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36 Abstract

37 Background: Molecular multi-omics data provide an in-depth view on biological
38 systems, and their integration is crucial to gain insights in complex regulatory processes.
39 These data can be used to explain disease related genetic variants by linking them
a0 to intermediate molecular traits (quantitative trait loci, QTL). Molecular networks
a1 regulating cellular processes leave footprints in QTL results as so-called trans -QTL
42 hotspots. Reconstructing these networks is a complex endeavor and use of biological
43 prior information has been proposed to alleviate network inference. However, previous
44 efforts were limited in the types of priors used or have only been applied to model
45 systems. In this study, we reconstruct the regulatory networks underlying trans -QTL
46 hotspots using human cohort data and data-driven prior information.

47 Results: We devised a strategy to integrate QTL with human population scale
a8 multi-omics data and comprehensively curated prior information from large-scale bio-
49 logical databases. State-of-the art network inference methods applied to these data and
50 priors were used to recover the regulatory networks underlying trans -QTL hotspots. We
51 benchmarked inference methods and showed, that Bayesian strategies using biologically-
52 informed priors outperform methods without prior data in simulated data and show
53 better replication across datasets. Application of our approach to human cohort data
54 highlighted two novel regulatory networks related to schizophrenia and lean body mass
55 for which we generated novel functional hypotheses.

56 Conclusion: We demonstrate, that existing biological knowledge can be leveraged
57 for the integrative analysis of networks underlying trans associations to deduce novel
58 hypotheses on cell regulatory mechanisms.

50 Keywords: systems biology, omics, data integration, network inference, prior information, simulation,
60 machine learning, personalized medicine
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« Background

2 Genome-wide associations studies (GWAS) have been tremendously successful in discover-
63 ing disease associated genetic loci. However, establishing causality or obtaining functional
es explanations for GWAS SNPs is still challenging. In recent years, the focus has shifted from
es discovery of disease loci to mechanism and explanation, and large efforts have been put
s into unravelling the functional consequences of GWAS SNPs [1, 2]. These have been made
ez possible through technological advances in measuring genome-wide molecular data in large
es population cohorts, which further led to a steady increase in biological resources providing
o simultaneous measurements of different molecular layers (often termed multi-omics data).
70 To elucidate disease mechanisms, systems genetics approaches seek to link GWAS SNPs to
71 intermediate molecular traits by identifying quantitative trait loci (QTL) [3, 4], for example
72 for gene expression levels (eQTL) [5-7] or DNA methylation at CpG dinucleotides (meQTL)
7z [8-10].

74 Genetic variants that are QTL for quantitative molecular phenotypes that reside on a
75 different chromosome are called trans -QTL. Previously, trans -QTL studies were successful
76 in model systems [11, 12]. Recently, large-scale meta analyses of molecular QTL in very
77 large sample sizes have now been applied to successfully map large numbers of trans -QTL
7s in humans [7]. These are particularly interesting, as they have been found to be enriched for
7o disease associations [7, 8, 13]. Yet, the underlying mechanisms leading to such associations
so can usually not be explained in a straightforward way [6], and in fact, 83% of discovered
a1 trans -eQTL in human are estimated to still be unexplained [7].

82 Trans-QTL hotspots [14], where a single genetic locus influences numerous quantitative
83 traits on different chromosomes, can be seen as footprints of regulatory molecular networks
sa and likely encode master regulators. One way of mechanistically explaining the effects of

ss these master regulators is by reverse engineering the regulatory networks, and hence de-
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ss termining the intermediate molecular processes giving rise to the observed trans effects,
s7 ultimately yielding novel insights into disease pathophysiology [1, 14-16].

88 A large body of work has focused on inferring regulatory interactions from high-throughput
so data by individually combining distinct genomic layers like gene expression levels and geno-
o type [6, 17-19] or chromosomal aberration [20] information. Generally, network inference to
o1 uncover regulatory mechanisms in biological systems has gotten much interest [15, 21-24].
o2 The emergence of multi-omics data now also allows for establishing networks across more
03 than two omics layers in a holistic approach to obtain more insight into the function of reg-
o« ulatory elements [16]. Major efforts have been made to recover functional interactions from
os such data, but methods to successfully reverse engineer regulatory networks across multiple
os omics layers are still lacking [1, 4, 25, 26].

o7 Furthermore, utilizing the wealth of data available from genomic databases as biological
¢ prior information can guide the inference of complex multi-omics networks [26-28|. For
90 instance, using known relationships discovered in previous studies as prior knowledge, such
w0 as protein-protein interactions (PPIs) or eQTL, can facilitate network reconstruction on
w1 novel datasets. Application of priors has been investigated in numerous works [e.g. 15, 27,
w02 29-34], and while several studies show the advantage of using priors in synthetic datasets
w3 [22, 31, 33, 34] or model systems [15, 32, 34, 35|, relatively few studies apply their inference
s methodologies to functional genomics data in humans [29, 33, 36, 37]. In case human data is
s considered, either cell line data are used [36], the inference is restricted to a single pathway
s [37] or no informative priors are used for this specific context [29]|. Zuo et al. apply prior
107 based inference to human cancer gene expression data, however, they only use priors based
108 on PPIs extracted from the STRING database and focus on differential expression analysis
wo [33]. What is still missing, is, to comprehensively integrate the vast amount of functional
uo data from large-scale databases [38-41] as prior information in human multi-omic trans -QTL

1 studies and to determine the appropriate inference methods.
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112 Here, we developed a novel approach for understanding the molecular mechanisms un-
us derlying the statistical associations of trans -QTL hotspots by integrating existing biological
s knowledge and available multi-omics data to infer regulatory networks. We derived a com-
us  prehensive set of continuous priors from public datasets such as GTEx, the BioGrid and
116 Roadmap Epigenomics and applied state-of-the-art network inference methods including
ur  graphical lasso [42], BDgraph [29] and iRafnet [32], and showed, that methods using data-
us driven priors outperform non-prior approaches for network reconstruction on simulated data.
110 Moreover, we showed that networks inferred on real-world data using priors can be replicated
120 more faithfully across independent datasets than networks inferred without priors. Finally,
121 we demonstrated, that incorporating existing knowledge with multi-omics data yields novel
122 insights into disease related cellular mechanisms when applied to real-world population co-

123 hort data of different omics types and tissues.

= Results

s Trans-QTL hotspots define regulatory network candidates

126 In this study, we aimed to reconstruct regulatory networks to explain trans quantitative trait
127 locus (trans -QTL) hotspots on a molecular level through simultaneous integration of multi-
126 omics data [4]. Trans-QTL hotspots have previously been associated with disease [8, 13|, and
120 understanding their mechanisms of action can deepen our insights into regulatory pathways
130 and, ultimately, into the disease process.

131 Our general analysis strategy is depicted in Figure 1A and consists of the following steps:
12 1) curate QTL hotspots, 2) gather functional data and prior information, 3a-+b) benchmark
133 network inference methods in simulation and replication study to select best suited method
134 and 4) infer and interpret networks identified in the cohort data.

135 We obtained trans hotspots from the methylation QTL (meQTL) discovered in whole-
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s blood in the KORA [43] and LOLIPOP [44] cohorts reported by Hawe and colleagues [10]
137 and the expression QTL (eQTL) published by the eQTLGen consortium [7], yielding a total
s of 107 and 444 trans -loci per QTL type, respectively (Figure 1B, see Methods for details).
130 In addition to the whole-blood derived hotspots, we curated a single trans -eQTL hotspot
1o in Skeletal Muscle tissue from GTEx v8 [38, 39|, which we analyzed separately.

141 For each hotspot, we aimed to identify the causal gene at the genetic locus affected by
12 the SNP and the intermediate genes which mediate the observed trans associations. To
13 this end, we collected sets of candidate genes with different roles for each locus, which
s we term locus sets’ (see Methods). A locus set contains the SNP defining the hotspot,
us the respective trans associated traits (CpGs for meQTL and genes for eQTL, ’eGenes’),
us cis genes encoded near the SNP as candidate causal genes, trans genes (for meQTLs, genes in
17 vicinity of the CpGs), as well as transcription factors (TFs) binding near the trans associated
s entities and PPI genes residing on the shortest path between trans traits and cis genes in
1o a protein-protein interaction (PPI) network, as potential intermediate genes. Cis genes
150 form potential candidate regulator genes of the locus, and the inclusion of the PPI and TF
151 binding information allows us to bridge the inter-chromosomal gap between the SNP and
12 the trans CpG sites/trans eGenes. An overview of entities collected over all loci for both
153 QTL types is given in Figure 1C.

154 One main aspect of this work is the use of any form of biological prior information,
155 including continuous scores, to guide network inference. We hence collect prior information
156 for all possible edges between entities contained in locus sets in addition to the functional
157 data (Figure 1). In total, four distinct types of edges are annotated with prior information:
158 SNP-Gene, Gene-Gene, TF-CpG/TF-Gene and CpG-Gene edges. All prior information is
150 generated from matched, public data independent of the data used during network inference
10 (see Methods for details).

161 Figure 1D indicates the total number of edges annotated with prior information over
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Figure 1: Project overview. Panel A) shows a graphical abstract of the analyses performed
in this project. Panel B) provides a global view on the collected eQTL (orange) and meQTL
(green) hotspots. The x-axis indicates ordered chromosomal positions for trans eGenes and
CpG sites, respectively. Panel C) shows the total number of different genomic entities
gathered over all hotspots during locus set creation (log scale). Panel D) depicts density
plots of the number of possible network edges with available prior information (x-axis) over
all hotspots, zoomed in to area between 0 and 1000. Same color coding is used in panels
B-D.
162 all hotspots. For meQTL and eQTL, a minimum of 2 and 3 edges per hotspot show prior
163 evidence, respectively, and most hotspots get only relatively few priors compared to the total
16a number of possible edges (median 26 and 94, respectively). However, in both cases several
s networks collect priors for over 100 edges (8 and 209 loci with >= 100 priors for meQTL and
16 €QTL). As expected, the total number of edges with prior information per locus correlates

167 with the total number of possible edges in the respective loci, however, the fraction of all

s possible edges annotated with prior information decreases (Additional File 1, Figure S2).
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10 Benchmark of network inference methods
1o Simulation study shows benefit of data-driven priors

11 Numerous methods for regulatory network inference have been proposed (e.g. [42, 45, 46], see
w2 also [4]), and, therefore, before investigating individual hotspots in detail we sought to select
173 the method best suited for this study (see Figure 1A step 3). To this end, we performed an
s extensive simulation study (Figure 1A step 3a) to evaluate the performance of five distinct
s methodologies (see Table 1 for a method overview) in reconstructing ground truth graphs
176 from simulated data and prior information. Simulated data were matched with the observed
17 QTL-hotspots by preserving the sample size and the total number of input nodes and 100
178 simulations were performed for each hotspot. We evaluated the impact of priors for different
170 sample sizes by sub-sampling the simulated data and using the full prior matrix. To assess
1o the impact of noise in priors, we inferred networks separately from prior information with

w1 varying degrees of noise (up to 100%, see Methods for details) for the complete data.

name version | repository | attribute reference

BDgraph | 2.61 CRAN MCMC Mohammadi  and Wit
(2015) [29)]

gLASSO | 1.11 CRAN Graphical lasso | Friedman et al. (2008) [42]

GENIE3 | 121 bioconductor | Random forests | Huynh-Thu et al. (2010)
46

GeneNet | 1.2.13 CRAN Shrinkage/ FDR | Opgen-Rhein et al. (2007)
45

iRafNet * | 1.1-2 CRAN Random forests | Petralia et al. (2015) [32]

Table 1: Overview of the network inference packages used in the simulation study.
* adjusted to make use of parallel processing, see Methods

182 We gauge the relative gain in performance attributable to prior information for both
183 gLASSO and BDgraph by always training two distinct models, one utilizing the provided
w8a priors (JLASSOp , BDgraphp ) and one without priors (¢LASSO , BDgraph ). The

185 implementation of iRafNet always requires a prior matrix, whereas both GeneNet and
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186 GENIFE3 cannot utilize prior information and hence were trained only with the simulated
17 data. We utilize Matthews Correlation Coefficient (MCC) [47] as a balanced performance
188 measure to compare inferred networks to the respective ground truth (see also [29]). Fig-
189 ures 2A and 2B show the results for the simulation study for all methods (see also Additional
wo File 1, Tables S2, S3, S4 and S5). Overall, both gLASSOp and BDgraphp exhibit improved
101 performance with relatively low standard deviation in terms of MCC as compared to their
102 non-prior counterparts, both for low and high sample size settings. The performance of all
103 other methods is affected by low sample sizes, with BDgraph showing slightly better perfor-
10« mance than all other methods. Moreover, both gLASSOp and BDgraphp outperform all
105 other methods as long as the prior noise does not exceed 10% (gLASSOp ) and 30% of incor-
106 rect edges in the prior graph, in which case BDgraph achieves the highest median MCC over
107 all methods. GeneNet performs well in all simulations, whereas GENIE3 , gLASSO and
108 1RafNet show about average performance with iRafNet achieving worst results overall.
190 In addition to the curated prior matrices, we also generated a prior matrix reflecting the
200 sparsity of the true graph (column ’rbinom’ in Figure 2B and Additional File 1, Tables S2
201 and S3, see also Methods), and our results indicate, that information about sparsity of the
202 underlying network already improves network inference performance. Finally, prior based
203 methods, and specifically BDgraphp , outperform non-prior methods in the task of identify-
204 ing the correct cis -gene by recovering associations between the discrete SNP and continuous
205 gene expression data types (Additional File 1, Figure S3), when using independent eQTL

206 data as prior.

207 Inferred networks replicate in independent datasets

208 In addition to the simulation study, we evaluated the methods on real world data from
200 two large population cohorts: the KORA (Cooperative Health Research in the Region of
210 Augsburg) and LOLIPOP (London Life Sciences Population) cohorts (see Figure 1A2 and
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Figure 2: Method comparison results. (A) Results of simulation study: y-axis shows the
Matthews correlation coefficient (MCC) as compared to the simulated ground truth, x-
axis indicates increasing sample size from left to right, colors indicate different inference
methods. (B) Similar to (A), but x-axis indicates increasing noise in the prior matrix from
left to right. Group (’rbinom’) indicates uniform prior set to reflect degree distribution of
true graph. (C) shows MCC (y-axis) between networks inferred on KORA and LOLIPOP
data for same locus for all methods (x-axis). (D) contrasts MCC across cohorts using TF
expression (dark gray) versus using substituted TFAs (light gray). Boxplots show medians
(horizontal line) and first and third quartiles (lower/upper box borders). Whiskers show
1.5 % IQR (inter-quartile range); for (B), dots depict individual results and for (C), stars
indicate significant difference between expression/TFA results for each method (Wilcoxon
test, **: P < 0.01, ***: P <0.001, ****: P <0.0001)

a1 Methods). Data from both cohorts were generated from whole-blood samples and contain
212 imputed genotypes as well as microarray measurements of gene expression and DNA methy-
213 lation for a total of 683 (KORA) and 612 (LOLIPOP) samples. Since for these data no
214 ground truth is available, we evaluate robustness of the networks inferred by the individual
215 methods via cross cohort replication. For each hotspot, we collect data for all genes, CpGs

216 and the SNP in the locus set for KORA and LOLIPOP and separately inferred networks

217 in both cohorts for all models. Obtained networks were then compared between cohorts

10
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218 using MCC to get a quantitative estimate of how robust the network inference is across
210 different datasets for the same hotspot, yielding scores for KORA versus LOLIPOP and
220 vice versa (i.e. one network functioning as the reference). Results of this analysis are shown
221 in Figure 2C. With respect to MCC, models supplied with prior information (¢LASSOp ,
222 BDgraphp and iRafNet ) show the best performance, with gLASSOp coming up as the
223 most robust method, followed by BDgraphp and iRafNet . Noticeably, of the top methods
224 BDgraphp shows much less variance compared to gLASSOp and iRafNet . Ignoring prior
25 information lead to a drop in performance for both gLASSO and BDgraph , which leads to
26 (GeneNet outperforming both methods. Finally, GENIE3 shows worst performance in this

227 setting.

28 Estimated transcription factor activities as a proxy to TF activation

220 Transcription factor activities (TFAs) estimated from transcription factor binding sites (TFBS)
230 and gene expression data have been suggested as an alternative to using TF gene expres-
211 sion in inference tasks [48], since a transcription factor’s expression level alone might not
222 reflect the actual activity of a TF (driven for instance by its phosphorylation state). To
233 evaluate, whether TFAs could improve our inference, we estimated TFAs for all TFs based
23 on their expression and ChIP-seq derived TFBS from ReMap [49] and ENCODE [50, 51|
235 (see Methods for details). We applied the same cross cohort replication strategy as above
236 and compared MCCs from the TFA based analysis to the previous results using a one-sided
237 Wilcoxon test. Figure 2D shows the results of TFA (light gray boxes) versus gene expres-
238 sion (dark gray boxes) based analysis in terms of MCC for all available hotspots. For all
230 models but gLASSOp and GENIE3 , TFAs yield a significantly higher MCC (Wilcoxon
20 test P < 0.01) as compared to using the pure expression data (see also Additional File 1,
201 Table S6).

242 According to the results presented above, detailed investigation of real world data was

11
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2a3 focused on networks obtained from gLASSOp and BDgraphp and TF expression was sub-

2as stituted by TFA estimates for all subsequent analyses.

2«5 Replication of previous findings by simultaneous data integration

26 Before seeking new mechanistic insights and generating novel hypotheses from trans -QTL
2a7  hotspots, we first checked whether our approach can replicate previous findings. Hawe
28 et al. [10] inferred gene regulatory networks from trans -meQTL hotspots using a two-
20 step approach involving 1) a random walk on a PPI and ChIP-seq based networks and 2)
250 subsequent local correlation analysis. In contrast, our approach simultaneously integrates
251 all functional data, relying on PPI and ChIP-seq information as prior knowledge, thereby
252 avoiding the need for post-hoc correlation testing of e.g. SNP-gene and CpG-gene edges. For
53 the comparison, we extracted three of their hotspot networks and evaluated the overlap with

254 the networks inferred in this study.

locus ‘ num. nodes ‘ num. edges ‘ common edges ‘ MCC
rs9859077 99 (89) 447 (287) 141 0.52
rs730775 58 (49) 98 (67) 48 0.69
rs7783715 25 (17) 24 (23) 5 0.65

Table 2: Comparison of the networks inferred in this study to the networks extracted from
[10]. Numbers in bracket indicate statistics for the networks from the original publication.

255 Table 2 shows the results of this comparison. Overall, the comparisons indicate rela-
256 tively strong concordance between the two approaches with MCCs of 0.515, 0.689 and 0.65.
57 Moreover, for all three networks, our simultaneous inference approach yielded more edges
28 and nodes than the two-step approach (56%, 46% and 4% novel edges and 11%, 19%, 47%
250 additional nodes for rs9859077, rs730775 and rs7783715, respectively), which might have
260 been missed by the two-step approach, as it relies on known PPI and ChIP-seq information.
261 Figure 3 contrasts the two networks obtained for the rs730775 hotspot using 1) the two-

22 step approach by Hawe et al. [10] and 2) the network inferred in this study using gLASSOp ,
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SNP
SNP gene

rs730775~—QFKBID D )

D ™ Transcription factor
> trans CpG-Gene
D replicated edge
D novel edge

| trans CpG

Figure 3: Comparison of the random walk based network reported in [10] and the network
inferred from functional omics data in this study for the rs730775 locus. Shown is the
complete network constructed from the omics data, edge color indicates replication/novelty.
Orange edges: replicated with respect to the random walk network. Green edges: novel
in our network. White box: SNP: pink nodes: SNP-genes; blue nodes: TFs; brown boxes:
CpGS; green nodes: CpG-genes.
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263 orange edges showing replicated and green edges indicating novel edges. In Hawe et al.
26 |[10], the authors described a regulatory network involving the rs730775 SNP connected
265 via NFKBIE to NFKB1 which connects to the trans-CpG sites. This main pathway is also
266 discovered in our approach (i.e. 1730775 <+ NFKBIE <> NFKB1 + CpG sites), in addition
267 to some of the initially reported TFs (blue nodes), of which NFKB1 is connected to most
28 Of the trans CpGs (82%, 29 out of 35) as was the case in the original network. However,
260 we also identify patterns of CpG genes (green nodes) connected to the TFs, which were not
a0 previously identified. Overall, the integrated approach using prior information leads to high
on replication of previous networks including novel connections leading to potential new insights

a2 in target gene regulation.

o3 A trans regulatory network for a schizophrenia susceptibility locus

274 In order to demonstrate the effectiveness of our approach in getting mechanistic insights
s from trans -QTL associations, we inferred networks for all meQTL [10] and eQTL [7]
276 hotspots using whole blood data from the KORA and LOLIPOP cohorts using the prior
277 based gLASSOp and BDgraphp models (see Methods, all networks are listed in Additional
s File 2, Table S3). Based on the GWAS catalog (v1.0.2, [52]), graph properties and a cus-
270 tom graph score (see Methods), we prioritized a trans acting locus that has previously been
280 associated with schizophrenia (SCZ).

281 The network involves the trans -eQTL locus around the 759469210 (alias rs927/623")
222 SNP in the Human Leukocyte Antigen (HLA) region on chromosome 6 shown in Figure 4A.
283 rs9274623 has been associated with SCZ [54]| and is a cis -eQTL for all three of its
284 directly connected SNP-genes, PBX2 RNF5 and HLA-DQA1 in the eQTLGen study. RNF5
g5 showed differential expression for SCZ cases vs controls in addition to its expression being

286 associated with an additional independent SCZ susceptibility SNP (rs3132947, R* = 0.14

Laccording to SNiPA: https://snipa.helmholtz-muenchen.de/snipa3/, [53]
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27 in 1000 genomes Europeans?) located in the HLA locus [55]. Interestingly, PBX2 has been
2ss  associated with a SCZ related phenotype in a pharmacogenetics study (clozapine-induced
20 agranulocytosis) [56, 57| and shows direct binding evidence to the SPI1 promoter region
200 (ReMap TFBS [49]). The transcription factor SPI1 (PU.1) is linked to Alzheimer’s Disease
201 likely by impacting neuroinflammatory response [58] and was found to interact with its
202 metwork neighbor, RUNX1, in modulating gene expression [59]. Moreover, RUNX1 has been
203 implicated in rheumatoid arthritis, a disease negatively associated with SCZ and which
204 hence might share susceptibility genes with SCZ [60]. Interestingly, several genes encoded
205 in the HLA locus, which has been implicated in SCZ and other psychiatric and neurological
206 disorders [61-64|, were picked up by our inference downstream of SPI1 and RUNX1. TCF12
207 is a paralog of TCF4 and TCF3 which are known E-box transcription factors and are
208 expressed in multiple brain regions [65]. TCF/ loss-of-function mutations are the cause
200 of Pitt-Hopkins syndrome (a syndrome causing mental retardation and behavioral changes
300 amongst other symptoms) [66] and regulatory SNPs relating to TCF4 have been associated
;o1 with SCZ [67, 68]. The NFKB1 pathway has been recognized as an important regulatory and
32 developmental factor of neural processes and was found to be dysregulated in patients with
303 SCZ [69] . Finally, 9 of the 40 discovered trans -eGenes of the locus are connected to the SNP
s34 via the selected TFs. Of these, SH3BGRLS3 [70] has already been linked to SCZ and PSEN1
s [71], BID2 |72], CXCR5 [73] as well as DNAJB2 [74] were implicated in other neurological
a6 disorders. In addition, the trans eGene RNF114 has previously been shown to play a role
so7 in the NFKBI pathway [75]. A formal colocalization analysis using fastENLOC [76] showed
308 evidence of a common causal variant underlying the SCZ GWAS signal [77| and each of the
300 €QTLGen trans -eQTL of PSEN1, DNAJB2 and CD6 (SNP-level colocalization probability
a0 of 0.92, 0.87 and 0.42, respectively; see Methods and Additional File 1, Figure S4).

311 Our approach highlighted a potential regulatory pathway involving diverse genes related

Zhttps://1dlink.nci.nih.gov /7tab=ldmatrix
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sz to SCZ and other neurological disorders. While some of the genes were not previously
a1z reported in this specific disease context (e.g. CD6, BRD2, DEFS), their association to this
;14 network indicates a potential role in SCZ pathogenesis and additional colocalization analysis

a5 hints at a potential causal relationship between these genes and SCZ.

A - eQTLgen Schizophrenia locus B - GTEx Lean Body Mass locus
rs9274623 : chr13_73532802_A_G_b38
cis
CBRDZ>
DEF8 DNAJB2 CXCR5  ZNF672
trans PHOSPHO1 SYNC FAM109A
CD6 SH3BGRL3 RNF114 PSEN1 B9D2
SNP > shortest path gene ChIP-seq evidence
> SNP gene trans eGene PPI evidence
@™ Transcription factor —— correlation cis gene

Figure 4: Inferred networks for the schizophrenia susceptibility locus rs9274623 obtained
from eQTLgen (A) and the rs9318186 locus obtained from GTEx (B). The white boxes in-
dicate sentinel SNPs, pink ovals indicate SNP-Genes, blue ovals transcription factors and
white ones shortest path derived genes. Light green ovals represent genes trans-associated to
the SNP. Black edges were inferred during network inference. In addition to being inferred,
colored edges indicate ChIP-seq protein-DNA binding evidence (green), protein-protein in-
teraction in the BioGrid (purple) and whether or not a gene is encoded in cis of the linked
entity (blue).

s Application to GTEx Skeletal Muscle tissue

3

-

a1z All above analyses were focused on whole-blood data, however, the proposed strategy can

sis be applied to data from any biological context. To demonstrate this, we investigated the

-

3

-

o recently published trans -eQTLs from the GTEx v8 release [38, 78]*. We identified a single

3https:/ /www.gtexportal.org/
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»20 LD block in Skeletal Muscle tissue, which is a trans -eQTL hotspot (see Methods), and
a1 for which we inferred regulatory networks. Since we can’t use the same priors, which were
32 initially derived from GTEXx, to analyze the same data set, we set out to curate muscle tissue
223 specific priors from independent datasets. We utilized muscle eQTL from Scott et al. (2016)
2e  [79] and gene expression data curated from the ARCHS? [41] database and generated tissue
s specific TFBS using factorNet [80] on DNAse-seq data obtained from ENCODE [50, 51]* (see
226 Methods for details). The resulting network for the gLASSOp model is shown in Figure 4B.
327 The genetic variant rs9318186 is a cis -eQTL of KLF5 in GTEx v8 Skeletal Muscle
2s (P = 6.12107%7) and a proxy of it (R* = 0.88) has been associated with Lean Body Mass
20 (LBM). KLF5 itself, too, has been associated with LBM in a transcriptome-wide association
330 study integrating GWAS results with gene expression [81] and with lipid metabolism in KLF5
s knockout mice [82]. In addition, several other genes in the network have been associated with
32 related phenotypes: Both HDAC1 and HDAC?2 have been found to control skeletal muscle
;13 homeostasis in mice [83], work together with SIN3B in the SIN3 core complex to regulate
s gene expression and are involved in muscle development [84]. TATA binding protein (7BP) is
335 a well known transcription factor and important for the transcriptional regulation of many
136 eukaryotic genes [85]. The trans -eGene SYNC' was found to interact with dystrobrevin
337 (DMD gene) in order to maintain muscle function (during contraction) in mice as well as
138 being associated with neuromuscular disease [86, 87|. In addition, in Seim et al. (2018)
330 [88], the authors investigated the relationship between obesity and cancer subtypes and
uo found, that both PHETA1/FAM109A expression are associated to Body-Mass-Index (BMI)
;a1 in esophageal carcinoma in data from The Cancer Genome Atlas (TCGA). PHOSPHO!1 has
sz been found to be involved in metabolism, specifically in energy homeostasis [89], and has also
us been associated via DNA methylation with BMI [90, 91] and with HDL levels, which have
;s been negatively associated with LBM [92]. Dayeh et al. (2016) [93] further showed decreased

4https:/ /www.encodeproject.org/
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sas DNA methylation at the PHOSPHO1 locus in skeletal muscle of diabetic vs. non-diabetic
us samples. The remaining gene in the network (CREM) has not yet been described in the
sar - broader context of LBM, but a GWAS meta-analysis executed by Wang et al. (2014) [94]
s hinted at association of a CREM SNP (rs1531550, P = 1.88x107%) with elite sprinter status.
sa0 These results suggest, that KLF5 may exert its specific functions through transcriptional
350 regulation via the SIN3 core complex including T'BP, with a potential involvement of CREM,
31 of the trans -eGenes PHOSPHO1, SYNC and PHETA1/FAM109A.

= 1J)1scussion

353 In this study, we introduced a Bayesian framework for the inference of undirected regulatory
ssa  networks underlying molecular trans -QTL hotspots across multi-omics data types using
355 existing prior knowledge. We compiled a comprehensive set of context specific network edge
16 priors from diverse biological databases and applied these together with multi-omics data in
357 different settings. These settings include an extensive simulation study to benchmark state-
38 Of-the-art inference methods as well as application to two large population cohorts, which
10 we use for a replication analysis on the one hand and to generate novel hypotheses about
0 molecular disease mechanisms on the other hand. Moreover, by applying our approach a
;1 GTEx Skeletal Muscle eQTL hotspot, we showed, that our strategy can be applied to data
362 sets from other tissues, generated with different technologies.

363 Benchmarking is important for selecting the best possible methods for specific tasks and
s we hence followed recently published guidelines [95] to perform benchmarking of state-of-
365 the-art network inference methods in 1) a simulation study and 2) a replication analysis.
36 Results from both analyses were then used to select the methods best suited for network
367 inference based on functional multi-omics data from QTL hotspots using prior information.

368 By inferring networks in over 10,000 simulated data sets, which reflect the distribution of
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30 network parameters obtained from real-world data, we showed, that methods utilizing prior
;70 information outperform methods without any prior information in recovering a simulated
snn ground truth, similar to what has been found e.g. in [27, 28, 36]. We further observed
sz that, as expected, too much noise in the prior information significantly reduces method
sz performance. However, only by increasing the noise level, i.e. the percentage of incorrect
sz prior edges, to above 30% decreases the performance for BDgraph below the performance
a5 of its non-prior counterpart, indicating that low levels of noise in edge priors still improve
sre  network inference, results which are in line with e.g. Wang et al. (2013) [30], who used
;77 a modified graphical lasso approach, Christley et al. (2009) [28], who used an regularized
srs ODE model and Greenfield et al. (2013) [27], who used a Bayesian regression framework.
sro - We further find, that, both for the prior and non-prior case, the Markov-Chain-Monte-Carlo
a0 based BDgraphp method outperforms respective other methods. However, both the copula
ss1 approach based BDgraph and the gLASSOp outperform other methods in recovering mixed
;2 edges between discrete SNP allele dosage and continuous gene expression levels, although
383 the tree based methods should be able to incorporate mixed data. While BDgraphp shows
ssa  overall better performance than gLASSOp , the graphical lasso exhibits much lower run
sss  time which can be an important practical consideration. Our results hence highlight the
386 strong value of using prior information for multi-omics based network reconstruction, and
sg7  slightly favor BDgraph over the graphical lasso for this kind of inference.

388 We confirmed the results of the simulation study by extended benchmarking of inference
3390 methods in a cross cohort replication analysis on two large multi-omics data sets. Prior
300 based methods showed overall best replication across different cohorts as compared to non-
31 prior methods. In the real-world setting, however, i Raf Net performed similarly well as the
302 other two prior methods in contrast to the simulation study and all prior based methods
303 outperform non-prior methods. The good replication of prior based methods across different

304 cohorts shows, that curated priors help to obtain more stable and confident results as com-
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305 pared to using functional data alone. Together with the simulation, these results provide a
36 comprehensive benchmark of established network inference methods and suggest, that priors
307 should be integrated in network inference tasks wherever possible.

308 Based on the results from the replication and simulation study, we choose the two best
300 (prior based) methods BDgraphp and gLASSOp for detailed investigation of networks
a0 obtained form real-world cohort data. Using our integrative approach, we were able to
a1 reproduce and expand upon previous results from a step-wise network analysis approach
a2 presented in [10]. Of three of the locus networks described in their study, we reconstructed
a3 most of the edges and found additional edges, allowing more mechanistic interpretations for
a0s the function of specific transcription factors in relation to DNA methylation. One reason for
205 finding additional edges is, that these could not be detected by the previous approach, since
a6 the authors focused on using established PPI and protein-DNA interactions and did not test
a7 all possible edges in the functional data. In contrast, our integrated approach considers all
a8 edges regardless of available prior evidence and associations will emerge, if the signal in the
a0 functional data alone or in addition to the prior evidence is strong enough.

410 Next, we utilized the two top performing methods (BDgraphp and gLASSOp ) to infer
a1 networks from trans -eQTL hotspots and found, that our strategy can be used to recover
a2 known biology on the one hand and generate novel hypotheses about the molecular basis
a3 of diseases on the other hand. For a schizophrenia (SCZ) susceptibility locus, we identified
s several known SCZ (e.g. RNF5, HLA genes |55, 61]) and related (e.g. PBX2 [56, 57]) genes
a5 in the inferred locus network. Caution is needed for the interpretation of the candidates
a6 based on cis -eQTL, because of the haplotype structure of the HLA locus. However, our
a7 candidate PBX2 is defined by its connections in the network to the trans genes and, there-
as  fore, independent of the cis eQTL. Expanding upon similar previous observations based on
a0 trans eQTL [7], the integrated network analysis including associated trans genes prioritizes

20 PBX2, which was not possible using cis -eQTL alone. It was previously hypothesized, that
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a1 RUNX1 is involved in SCZ due to a negative association of SCZ with rheumatoid arthritis
22 [60]. Our network corroborates this hypothesis and further allows for generating novel hy-
a3 potheses about the involvement of other genes (e.g. BRD2, DEF8 and RNF'11/), which could
222 potentially play a role in schizophrenia. Moreover, we further substantiated these results by
s a formal colocalization analysis of the trans -eQTL and schizophrenia GWAS |[77] signals of
a26 the trans genes linked in the network, which revealed strong evidence for colocalization of
227 the underlying genetic variants of the disease and molecular traits. As this locus was derived
a2 from whole-blood data, interpretation is not straight forward for SCZ. Ideally, this analysis
420 can be followed up in data derived from brain tissue to corroborate findings.

430 To show, that our approach can be applied across different omics types and data sets,
an we analyzed a Skeletal Muscle trans -eQTL hotspot from GTEx associated with Lean Body
a2 Mass. We recovered known genes involved in lipid metabolism (KLF5 [81, 82|) as well
a33 as muscle development and controlling skeletal muscle homeostasis (e.g. HDAC1, HDAC?,
s3a  [83]) and maintaining muscle function (SYNC [87]). This shows, that the genes linked in
a3 the inferred network are overall coherent with the observed phenotype association at this
a6 trans -acting locus. Moreover, HDAC1, HDAC2 and SIN3B have been described to interact
37 together during muscle development [84], and, although these results were described in mice,
a3s our results suggest that these genes could exhibit a similar function in human. In addition,
39 we observed an association between CREM and SYNC' in our network, which led us to
a0 hypothesize, that CREM might also be involved in maintaining muscle function and Lean
a1 Body Mass, although is has not been previously linked to these phenotypes. However,
a2 additional experimental validation needs to be performed in order to corroborate findings of
a3 these computational analyses.

a4a Several practical considerations arise from our findings: First, by investigating the effect
a5 of increasing amounts of noise in the prior information in our simulation study, we showed,

a6 that some caution needs to be applied when curating continuous prior information from
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a7 public biological data to keep noise levels low. Therefore, although gLASSOp and especially
as  BDgraphp seem to be robust to low to moderate levels of noise, one might consider using
a0 only experimentally validated protein-protein interactions or high quality gene expression
a0 data to generate priors. Next, the definition of hotspot locus sets and priors in this study
a1 mitigates the N << P problem. This has been a problem sought to be alleviated using
2 specialized approaches in previous applications [4]. Using our approach, the total number
a3 of entities (variables) going into the network inference typically does not exceed the total
ssa - number of available samples in our data sets, and we showed in a simulation study, that priors
a5 improve inference also in low sample size settings. Overall, the benefit of the locus sets comes
ase  with the risk of missing certain genes needed to fully describe the trans effects. For instance,
457 We reason that most relevant genes lie on the shortest path between cis and trans entities in
ass the PPI network and hence only included those shortest path genes. However, our strategy
a0 Of curating a stringent set of relevant transcription factors as well as including genes showing
a0 Pprotein-protein interactions and all the genes in the vicinity of the hotspot SNP, should enable
w1 most key regulator genes to enter the inference process and yields parsimonious and easily
a2 interpretable results. In addition, methods have been developed to handle mixed data types,
a3 such as e.g. genotypes and gene expression. BDgraph , which uses a copula based approach
a6a  to transform non-normal data, showed better performance in recovering associations between
a5 discrete and continuous data types as compared to gLASSO and the tree based methods, and
a6 hence should be preferred for applications on mixed data, especially when prior information
a7 is available. Finally, while we could use transcription factor binding sites (TFBS) in blood
s related cell-lines to analyze whole-blood cohort data, context (e.g. tissue) specific TFBS
w0 are not yet available for a large number of transcription factors, which potentially limits
a0 this approach to fewer applications. However, novel developments to predict TFBS from
s context specific open chromatin information (e.g. factorNet [80]) can help in carrying this

a2 strategy to more contexts. As an example, we utilized TFBS predicted using factorNet based
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a3 on ENCODE [50, 51] DNAse-seq data for analyzing a GTEx Skeletal Muscle trans eQTL

a7 locus.

= Conclusion

aze  This study describes a novel strategy for using comprehensive edge-wise priors from biological
a7z data to improve network inference for trans -QTL hotspots from human population scale
azs - multi-omics data. This facilitates the investigation of their underlying regulatory networks
azo and enables the generation of novel mechanistic hypotheses for disease associated genetic
a0 loci. Moreover, we report a rigorous benchmark of state-of-the-art network inference methods
a1 for this task both in simulated and real-world data, and highlight the benefit of including

a2 biological prior information to guide network inference.

= Methods

s Cohort data processing

Methylation data were measured using the Infinium Human Methylation 450K BeadChip
in both the KORA and the LOLIPOP cohort and methylation beta values obtained as
described previously [43, 44]. Quantile normalized methylation beta values were adjusted
for Houseman blood cell-type proportion estimates and the first 20 principal components

calculated on the array control probes by using residuals of the following linear model:

methylation  ~ 1+ CDAT + CDS8T + NK + BCell + Mono + PC1 + ---+ PC?20

485 For expression data, the [llumina HumanHT-12 v3 and Illumina HumanHT-12 v4 expres-

ass  sion BeadChips were used in KORA and LOLIPOP, respectively, and processed as described
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g7 previously [10, 96]. Only probes common to both arrays were selected for analysis. Expres-
a8 sion data were adjusted for potential confounders by regressing log2 transformed expression
a0 values against age, sex, RNA integrity number (RIN) as well as RNA amplification plate
w0 (KORA) / RNA conversion batch (LOLIPOP) (batchl) and sample storage time (KORA)
a1/ RNA extraction batch (LOLIPOP) (batch2) and obtaining the residuals from the linear

402 model:

expression ~ age + sex + RIN + batchl + batch2

493 Additional details on the cohort data and design are presented in [43, 96, 97| (KORA)
s and [44, 98| (LOLIPOP).

405 For the inference of the GTEx Skeletal Muscle related network, we used GTEx v8 Skeletal
a6 Muscle data [78]. Potential confounders including first 5 genotype PCs, 60 expression PEER
a7 factors and measured covariates "WGS sequencing platform’ (HiSeq 2000 or HiSeq X), "'WGS
a8 library construction protocol’ (PCR-based or PCR~free) and donor sex, were removed from
a0 expression data prior to analysis. Processing has been performed as previously described

so0 and details can be found elsewhere [78].

s Hotspot extraction and construction of locus sets

s We extract sub-sets of genomic entities (SNPs, CpGs and genes) on which we perform
so3 network inference based on the trans -meQTL reported by [10] (Supplementary Table 9 of
sos their study) and eQTLGen trans -eQTL [7]°. For GTEx, we obtained current (GTEx v8)
so5 tissue specific trans -eQTL from https://www.gtexportal.org/home/datasetsS.

506

507 Hotspot extraction. The list of trans -meQTL results obtained from [10] was already

Sobtained from https://eqtlgen.org/trans-eqtls.html
6file GTEx Analysis v8 trans eGenes fdr05.txt
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sos pruned for independent genetic loci and was used as provided in the paper supplement. To
s00 remove redundant highly correlated genetic loci, we pruned the eQTLGen trans -eQTL by
si0 selecting the eQTLs with 1) the highest minor allele frequency and 2) the largest number
su  of trans genes for each LD cluster (1Mbp window, R? > 0.2). For GTEx, we merged eQTL
si2 by combining SNPs with R? > 0.2 and distance < 1Mbp to independent genetic loci and
si3 kept all trans -eGenes (eGenes: genes associated with eQTL genotype) of the individual
sie. SNPs for this locus. The SNP with the highest MAF was selected as a representative
si5. SNP for the hotspot. We defined hotspots as genetic loci with > 5 trans associations,
s16  yielding a single hotspot for GTEx, 107 for the meQTL and 444 for the eQTLGen data
si7 (Additional File 2, Tables S1 and S2). In [10], the authors provide a total of 114 meQTL
sis hotspots per our definition. We discarded 7 of the 114 meQTL hotspots (SNPs rs10870226,
si9 181570038, rs17420384, rs2295981, rs2685252, rsb7743634, rs7924137, as either no cis genes
s20 are available or no gene expression data were measured for any of the annotated cis genes
21 (mostly lincRNAs, miRNAs and pseudogenes; Additional File 1, Table S1), which are needed
s22 for locus set definition (see below).

523 Locus sets. To mitigate the N << P problem in network inference [4]|, where the
s2« number of features or parameters far exceeds the number of samples, we run the inference
25 on a subset of genomic entities (SNPs, genes and CpGs) induced by trans hotspots. We
s26 therefore gathered all genes, which could be involved in mediating the observed QTL effects
57 and thus were considered during the network inference, in the form of locus sets for each
s hotspot. We bridge the gap between the involved chromosomes by including transcription
s20 factor binding site (TFBS) information collected from ReMap [49]” and ENCODE |50, 51|

530 as well as human protein-protein interaction (PPI) information available via theBioGrid [99]°

"http://tagc.univ-mrs.fr/remap /download /All/filPeaks _public.bed.gz

8http://hgdownload.cse.ucsc.edu/goldenPath /hgl19/encodeDCC /wgEncodeRegTfbsClustered /
wgEncodeRegTfbsClusteredWithCellsV3.bed.gz

9https://downloads.thebiogrid.org/Download /BioGRID /Release- Archive/BIOGRID-3.5.166
BIOGRID-ORGANISM-3.5.166.tab2.zip
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s (version 3.5.166). We filtered ReMap and ENCODE TFBS for blood related cell types by
s selecting all samples which contain at least one of the following terms: "amlpz12 leukemic",
533 "aplpz74 leukemia", "bcell", "bjab", "bl41", "blood", "lcl", "erythroid", "gm", "hbp",
53¢ "kb62", "kasumi", "lymphoblastoid", "mmls", "p493", "plasma", "sem", "thpl", "u937".
s Genes in the PPI network were filtered for genes expressed in whole blood (GTEx v6p
s3s. RPKM > 0.1)!°. We enumerated all entities to be included in the locus set by performing

537 the following steps:

538 1. Define set S, for a locus L and add the QTL entities (QTL SNP § and trans -QTL
530 eGenes/CpGs T = {T}, ..., T,}, where ¢ is the number of associated trans entities for

540 L)

541 2. Add all genes encoded within 500kb (1Mbp window) of § as SNP-Genes to S7, (set

542 Go )

543 3. For meQTL hotspots, add genes in the vicinity of each 7; € T (previous, next and

544 overlapping genes with respect to the location of 7;) as CpG-Genes to Sy, (set Gr)

545 4. Add all TFs with binding sites within 50bp of each CpG or binding in the promoter

546 region of each gene over all 7; € T to Sy, (set Grr)

547 5. Add shortest path genes Ggp, i.e. genes which connect Go (step 2) with Grp (step 4)

548 according to BioGrid PPIs to S},

549 To define Ggp, we added only genes which reside on the shortest path between the
sso  trans entities 7 and the SNP-Genes G¢ in the induced PPI sub-network, i.e. containing all
ss1 genes and their connections which can be linked to either G- or the TFs Grp. Specifically,

ss2 we added the CpGs to the filtered BioGrid PPI network, connected them to the TFs (Grp)

Ohttps: / /storage.googleapis.com/gtex analysis v6p/rna_seq data/GTEx Analysis v6p RNA-seq
RNA-SeQCv1.1.8 gene rpkm.gct.gz
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ss3 which show binding sites in their vicinity and calculated node weights based on network
s« propagation as described in [10]. We then extracted nodes on paths with maximal total
sss  propagation score based on node-wise propagation scores PS. For this, we weighted node
ss6  scores proportional to (—1) x PS and then calculate the minimal node-weight paths between
ss7  trans entities 7 and SNP-Genes G using the sp.between() method of the RBGL R package
sss  (version 1.56.0, R interface to the Boost Graph Library [100]) and extracted all genes on
sso  the resulting shortest paths. All nodes of the generated locus set were subsequently used as

seo  inputs to the network inference.

s Prior generation

se2  We utilized several data sources to define priors for possible edges between and within dif-
se3  ferent omics levels. Each possible edge between entities in the locus set can only be assigned

sea & single type of prior. Specifically, the different priors include:

SNP-to-Gene priors, for edges between the SNP § and SNP-Genes Go

565

566 Gene-to-Gene priors, for edges between all gene-gene combinations except TFs Grp

567 and their eQTL based targets in T

CpG-to-Gene priors, for edges between CpGs in 7 and their neighbouring genes Gr

568

TF-to-target priors, for edges between TFs Grp and their targets in the trans set T

569

570

571 SNP-to-Gene. To obtain SNP-to-Gene edge priors, we downloaded the full GTEx v6p
s72 whole-blood eQTL table ') and calculated, for each SNP-Gene pair, the local false discovery

s.3 rate (IFDR, [101]) using the fdrtool R package (version 1.2.15). As described in Efron et al.

file Whole Blood Analysis.v6p.all _snpgene pairs.txt.gz from https://www.gtexportal.org/home/
datasets
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sz (2008) [101], the IFDR represents the Bayesian posterior probability of having a null case
s7s  (i.e. that the null hypothesis is true) given a test statistic. We therefore defined the prior
s76  for a specific SNP § and a SNP-Gene G as psg. = 1 — [FDRgq,.

577

578 Gene-to-Gene. We formulate Gene-to-Gene edge priors by combining public GTEx
s7o - gene expression data [38] with PPI information from the BioGrid [99] to retrieve co-expression
ss0 p-values and the respective IFDR for pairs of genes connected by a protein - protein interac-
ss1 tion. A special case are priors between TFs and their target genes as identified via ChIP-seq
ss2 (see above), which are not considered as Gene-to-Gene edges but are handled separately as
ss3 described under "TF-to-target priors’ below. GTEx v6p RNA-seq gene expression data were
ssa downloaded from the GTEx data portal 2. Expression data for GTEx were filtered for high
sss  quality samples (RIN > 6) and log2 transformed, quantile normalized and transferred to
sss  standard normal distribution before removing the first 10 principle components to remove
se7  potential confounding effects [102]. Priors were derived for all Gene-Gene pairs with PPIs in
sss  the BioGRID network, where a gene G € Go U Grr (for meQTL) or G € Go U Grrp U T (for
ss0  €QTL). For each pair, we calculated the Pearson correlation p-values in the GTEx expression
so data and subsequently determined the IFDR over all p-values. The prior for two genes G4
s and Gp was then set to pg, g, =1 —IFDRg,g,.

502

503 CpG-to-Gene. For the CpG-to-Gene priors (meQTL context only), we utilized two
soa strategies, distinguishing between TF-CpG priors (i.e. priors between CpGs and TFs showing
sos binding sites near the CpG site, described below under 'TF-to-target priors’) and CpG-to-
so6 Gene priors (i.e. where the gene itself is encoded near the CpG). For the CpG-to-Gene

so7 priors, we utilized the genome-wide chromHMM [103] states (15 states model) identified in

2https://www.gtexportal.org/home/datasets
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the Roadmap Epigenomics project [40]'3. These states reflect functional chromatin states in
200bp windows and were obtained using histone mark combinations as identified via ChIP-
sequencing. We quantified a CpGs potential to affect a nearby gene, pr,, by retrieving the
proportion of Roadmap cell-lines in which the CpG resides within a transcription start site
(TSS) related state (see Table 3). We further adjusted the pr, by weighting state information
according to the Houseman blood cell type estimates available from our data. To this end, we
took the population mean for each of the Houseman cell proportion estimates and multiplied

them with the chromHMM state proportions. A specific CpG-to-Gene prior for a CpG 7; € T

and a gene Gr; € Gr was then set to psg,, = pr,, if the genomic distance d(Z, Gr) <= 200bp.

STATE NO. | MNEMONIC DESCRIPTION
1 TssA Active TSS
2 TssAFInk Flanking Active TSS
3 TxFInk Transcr. at gene 5" and 3’
4 Tx Strong transcription
) TxWk Weak transcription
6 EnhG Genic enhancers
7 Enh Enhancers
8 ZNF /Rpts ZNF genes & repeats
9 Het Heterochromatin
10 TssBiv Bivalent /Poised TSS
11 BivFInk Flanking Bivalent TSS/Enh
12 EnhBiv Bivalent Enhancer
13 ReprPC Repressed PolyComb
14 ReprPCWk Weak Repressed PolyComb
15 Quies Quiescent /Low

Table 3: Description of chromHMM states used in our analyses as given at https://egg2.
wustl.edu/roadmap/web _portal/chr _state learning.html. Bold faced states were defined
as ’active transcription’ states and used to set CpG-Gene priors.

TF-to-target priors. We formulate separate priors for all edges between transcription

s0s factors Grp and trans CpGs (meQTL) and trans genes (eQTL) in 7. Priors were only set

e0o for TF-to-CpG edges were we observe a TF binding site (from ReMap/ENCODE, see above)

13obtained from https://egg2.wustl.edu/roadmap/web _portal/chr _state learning.html


https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://doi.org/10.1101/2020.05.19.101592
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.19.101592; this version posted May 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s10  within 50bp of the CpG. For TF-to-Gene edges, we only considered pairs were the TF has
s11  a binding site 2,000bp upstream and 1,000 downstream of the gene’s TSS. In both cases, if
s12 the TFBS criteria are met, we set a fixed large prior of 0.99 for all Grp-7 pairs to represent
613 the strong protein-DNA interaction evidence of ChIP-seq data.

614

615 Finally, the priors for all remaining possible edges which were not set based on one of
s16 the criteria described above, e.g. for SNP-to-Gene edges without eQTL in the GTEx data,

s17 were set to a small pseudo-prior ppseudo = 10e~7.

as Ground truth network generation, data simulation and prior ran-

s0  domization

We performed a simulation experiment for each of the meQTL hotspots. For each SNP
S and its corresponding locus set S, we first collect the corresponding prior matrix Pg
with priors defined as described above. We generate 10 noisy (Gy) ground truth graphs

19 G2V, G0 by switching edges in the graph while keeping the degree distribution of a
sampled graph Gr. Gr is generated using all entities of Sy by uniformly sampling from Pg,
i.e. Gr contains an edge e;; for each element p;; of s, if p;; > Ppseudo and runif(0,1) <= p;;,
where runif(0,1) generates uniformly distributed random numbers between [0,1]. This
procedure effectively introduces noise in the study. For instance, by switching 10% of the
edges from Gr to generate G5, and making sure, that the new edges are not present as priors
in Pg, we introduce a noise level of 10% when comparing P to Gi’. We simulate data for each
Gs € {mathpzcGr, Gi; i € {10,20,...,100} using the bdgraph.sim() method of the BDgraph
package with parameters: p=|S;| (number of nodes), graph=Gg, N=612 (number of samples

in LOLIPOP) and mean = 0. This approach generates normally distributed data with a

covariance structure as defined by the ground truth graph. We want to assess the impact of
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having discrete (genotype) data present for the network inference. To this end, we converted
the SNP variable in the simulated data to genotype dosages (0,1,2) reflecting the allele
frequencies of the genetic variant used in this simulation run. Specifically, we transformed
the Gaussian data obtained from bdgraph.sim() to discrete values using the frequencies of
the individual dosages for the SNP in the LOLIPOP data as quantile cut points. For each
of these simulated data individually, we infer the network models and compare the inferred
networks to the respective ground truth graphs Gr, G&°, ..., Gi%°. We added one additional
comparison, evaluating a prior on the density of the observed graph. For this, we estimated
a single prior value reflecting the desired density for all edges based on a binomial model.
We use the number of edges |Eg, | of all sampled graphs Gr for a single run, the total number
of possible edges |Er| = (N % (N — 1))/2, with N the total number of available nodes, and
set the prior as

1 ZgT ‘EGT‘

DPrbinom = mam(ﬁg * |E—T|7 ppseudo>7

20 where Ng is the number of sampled graphs (i.e. the number of randomizations). For each

ez hotspot, we repeated the above simulation procedure 100 times to obtain stable results.

e2 INetwork inference

623 Based on the data and priors gathered for the individual hotspots, we set out to infer the reg-
62 ulatory networks which are best supported by these data. We evaluated several state-of-the
625 art methods with respect to their applicability to this problem, both in a simulation study
e26 (see above) and via replication of inferred networks in real-world data from two large human
sz population based cohorts. We applied GeneNet [45, 104|, the graphical lasso [glasso, 42],
s2s  BDgraph [29], iRafNet [32]| as well as GENIES3 [46] on the individual data to reconstruct reg-

s20 ulatory networks using the respective CRAN' and bioconductor'® R packages. An overview

Yhttps://cran.r-project.org/
https://www.bioconductor.org/
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630 on the used inference methods and package versions is given in Table 1. Methods were
a1 chosen to reflect a range of different approaches (i.e. shrinkage based partial correlation in
622 GeneNet , Bayesian MCMC sampling in BDgraph , lasso in ¢gLASSO and tree based in-
633 ference in iRafNet and GENIE3 ), based on whether or not implementation was readily
e3¢ available and whether prior knowledge could be incorporated. The well known GeneNet and
635 GENIFE3 methods are not capable of utilizing prior information, but were used as a reference
636 for comparison to the other methods.

637

638 GenelNet For the application of GeneNet we first filtered any CpG probes from the data
630 containing missing values. We then estimated the regulatory network by calling first the
sa0  ggm.estimate.pcor followed by the network.test.edges and extract.network methods, all with
ea1  default parameters.

642

643 GENIE3 To infer networks with GENIE3, we again used the NA filtered data (see above)
saa  with the GENIES method of the package followed by the getLinkList method using default
sas parameters. GENIE3 generates a ranked list of regulatory links which do not relate to any
eas statistical measure and hence a cutoff for the link weights has to be identified manually!S.
a7 To define an optimal cutoff, we first divide the list of weights into 200 quantiles (marking
sss 200 distinct cutoffs) if the number of unique link weights exceeded 200. We then extracted
sa0 for each cutoff the respective regulatory network and compared it to a scale free topology
eso analogously to the approach used in [105], generating R? values indicating the goodness-of-fit
ss1 to the topology. To choose the final network, we followed the approach suggested by Zhang
es2 et al. (2005) [105], which suggests to use networks with R? > 0.8. If none of our networks
es3 fit that criteria, we choose the network with the highest R2.

654

165ee also https://bioconductor.org/packages /release/bioc/vignettes/ GENIE3 /inst /doc/ GENIE3.html
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655 BDgraph We used BDgraph to infer networks under consideration of prior information
ess as well as without prior information (BDgraph and BDgraphp ) using the bdgraph method
es7  of the BDgraph CRAN package (version 2.61). The following parameters were set: method
ess = "'gegm” iter = 10000, burnin = 5000. We further set the g.prior parameter to the prior
eso matrix collected for the hotspots and the g¢.start parameter to the incidence matrix obtained
ss0 from the prior matrix by setting all entries with prior information > 0.5 to 1 and all others to
es1 (0. For comparison with the no prior case, we kept all parameters the same but omitted the
es2 ¢.start and g.prior parameters. The graph was then obtained from the fitted model using
663 the select method of the package with parameter cut = 0.9, thereby only choosing edges
esa With a posterior probability of at least 0.9.

665

666 glasso Similar to BDgraph, we utilized the graphical lasso both with and without prior
ssz information. To infer the graphical lasso models, we used the glasso method available in the
sss  glasso CRAN package and set the parameter penalize.diagonal = FALSE. The glasso takes
e a regularization parameter A\, which implies either strong penalization of edges (high \) or
er0 weak penalization (low \) of parameters. This parameter can also be supplied as a matrix
o1 A\ of size n x n (where n is the number of nodes/variables) in order to supply individual
ez parameters for individual edges. We integrated the prior information by first transforming
er3 the prior matrix 2 such that A = 1 — 2 and then supplying A as the regularization
e74 matrix containing values for each possible edge. This approach is similar to what has been
s proposed in [30, 31]. In addition, we screened a selection of penalization factors w for both
e76 the prior and the none prior case to construct the optimal graphical lasso network with
77 Tespect to the Bayesian Information Criterion (BIC). For the prior case, we included w in
ers the model by setting A = A X w). For the non-prior case, we set A = w. We performed
oo b-fold cross validation and inferred the model for all w € {0.01,0.015,...,1} on the training

es0 set (containing 80% of the data) and then selected the w yielding the minimal mean BIC
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ss1  value on the test data over all folds to generate the final network.

682

683 iRafNet We use iRaf Net to infer networks using prior information (it is not possible to
ess TUN it without specifying priors). We called the iRafNet method of the package, setting the
ess parameters ntrees = 1000, mtry = round(sqrt(ncol(data)-1)), and npermut = 5 using the
ess data filtered for missing values (see above) and then used the Run_ permutation method with
es7 the same parameters. The final network was extracted using the iRafNet network method
ess by supplying the output of the previous method calls and setting the FDR cutoff parameter
ss0 1T'H = 0.05. We used a custom implementation of 1 Ra f Net adjusted to make use of multiple

so CPUs which we made available at https://github.com/jhawe/irafnet custom.

«1 Method evaluation via simulation study and cross cohort replication

s02 To identify the inference method best suited for our application, we evaluated all described
03 network inference methods independently on the simulated data as to 1) their ability to
s0a reconstruct the underlying ground truth network as well as 2) their robustness to noise in
eos the supplied prior information. We further compared networks inferred independently on the
sos different cohort data to assess stability of the network inference across different, yet similar,
v data. Performance was measured in terms of Matthew’s Correlation Coefficient (MCC)
e0s |29, 47, 106] between the inferred networks and the respective ground truth (simulation
e0o study) and the inferred networks on the different cohorts (cross cohort replication). It is
700 defined as:
TPxTN —FP x FN

MCC = (1)
V(TP +FP)x (TP + FN) x (TN + FP) x (TN + FN)

701

702 MCC was calculated using the compare() method as implemented in the BDgraph package
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703 (version 2.61).

. Transcription factor activities

705 We calculated transcription factor activities for all TFs extracted from the ReMap/ENCODE
706 (see above) using the plsgenomics R package’s T'F A.estimate() method (version 1.5-2) [107].
707 As input, we used the full expression matrix from KORA and LOLIPOP individually as well
708 as the TFBS information encoded as an incidence matrix indicating for each TF its target

700 genes. Target genes were defined as genes with an TFBS within their promoter region

710 (2,000bp upstream and 1,000bp downstream of the TSS).

n1 INetwork prioritization and final network creation

712 Networks were inferred for each of the 107 meQTL and 444 eQTLGen trans hotspots with
n3 gLASSOp and BDgraphp , yielding networks with a median number of 67 and 20 edges
na for gLASSOp and 72 and 27 for BDgraphp over all hotspots, respectively. We filtered and
75 ranked the networks based on the following criteria.

716 GWAS filtering. We filtered genetic loci with hits in genome-wide association studies
717 (GWAS) using the current version (v1.0.2) of the GWAS catalog [52]. We extracted high
7s LD (>0.8) SNPs and SNP aliases using the SNiPA tool [53| for each hotspot SNP. If any of
710 the extracted SNP rsIDs had a match in the GWAS catalog, the hotspot’s inferred network
720 was permitted for downstream analysis.

721 Network ranking. We utilized a self devised graph score for prioritizing final models
722 for further investigation. The graph score reflects desirable biological properties, which can
723 be assumed for the networks underlying the trans -QTL hotspots. The score is formulated
72a such that 1) the adjacency of SNP-genes and SNPs is rated positively, 2) the presence of

725 trans entities is rated positively if they are not connected directly to the SNP and 3) high
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726 graph density is rated negatively (i.e. sparser graphs yield higher scores). Specifically, the

727 graph score Sg for an inferred graph G is defined as:

|G IGs| |G| |G|

S = —logl0(Dg) * Zl Z |T|Zl—z
728 where: D¢ is the graph density, G- is the set of all SNP-Genes, 7 is the set of all
720 trans entities, Gg is the set of all SNP-genes adjacent to the SNP in G or directly connected
720 to another SNP-Gene, Gg is the set of SNP-Genes in G but not connected directly to the
71 SNP or one of the other SNP-Genes, G is the set of trans entities in G which can be
722 reached from any SNP-Gene without traversing the SNP or another trans gene first and Gp
733 is the set of trans genes directly connected to the SNP. Only the cluster containing the SNP,
73a i.e. the SNP itself and any nodes reachable from the SNP via any path in G, is considered
735 for calculating Sg; if the SNP is not present or no SNP gene has been selected in the final
736 graph the score is set to 0.
737 In addition to the graph score, we ranked networks according to the total number of
738 edges and nodes to prioritize smaller networks for detailed analysis.
730 Graph merging. Finally, we constructed hotspot networks containing only high con-
720 fidence edges by merging the individually obtained networks from the two cohorts (KORA
721 and LOLIPOP) and keeping only edges and nodes present in both networks. Nodes without

72 any adjacent edges are not included in the final graph.

s Priors for skeletal muscle tissue

72 We downloaded Muscle tissue eQTL generated by Scott et al. (2016) [79] from https://
725 theparkerlab.med.umich.edu/data/papers/doi/10.1038 /ncomms11764,/ and used local FDRs
76 calculated from the provided p-values to define SNP-Gene priors. Gene expression data for

7z Muscle tissue were obtained from the ARCHS? [41] database. We downloaded all relevant

36


https://theparkerlab.med.umich.edu/data/papers/doi/10.1038/ncomms11764/
https://theparkerlab.med.umich.edu/data/papers/doi/10.1038/ncomms11764/
https://theparkerlab.med.umich.edu/data/papers/doi/10.1038/ncomms11764/
https://doi.org/10.1101/2020.05.19.101592
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.19.101592; this version posted May 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s Muscle expression data using the keywords "Skeletal Muscle" with the ARCHS4 loader!”
720 (N=194 samples). Expression data were normalized using the ComBat method implemented
70 in the sva R package, providing dataset series ID as batch parameter.

751 TFBS prediction for muscle tissue. We used factorNet 80| to predict transcription factor
752 binding sites from DNAse-seq chromatin accessibility data obtained from muscle cell lines.
753 First, we trained a factorNet model for all TFs available for the K562 cell-line in ReMap [49].
75« ReMap ChIP-seq peaks functioned as a ground truth during training, DN Ase-seq data from
75 ENCODE!® [50, 51] and DNA sequence information formed the inputs. We downloaded
756 DNAse-seq data for the LHCN-M2 muscle cell-line from ENCODE in bigWig format for
757 hg38'9. FactorNet was then run with default parameters, using as input 1) the DNA sequence
758 and 2) the bigWig DNAse track for each of the trained ChIP-seq tanscription factors (N=179
70 TFs from ReMap). High confidence TFBS were extracted by setting a factorNet score cutoff
60 of 0.999, merging overlapping regions and then retaining only regions with a width < W gs,

61 where Wy g5 is the 95th percent quantile of the widths of all obtained regions.

2 Colocalization analysis

763 GWAS summary statistics for schizophrenia were identified using the GWAS Atlas [108|
76a 29 and downloaded from http://walters.psycm.cf.ac.uk/clozuk pgc2.meta.sumstats.txt.gz.
765 Whole-blood trans -eQTL summary statistics for all SNP-Gene pairs from eQTLgen were
766 downloaded from the eQTLgen website?!. We used fastENLOC |76, 109]** to calculate
767 colocalization probabilities as described in the fastENLOC Github README using default

76s parameters. To generate probabilistic eQTL annotations, we used DAP-G [110, 111]** and

"https:/ /github.com /jhawe/archs4 loader

8dataset ENCFF971AHO

Ydataset ENCFF639MPM

20https://atlas.ctglab.nl/

2https://www.eqtlgen.org/trans-eqtls.html, file "Full trans-eQTL summary statistics’
2Zhttps://github.com /xqwen /fastenloc

Zhttps://github.com /xqwen/dap/
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760 created PIP files as needed using TORUS [112]*1. For LD block definition, we utilized data

770 available from LDetect [113]%.

= Software environment

772 In case no other information is given above, all calculations were performed using standard

%6 on a Cen-

773 Unix commands and version 3.5.2 of the R statistical computing language
774 tos 7 Unix system. The Docker image used in this project is available from dockerhub at
775 https://hub.docker.com /repository/docker/jhawe/r3.5.2 custom. The workflows for both
776 the cohort and the simulation studies were implemented in Snakemake [114| and can be
777 found on Github at https://github.com/jhawe/bggm. All calculations performed to arrive

77s  at the discussed results in this article can be obtained using the code in the pipeline. Data

779 to run the workflow can be made available upon reasonable request by the authors.

= Declarations

= Availability of data and material

72 Data. All public data information and the respective sources are given in the methods
783 section, including URLs for downloading the data where possible. The meQTL associations
7sa from Hawe et al. were directly obtained from the supplementary table 3 of the paper [10] and
75 eQTLGen trans -eQTL directly from the eQTLGen browser?”. The lists of derived hotspots
736 for both data sets are made available in the supplement of this paper. Cohort data can be
77 made available upon reasonable request by the authors.

788 Code. The complete code used in this project is provided via Github at https://github.

24https://github.com /xqwen /torus
ZShttps://bitbucket.org/nygcresearch /1detect-data/src/master/
26https: / /www.r-project.org/
2Thttps://eqtlgen.org/trans-eqtls.html
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780 com/jhawe/bggm. The analyses were implemented in the form of a Snakemake pipeline
790 [114]. The software environment used to calculate the results is available as a Docker im-
701 age via docker hub at https://hub.docker.com /repository/docker/jhawe/r3.5.2 custom, the

792 corresponding dockerfile is available at the project’s Github repository.

s Kthics approval and consent to participate

70 All KORA participants have given written informed consent and the study was approved
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707 written informed consent.
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