriptional
969 repression. Mhir has a single copy of *SPEN* while 4 copies are present in Pcit. The domain
970 analysis revealed that among the four genes only one gene of Pcit (g35012) contains SPOC
971 domain essential for *SPEN* function.

972 RBM15 is for recruitment of METTL3(RNA m6A methyltransferase) to Xist RNA in a WTAP-
973 dependent manner for mRNA modification. All the genes for these functions are found in Mhir
974 and Pcit with *WTAP* being present in single copy and *RBM15* in multiple copies in both the
975 genomes.

976 II. Localization of Xist to inactive X: The proteins implicated in this process are nuclear matrix
977 proteins SAF-A, CIZ1 and transcription factor YY1 ([156, 157]). *SAF-A* is present in both Mhir
978 and Pcit, while *CIZ1* is identified in Pcit, but not in Mhir. The transcription regulator YY1 is
979 the mammalian homologue of the pleiohomeotic (Pho) of Drosophila. The mealybug
980 homologue is similar to YY1 rather than Pho as discussed earlier.

981 III. Addition of repressive marks: The PRC1 and PRC2 complexes contribute to
982 heterochromatin assembly on Xi through H3K27me3 and H2AK119 ubiquitination
983 (H2AK119Ub; [157]). EZH2 of the PRC2 complex deposits the repressive histone marks and
984 JARID2 helps in recruitment of the complex to the inactive X chromosome. The chromatin
985 remodeller, ATRX2 serves as a bridging factor to reinforce PRC2 recruitment to inactive X
986 [156, 157]. The genes for these proteins are present in both Mhir and Pcit genomes, except
987 genes for *PCF2* (in Mhir) and *HnRNPK* (in Mhir and Pcit). It remains to be seen if there are
988 other proteins which can substitute for these. The other important proteins not detected in

989 mealybugs are lamin B receptor and macroH2A. The list of the proteins discussed here and
990 their status in mealybug genome is given in S15 Table.

991 The detection of most of the protein factors interacting with Xist RNA in the mealybug genome
992 suggests evolutionary conservation of mechanism of facultative heterochromatin. The major
993 player, the Xist-like long non-coding RNA remains to be identified in the mealybugs. On the
994 other hand, the presence of proteins that interact with Xist is a robust indicator of the presence
995 of such a RNA or atleast the conservation of consensus sequence motifs either in a long non-
996 coding RNA or in DNA itself. One of the important differences between X inactivation and
997 the inactivation of paternal chromosomes in the mealybug is the well supported evidence
998 suggesting the presence of multiple centres of inactivation in mealybugs [16, 158]. It is to be
999 noted that the multiple copies of the genes essential for inactivation may be due to a large
1000 proportion of the genome (50%) being subjected to inactivation in the mealybugs.

1001 In summary the analysis of mealybug genome considering it as a model for genomic imprinting
1002 reflects the conservation of the molecular players of whole chromosome inactivation on one
1003 hand, and on the other variations as in DNA methyltransferases, may reflect novel processes.
1004 The genome analysis reflects the basis of the unique biology of mealybugs in terms of radiation
1005 resistance, DNA repair and other features. The genome and the transcriptome described here
1006 provide a resource for further work.

1007 **Materials and methods**

1008 **Establishing mealybug culture**

1009 *Maconellicoccus hirsutus* (Mhir) was collected from an infected custard apple. The individual
1010 gravid females were cultured on sprouting potatoes. The identification of the species was
1011 carried out based on the cuticular features [159]. A colony of sexually reproducing Mhir was

1012 established and is maintained since 2012. The colony is maintained on pumpkins at 24-26⁰ C
1013 in dark glass chambers with fine mesh on one of the four sides. A pool of embryos was collected
1014 by placing gravid females on crumpled parafilm, laid out on agar plates with pumpkin extract.

1015 **Genomes for comparative analysis**

1016 The genome data of following insects were used for comparative analysis: *Drosophila*
1017 *melanogaster* (Diptera) as a well-studied model system, the pea aphid *Acyrtosiphon pisum*, the
1018 triatomid bug *Rhodnius prolixus* and *Cimex lectularius* belong to the order hemiptera to which
1019 the Mhir and Pcit belong, the silkworm *Bombyx mori* (Lepidoptera), which is plant feeder. The
1020 availability of well annotated genome data and the variation in habitat were also considered for
1021 choice of these systems for comparative analysis.

1022 **Genome sequencing and annotation**

1023 The genomic DNA was extracted from the pool of embryos using phenol-chloroform method.
1024 The genomic DNA (gDNA) library for sequencing was prepared according to the instructions
1025 by the manufacturer for sequencing on HiSeq2000 platform (Illumina, USA) and the Ion
1026 Torrent PGM platform (Life Technologies), PacBio sequencing was outsourced to Genotypic
1027 Technology Pvt. Ltd., India. Illumina paired-end data was filtered using Trimmomatic (version
1028 0.35;[160]) and merged to form longer super-reads using MaSuRCA.3.2.1 [161]. The filtered
1029 Illumina reads were used to error correct PacBio reads using PBcR pipeline of Celera assembler
1030 (version 8.3). Error corrected PacBio reads having length \geq 500bp were selected and finally the
1031 RunCA module was used to generate the final assembly using a combination of Illumina super-
1032 reads and error-corrected PacBio reads. Pilon was further used to correct the assembly. Ion
1033 torrent PGM contigs were constructed using CLC Genomics Workbench 9 to validate the
1034 assembly.

1035 *Ab initio* gene prediction was done using RNASeq based genome annotation tool
1036 BRAKER_v1.9 [162] which combines prediction from the tools GeneMark and Augustus to
1037 identify the final set of genes/proteins in Mhir genome. TheRNASeq reads from the Mhir
1038 embryos were aligned using STAR and were provided as an input to the software. To train the
1039 gene prediction model for Augustus, parameters were automatically optimised from
1040 transcriptomics assisted GeneMark predicted genes in the prior step.

1041 BLASTp (version BLAST 2.4.0; [163]) was used for annotating the function of the predicted
1042 protein sequence set using NR database as the reference. Maximum five hits were considered
1043 for every query. The high confidence hits with E-value $<10^{-3}$, percent identity (p.ident) ≥ 30 ,
1044 query coverage (qcovs) ≥ 50 , and successful alignment with RNA reads were considered for
1045 analysis. Taxonomy was retrieved by configuring NCBI taxonomy database (taxdb) into the
1046 BLAST analysis. Manual curation was carried out to validate the annotation. InterProScan tool
1047 (version 5.19-58.0; [164]) was used for identification of the domains/protein signatures. Protein
1048 domains with e-value <0.001 were selected for analysis. In addition, the genome of Mhir, Pcit
1049 and the others were analysed using InterProScan for the presence of different domains to
1050 predict the function of hypothetical proteins of selected classes. The genes that did not have
1051 any domain and covered less than 30% of reference sequence in BLAST were considered
1052 truncated and not considered for the downstream analyses.

1053 **Validation of assembly**

1054 The assembly of the genome was validated by PCR using tiling primers, followed by Sanger
1055 sequencing. The primers were designed considering gene architecture as in assembled scaffold
1056 and the sequence obtained was compared with the same scaffold. The scaffold containing
1057 histone genes was selected for this analysis. The primer sequences are given in S16 Table.
1058 Long PCRs (5-7 kb amplicons) were also carried out for validation of these scaffolds.

1059 **Detecting Horizontal Gene Transfers (HGTs) in mealybug genome**

1060 The taxonomic classification of EggNOG [165] was used to find the genes of bacterial origin
1061 in the insect genome. The genes from endosymbiont scaffolds were discarded and ensured that
1062 HGTs have genes of Arthropoda origin in the same scaffold/contig. Also, the truncated proteins
1063 which did not qualify the QC applied in BLASTp analysis (percent identity $\geq 30\%$ and query
1064 coverage $\geq 50\%$) were also discarded. Only those proteins were selected that contain at least
1065 one domain. HGTs were also validated using PCR.

1066 **Detection of expansion and contraction of gene classes in *M. hirsutus***

1067 For evaluating the gene class expansion and contraction, the proteomes of six insects- *P. citri*,
1068 *A. pisum*, *R. prolixus*, *C. lectularius* (hemipterans), *Drosophila melanogaster* (dipteron) and
1069 *Bombyx mori* (lepidopteran) were retrieved from NCBI (<https://www.ncbi.nlm.nih.gov>) and
1070 used for all the gene model comparison with Mhir.

1071 OrthoFinder (version 2.2.6) was used to compute and compare the gene numbers in orthologous
1072 clusters from seven proteomes of arthropod species *M. hirsutus*, *P. citri*, *A. pisum*, *R. prolixus*,
1073 *C. lectularius*, *D. melanogaster* and *B. mori*. The gene numbers in different orthogroups were
1074 compared to assess contraction and specific expansion of gene families or orthologous clusters
1075 in *M. hirsutus* genome. The gene counts of Mhir and Pcit were compared with the other five
1076 species. For avoiding bias, the endosymbiont specific orthogroups were removed from the
1077 analysis. To find the genes and gene families that were expanded, contracted or specifically
1078 present in Mhir and Pcit, the following criteria was applied-

1079 (i) To be considered as expansion, the maximum value obtained for gene counts of any of the
1080 five species should be less than the gene counts either in Mhir or Pcit.

1081 (ii) To find mealybug specific gene expansion, we included additional criteria for non-zero
1082 values in Mhir and Pcit while gene count of zero in the other five species,

1083 (iii) To identify contracted gene classes, the criteria is that the gene counts in both Mhir and
1084 Pcit must be zero while it should be non-zero value in all other species considered for
1085 comparison.

1086 The functional annotation of the expanded, specific and contracted classes was carried out
1087 using EggNOG.

1088 **Functional annotation of epigenetic regulators**

1089 **(a) Curation of epigenetic modifiers by identification of high priority domains:**

1090 Manual curation was carried out, in addition to BLASTp, to validate the annotation using
1091 InterProScan (version 5.19-58.0) which contains a compilation of domains/protein signatures
1092 of genes based on the presence of functional domains. The domains were identified in Mhir,
1093 Pcit, Dmel, Apis and Clec for comparative analysis. The domains with e-value <0.001 were
1094 selected for analysis. For example, to curate genes for epigenetic writers, readers and erasers,
1095 high priority domains were selected by computing the frequency of functional domains in genes
1096 of each class in *Drosophila melanogaster* while an in-house perl script was used to fetch genes
1097 containing the high priority domains [64]. After manual curation, these genes were divided into
1098 three sets; genes exclusive to BLASTp or InterProScan and those with concordant functional
1099 assignment in both BLASTp and InterProScan. BLASTp exclusive sets were analysed to
1100 further filter inaccurately identified members, those lacking functional domains [64].

1101 **Phylogenetic analysis**

1102 For phylogenetic analysis of all the classes, InterProScan exclusive set was aligned with
1103 BLASTp exclusive and concordant dataset using MAFFT (version 7.3.94) with specific

1104 parameter L-INS-I, leaving gappy regions for better accuracy. Post-alignment, the
1105 phylogenetic trees were drawn using MAFFT and interactive visualization was obtained by
1106 Rainbow tree [166].

1107 The InterProScan exclusive and the concordant datasets were aligned by MAFFT and MEGA7
1108 software tool was used to create bootstrapped trees.

1109 **Transcriptome sequencing and analysis**

1110 In the mealybugs, the male and female instars are indistinguishable upto the second instar stage,
1111 but can be easily identified as the third instars. The uninseminated female mealybugs were
1112 collected from cultures where the male development was inhibited by pyriproxyfen, an
1113 analogue of ecdysone [167]. The mealybug culture was seeded and maintained on sprouting
1114 potatoes, which was sprayed with 0.01ppm of pyriproxyfen for 21days and after this period,
1115 the culture was examined to confirm the absence of males and the females collected were the
1116 source of RNA. From a separate culture the winged males were collected and the absence of
1117 females was confirmed before extraction of RNA by TRIzol method [168].

1118 The library prepared using the Illumina TruSeq stranded RNA library preparation kit following
1119 the manufacturer's instructions. Ribo-Zero was used to deplete ribosomal RNA followed by
1120 fragmentation and priming for cDNA synthesis. The cDNA first strand was synthesized
1121 followed by the second strand synthesis. Adenylation of the 3' ends was performed to prevent
1122 them from ligating to one another during the adapter ligation process. Following PCR
1123 enrichment, the concentration was estimated using Bioanalyser 2100 (Agilent Technologies)
1124 and sequenced on Illumina HiSeq 2500 producing 100X100-nt paired-end reads. Two
1125 biological samples were sequenced in duplicate. The RNASeq reads from adult male and
1126 female samples were filtered using Trimmomatic-0.36 and aligned to the annotated gene set
1127 from Mhir genome using Kallisto v0.43 with strand specific alignment parameters.

1128 We sequenced the RNA from a mixture of male and female embryos at various stages of
1129 development. This data was used only to align with the genome assembly but not for any
1130 expression analysis as we did not have biological replicates.

1131 **Differential Expression analysis**

1132 To analyse differential expression (DE) between male and female samples, Kallisto-Sleuth
1133 (v0.43.1 [169, 170]) pipeline was used. The raw RNA sequence reads from adult male and
1134 female samples were filtered using Trimmomatic-0.36. Kallisto was used for aligning filtered
1135 reads on annotated Mhir gene set. Sleuth was used to perform differential gene expression
1136 analysis. The genes with the threshold of 5% FDR (q-value < 0.05) were considered for the
1137 analysis. Additional filter criteria were also used to remove false positives. All the truncated
1138 genes as well as those genes that did not pass the QC criteria of BLAST annotation along with
1139 the endosymbiont genes were excluded. Only the genes having an expression of ≥ 1 TPM
1140 (Transcripts Per Kilobase Million) in at least two samples were selected for further analysis.

1141 For computation of Log fold changes (LogFc), mean TPM values for both male and female
1142 samples was calculated, followed by the log2 scaled ratio of these average TPMs. For dealing
1143 with the null expression values, an arbitrary value of 1 was added to TPM values and finally,
1144 the genes with LogFc > 1 were selected for analysis. If the average expression in males is higher
1145 than females, it is termed as “Male enriched” and vice-versa. The complete expression data of
1146 all the genes with their TPM values and fold change is given in S17 Table.

1147 For hierarchical clustering of genes and samples, TPM values were transformed into z-scores
1148 using R and hclust function was used for performing hierarchical clustering and heatmap.2 was
1149 used for visualisation. A combination of approaches used for pathway enrichment and
1150 functional classification of differentially expressed genes include STRING, KEGG and
1151 BLAST2GO analysis. STRING (v 11.0) protein network with *Drosophila* as reference (in some

1152 cases the human data used) was drawn followed by KEGG pathway annotation to obtain
1153 pathways enriched in genes having higher expression in males and females respectively. For
1154 identification of the function of other DE genes in males and females, GO classification after
1155 STRING annotation was performed, after excluding the oxidative phosphorylation (from male-
1156 enriched) and ribosomal protein (from female-enriched) genes. Since several genes could not
1157 be annotated with STRING using *Drosophila* as the reference, BLAST2GO [171] was also
1158 used. Furthermore, manual curation for functional annotation of all DE genes we carried out as
1159 well (S12 Fig).

1160 **Acknowledgements**

1161 We acknowledge DBT Bioinformatics facility at ACBR. Research fellowship from the
1162 following sources are acknowledged; PG-Dr. Shyama Prasad Mukherjee Fellowship from
1163 CSIR, SK-Senior Research Fellowship from UGC, JM-Research Associate fellowship from
1164 SERB No.60(0102)/12/EMR-II, AN acknowledges University Grants Commission for DS
1165 Kothari PDF fellowship.

1166 Funding: The authors acknowledge the financial support from Council for Scientific and
1167 Industrial Research (CSIR), Govt India under the project EpiHeD:BSC0118/2012-17, SAP-II
1168 from University Grants Commission (UGC), DU-DST-PURSE grant from University of Delhi
1169 to VB.

1170

1171 References

- 1172 1. Chong, J.-H., L.F. Aristizábal, and S.P.J.J.o.I.P.M. Arthurs, *Biology and management of*
1173 *Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) on ornamental plants*. 2015. **6**(1): p. 5.
- 1174 2. Da Silva, E.B., Z. Mendel, and J.C.J.P. Franco, *Can facultative parthenogenesis occur in*
1175 *biparental mealybug species?* *Phytoparasitica*, 2010. **38**(1): p. 19-21.
- 1176 3. Mani, M. and C. Shivaraju, *Mealybugs and their management in agricultural and horticultural*
1177 *crops*. 2016: Springer.
- 1178 4. Chandra, H.S. and S.W.J.N. Brown, *Chromosome imprinting and the mammalian X*
1179 *chromosome*. 1975. **253**(5488): p. 165-168.
- 1180 5. Khosla, S., et al., *Genomic imprinting in the mealybugs*. 2006. **113**(1-4): p. 41-52.
- 1181 6. Prantera, G. and S.J.G.r.i. Bongiorni, *Mealybug chromosome cycle as a paradigm of*
1182 *epigenetics*. 2012. **2012**.
- 1183 7. Brahmachari, V., S. Kohli, and P.J.J.o.g. Gulati, *In praise of mealybugs*. 2018. **97**(2): p. 379-389.
- 1184 8. Bongiorni, S., et al., *Inverted meiosis and meiotic drive in mealybugs*. 2004. **112**(7): p. 331-341.
- 1185 9. Mohan, K.N., J. Ge, and J.S. Kadandale, *Mealybug as a model for studying responses to high*
1186 *doses of ionizing radiation*, in *Current topics in ionizing radiation research*. 2012, IntechOpen.
- 1187 10. Achwal, C.W., C.A. Iyer, and H.S.J.F.I. Chandra, *Immunochemical evidence for the presence of*
1188 *5mC, 6mA and 7mG in human, Drosophila and mealybug DNA*. 1983. **158**(2): p. 353-358.
- 1189 11. Scarbrough, K., et al., *Relationship of DNA methylation level to the presence of*
1190 *heterochromatin in mealybugs*. 1984. **4**(4): p. 599-603.
- 1191 12. Bongiorni, S., et al., *Facultative heterochromatization in parahaploid male mealybugs:*
1192 *involvement of a heterochromatin-associated protein*. 2001. **128**(19): p. 3809-3817.
- 1193 13. Mathur, V., et al., *An analysis of histone modifications in relation to sex-specific chromatin*
1194 *organization in the mealybug maconellicoccus hirsutus*. 2010. **129**(4): p. 323-331.
- 1195 14. Deobagkar, D.N., et al., *The mealybug chromosome system I: Unusual methylated bases and*
1196 *dinucleotides in DNA of a Planococcus species*. 1982. **4**(4): p. 513-526.
- 1197 15. Bongiorni, S., et al., *Epigenetic regulation of facultative heterochromatinisation in Planococcus*
1198 *citri via the Me (3) K9H3-HP1-Me (3) K20H4 pathway*. 2007. **120**(6): p. 1072-1080.
- 1199 16. Khosla, S., et al., *A male-specific nuclease-resistant chromatin fraction in the mealybug*
1200 *Planococcus lilacinus*. 1996. **104**(5): p. 386-392.
- 1201 17. Husnik, F., et al., *Horizontal gene transfer from diverse bacteria to an insect genome enables*
1202 *a tripartite nested mealybug symbiosis*. 2013. **153**(7): p. 1567-1578.
- 1203 18. Husnik, F. and J.P. McCutcheon, *Repeated replacement of an intrabacterial symbiont in the*
1204 *tripartite nested mealybug symbiosis*. *Proc Natl Acad Sci U S A*, 2016. **113**(37): p. E5416-24.
- 1205 19. Nakabachi, A., et al., *Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell*
1206 *that harbors an endocellular mutualistic bacterium, Buchnera*. 2005. **102**(15): p. 5477-5482.
- 1207 20. Nakabachi, A.J.C.O.i.I.S., *Horizontal gene transfers in insects*. 2015. **7**: p. 24-29.
- 1208 21. Verster, K.I., et al., *Horizontal transfer of bacterial cytolethal distending toxin B genes to*
1209 *insects*. 2019. **36**(10): p. 2105-2110.
- 1210 22. Emms, D.M. and S.J.G.b. Kelly, *OrthoFinder: solving fundamental biases in whole genome*
1211 *comparisons dramatically improves orthogroup inference accuracy*. 2015. **16**(1): p. 157.
- 1212 23. Ranson, H., et al., *Evolution of supergene families associated with insecticide resistance*. 2002.
1213 **298**(5591): p. 179-181.
- 1214 24. Harrison, M.C., et al., *Expansions of key protein families in the German cockroach highlight the*
1215 *molecular basis of its remarkable success as a global indoor pest*. 2018. **330**(5): p. 254-264.
- 1216 25. Culik, M.P., et al., *The invasive mealybug Maconellicoccus hirsutus: lessons for its current*
1217 *range expansion in South America and invasive pest management in general*. 2013. **86**(3): p.
1218 387-398.

1219 26. Venkatesan, T., et al., *Insecticide resistance and its management in mealybugs*, in *Mealybugs*
1220 and their Management in Agricultural and Horticultural crops. 2016, Springer. p. 223-229.

1221 27. Kumar, V., S.K. Tewari, and R.K.J.I.J.o.Z. Datta, *Dermal pores and wax secretion in mealybug*
1222 *Maconellicoccus hirsutus* (Hemiptera, Pseudococcidae). A pest of mulberry. 1997. **64**(4): p.
1223 307-311.

1224 28. Thompson, S.N.J.A.I.P., *Trehalose—the insect ‘blood’sugar*. 2003. **31**(203): p. 85.

1225 29. Lee, S.-H., et al., *The SET domain protein Metnase mediates foreign DNA integration and links*
1226 *integration to nonhomologous end-joining repair*. 2005. **102**(50): p. 18075-18080.

1227 30. Pardue, M.-L. and P.J.P.o.t.N.A.o.S. DeBaryshe, *Retrotransposons that maintain chromosome*
1228 *ends*. 2011. **108**(51): p. 20317-20324.

1229 31. Sitnik, J.L., et al., *Neprilysins: an evolutionarily conserved family of metalloproteases that play*
1230 *important roles in reproduction in Drosophila*. 2014. **196**(3): p. 781-797.

1231 32. Jakhar, R. and S. Gakhar, *Study and comparison of mosquito (Diptera) aminopeptidase N*
1232 *protein with other order of insects*. 2019.

1233 33. Mayoral, J.G., et al., *NADP+-dependent farnesol dehydrogenase, a corpora allata enzyme*
1234 *involved in juvenile hormone synthesis*. 2009. **106**(50): p. 21091-21096.

1235 34. Nor-Ain-Shahajar Ahmad-Sohdi, A., et al., *Purification and characterization of a novel NAD*
1236 *(P)+-farnesol dehydrogenase from Polygonum minus leaves*. 2015. **10**(11).

1237 35. Leal, W.S., *Odorant reception in insects: roles of receptors, binding proteins, and degrading*
1238 *enzymes*. Annu Rev Entomol, 2013. **58**: p. 373-91.

1239 36. Di Fiore, A., et al., *Protective role of carbonic anhydrases III and VII in cellular defense*
1240 *mechanisms upon redox unbalance*. 2018. **2018**.

1241 37. Sappington, T.W., A.S.J.I.b. Raikhel, and m. biology, *Molecular characteristics of insect*
1242 *vitellogenins and vitellogenin receptors*. 1998. **28**(5-6): p. 277-300.

1243 38. Franco, J.C., A. Zada, and Z. Mendel, *Novel approaches for the management of mealybug*
1244 *pests*, in *Biorational control of arthropod pests*. 2009, Springer. p. 233-278.

1245 39. Gu, H.-F., et al., *Adaptive evolution of the circadian gene timeout in insects*. 2014. **4**: p. 4212.

1246 40. Suganuma, T., et al., *ATAC is a double histone acetyltransferase complex that stimulates*
1247 *nucleosome sliding*. 2008. **15**(4): p. 364.

1248 41. Spedale, G., et al., *ATAC-king the complexity of SAGA during evolution*. 2012. **26**(6): p. 527-
1249 541.

1250 42. Guelman, S., et al., *The double-histone-acetyltransferase complex ATAC is essential for*
1251 *mammalian development*. 2009. **29**(5): p. 1176-1188.

1252 43. Lappin, T.R., et al., *HOX genes: seductive science, mysterious mechanisms*. 2006. **75**(1): p. 23.

1253 44. Duboule, D.J.D., *The rise and fall of Hox gene clusters*. 2007. **134**(14): p. 2549-2560.

1254 45. Benoit, J.B., et al., *Unique features of a global human ectoparasite identified through*
1255 *sequencing of the bed bug genome*. 2016. **7**(1): p. 1-10.

1256 46. Cavodeassi, F., J. Modolell, and J.L.J.D. Gómez-Skarmeta, *The Iroquois family of genes: from*
1257 *body building to neural patterning*. 2001. **128**(15): p. 2847-2855.

1258 47. Rider Jr, S.D., D.G. Srinivasan, and R.S.J.I.m.b. Hilgarth, *Chromatin-remodelling proteins of the*
1259 *pea aphid, Acyrthosiphon pisum (Harris)*. 2010. **19**: p. 201-214.

1260 48. Grigorian, M., H. DeBruhl, and J.S.J.D. Lipsick, *The role of variant histone H2AV in Drosophila*
1261 *melanogaster larval hematopoiesis*. 2017. **144**(8): p. 1441-1449.

1262 49. Chen, P., et al., *H3. 3 actively marks enhancers and primes gene transcription via opening*
1263 *higher-ordered chromatin*. 2013. **27**(19): p. 2109-2124.

1264 50. Wu, H., Y.J.G. Zhang, and development, *Mechanisms and functions of Tet protein-mediated 5-*
1265 *methylcytosine oxidation*. 2011. **25**(23): p. 2436-2452.

1266 51. Li, E., C. Beard, and R.J.N. Jaenisch, *Role for DNA methylation in genomic imprinting*. 1993.
1267 **366**(6453): p. 362-365.

1268 52. Reik, W., W. Dean, and J.J.S. Walter, *Epigenetic reprogramming in mammalian development*.
1269 2001. **293**(5532): p. 1089-1093.

1270 53. Wang, F., et al., *Tet protein function during Drosophila development*. 2018. **13**(1).

1271 54. Bewick, A.J., et al., *Evolution of DNA methylation across insects*. 2017. **34**(3): p. 654-665.

1272 55. Liu, P., et al., *Deficiency in a glutamine-specific methyltransferase for release factor causes*
1273 *mouse embryonic lethality*. 2010. **30**(17): p. 4245-4253.

1274 56. Greer, E.L., et al., *DNA methylation on N6-adenine in C. elegans*. 2015. **161**(4): p. 868-878.

1275 57. Zhang, G., et al., *N6-methyladenine DNA modification in Drosophila*. 2015. **161**(4): p. 893-906.

1276 58. Xiao, C.-L., et al., *N6-methyladenine DNA modification in the human genome*. 2018. **71**(2): p.
1277 306-318. e7.

1278 59. Devajyothi, C., V.J.M. Brahmachari, and c. biochemistry, *Detection of a CpA methylase in an*
1279 *insect system: characterization and substrate specificity*. 1992. **110**(2): p. 103-111.

1280 60. Li, D., et al., *TET family of dioxygenases: crucial roles and underlying mechanisms*. 2015.
1281 **146**(3): p. 171-180.

1282 61. Kweon, S.-M., et al., *An adversarial DNA N6-methyladenine-sensor network preserves*
1283 *polycomb silencing*. 2019. **74**(6): p. 1138-1147. e6.

1284 62. Fedele, B.I., et al., *The AlkB family of Fe (II)/ α -ketoglutarate-dependent dioxygenases:*
1285 *repairing nucleic acid alkylation damage and beyond*. 2015. **290**(34): p. 20734-20742.

1286 63. Wu, T.P., et al., *DNA methylation on N 6-adenine in mammalian embryonic stem cells*. 2016.
1287 **532**(7599): p. 329-333.

1288 64. Gulati, P., et al., *Mining histone methyltransferases and demethylases from whole genome*
1289 *sequence*. 2020. **45**(1): p. 9.

1290 65. Huang, C., M. Xu, and B.J.P.T.o.t.R.S.B.B.S. Zhu, *Epigenetic inheritance mediated by histone*
1291 *lysine methylation: maintaining transcriptional states without the precise restoration of*
1292 *marks*? 2013. **368**(1609): p. 20110332.

1293 66. Carbonell, A., et al., *Ash2 acts as an ecdysone receptor coactivator by stabilizing the histone*
1294 *methyltransferase Trr*. 2013. **24**(3): p. 361-372.

1295 67. Beltran, S., et al., *Transcriptional network controlled by the trithorax-group gene ash2 in*
1296 *Drosophila melanogaster*. 2003. **100**(6): p. 3293-3298.

1297 68. Bongiorni, S., et al., *Epigenetic marks for chromosome imprinting during spermatogenesis in*
1298 *coccids*. 2009. **118**(4): p. 501-512.

1299 69. Yoon, J., et al., *dSETDB1 and SU (VAR) 3-9 sequentially function during germline-stem cell*
1300 *differentiation in Drosophila melanogaster*. 2008. **3**(5).

1301 70. Brower-Toland, B., et al., *Multiple SET methyltransferases are required to maintain normal*
1302 *heterochromatin domains in the genome of Drosophila melanogaster*. 2009. **181**(4): p. 1303-
1303 1319.

1304 71. Karachentsev, D., et al., *PR-Set7-dependent methylation of histone H4 Lys 20 functions in*
1305 *repression of gene expression and is essential for mitosis*. 2005. **19**(4): p. 431-435.

1306 72. Sakaguchi, A., et al., *Functional characterization of the Drosophila Hmt4-20/Suv4-20 histone*
1307 *methyltransferase*. 2008. **179**(1): p. 317-322.

1308 73. Elgin, S.C. and G.J.C.S.H.p.i.b. Reuter, *Position-effect variegation, heterochromatin formation,*
1309 *and gene silencing in Drosophila*. 2013. **5**(8): p. a017780.

1310 74. Yang, H., et al., *Preferential dimethylation of histone H4 lysine 20 by Suv4-20*. 2008. **283**(18):
1311 p. 12085-12092.

1312 75. Fahey, C.C. and I.J.J.C.S.H.p.i.m. Davis, *SETting the stage for cancer development: SETD2 and*
1313 *the consequences of lost methylation*. 2017. **7**(5): p. a026468.

1314 76. Huang, C. and B.J.B.r. Zhu, *Roles of H3K36-specific histone methyltransferases in transcription:*
1315 *antagonizing silencing and safeguarding transcription fidelity*. 2018. **4**(4): p. 170-177.

1316 77. Schmähling, S., et al., *Regulation and function of H3K36 di-methylation by the trithorax-group*
1317 *protein complex AMC*. 2018. **145**(7): p. dev163808.

1318 78. Byrd, K.N. and A. Shearn, *ASH1, a Drosophila trithorax group protein, is required for*
1319 *methylation of lysine 4 residues on histone H3*. Proc Natl Acad Sci U S A, 2003. **100**(20): p.
1320 11535-40.

1321 79. Eissenberg, J.C. and A.J.D.b. Shilatifard, *Histone H3 lysine 4 (H3K4) methylation in development*
1322 *and differentiation*. 2010. **339**(2): p. 240-249.

1323 80. Spellmon, N., et al., *Structure and function of SET and MYND domain-containing proteins*.
1324 2015. **16**(1): p. 1406-1428.

1325 81. Xu, J., et al., *Panax ginseng genome examination for ginsenoside biosynthesis*. 2017. **6**(11): p.
1326 gix093.

1327 82. Stender, J.D., et al., *Control of proinflammatory gene programs by regulated trimethylation*
1328 *and demethylation of histone H4K20*. 2012. **48**(1): p. 28-38.

1329 83. Mohan, M., et al., *Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-*
1330 *containing complex (DotCom)*. 2010. **24**(6): p. 574-589.

1331 84. Ho, L.-L., et al., *DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt*
1332 *pathway-specific and other intestinal epithelial functions*. 2013. **33**(9): p. 1735-1745.

1333 85. Wood, K., M. Tellier, and S.J.B. Murphy, *DOT1L and H3K79 methylation in transcription and*
1334 *genomic stability*. 2018. **8**(1): p. 11.

1335 86. Ardehali, M.B., et al., *Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase*
1336 *with role in transcription*. 2011. **30**(14): p. 2817-2828.

1337 87. Petruk, S., et al., *Purification and biochemical properties of the Drosophila TAC1 complex*.
1338 2004. **377**: p. 255.

1339 88. Sedkov, Y., et al., *Methylation at lysine 4 of histone H3 in ecdysone-dependent development*
1340 *of Drosophila*. 2003. **426**(6962): p. 78-83.

1341 89. Tan, X., et al., *SmyD1, a histone methyltransferase, is required for myofibril organization and*
1342 *muscle contraction in zebrafish embryos*. 2006. **103**(8): p. 2713-2718.

1343 90. Berkholz, J., et al., *skNAC and Smyd1 in transcriptional control*. 2015. **336**(2): p. 182-191.

1344 91. Mohan, M., et al., *The COMPASS family of H3K4 methylases in Drosophila*. 2011. **31**(21): p.
1345 4310-4318.

1346 92. Hilfiker, A., et al., *mof, a putative acetyl transferase gene related to the Tip60 and MOZ human*
1347 *genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila*. 1997.
1348 **16**(8): p. 2054-2060.

1349 93. Hilfiker, A., et al., *Dosage compensation in Drosophila: the X-chromosomal binding of MSL-1*
1350 *and MLE is dependent on Sxl activity*. 1994. **13**(15): p. 3542-3550.

1351 94. Bone, J.R. and M.I.J.G. Kuroda, *Dosage compensation regulatory proteins and the evolution of*
1352 *sex chromosomes in Drosophila*. 1996. **144**(2): p. 705-713.

1353 95. Ferraro, M., G.L. Buglia, and F.J.C. Romano, *Involvement of histone H4 acetylation in the*
1354 *epigenetic inheritance of different activity states of maternally and paternally derived*
1355 *genomes in the mealybug Planococcus citri*. 2001. **110**(2): p. 93-101.

1356 96. Frank, S.R., et al., *MYC recruits the TIP60 histone acetyltransferase complex to chromatin*.
1357 2003. **4**(6): p. 575-580.

1358 97. Taubert, S., et al., *E2F-dependent histone acetylation and recruitment of the Tip60*
1359 *acetyltransferase complex to chromatin in late G1*. 2004. **24**(10): p. 4546-4556.

1360 98. Grienberger, A., et al., *The MYST domain acetyltransferase Chameau functions in epigenetic*
1361 *mechanisms of transcriptional repression*. 2002. **12**(9): p. 762-766.

1362 99. Nielsen, P.R., et al., *Structure of the chromo barrel domain from the MOF acetyltransferase*.
1363 2005. **280**(37): p. 32326-32331.

1364 100. Annunziato, A.T. and J.C.J.G.E. Hansen, *The Journal of Liver Research, Role of histone*
1365 *acetylation in the assembly and modulation of chromatin structures*. 2001. **9**(1-2): p. 37-61.

1366 101. Barman, H.K., et al., *Histone acetyltransferase 1 is dispensable for replication-coupled*
1367 *chromatin assembly but contributes to recover DNA damages created following replication*
1368 *blockage in vertebrate cells*. 2006. **345**(4): p. 1547-1557.

1369 102. Carré, C., et al., *The histone H3 acetylase dGcn5 is a key player in Drosophila melanogaster*
1370 *metamorphosis*. 2005. **25**(18): p. 8228-8238.

1371 103. Carré, C., et al., *The Drosophila NURF remodelling and the ATAC histone acetylase complexes*
1372 *functionally interact and are required for global chromosome organization*. 2008. **9**(2): p. 187-
1373 192.

1374 104. Rathore, O.S., et al., *Absence of N-terminal acetyltransferase diversification during evolution*
1375 *of eukaryotic organisms*. 2016. **6**(1): p. 1-13.

1376 105. Feller, C., et al., *Global and specific responses of the histone acetylome to systematic*
1377 *perturbation*. 2015. **57**(3): p. 559-571.

1378 106. Singh, P., et al., *Coordinated allele-specific histone acetylation at the differentially methylated*
1379 *regions of imprinted genes*. 2010. **38**(22): p. 7974-7990.

1380 107. Shi, Y., et al., *Histone demethylation mediated by the nuclear amine oxidase homolog LSD1*.
1381 2004. **119**(7): p. 941-953.

1382 108. Tsukada, Y.-i., et al., *Histone demethylation by a family of JmjC domain-containing proteins*.
1383 2006. **439**(7078): p. 811-816.

1384 109. Di Stefano, L., et al., *Mutation of Drosophila Lsd1 disrupts H3-K4 methylation, resulting in*
1385 *tissue-specific defects during development*. 2007. **17**(9): p. 808-812.

1386 110. Morán, T., J. Bernués, and F.J.D.b. Azorín, *The Drosophila histone demethylase dKDM5/LID*
1387 *regulates hematopoietic development*. 2015. **405**(2): p. 260-268.

1388 111. Suzuki, S., Y. Murakami, and S.J.T. Takahata, *H3K36 methylation state and associated silencing*
1389 *mechanisms*. 2017. **8**(1): p. 26-31.

1390 112. Colmenares, S.U., et al., *Drosophila histone demethylase KDM4A has enzymatic and non-*
1391 *enzymatic roles in controlling heterochromatin integrity*. 2017. **42**(2): p. 156-169. e5.

1392 113. Shalaby, N.A., et al., *Systematic discovery of genetic modulation by Jumonji histone*
1393 *demethylases in Drosophila*. 2017. **7**(1): p. 1-12.

1394 114. Liu, H., et al., *Clipping of arginine-methylated histone tails by JMJD5 and JMJD7*. 2017. **114**(37):
1395 p. E7717-E7726.

1396 115. Gu, B., M.G.J.C. Lee, and bioscience, *Histone H3 lysine 4 methyltransferases and demethylases*
1397 *in self-renewal and differentiation of stem cells*. 2013. **3**(1): p. 39.

1398 116. Zhang, Y., et al., *Analysis of the NuRD subunits reveals a histone deacetylase core complex and*
1399 *a connection with DNA methylation*. 1999. **13**(15): p. 1924-1935.

1400 117. Zhang, W., et al., *The nucleosome remodeling and deacetylase complex NuRD is built from*
1401 *preformed catalytically active sub-modules*. 2016. **428**(14): p. 2931-2942.

1402 118. Casas-Delucchi, C.S., et al., *Histone acetylation controls the inactive X chromosome replication*
1403 *dynamics*. 2011. **2**(1): p. 1-11.

1404 119. Źylicz, J.J., et al., *The implication of early chromatin changes in X chromosome inactivation*.
1405 2019. **176**(1-2): p. 182-197. e23.

1406 120. Li, Y., et al., *A novel histone deacetylase pathway regulates mitosis by modulating Aurora B*
1407 *kinase activity*. 2006. **20**(18): p. 2566-2579.

1408 121. Patil, H., et al., *Mitotic activation of a novel histone deacetylase 3-linker histone H1. 3 protein*
1409 *complex by protein kinase CK2*. 2016. **291**(7): p. 3158-3172.

1410 122. Moreno-Yruela, C., et al., *Histone deacetylase 11 is an ε-N-myristoyllysine hydrolase*. 2018.
1411 **25**(7): p. 849-856. e8.

1412 123. Hajheidari, M., C. Koncz, and M.J.F.i.P.S. Bucher, *Chromatin evolution-key innovations*
1413 *underpinning morphological complexity*. 2019. **10**: p. 454.

1414 124. Klemm, S.L., Z. Shipony, and W.J.J.N.R.G. Greenleaf, *Chromatin accessibility and the regulatory*
1415 *epigenome*. 2019. **20**(4): p. 207-220.

1416 125. Schuettengruber, B., et al., *Genome regulation by polycomb and trithorax proteins*. 2007.
1417 **128**(4): p. 735-745.

1418 126. Ringrose, L. and R.J.D. Paro, *Polycomb/Trithorax response elements and epigenetic memory of*
1419 *cell identity*. 2007. **134**(2): p. 223-232.

1420 127. Schuettengruber, B. and G.J.D. Cavalli, *Recruitment of polycomb group complexes and their*
1421 *role in the dynamic regulation of cell fate choice*. 2009. **136**(21): p. 3531-3542.

1422 128. Chen, K., et al., *Functional analysis of YY1 zinc fingers through cysteine mutagenesis*. 2019.
1423 593(12): p. 1392-1402.

1424 129. Salichs, E., et al., *Genome-wide analysis of histidine repeats reveals their role in the localization*
1425 *of human proteins to the nuclear speckles compartment*. 2009. 5(3).

1426 130. Wilkinson, F.H., K. Park, and M.L.J.P.o.t.N.A.o.S. Atchison, *Polycomb recruitment to DNA in*
1427 *vivo by the YY1 REPO domain*. 2006. 103(51): p. 19296-19301.

1428 131. Austen, M., B. Lüscher, and J.M.J.J.o.B.C. Lüscher-Firzlaff, *Characterization of the*
1429 *Transcriptional Regulator YY1 THE BIPARTITE TRANSACTIVATION DOMAIN IS INDEPENDENT*
1430 *OF INTERACTION WITH THE TATA BOX-BINDING PROTEIN, TRANSCRIPTION FACTOR IIB,*
1431 *TAFFI55, OR cAMP-RESPONSIVE ELEMENT-BINDING PROTEIN (CBP)-BINDING PROTEIN*. 1997.
1432 272(3): p. 1709-1717.

1433 132. Bezsonova, I., et al., *Ring1B contains a ubiquitin-like docking module for interaction with Cbx*
1434 *proteins*. 2009. 48(44): p. 10542-10548.

1435 133. Srinivasan, L., M.L.J.G. Atchison, and development, *YY1 DNA binding and Pcg recruitment*
1436 *requires CtBP*. 2004. 18(21): p. 2596-2601.

1437 134. Kanhere, A., et al., *Short RNAs are transcribed from repressed polycomb target genes and*
1438 *interact with polycomb repressive complex-2*. 2010. 38(5): p. 675-688.

1439 135. Yap, K.L., et al., *Molecular interplay of the noncoding RNA ANRIL and methylated histone H3*
1440 *lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a*. 2010. 38(5): p. 662-674.

1441 136. Hundertmark, T., et al., *Nejire/dCBP-mediated histone H3 acetylation during spermatogenesis*
1442 *is essential for male fertility in Drosophila melanogaster*. 2018. 13(9).

1443 137. biology, I.A.G.C.J.P., *Genome sequence of the pea aphid Acyrthosiphon pisum*. 2010. 8(2).

1444 138. Clapier, C.R. and B.R.J.A.r.o.b. Cairns, *The biology of chromatin remodeling complexes*. 2009.
1445 78: p. 273-304.

1446 139. Clapier, C.R., et al., *Mechanisms of action and regulation of ATP-dependent chromatin-*
1447 *remodelling complexes*. 2017. 18(7): p. 407-422.

1448 140. Jain, S., et al., *Distinguishing between biochemical and cellular function: Are there peptide*
1449 *signatures for cellular function of proteins?* Proteins, 2017. 85(4): p. 682-693.

1450 141. Kantheti, P., et al., *Developmental analysis of a female-specific 16S rRNA gene from*
1451 *mycetome-associated endosymbionts of a mealybug, Planococcus lilacinus*. 1996. 26(10): p.
1452 997-1009.

1453 142. Kono, M., et al., *Infection dynamics of coexisting beta-and gammaproteobacteria in the nested*
1454 *endosymbiotic system of mealybugs*. 2008. 74(13): p. 4175-4184.

1455 143. Mendel, Z., et al., *Sexual maturation and aging of adult male mealybug (Hemiptera:*
1456 *Pseudococcidae)*. 2012. 102(4): p. 385-394.

1457 144. Shukla, E., et al., *Insect trehalase: physiological significance and potential applications*. 2015.
1458 25(4): p. 357-367.

1459 145. Maughan, D.W. and J.O.J.P. Vigoreaux, *An integrated view of insect flight muscle: genes, motor*
1460 *molecules, and motion*. 1999. 14(3): p. 87-92.

1461 146. Vigneron, A., et al., *Insects recycle endosymbionts when the benefit is over*. 2014. 24(19): p.
1462 2267-2273.

1463 147. Barton, B., et al., *Flight muscle properties and aerodynamic performance of Drosophila*
1464 *expressing a flightin transgene*. 2005. 208(3): p. 549-560.

1465 148. Yang, X., et al., *Gene expression profiling in winged and wingless cotton aphids, Aphis gossypii*
1466 *(Hemiptera: Aphididae)*. 2014. 10(3): p. 257.

1467 149. Coleno-Costes, A., et al., *New partners in regulation of gene expression: the enhancer of*
1468 *Trithorax and Polycomb Corto interacts with methylated ribosomal protein l12 via its*
1469 *chromodomain*. 2012. 8(10).

1470 150. Omar, M.A., et al., *The functional difference of eight chitinase genes between male and female*
1471 *of the cotton mealybug, Phenacoccus solenopsis*. 2019. 28(4): p. 550-567.

1472 151. Vieira, F.Q., et al., *SMYD3 contributes to a more aggressive phenotype of prostate cancer and*
1473 *targets Cyclin D2 through H4K20me3*. 2015. **6**(15): p. 13644.

1474 152. Kidder, B.L., et al., *SMYD5 regulates H4K20me3-marked heterochromatin to safeguard ES cell*
1475 *self-renewal and prevent spurious differentiation*. 2017. **10**(1): p. 8.

1476 153. Jørgensen, S., et al., *The histone methyltransferase SET8 is required for S-phase progression*.
1477 2007. **179**(7): p. 1337-1345.

1478 154. Lechner, T., et al., *Sds3 (suppressor of defective silencing 3) is an integral component of the*
1479 *yeast Sin3·Rpd3 histone deacetylase complex and is required for histone deacetylase activity*.
1480 2000. **275**(52): p. 40961-40966.

1481 155. Wutz, A.J.N.R.G., *Gene silencing in X-chromosome inactivation: advances in understanding*
1482 *facultative heterochromatin formation*. 2011. **12**(8): p. 542-553.

1483 156. Loda, A. and E.J.P.g. Heard, *Xist RNA in action: Past, present, and future*. 2019. **15**(9).

1484 157. Mira-Bontenbal, H. and J.J.C.B. Gribnau, *New Xist-interacting proteins in X-chromosome*
1485 *inactivation*. 2016. **26**(8): p. R338-R342.

1486 158. Brown, S.W. and W.A.J.G. Nelson-Rees, *Radiation analysis of a lecanoid genetic system*. 1961.
1487 **46**(8): p. 983.

1488 159. Miller, D.R., *Identification of the pink hibiscus mealybug, Maconellicoccus hirsutus*
1489 *(Green)(Hemiptera: Sternorrhyncha: Pseudococcidae)*. 1999.

1490 160. Bolger, A.M., M. Lohse, and B.J.B. Usadel, *Trimmomatic: a flexible trimmer for Illumina*
1491 *sequence data*. 2014. **30**(15): p. 2114-2120.

1492 161. Zimin, A.V., et al., *The MaSuRCA genome assembler*. 2013. **29**(21): p. 2669-2677.

1493 162. Hoff, K.J., et al., *BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-*
1494 *ET and AUGUSTUS*. 2016. **32**(5): p. 767-769.

1495 163. Johnson, M., et al., *NCBI BLAST: a better web interface*. 2008. **36**(suppl_2): p. W5-W9.

1496 164. Jones, P., et al., *InterProScan 5: genome-scale protein function classification*. 2014. **30**(9): p.
1497 1236-1240.

1498 165. Jensen, L.J., et al., *eggNOG: automated construction and annotation of orthologous groups of*
1499 *genes*. 2007. **36**(suppl_1): p. D250-D254.

1500 166. Paradis, E., J. Claude, and K.J.B. Strimmer, *APE: analyses of phylogenetics and evolution in R*
1501 *language*. 2004. **20**(2): p. 289-290.

1502 167. Barbosa, P.R., et al., *Differential impacts of six insecticides on a mealybug and its coccinellid*
1503 *predator*. 2018. **147**: p. 963-971.

1504 168. Chomezynski, P. and K.J.B. Mackey, *Modification of the TRI reagent procedure for isolation of*
1505 *RNA from polysaccharide-and proteoglycan-rich sources*. 1995. **19**: p. 942-945.

1506 169. Pimentel, H., et al., *Differential analysis of RNA-seq incorporating quantification uncertainty*.
1507 2017. **14**(7): p. 687.

1508 170. Bray, N.L., et al., *Near-optimal probabilistic RNA-seq quantification*. 2016. **34**(5): p. 525-527.

1509 171. Conesa, A., et al., *Blast2GO: a universal tool for annotation, visualization and analysis in*
1510 *functional genomics research*. 2005. **21**(18): p. 3674-3676.

1511

1512

1513

1514

1515 **Figure legends**

1516 **Fig 1. Life cycle of the mealybug *Maconellicoccus hirsutus*.** The developmental stages are
1517 similar between different species of mealybugs. The heterochromatin in males is indicated
1518 (white arrow). The inactive and condensed paternal genome does not contribute to mature
1519 sperms, Eu- maternal euchromatin, Ht-paternal heterochromatin [7].

1520 **Fig 2. Validation of Mhir genome assembly.** I. The amplicons obtained with the primer sets
1521 (A to H) used for PCR on scaffold, scf 0000076114. The double-headed arrows indicate the
1522 position of the forward and reverse primers while the coloured arrow-heads mark the position
1523 of the primers used in tiled long-PCR that map on the scaffold. The corresponding amplicons
1524 obtained are shown in gel images II. Alignment of sequences obtained by Sanger's method of
1525 the long-PCR amplicons on Mhir genome assembly using Gene Viewer (IGV).

1526 **Fig 3. Functional classification and validation of HGT in *Mhir* genome.** I-Donut plot of
1527 total HGTs classified into different functional classes; II, III & IV- Validation of HGTs by PCR
1528 amplification from Mhir genomic DNA. Genomic regions targeted as templates are indicated
1529 with the scaffold number; host genes (unfilled box) indicated with their gene Ids while HGTs
1530 (grey box) indicated as HGT 1, 2, 3. Primer position and the amplicons (A-H) are shown as
1531 double arrowed. M: 100bp marker; Ct: control without template DNA. HGT1: biotin synthase;
1532 HGT2: diamino pimelate epimerase; HGT3: dethiobiotin synthase; HGT4: AAA ATPase;
1533 HGT5:tryptophan 2-monooxygenase oxidoreductase. Host genes, g18080: nudix hydrolase 8;
1534 g18082: cytokine receptor isoform X2; g7185: peroxisomal acyl-coenzyme A oxidase 1; g403:
1535 cathepsin B; g6787: Uncharacterized protein; g14757: Retrotransposon protein; g14758:
1536 remained unannotated

1537 **Fig4. Expanded and contracted gene classes in Mhir and Pcit.** The data derived from
1538 comparative analysis of protein classes using OrthoFinder, that are over-represented or under-

1539 represented in mealybug genome (Mh and Pc) relative to *A.pisum* (Ap), *C.lectularius* (Cl),
1540 *D.melanogaster*(Dm), *R.prolixus*(Rp), *B.mori*(Bm) is shown. The spider plots indicate the
1541 number of genes in the different species; A- Expanded, B-Contracted, C-Specifically found in
1542 mealybugs in the present comparative analysis. The functional class, such as pesticide
1543 resistance, radiation resistance is indicated at the top of each spider plot. The Orthogroup
1544 number and the associated function are indicated in each spider plot. The bar diagram under B
1545 shows the Orthogroups (not shown in spider plots) of different gene classes under-represented
1546 in mealybug genome and the bar diagram under C shows the Orthogroups found only in the
1547 mealybugs in our analysis (but not shown in spider plots). The complete list of genes specific
1548 to the mealybugs in our analysis is given in S3-S6 Tables.

1549 **Fig 5. Homeotic (Hox) genes in *Mhir* and *Pcit* genome.** A- Copy number of genes of different
1550 Hox clusters compared with that of other insect genomes. B-Line diagram representing the
1551 relative position of the Hox genes in different scaffolds of *Mhir* genome. Ultrabithorax,
1552 Antennapedia and Iro-C complex of *Drosophila* (Dme) used as reference are shown within the
1553 boxes. Mh: *M. hirsutus*; Pc: *P. citri*; Ap: *A. pisum*; Cl: *C. lectularius*; Dm: *D. melanogaster*;
1554 Rp: *R. prolixus*; Bm: *B. mori*. The figure is not drawn to scale.

1555 **Fig 6. Histone and variant histone genes in *Mhir*.** The copy number of core histone genes
1556 (A) and variant histones (B) in *Mhir* genome is compared with that of other insect genomes.
1557 C-mapping of histone clusters on *Mhir* genome. The numbers written with prefix scf or deg are
1558 the scaffold/contig IDs. scf7180000078076 (marked with a thick arrow) contains the complete
1559 quintet cluster while scf180000076114 and scf180000076461 have histone H1 gene missing
1560 from the quintet clusters. scf7180000076114 has been used for validation of assembly (thin
1561 arrow). The figure is not drawn to scale.

1562 **Fig 7. Phylogenetic clustering of DNA methyltransferases (DNMTs) based on multiple**
1563 **sequence alignment of Mhir with other genomes.** Human DNMTs were used as reference.
1564 Adenine specific DNA methyltransferases (N6AMT, METTL4) and cytosine specific DNA
1565 methyltransferases (DNMT1 and DNMT3) cluster separately. Cytosine DNMTs cluster further
1566 divides into two subclusters of De novo methyltransferases (DNMT3A, 3B) and maintenance
1567 methyltransferase (DNMT1) (shown by dotted line). The key for the colour code is given as
1568 inset.

1569 **Fig 8. Phylogenetic clustering of DNA demethylases by multiple sequence alignment.**
1570 Human DNA demethylases were used as reference. The three clusters formed: A- ALKBH4
1571 Adenine demethylases, B-Adenine demethylases including human ALKBH3, ALKBH2 and
1572 ALKBH1 along with other insect ALKBH1 proteins, C-TET proteins (Cytosine specific DNA
1573 demethylases). The two sub-clusters under C segregate human TET proteins, while other
1574 having Mhir and Pcit is divided into two groups 1 and 2 (shown by dotted line).

1575 **Fig 9. Comparative analysis of the histone modifiers of Mhir and Pcit genome with other**
1576 **insect species.** A- The numbers of genes for the writers and erasers are compared. The genes
1577 identified by BLASTp only did not have the high priority domains (HPD), those identified by
1578 InterProScan only had HPD, but were marked as hypothetical/unknown in BLASTp,
1579 Concordant classes were annotated by BLASTp and InterProScan. The genes identified by
1580 InterProScan only are the potential novel genes. B- Total number of lysine histone
1581 methyltransferase genes for a specific modification in Mhir compared with other genomes, C-
1582 comparison of the number of genes under activating and repressive classes of histone lysine
1583 methyltransferases.

1584 **Fig 10. Phylogenetic clustering of the histone methyltransferases (HMTs).** The protein
1585 sequences of HMTs of *Mhir* and *Pcit*, were aligned with those of *Dmel* as the reference

1586 sequence. The three classes (BLASTp only, InterProScan only and Concordant), are indicated
1587 by differently coloured lines, as given in the inset. The black lines outside the tree, indicate the
1588 proteins clustering with a known *Dmel* proteins, confirming *Mhir* and *Pcit* functional identity.
1589 The proteins from *Mhir* and *Pcit* have the suffixes *Mhir* and *Pcit* respectively, while the *Dmel*
1590 proteins are named according to the nomenclature in Uniprot. The activating (purple) and
1591 repressing (red) HMTs are indicated. Most of the putative novel methyltransferases cluster with
1592 SMYD proteins of *Drosophila*.

1593 **Fig 11. Phylogenetic clustering of histone acetyltransferase (HATs).** The protein sequences
1594 of HATs of *Mhir* and *Pcit*, were aligned with those of *Dmel* as the reference sequence. The
1595 three classes (BLASTp only, InterProScan only and Concordant), are indicated by differently
1596 coloured lines, as given in the inset. The red, pink and blue lines outside the tree, indicate the
1597 clustering with a known *Dmel* proteins, confirming functional identity of *Mhir* and *Pcit*. The
1598 proteins from *Mhir* and *Pcit* have the suffixes *Mhir* and *Pcit* respectively, while the *Dmel*
1599 proteins are named according to the nomenclature in Uniprot.

1600 **Fig 12. Phylogenetic cluster for Histone demethylases (HDMs).** The protein sequences of
1601 HDMs of *Mhir* and *Pcit*, were aligned with those of *Dmel* used as the reference. The three
1602 classes (BLASTp only, InterProScan only and Concordant), are indicated by differently
1603 coloured lines, as given in the inset. The black lines outside the tree, indicate the proteins
1604 clustering with a known *Dmel* proteins, confirming identity of *Mhir* and *Pcit* genes. The
1605 proteins from *Mhir* and *Pcit* are indicated by suffixes, while the *Dmel* proteins are named
1606 according to the nomenclature in Uniprot. The BLASTp only members are indicated in red.
1607 Most of the putative novel demethylases cluster with *JMJD4*, *HSPBAP1* and *Jarid2* proteins
1608 of *Drosophila*.

1609 **Fig 13. Phylogenetic clustering of histone deacetylases (HDACs).** The protein sequences of
1610 HDACs of Mhir and Pcit, were aligned with those of *Dmel* as the reference sequence. The three
1611 classes (BLASTp only, InterProScan only and Concordant), are indicated by different coloured
1612 lines, as given in the inset. The black lines outside the tree, indicate the proteins clustering with
1613 a known *Dmel* proteins, confirming Mhir and Pcit functional identity. The proteins from Mhir
1614 and Pcit have the suffixes Mhir and Pcit respectively, while the *Dmel* proteins are named
1615 according to the nomenclature in Uniprot.

1616 **Fig14. The bootstrap phylogenetic tree for the histone deacetylases.** The numbers on the
1617 branches represent the bootstrap value assigned to each node.

1618 **Fig 15. Conservation of Polycomb Complexes between *D. melanogaster*, *M.hirsutus* and *P***
1619 ***citri*.** The copy number of genes for some proteins of the in PRC 1 and 2 complex is higher in
1620 Mhir and Pcit. The Pho gene in Drosophila is the homologue of YY1 in mammals and the
1621 mealybug homologue is closer to YY1 as discussed in the text. The colour coding is maintained
1622 to indicate the homologues in *Dmel* and the mealybugs.

1623 **Fig 16. Conservation of Trithorax Complexes between *D. melanogaster*, *M.hirsutus* and *P***
1624 ***citri*.** Multiple copies of some of the homologues is indicated. The missing proteins in the
1625 mealybugs is indicated (?). The colour code corresponds to the specific protein in *Dmel* and
1626 gene(s) in mealybugs.

1627 **Fig 17. Conservation of SWI/SNF complexes between *D. melanogaster*, *M.hirsutus* and *P***
1628 ***citri*.** These complexes are complete and some homologues occur in multiple copies. The colour
1629 code corresponds to the specific protein in *Dmel* and gene(s) in mealybugs.

1630 **Fig 18. The distribution of transcripts from the mealybug genome and the two nested**
1631 **endosymbionts in male and female mealybugs.** A- *Candidatus Tremblaya princeps*, B-

1632 *Doolittlea endobia*, C- *M. hirsutus* in the transcriptome of male and female mealybugs. A
1633 significant difference in transcript abundance from both the endosymbionts is observed in
1634 males and females, but not for transcripts from the mealybug genome.

1635 **Fig 19. Heatmap depicting hierachal clustering of differentially Expressed Genes,**
1636 **(DEGs) in male and female replicates.** Based on q-value <0.05 and $\log_2FC > 1$, 1183 genes
1637 were identified as differentiaaly expressed genes.

1638 F_R1 and F_R2 are two female replicates and M_R1 and M_R2 are two male replicates.
1639 Expression scale is defined by color key (top left).

1640

1641 **Fig 20. Biological function based classification of genes with male enriched expression in**
1642 ***M. hirsutus* from transcriptome data.** The most enriched classes are metabolism and
1643 transporter class.

1644 **Fig 21. Biological function based classification of genes with enriched expression in**
1645 **females.** Transcripts from genes for metabolism and ribosomal functions are most abundant.

1646 **Fig 22. BLAST2GO derived GO classification of genes having 5-10 fold difference in**
1647 **gene expression between females and males.** The different GO categories represented include
1648 biological process and molecular function terms enriched in genes up-regulated in females
1649 (left) and males (right). There are larger number of genes highly over-expressed in males and
1650 they represent multiple functional class.

1651 **Fig23. Proteins for facultative heterochromatization shared between mammals and the**
1652 **mealybugs.** The homolgues of almost all proteins that interact with XIST RNA are conserved
1653 in Pcit and Mhir. The copy number of the homolgues for certain proteins are higher in Mhir
1654 and Pcit. Hsap is for Humans.

1655 **Supplementary figures:**

1656 **S1Fig Circadian rhythm pathway genes contracted in Mhir genome.** The genes are
1657 compared with those of *Drosophila melanogaster* (Dmel) and Humans (Hsap). The core genes
1658 of the pathway that are absent in mealybugs are shown in grey box with broken line, *Tim*
1659 (*Timeout*) a paralog of *Timeless*, is present in the mealybugs which may compensate for the
1660 lack of *Timeout* present in Mhir.

1661 **S2Fig High priority domain identification.** The frequency of the occurrence of the domains
1662 in HATs (histone acetyltransferase), HDACs (histone deacetylase) and CRMs (Chromatin
1663 remodeling) proteins in Drosophila is shown as an example. The frequency of occurrence of
1664 each domain is plotted as percentage on the Y-axis, # indicates high priority domain.

1665 **S3Fig. Correlation of bootstrap-phylogenetic tree with domain architecture of proteins**
1666 **from Mhir and Pcit with Dmel as the reference.** A-Phylogenetic tree for E(z) , B-
1667 comparison of domain architecture of E(z) gene from Drosophila, Mhir and Pcit. Mhir_g18633
1668 is the E(z) protein identified only by BLASTp and is deficient in the high priority domains. C-
1669 Phylogenetic tree for the histone methyltransferase trr. D- domain architecture. Mhir_g13137
1670 and Mhir_g20142 are the trr proteins identified by only BLASTp and are deficient in the high
1671 priority domains.

1672 **S4Fig. The bootstrap- phylogenetic clustering of the histone methyltransferases** A- Set1,
1673 trr and trx, B- G9a and Su(var)3-9, C- Ash1 and Set2, D- PR-Set7, E- Gpp, and Ash2 F- HMT4-
1674 20. The numbers on the branches represent the bootstrap value assigned to each node. The
1675 genes identified only by BLASTp are excluded.

1676 **S5Fig. The phylogenetic comparison of the arginine methyltransferase of Mhir and Pcit**
1677 **with that of Dmel.** A) Bootstrapped tree. B) Alignment of the proteins of Mhir and Pcit with

1678 that of Dme as the reference, (i) Art9 vs Art7 (ii) Art8 vs Art6 (iii) Art1 is shown with different
1679 colours with their alignment scores mentioned in the inset table. The table shown represents
1680 the proteins of the organisms- Dmel, Mhir and Pcit along with their length and their percent
1681 identity with the respective Dmel proteins. The line diagram from BLASTp were modified.

1682 **S6Fig. The bootstrap-phylogenetic tree for the histone acetyltransferases.** The sequence
1683 conservation is reflected. A- mof, B- Gcn5, C- CBP/p300, D-Chm, enok, E-Tip60, F- Naa and
1684 G-NAT9.

1685 **S7Fig. The bootstrap-phylogenetic tree for the histone demethylases.** A-Kdm4A, Kdm4B,
1686 lid and Jarid2 B-JMJD7, JMJD5, JHDM2 and JMJD4, C-Utx, D-HSPBAP1 and PSR. The
1687 genes identified only by BLASTp are excluded.

1688 **S8Fig. Conservation of Complexes between *D. melanogaster*, *M.hirsutus* and *P citri*.** The
1689 colour code corresponds to the specific protein in Dmel and gene(s) in mealybugs. A- INO80
1690 family B-ISWI Complexes, C- CHD Complexes

1691

1692 **S9Fig. Workflow followed and filters applied for transcriptome data analysis and**
1693 **identification of differential gene expression in male and female mealybugs.**

1694 **S10Fig. KEGG pathway enrichment among genes with higher expression** in A- females
1695 and B- males.

1696 Enriched GO terms identified in C- male upregulated genes after removal of oxidative
1697 phosphorylation related genes and D- female upregulated genes after removal of ribosomal
1698 genes. [I don't know where this belongs]

1699 **S11Fig. BLAST2GO derived GO classification of differentially expressed(DE) genes** in
1700 females (269) and males (319). The DE genes set after excluding oxidative phosphorylation

1701 related gene set from male and ribosomal genes from female were subjected to
1702 BLAST2GO. The Biological processes represented in females(A) and males (B) and the
1703 molecular processes in female(C) and male (D) are shown.

1704 **S12Fig. Workflow followed for manual curation of differentially expressed genes in males**
1705 **and females to classify them into different biological function categories.**

1706 **S13Fig. The difference in expression of epigenetic modifiers between males and females.**
1707 **The data is plotted in terms of TPM values..**

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721 **Table1:**Summary of the genome sequencing data.

Platform	Read length	
	Raw reads	Filtered reads
IlluminaHiSeq (Paired-End)	100149316 (101bp)	84930794 (50-101bp)
PacBio	1,60,775 (50-544,91bp)	2,14,820(500-39578bp)
Ion Torrent (Single-End)	14,913,519 (8-745bp)	10,814,178
N50	57,095bp or ~57 Kb	
Assembly size* (bp)	189.24 Mb	
No.of scaffolds	28,882	
Largest scaffold	523,004 bp or 0.52 Mb	
BUSCOs	C:72% [D:5.6%], F:17%, M:10%, n:2675	
Predicted unique genes	21,623	
Repeats Masked	19.96%	

1722

1723 The details of the sequence data pre- and post-filtering for quality are given
1724 against each platform used. The number in parenthesis indicates the size range
1725 of sequence reads. Under the BUSCOs, C- Complete single-copy BUSCOs, D-
1726 Complete duplicated BUSCOs, F- Fragmented BUSCOs, M-Missing
1727 BUSCOs, n-Total BUSCO groups studied. *Endosymbiont scaffolds are
1728 included within assembly and are tagged appropriately.

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743 Table 2: Read and alignment statistics of RNA-sequence data.

Sample	Paired endRaw reads	Filtered reads	% of data remaining after applying filters	% of data aligned to dataset1 [Annotated gene set]
Male Replicate 1	38255062	3,61,52,236	95	49.46578131
Male Replicate 2	44675238	4,26,70,610	96	47.19257587
Female Replicate 1	26842830	2,49,41,567	93	48.58446544
Female Replicate 2	40545144	3,81,84,609	94	55.38986663

1744 The number of paired end raw and filtered reads as well as percent alignment

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760 Legends for Supplementary Tables

1761 **S1 Table: Summary of the DNA sequencing data for Ion Torrent platform.** The
1762 sequence data before and after filtering the reads for quality is shown

1763 **S2 Table: Summary of the genes identified as horizontally transferred genes.** The
1764 expression status is based on transcriptome data. *Considered if ≥ 10 reads mapped to
1765 the gene; **TPM> 0 values obtained from Kallisto sleuth pipeline.

1766 **S3 Table: Summary of gene orthogroups expanded, specific and contracted in**
1767 **mealybugs *M. hirsutus* and *P. citri* genomes.** The number of genes present in each
1768 insect species in each orthogroup is given.

1769 **S4 Table: Gene Orthogroups of Carboxylesterases.** Highlighted (yellow)
1770 Orthogroups represented in Spider Plots in Figure 4 in the manuscript.

1771 **S5 Table: Gene Orthogroups of Cytochrome P450.** Highlighted (yellow)
1772 Orthogroups represented in Spider Plots in Figure 4 in the manuscript.

1773 **S6 Table: Orthogroups of genes missing in mealybug genome categorized**
1774 **according to their function.**

1775 **S7 Table: Copy number of DNA methyltransferases, demethylases and methyl**
1776 **CpG binding proteins present in mealybugs and other insect species.** * 1 bacterial
1777 origin, # identified as N6 DNA demethylase by BLASTp but clustering in human TET
1778 protein supercluster.

1779 **S8 Table: Identity matrix showing percentage similarity based on multiple**
1780 **sequence alignment of DNA demethylase proteins of different insect species from**
1781 **group 1 and 2 of Cluster C of phylogenetic tree.**

1782 **S9 Table: Comparative analysis of the number of genes coding for various histone**

1783 **modifiers of Mhir and Pcit genome with other insect species.** The numbers of genes

1784 for the writers and erasers are compared. The genes identified by BLASTp only did not

1785 have the high priority domains (HPD), those identified by InterProScan only had HPD,

1786 but were marked as hypothetical/unknown in BLASTp. Concordant classes were

1787 annotated by BLASTp and InterProScan. The genes identified by InterProScan only are

1788 the potential novel genes.

1789 **S10 Table: Genes coding for histone methyltransferase in the mealybug genome.**

1790 *The pathways are those of Drosophila which are controlled by the histone

1791 methyltransferase. **The numbers refer to the number in the reference list given below.

1792 **S11 Table: Comparison of the number of chromatin remodeling genes in various**

1793 **insects.**

1794 **S12 Table: List of Chromatin Remodelers conserved in mealybugs and the potential**
1795 **histone modification they identify.**

1796 **S13 Table: List of differentially expressed epigenetic modifiers between male and female**
1797 **mealybugs.** *A positive Log FC (fold change) value indicates higher expression in males while
1798 a negative Log FC value indicates higher expression in females.

1799 **S14 Table: Expression of epigenetic modifier genes in male and female mealybugs in terms of**
1800 **average TPM values.** No differential expression observed. *A positive Log FC value indicates
1801 higher expression in males while a negative Log FC value indicates higher expression in
1802 females

1803 **S15 Table: Proteins involved in X inactivation that are shared between**
1804 **mammals and mealybugs (Mhir and Pcit).**

1805 **S16 Table: Primers (all written 5' to 3').** *, # and \$ were used as primer sets for the long PCR
1806 sets represented as 1, 2 and 3 in Figure 2 (Validation of the Mhir assembly).

1807 **S17 Table: Complete Transcriptome Data for adult male and female *M. hirsutus*.**

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

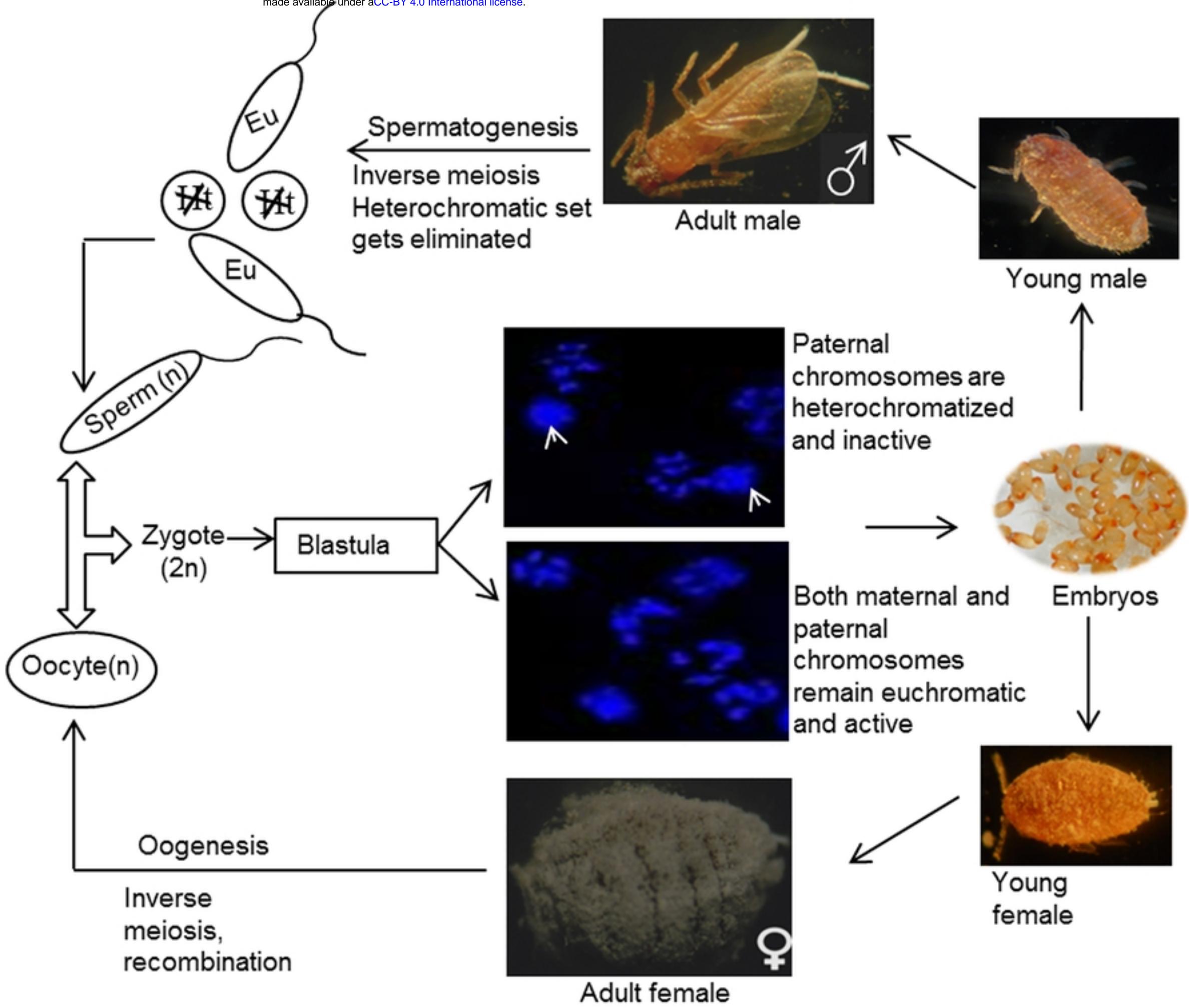


Figure 1

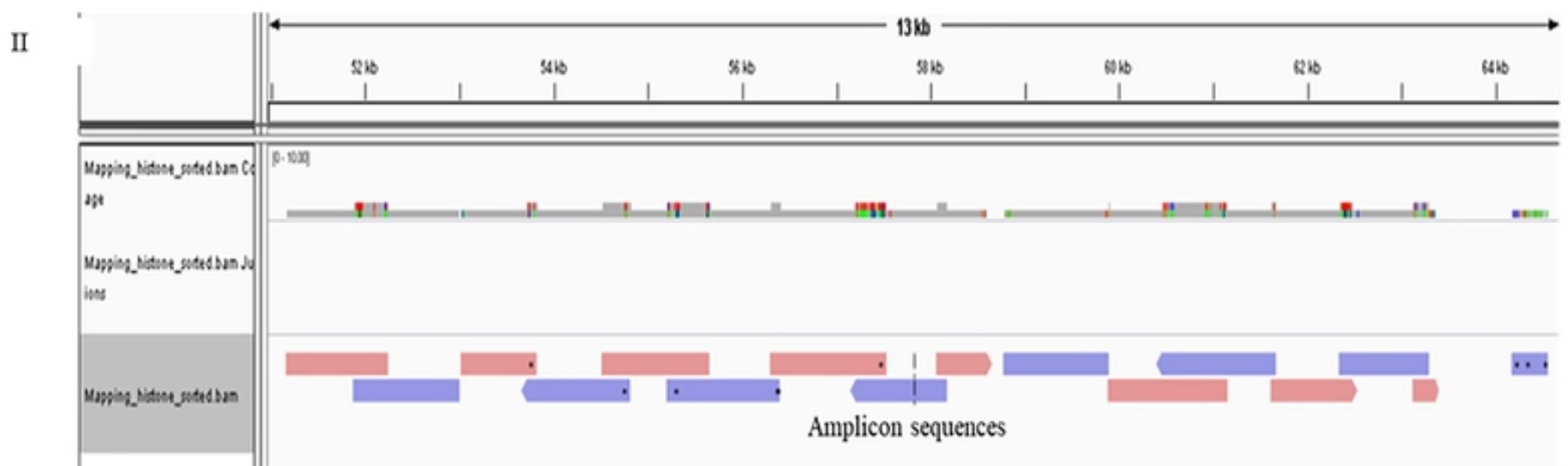
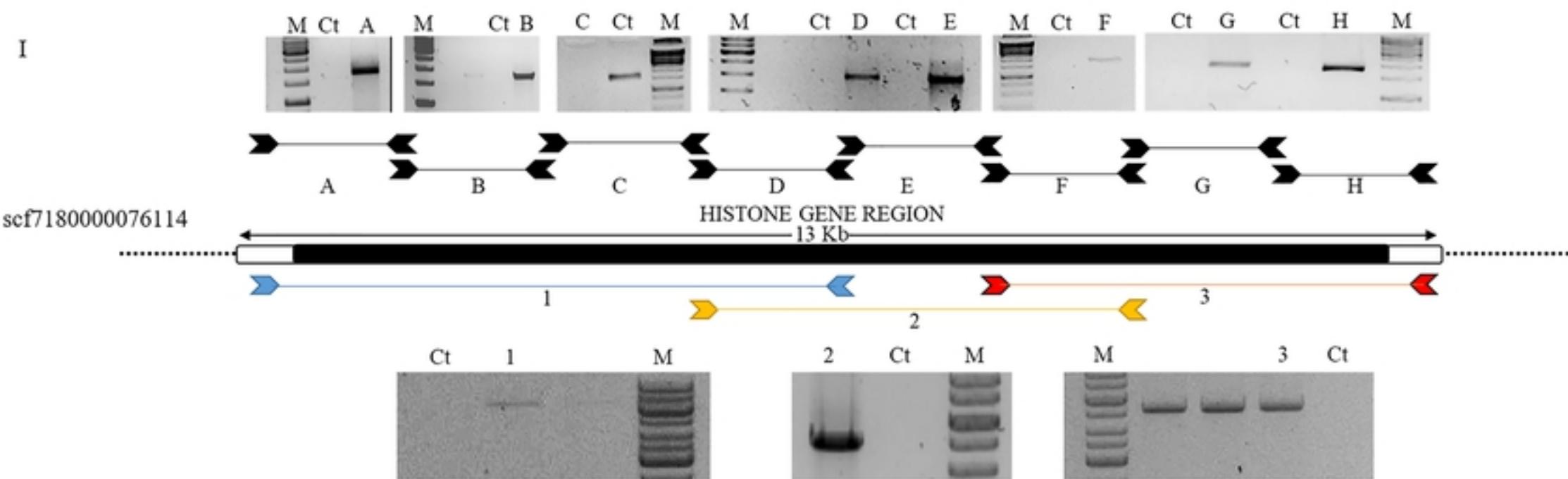



Figure 2

I

■ AAA-ATPase

□ Serine protease inhibitor

■ Amino acid metabolism

■ Vitamin B metabolism

□ Carbohydrate metabolism

■ Peptidoglycan metabolism

■ Ankyrin repeat domain protein

■ Inclusion body protein

■ RNA polymerase subunit; transcription

■ Bacterial toxins

■ Function unknown

■ Thioredoxin

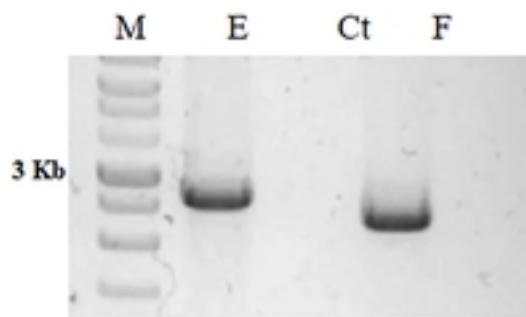
■ Antibiotic resistance

III

Scaffold: 71334

HGT 3

g403

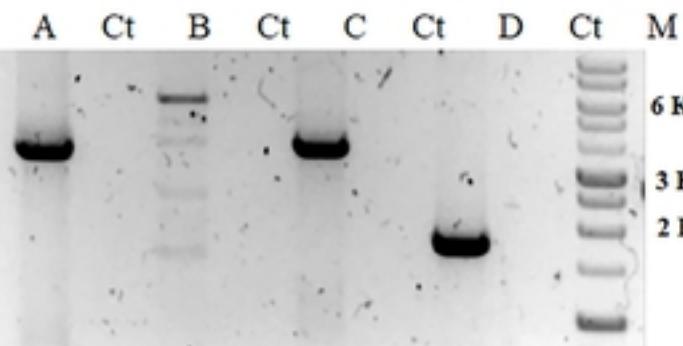

E: 2698 bp

Scaffold: 73273

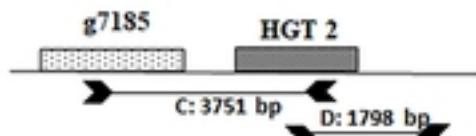
g6787

F: 2360 bp

HGT 4


II

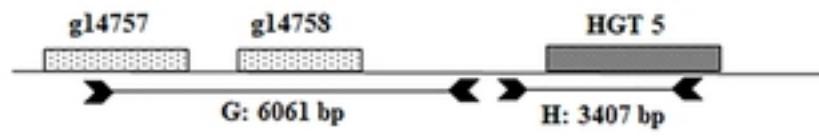
Scaffold: 78215



A: 3751 bp

B: 6452 bp

Scaffold: 73465



C: 3751 bp

D: 1798 bp

IV

Scaffold: 76953

G: 6061 bp

H: 3407 bp

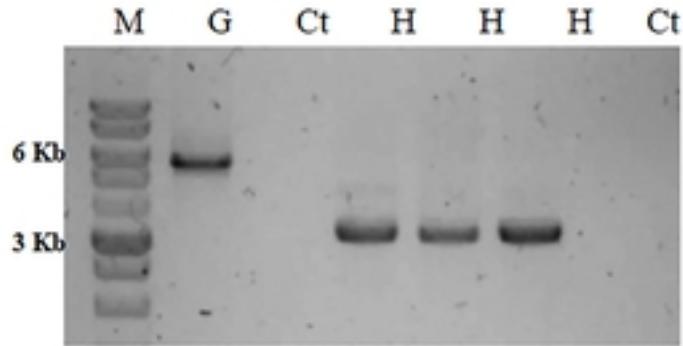
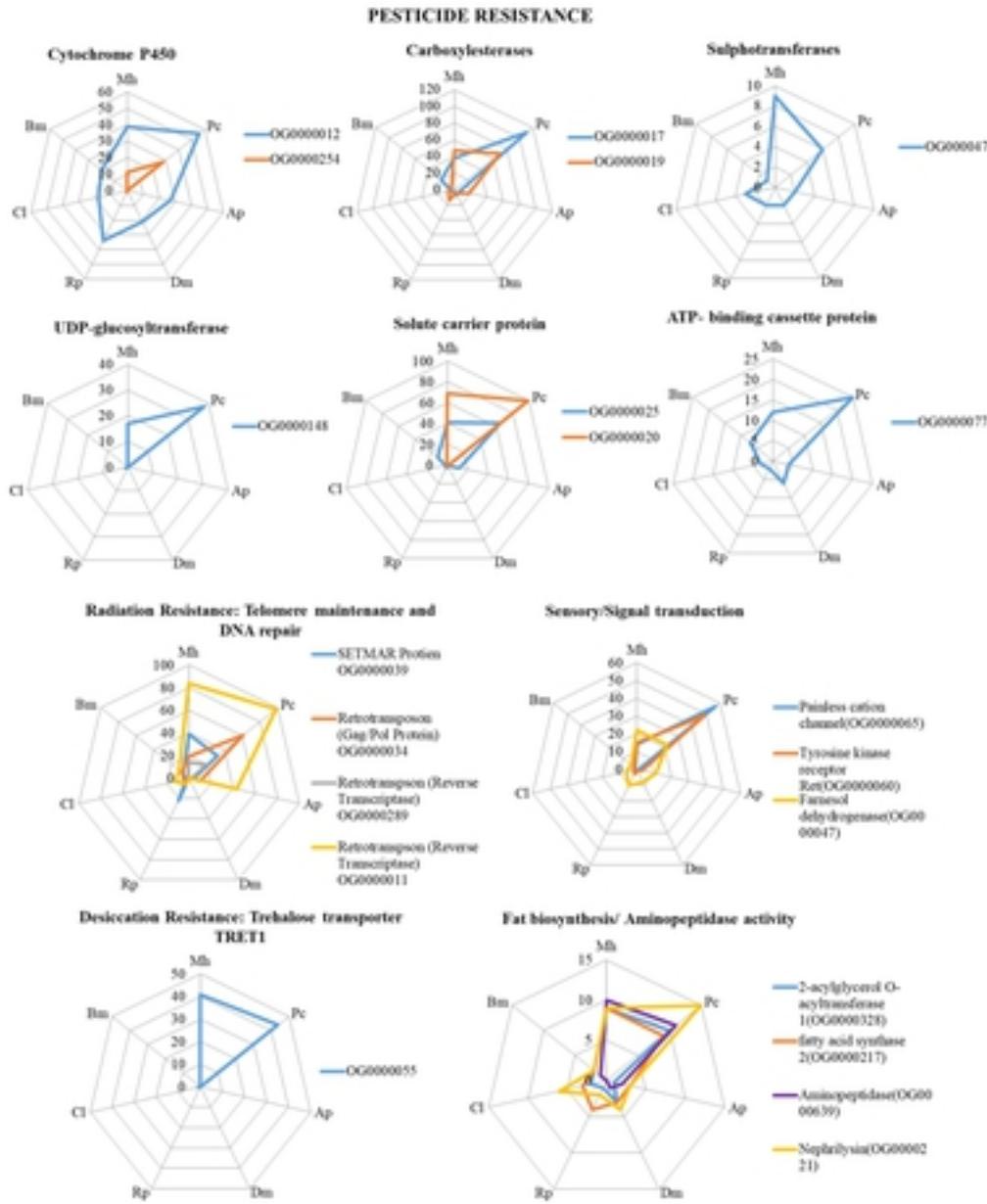
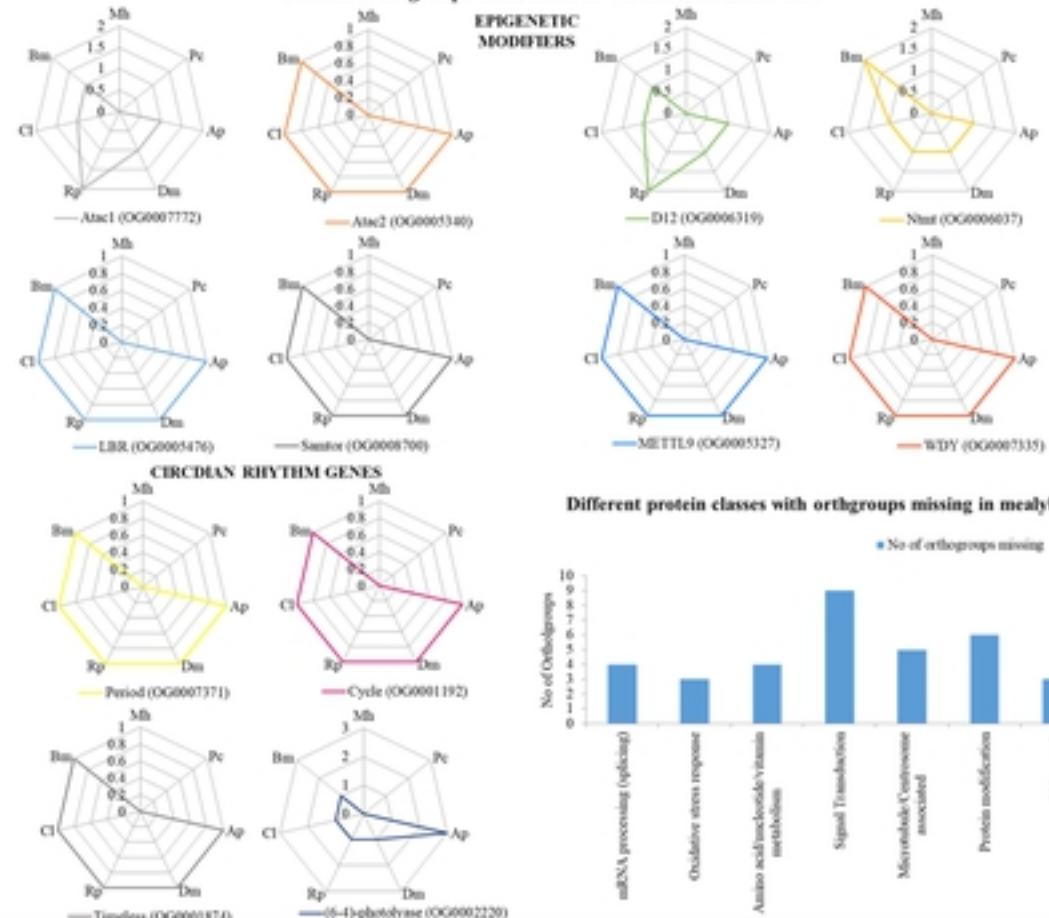
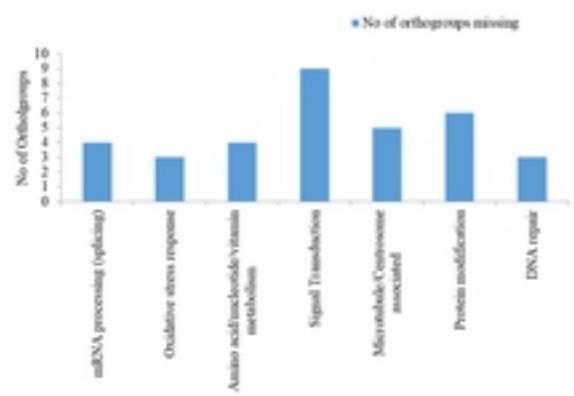




Figure 3


Protein orthogroups expanded in *M. hirsutus* and *P. citri*

Protein orthogroups contracted in *M. hirsutus* and *P. citri*

Different protein classes with orthogroups missing in mealybugs

Protein orthogroups specific to *M. hirsutus* and *P. citri*

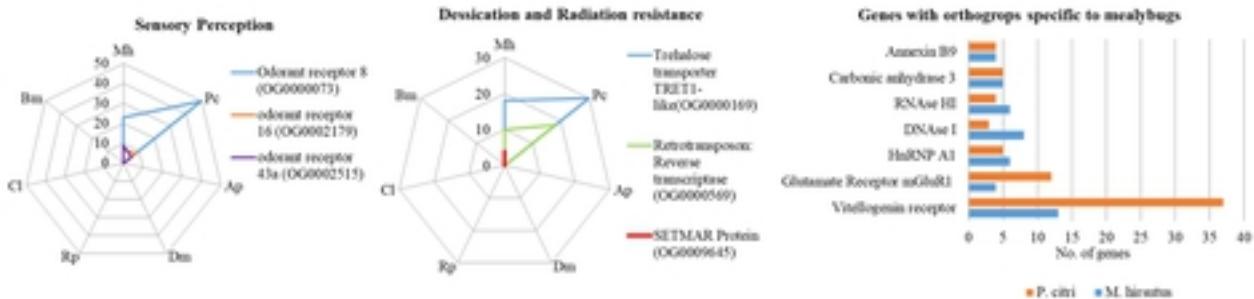


Figure 4

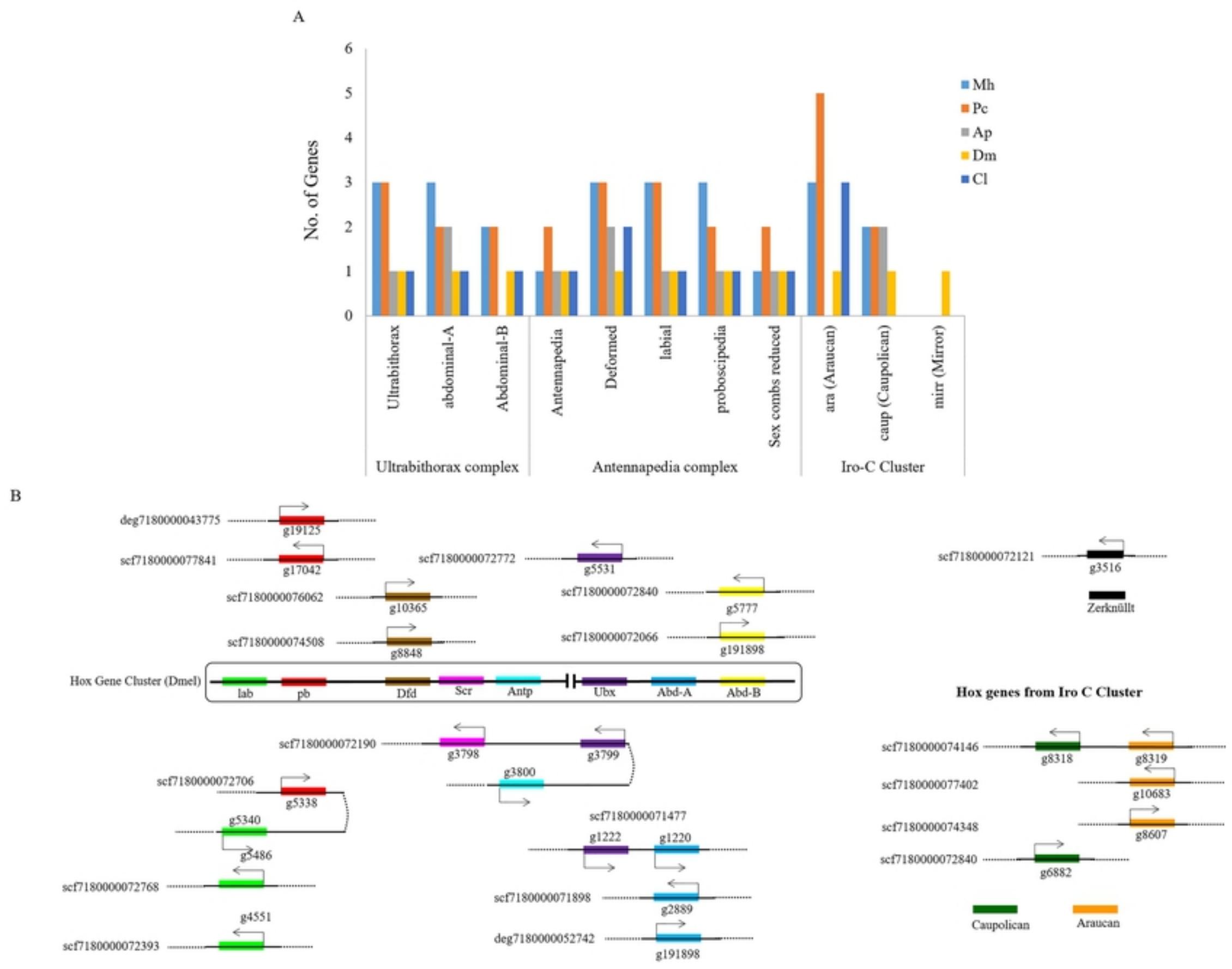
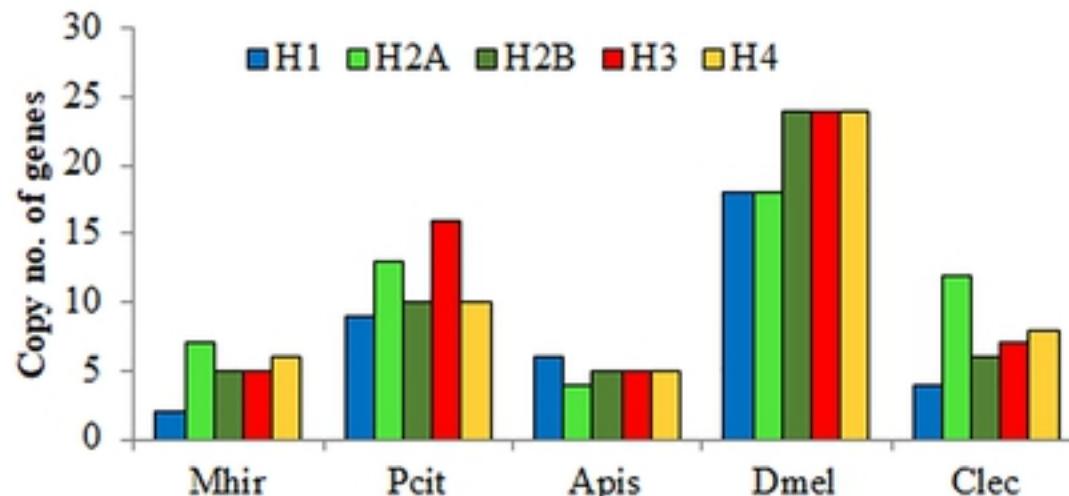
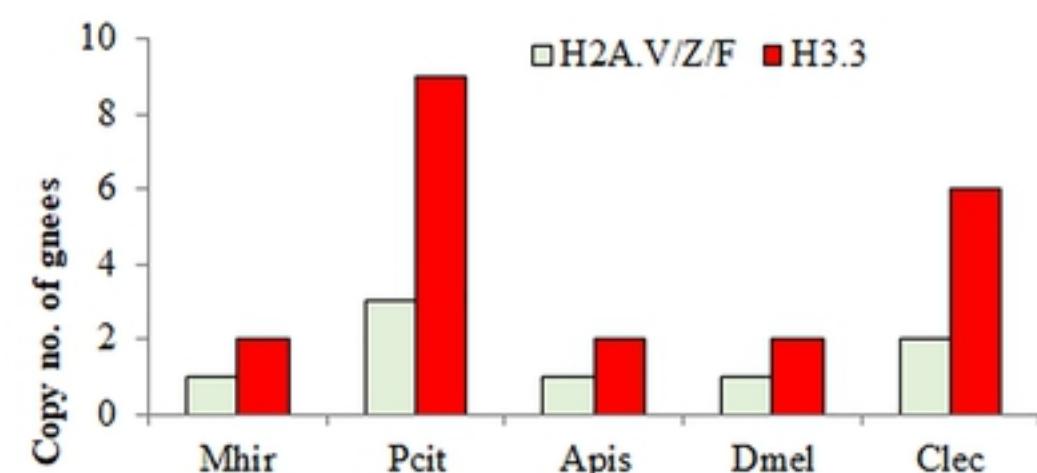
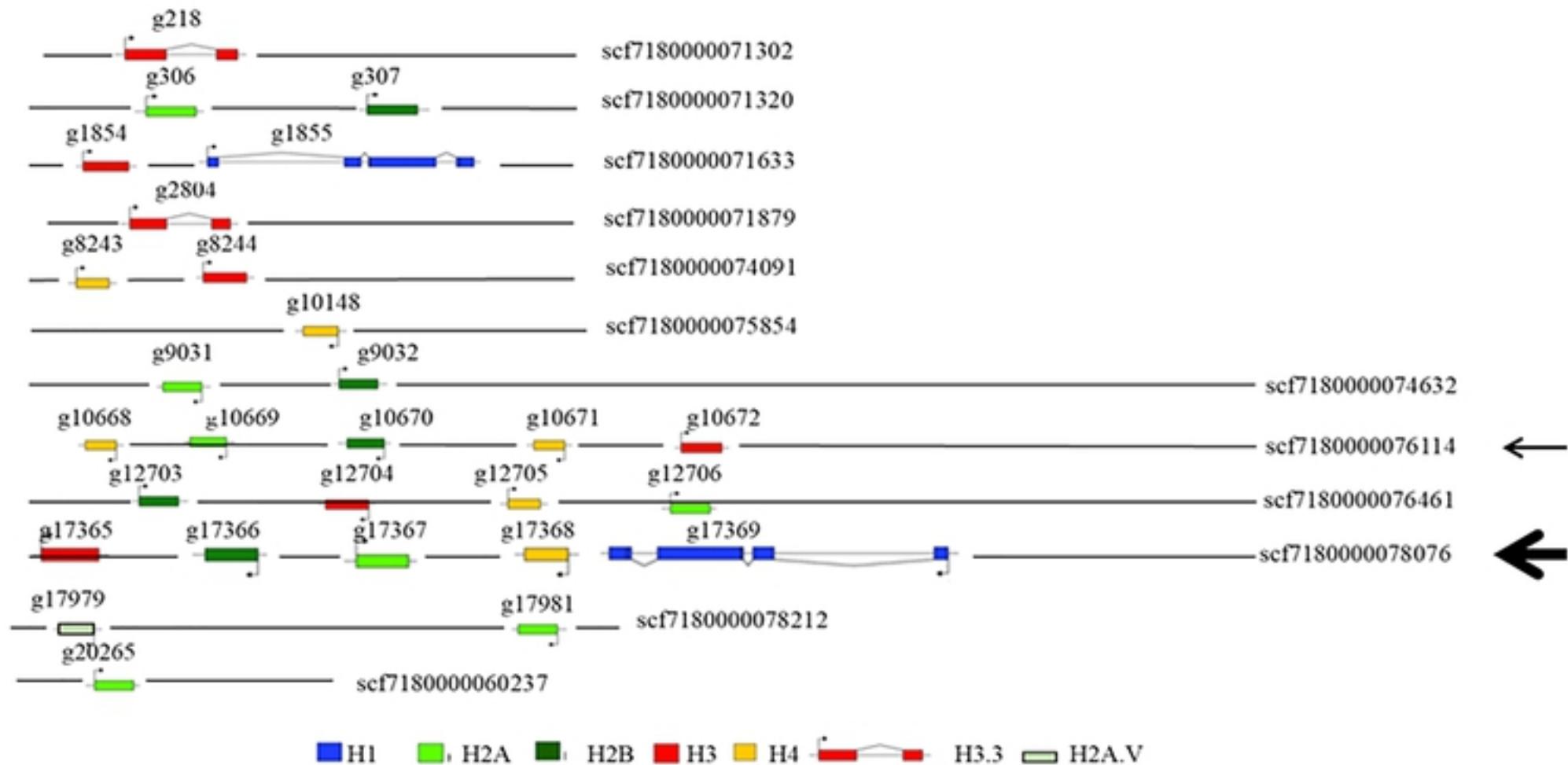





Figure 5

A Core histones**B Variant histones****C****Figure 6**

DNA methyltransferases

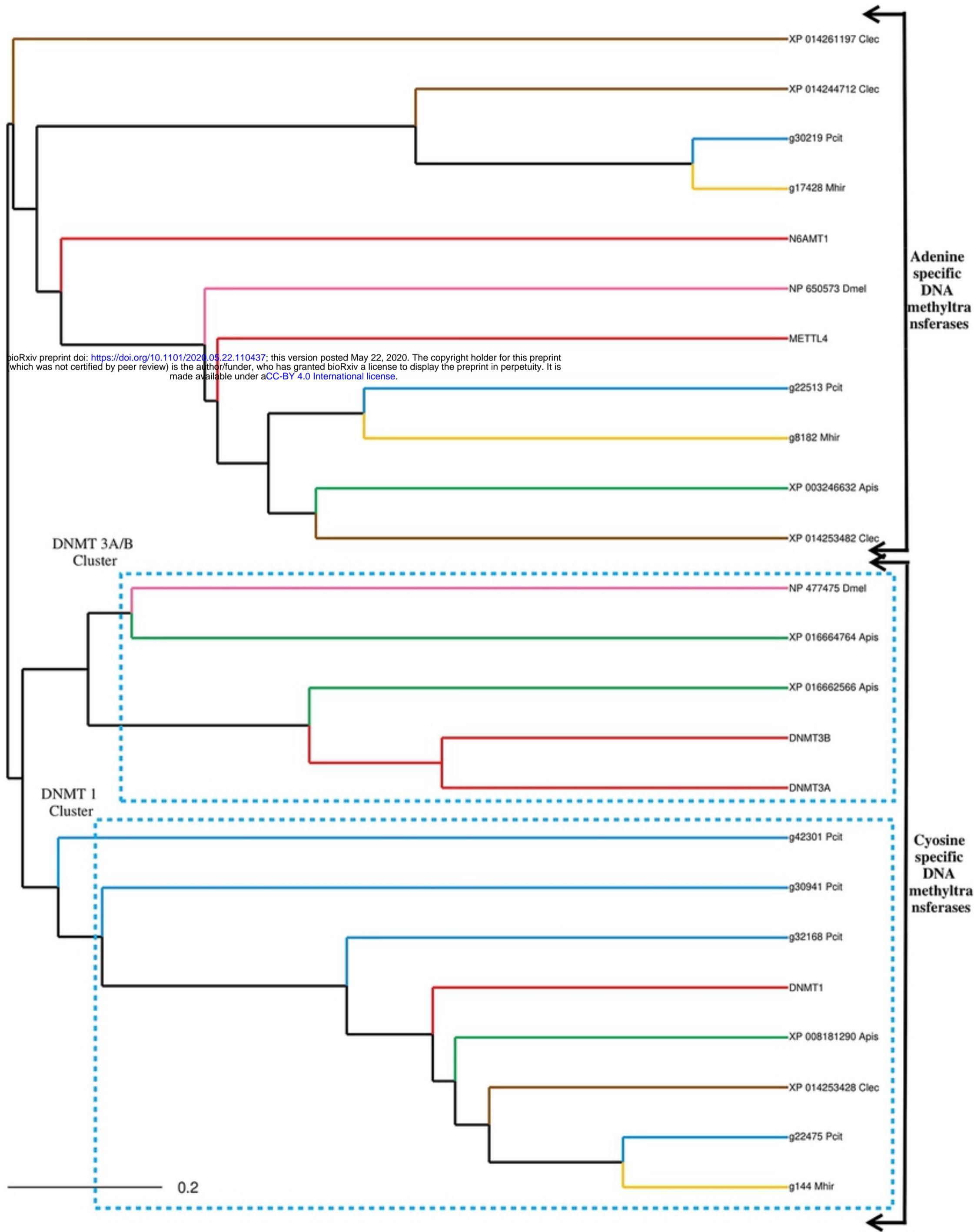


Figure 7

— *Mhir*
— *Apis*
— *Pcit*
— *Dmel*
— *Clec*
— *Hsap*

Figure 8

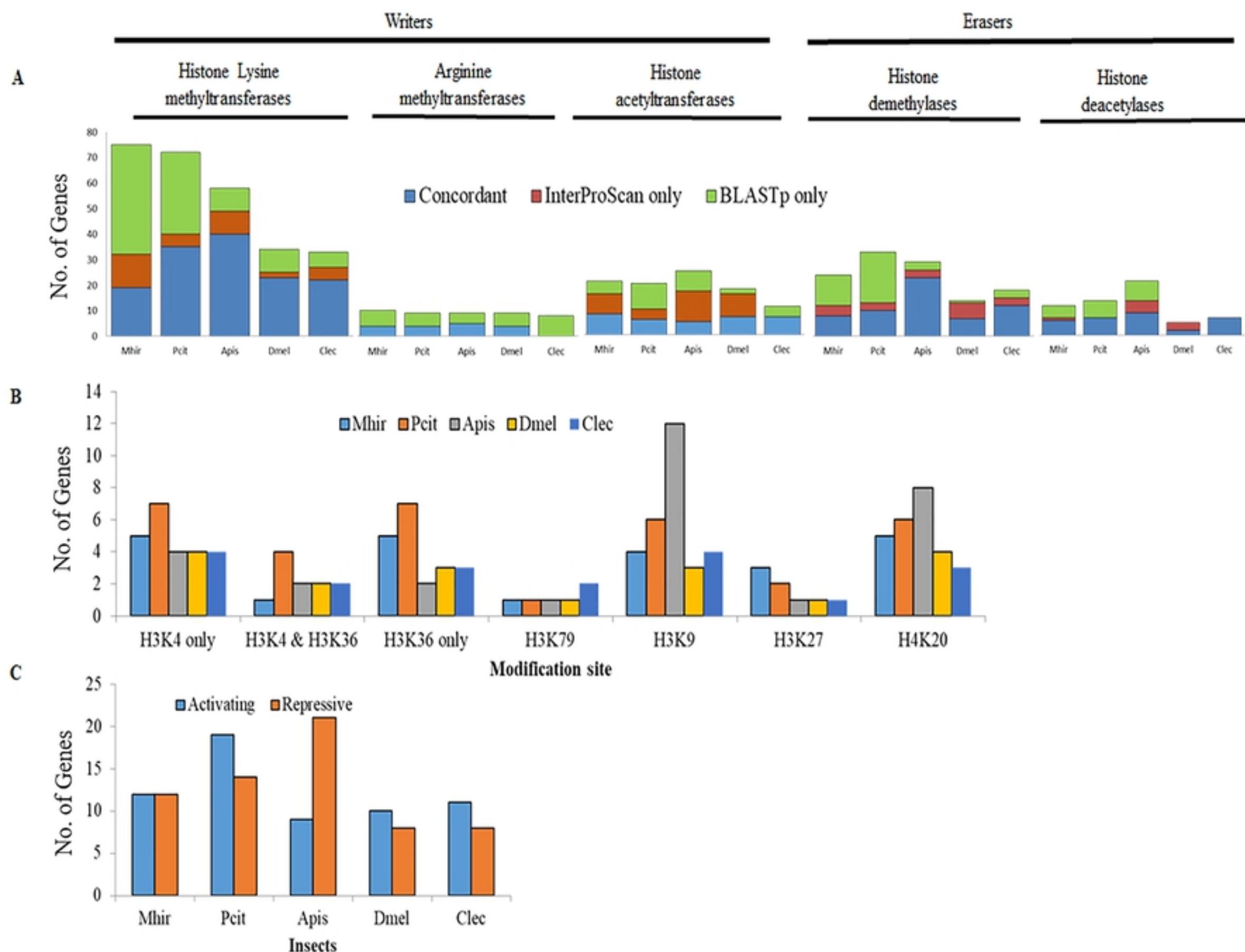


Figure 9

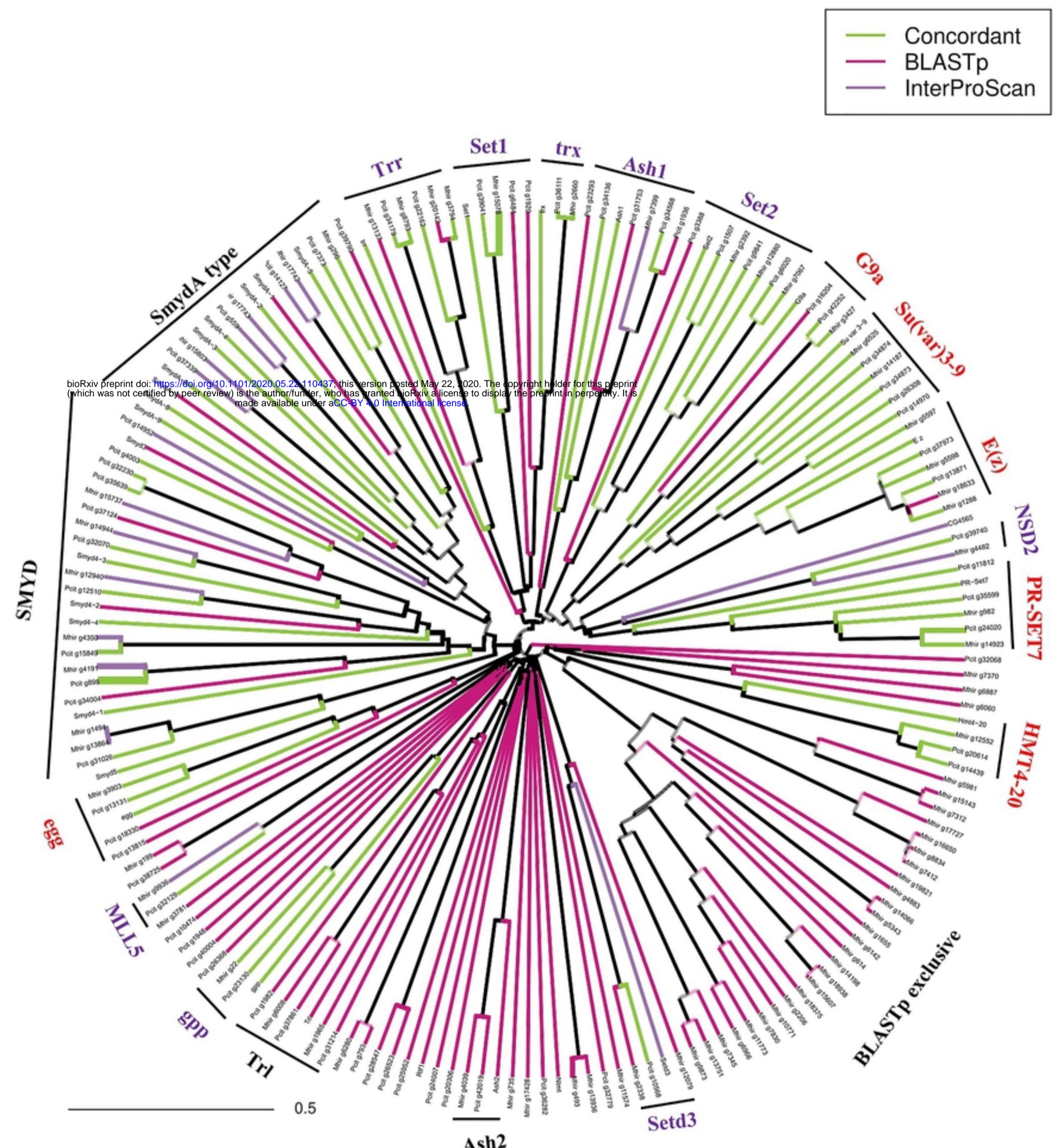


Figure 10



Figure 11

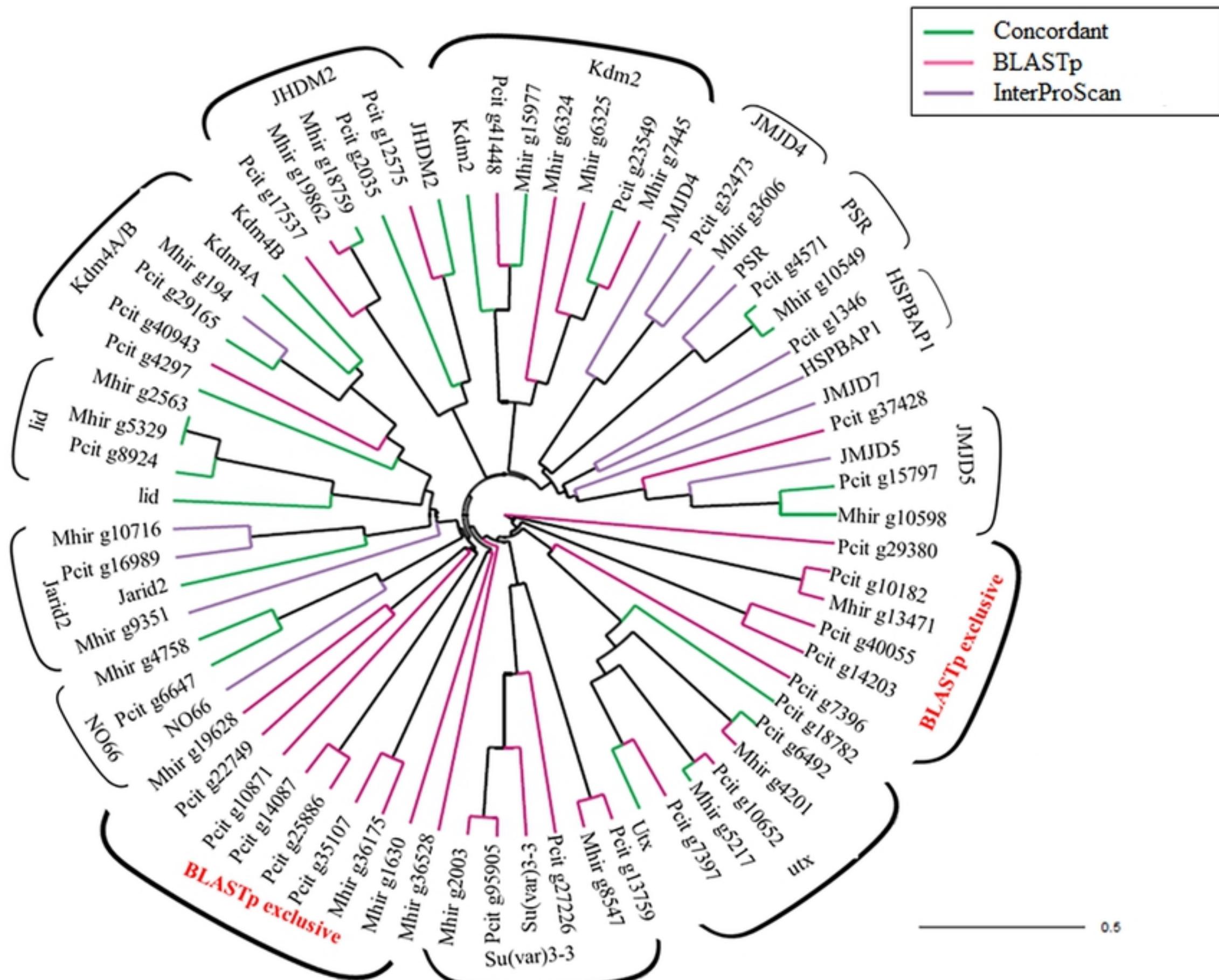


Figure 12

HDACs

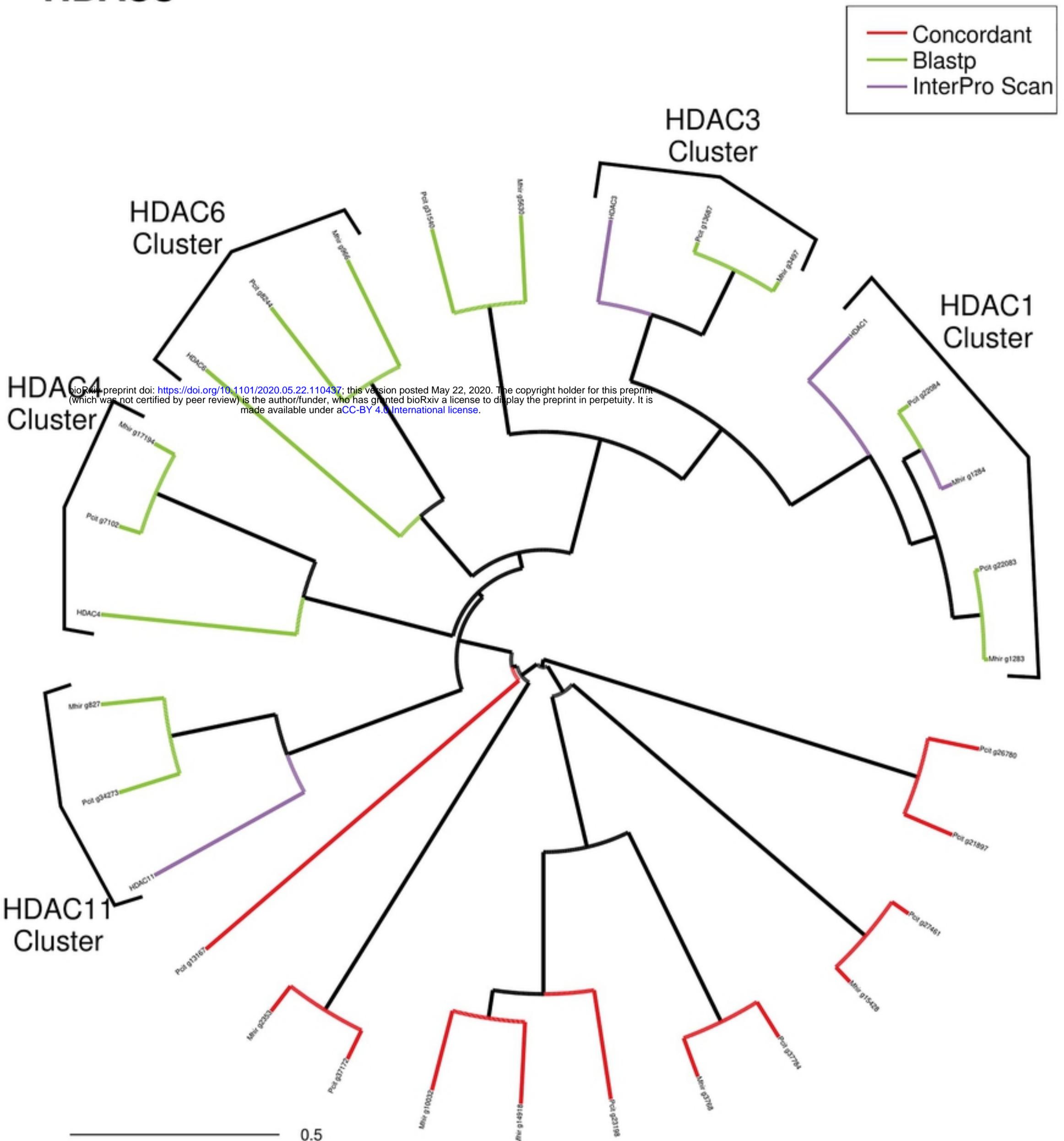


Figure 13

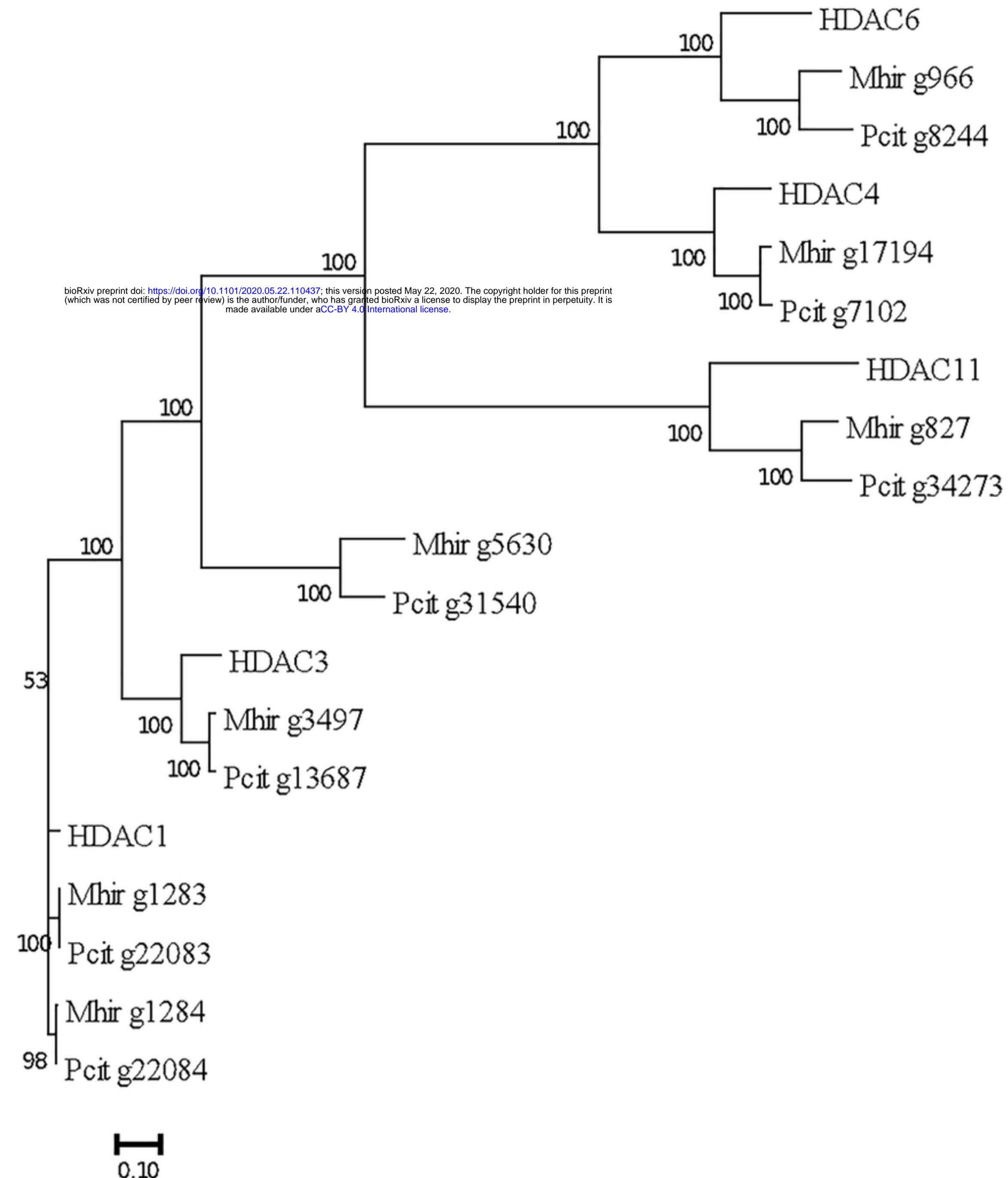


Figure 14

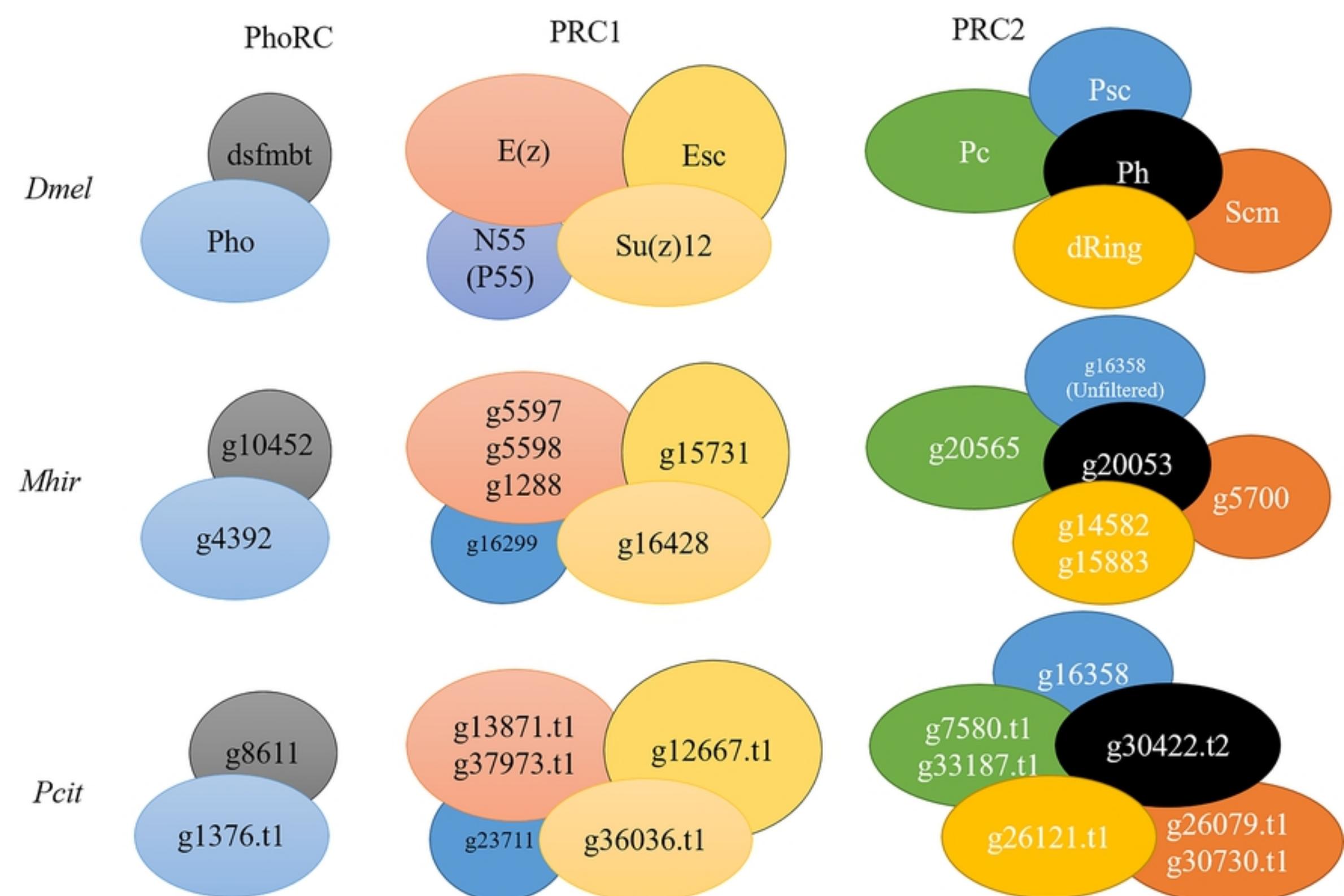


Figure 15

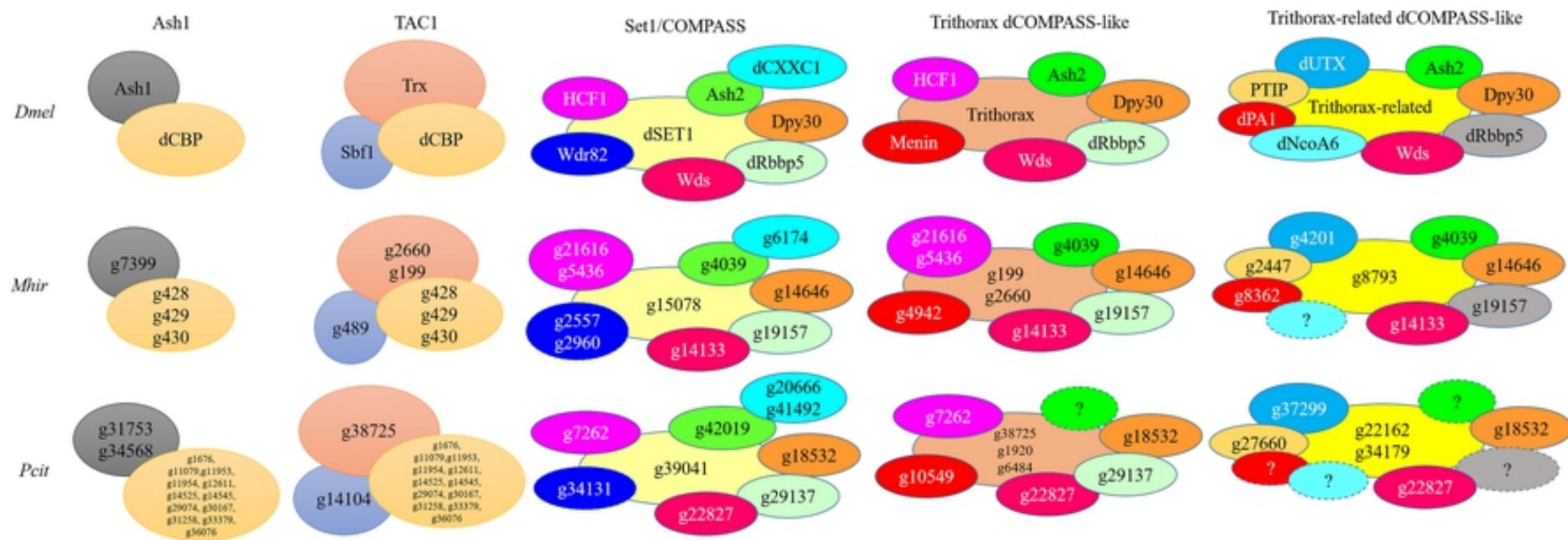


Figure 16

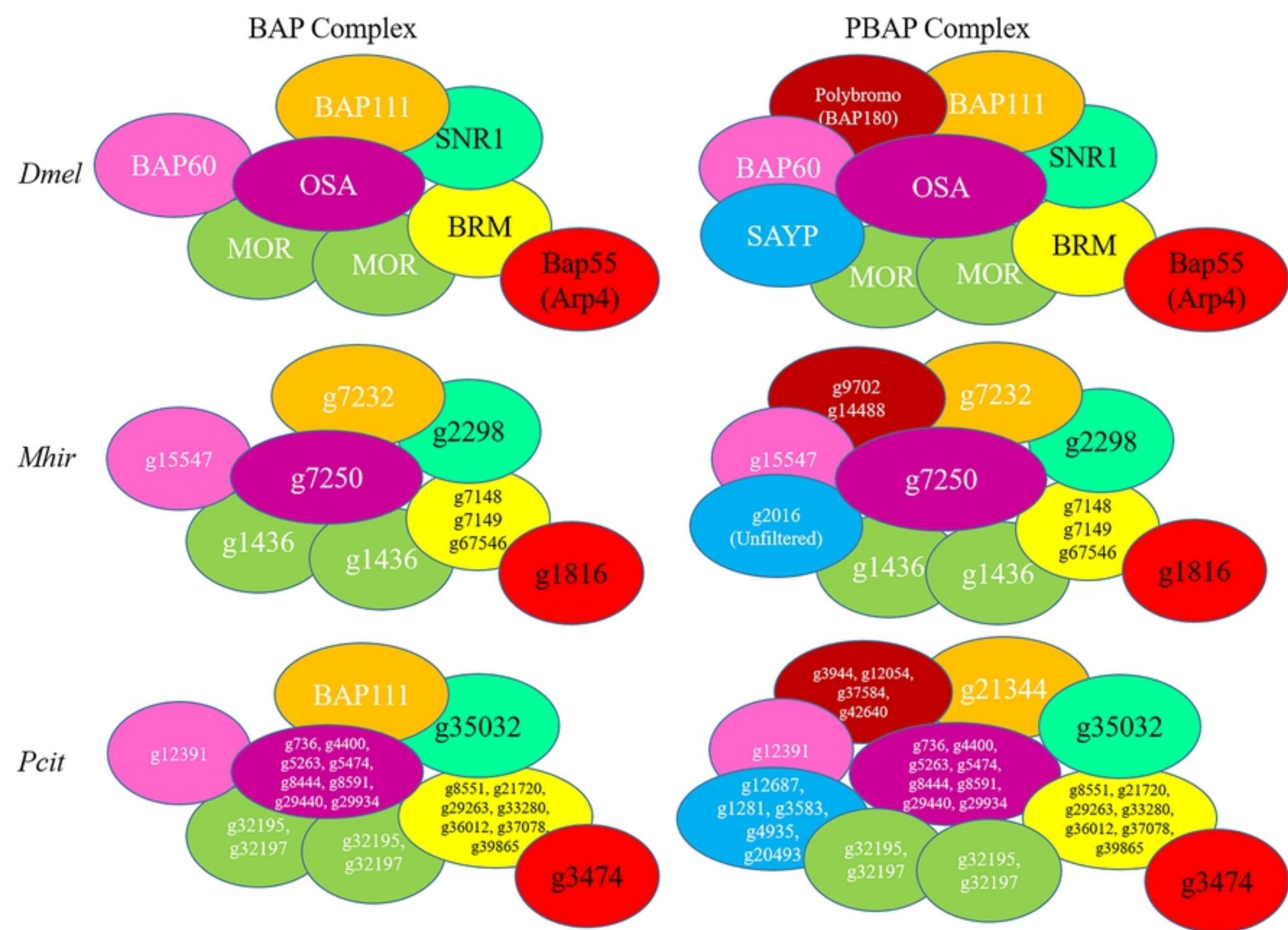


Figure 17

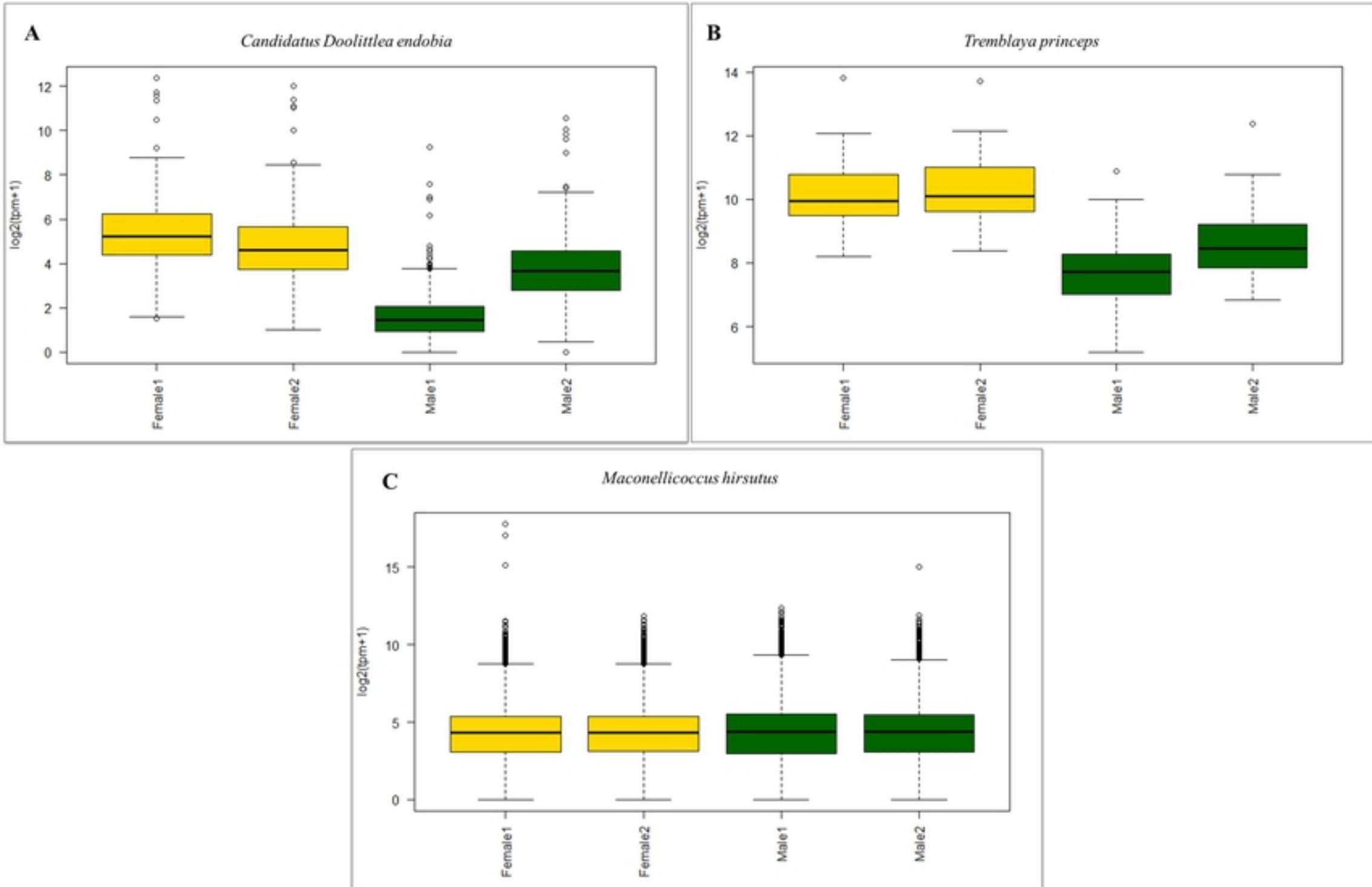


Figure 18

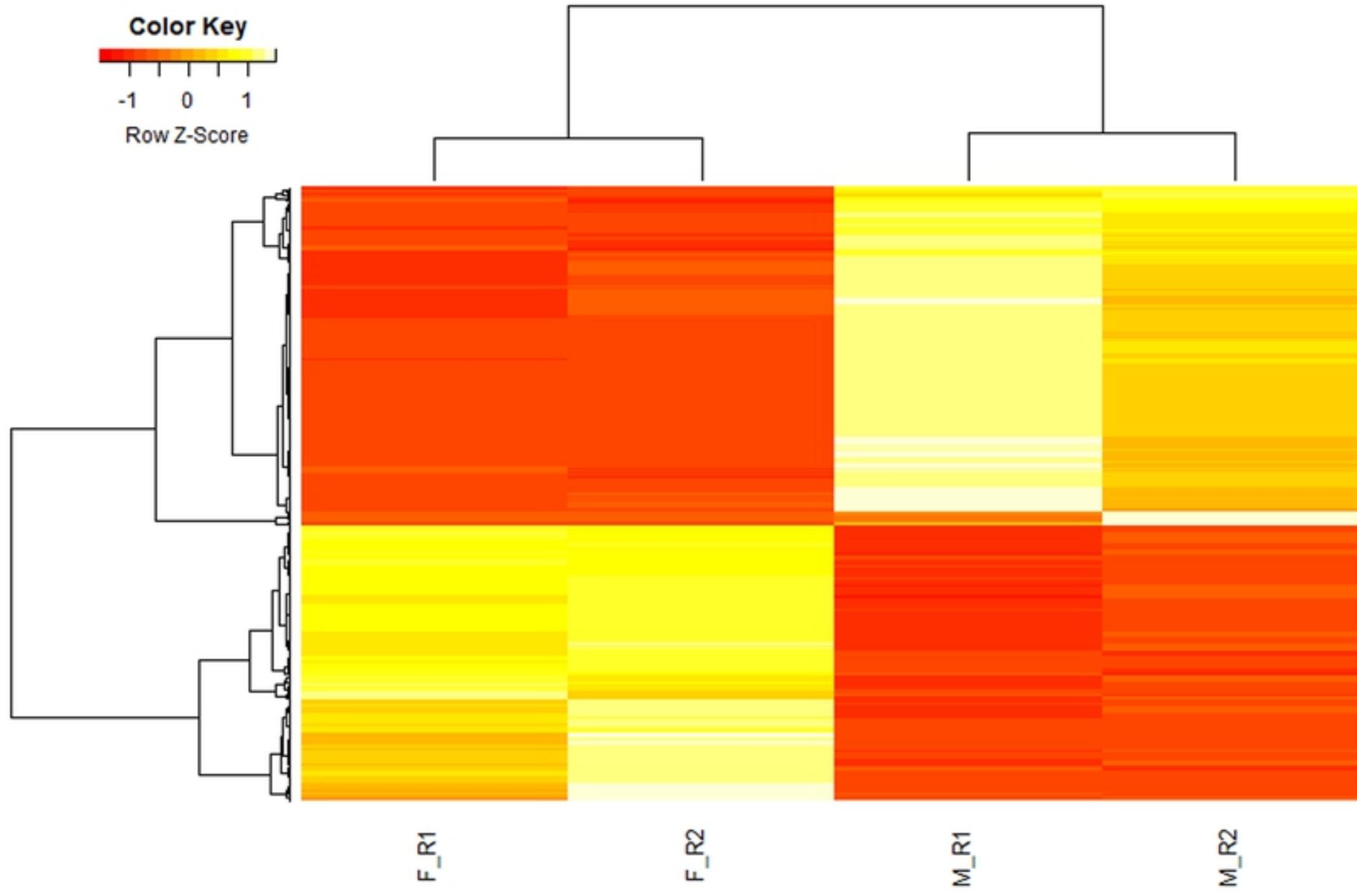


Figure 19

Biological functions of upregulated genes in Males

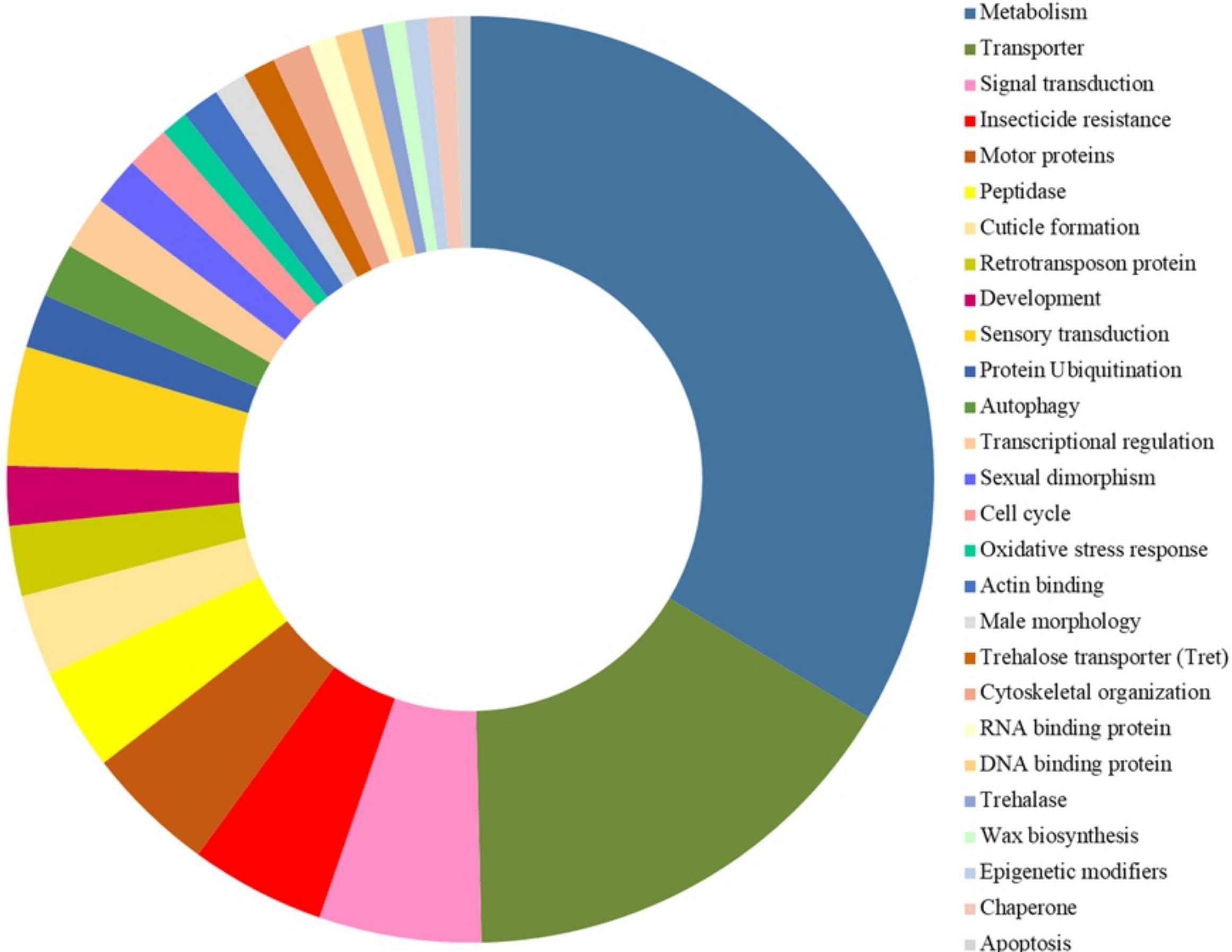


Figure 20

Biological functional classification of genes upregulated in Females

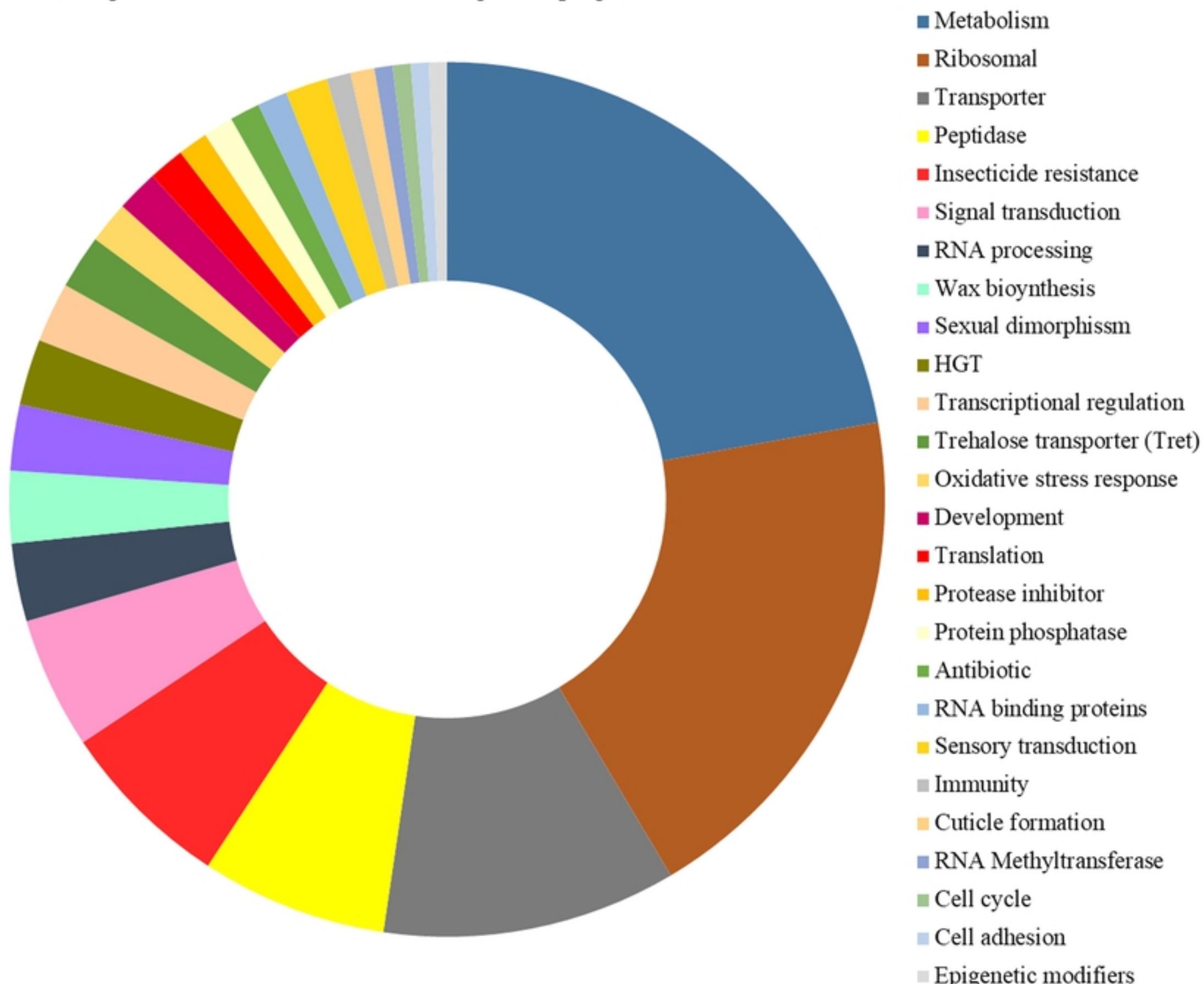
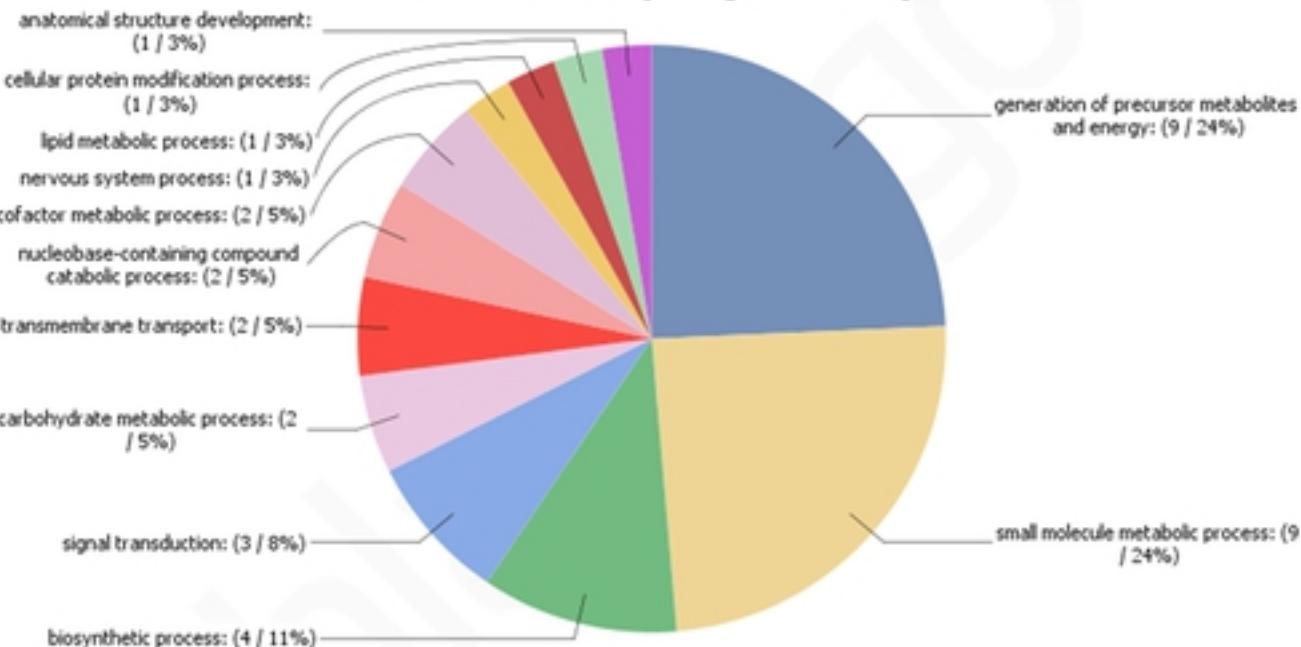
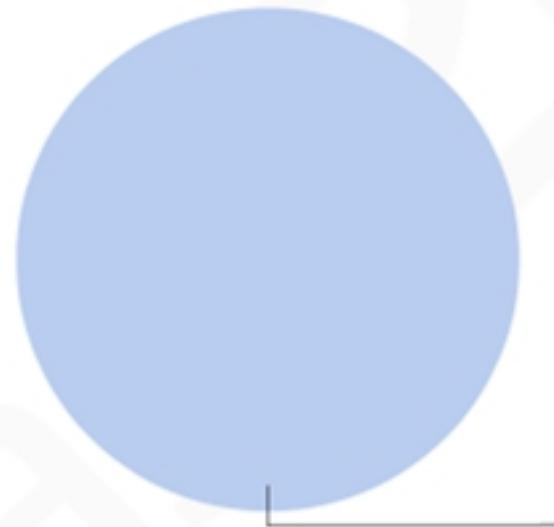


Figure 21


Genes upregulated in females (no of genes 4)

Score Distribution [Biological Process]



Genes upregulated in males (no of genes 30)

Score Distribution [Biological Process]

Score Distribution [Molecular Function]

Score Distribution [Molecular Function]

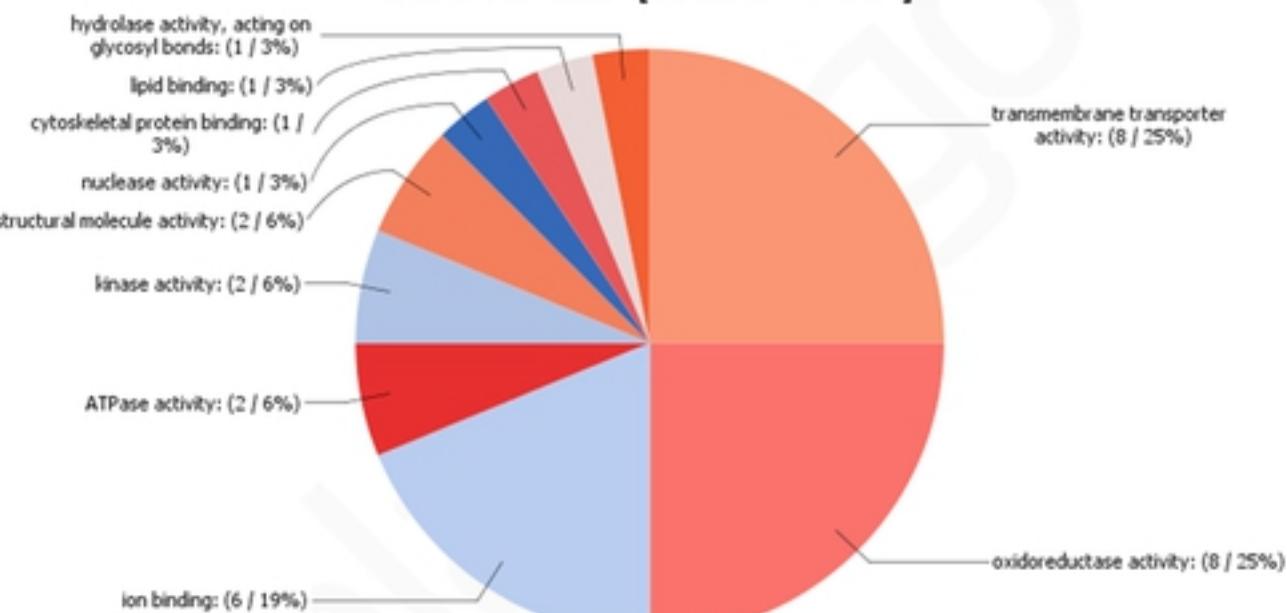


Figure 22

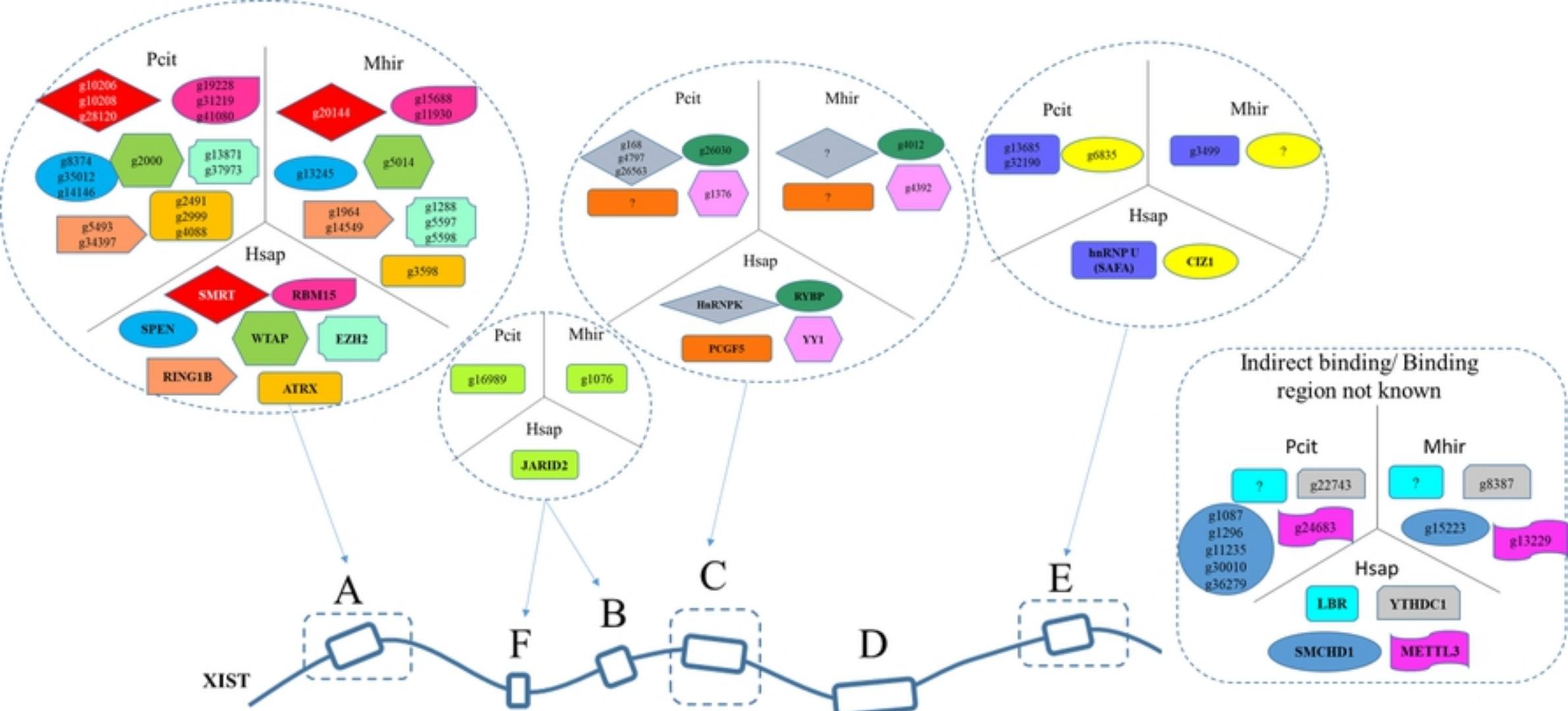


Figure 23