

Phylogenetic Analysis of SARS-CoV-2 Genomes in Turkey

**Ogün ADEBALİ*, Aylin BİRCAN, Defne ÇİRCİ, Burak İŞLEK, Zeynep KILINÇ,
Berkay SELÇUK, Berk TURHAN**

Molecular Biology, Genetics and Bioengineering, Faculty of Natural Sciences and
Engineering, Sabancı University, İstanbul, Turkey

***Correspondence:** oadebali@sabanciuniv.edu

ORCIDs:

Ogun Adebali: <https://orcid.org/0000-0001-9213-4070>

Aylin Bircan: <https://orcid.org/0000-0001-6663-6173>

Defne Çirci: <https://orcid.org/0000-0002-5761-0198>

Burak İşlek: <https://orcid.org/0000-0003-2700-9884>

Zeynep Kılınç: <https://orcid.org/0000-0002-1906-0391>

Berkay Selçuk: <https://orcid.org/0000-0003-3206-4749>

Berk Turhan: <https://orcid.org/0000-0002-6471-0357>

Phylogenetic Analysis of SARS-CoV-2 Genomes in Turkey

2

3 **Abstract:** COVID-19 has effectively spread worldwide. As of May 2020, Turkey is
4 among the top ten countries with the most cases. A comprehensive genomic
5 characterization of the virus isolates in Turkey is yet to be carried out. Here, we built a
6 phylogenetic tree with globally obtained 15,277 severe acute respiratory syndrome
7 coronavirus 2 (SARS-CoV-2) genomes. We identified the subtypes based on the
8 phylogenetic clustering in comparison with the previously annotated classifications. We
9 performed a phylogenetic analysis of the first thirty SARS-CoV-2 genomes isolated and
10 sequenced in Turkey. We suggest that the first introduction of the virus to the country is
11 earlier than the first reported case of infection. Virus genomes isolated from Turkey are
12 dispersed among most types in the phylogenetic tree. We find two of the seventeen sub-
13 clusters enriched with the isolates of Turkey, which likely have spread expansively in the
14 country. Finally, we traced virus genomes based on their phylogenetic placements. This
15 analysis suggested multiple independent international introductions of the virus and
16 revealed a hub for the inland transmission. We released a web application to track the
17 global and interprovincial virus spread of the isolates from Turkey in comparison to
18 thousands of genomes worldwide.

19

Keywords: SARS-CoV-2, COVID-19, phylogenetics, evolution, genome sequence

21 **1. Introduction**

22 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged in Wuhan
23 (Li, et al. 2020), spread across continents and eventually resulted in the COVID-19
24 pandemic. Although there are significant differences between the current and previously
25 known SARS-CoV genomes, the reason behind it's pandemic behaviour is still unclear.
26 Genome sequences around the world were revealed and deposited into public databases
27 such as GISAID (Shu and McCauley 2017). With those genomic datasets, it is possible,
28 in fact crucial to reveal the evolutionary events of SARS-CoV-2 to understand the types
29 of the circulating genomes as well as in which parts of the genome differ across these
30 types.

31

32 The SARS-CoV-2 virus is homologous to SARS-CoV, and its closer versions were
33 characterized in bats and pangolins (Li, et al. 2020). The virus has been under a strong
34 purifying selection (Li, et al. 2020). With the isolates obtained so far, the sequences of
35 SARS-CoV-2 genomes showed more than 99.9% percent identity indicating a recent shift
36 to the human species (Tang, et al. 2020). Yet, there are unambiguous evolutionary clusters
37 in the genome pool. Various studies use SNP (Tang, et al. 2020) or entropy (Zhao, et al.
38 2020) based methods to identify evolving virus types to reveal genomic regions
39 responsible for transmission and evolution. Tang et. al identified S and L types among
40 103 SARS-CoV-2 genomes based on two SNPs at ORF1ab and ORF8 regions which
41 encode replicase/transcriptase and ATF6, respectively (Tang, et al. 2020). The entropy-
42 based approach generated informative subtype markers from 17 informative positions to
43 cluster evolving virus genomes (Zhao, et al. 2020). Another study defined a competitive
44 subtype based on the D614G mutation in the spike protein which facilitates binding to

45 ACE2 to receptor on the host cell surface (Bhattacharyya, et al. 2020). Although whether
46 there is any effect of D614G substitution on the transmissibility is inconclusive (van
47 Dorp, et al. 2020), this mutation has been one of the landmarks for major groupings of
48 the virus family.

49

50 In this work, we used publicly available SARS-CoV-2 genome datasets. We aligned the
51 sequences of more than 15,000 whole genomes and built a phylogenetic tree with the
52 maximum likelihood method. We clustered the genomes based on their clade distribution
53 in the phylogenetic tree, identified their genomic characteristics and linked them with the
54 previous studies. We further analysed clusters, mutations and transmission patterns of the
55 genomes from Turkey.

56

57 **2. Materials and methods**

58 To perform our analyses we retrieved virus genomes, aligned them to each other and
59 revealed the evolutionary relationships between them through phylogenetic trees. We
60 assigned the clusters based on the mutations for each genome. We further analyzed the
61 phylogenetic tree with respect to neighbor samples of our genomes of interest to identify
62 possible transmission patterns.

63 **2.1. Data retrieval, multiple sequence alignment and phylogenomic tree 64 generation**

65 The entire SARS-CoV-2 genome sequences, along with their metadata were retrieved
66 from the GISAID database (**Table-S1**) (Shu and McCauley 2017). We retrieved the
67 initial batch of genomes (3,228) from GISAID on 02/04/2020. We used Augur toolkit to
68 align whole genome sequences using mafft algorithm (--reorder --anysymbol --

69 nomemsave) (Katoh and Standley 2016). The SARS-CoV2 isolate Wuhan-Hu-1
70 genome (GenBank:NC_045512.2) was used as a reference genome to trim the sequence
71 and remove insertions in the genomes. Since the initial batch, the new sequences in
72 GISAID were periodically added to the pre-existing multiple sequence alignment (--
73 existing-alignment). The final multiple sequence alignment (MSA) contained 15,501
74 genomes that were available on May 1st 2020. In the metadata file, some genomes
75 lacked month and day information and contained the year of the sample collection date.
76 The genomes with incomplete metadata were filtered out and the unfiltered MSA
77 consisted of 15,277 sequences. Maximum likelihood phylogenetic tree was built with
78 IQ-TREE with the following options: -nt AUTO (on a 112-core server) -m GTR -fast.
79 Augur was used to estimate the molecular clock through TimeTree (Sagulenko, et al.
80 2018). For the sample EPI-ISL-428718 we additionally built a separate maximum
81 likelihood phylogenetic tree by using IQ-TREE multicore version 1.6.1 with Ultra-fast
82 Bootstrapping option and 1000 bootstraps.

83
84 The sub-tree consisting of Turkey isolates (**Table-1**) were retrieved from the master
85 time-resolved tree by removing the rest of the genomes with the 'Pruning' method from
86 ete3 toolkit (Huerta-Cepas, et al. 2016). The tree was visualized in FigTree v1.4.4
87 (<http://tree.bio.ed.ac.uk/software/figtree/>), and rerooted by selecting EPI_ISL_428718
88 as an outgroup. The branch lengths of EPI-ISL-417413 and EPI-ISL-428713 samples
89 were shortened for better visualization. Ggtree (Yu, et al. 2017) package in R was used
90 to generate the tree and corresponding clusters.

91

92 **2.2. Genome clustering**

93 We generated phylo-clusters with TreeCluster (Balaban, et al. 2019) which is
94 specifically designed to group viral genomes. The tool supports different clustering
95 options and we used the default option, Max Clade, which identifies clusters based on
96 two parameters, “-t” and “-s”. These parameters define the threshold that two leaf
97 nodes can be distant from each other and assign a minimum support value that connects
98 two leaf nodes or clades, respectively. For this analysis, we only used the distance
99 threshold. The Max Clade algorithm requires leaves to form a clade and satisfy the
100 distance threshold. The number of clusters that can be generated using a phylogenetic
101 tree depends on the pairwise leaf distance cutoff. We manually searched for a
102 meaningful cutoff for the number of phylo-clusters and phylo-subgroups based on their
103 similarity with the previously reported clusters (see below). We used the -t parameter as
104 0.0084 and 0.00463 for phylo-clusters and phylo-subclusters, respectively. After
105 retrieving the groupings from TreeCluster, we eliminated clusters containing less than
106 100 sequences (except one sub-cluster with 99 sequences). We categorized those
107 clusters having less than 100 sequences as not clustered. As a result, we obtained four
108 primary and seventeen sub-clusters.

109
110 L/S types of the SARS-CoV-2 genomes were previously defined based on the
111 nucleotides at 8782nd and 28144th positions (Tang, et al. 2020) . We categorized “TC”
112 and “CT” haplotypes S and L type, respectively. In the cases both these positions
113 correspond to a gap, the sequences were classified N type. All other cases were
114 categorized as unknown types. 614 G/D clustering was applied based on the amino acid
115 at the 614th position of the Spike protein (Jaimes, et al. 2020). Combinations of the
116 nucleotides at positions 241;1059; 3037; 8782; 11083; 14408; 14805; 17747; 17858;

117 18060; 23403; 25563; 26144; 28144; 28881; 28882; 28883 determined the subtypes for
118 barcode clustering. Sequences that belong to the ten major subtypes (with more than
119 100 sequences) which constitute 86 percent of all sequences were labelled with their
120 respective 17 nucleotides (Zhao, et al. 2020). All other sequences were categorized as
121 unknown for barcode classification. Six major clusters (Morais Júnior, et al. 2020) were
122 assigned by the previously determined twelve positions (3037; 8782; 11083; 14408;
123 17747; 17858; 18060; 23403; 28144; 28881; 28882; 28883). The lineages were
124 assigned using the proposed nomenclature by Rabaut et al. through Pangolin COVID-
125 19 Lineage Assigner web server (Rambaut, et al. 2020). Sequences that cannot be
126 assigned to any group were categorized as unknown for each classification scheme.

127

128 **2.3. Distance calculations**

129 We rooted the maximum-likelihood tree for distance calculations by selecting samples
130 that belong to bats and pangolin as an outgroup, namely EPI-ISL-412976, EPI-ISL-
131 412977, and EPI-ISL-412860. We measured the distance from leaf to root for every leaf
132 node that is present in the phylogenetic tree with the ete3 toolkit (Huerta-Cepas, et al.
133 2016).

134

135 **2.4. Variant information processing**

136 Mutations for each position relative to the reference genome (GenBank:NC_045512.2)
137 were mapped catalogued in a table with a custom script. A table of all the mutations of
138 selected sequences was created and ordered according to the phylogenetic tree of the
139 corresponding genomes. Mutations that do not correspond to a nucleotide such as a gap
140 or N were labeled as “Gap or N”; the other mutations were marked as Nongap. For

141 variations that do not correspond to gap or N, respective nucleotides in the reference
142 genome were obtained and added to the table. The GFF file of the reference genome
143 (GCF_009858895.2) was extracted from NCBI Genome database. Open reading frame
144 (ORF) information of each mutation was retrieved from the GFF file and added to the
145 table. Positions that are not in the range of any ORF were labelled as “Non-coding
146 region”. Codon information and position of each mutation in the reference genome were
147 retrieved according to their respective ORF start positions and frame. In this process,
148 reported frameshifts in ORF1ab (Dos Ramos, et al. 2004; Kelly and Dinman 2020) and
149 the overlap between ORF7a 3' and 7b 5' ends were taken into account. Coding
150 information was used to assign amino acid substitution information to the variations.
151 Eventually, the variants were categorized as non-synonymous, synonymous, non-coding
152 regions.

153

154 **2.5. Migration analysis**

155 The maximum-likelihood phylodynamic analysis was performed with Treetime
156 (Sagulenko, et al. 2018) to estimate likely times of whole-genome sequences of SARS-
157 CoV-2 by computing confidence intervals of node dates and reconstruct phylogenetic
158 tree into the time-resolved tree. The slope of the root-to-tip regression was set to 0.0008
159 to avoid inaccurate inferences of substitution rates. With this model, we eliminated the
160 variation of rapid changes in clock rates by integration along branches (standard
161 deviation of the fixed clock rate estimate was set to 0.0004). The coalescent likelihood
162 was performed with the Skyline (Strimmer and Pybus 2001) model to optimize branch
163 lengths and dates of ancestral nodes and infer the evolutionary history of population
164 size. The marginal maximum likelihood assignment was used to assign internal nodes to

165 their most likely dates. Clock rates were filtered by removing tips that deviate more than
166 four interquartile ranges from the root-to-tip versus time regression. JC69 model was
167 used as General time-reversible (GTR) substitution models to calculate transition
168 probability matrix, actual substitution rate matrix, and equilibrium frequencies of given
169 attributes of sequences. The distribution of subleading migration states and entropies
170 were recorded for each location through Augur trait module (sampling bias correction
171 was set to 2.5). Closest child-parent pairs that do not go beyond their given locations
172 were identified and evaluated as transmissions using Auspice (Hadfield, et al. 2018).

173

174 **3. Results**

175 **3.1. Phylogenetic map of the virus subtypes**

176 The first COVID-19 case in Turkey was reported on March 10th, 2020, later than the
177 reported first incidents in Asian and European countries. Since then, the number of
178 cases increased dramatically. We used all the genomes available in the GISAID
179 database as of May 1st, 2020 and built a phylogenetic tree. After we filtered out the
180 samples with incomplete date or location information, the total number of samples we
181 eventually used was 15,277. The phylogenetic tree was built with the maximum
182 likelihood method and a time-resolved tree was generated (**Figure 1**). To verify the
183 accuracy of the phylogenetic tree as well as to assess the distribution of well-
184 characterized genomic features, we mapped several classification schemes on the tree;
185 (i) S/L type (Tang, et al. 2020); (ii) D614G type (Bhattacharyya, et al. 2020); (iii)
186 barcodes (Zhao, et al. 2020); (iv) six major clusters (Morais Júnior, et al. 2020).
187 Although the methodologies of the clustering attempts were different between these
188 studies, in general, the previously established groups were in line with our phylogenetic

189 tree. Besides the already established clustering methods, we classified the clades based
190 on the phylogenetic tree only. There are two levels of clustering; we termed phylo-
191 clusters and phylo-subclusters. Small clusters were not taken into account (see
192 Methods). The phylogenetic map of the virus genomes clearly shows the two major S
193 and L type clades. As the ancestral clade, S-type is seen as limited in the number of
194 genomes. 29 of the 30 isolates in Turkey were classified in the L-type group.

195

196 The samples from Turkey are dispersed throughout the phylogenetic tree (**Figure 1**). The
197 30 samples are classified in 3 out of 4 different phylo-clusters and one remained
198 unclassified. The dispersed groups suggested multiple independent introductions to the
199 country. 7 of the 30 genomes encode aspartic acid (D) at the 614th position of the Spike
200 protein. The remaining 23 genomes encode glycine (G) in the same position. The D614G
201 mutation is hypothesized to dominate because it enables smoother transmission of the
202 virus (Bhattacharyya, et al. 2020). However, this correlation might simply be a founder
203 effect which is basically the loss or gain of a genetic information when large population
204 arise from a single individual.

205

206 **3.2. A transient genome between S and L strain suggests early introduction**

207 One of the genomes isolated in Turkey (EPI-ISL-428718) clustered together with the
208 early subtypes of the virus. This isolate contains T at the position 8782, which is a
209 characteristic of the S-type; however, it has T at the position 28144, which coincides
210 with the L-type. Therefore, we characterized this sample as neither S- nor L-type. In the
211 phylogenetic tree, this genome is placed between S and L strains, which suggests a
212 transitioning genome from S to L strain (**Figure 2**). The number of variant nucleotides

213 between this sample and root is lower relative to other Turkey samples. Phylogenetic
214 placement in the earliest cluster, which is closer to the root, suggests that the lineage of
215 EPI-ISL-428718 entered Turkey as one of the earliest genomes. By the time this sample
216 was isolated in Turkey, the L-strain had started to spread in Europe, primarily in Italy.
217 Although the isolation date of this early sample is one week later than the first reported
218 case, the existence of an ancestral genome sequence suggests an earlier introduction of
219 SARS-CoV-2 to Turkey.

220

221 **3.3. Cluster profiles of the sample sets**

222 Turkey has genome samples from at least three of the four major clusters. By taking the
223 transitioning genome into account, samples of Turkey are genuinely scattered in the
224 phylogenetic tree. Based on the groupings applied, we analyzed the relative abundances
225 of the clusters in Turkey and other countries (**Figure 3A**). The most samples of Turkey
226 belong to cluster 4. Iran, Denmark and France are also enriched in cluster 4. Most
227 European countries are enriched in cluster 3. Although Turkey has cluster 3 genomes,
228 the fraction of them is lower compared to European countries. With the available
229 genome sequences, the overall cluster profile of Turkey does not resemble any country.
230 The divergence of the samples from to tree root was calculated for each sub-cluster. The
231 sub-clusters observed in Turkey were analyzed along with the other countries (**Figure**
232 **3B**). The divergence rates are comparable in general. However, within the same sub-
233 clusters, virus genomes collected in Turkey have averagely more diverged than their
234 relatives in other countries. The isolated genomes assigned to sub-cluster 4 and 8 show
235 higher divergence rates in Turkey compared to the others in the same cluster (p-values:
236 0.00001 and 0.006, respectively, one tailed t-test between Turkey and the rest).

237

238 **3.4. Mutation analysis of the genomes retrieved in Turkey**

239 We used the Turkey isolates (30) to analyze their mutational patterns and their
240 corresponding clusters. From the master tree, we pruned all the leaves except for the
241 samples of interest. We rooted the subtree at the transitioning sample. We aligned the
242 assigned clusters and all the mutations relative to the reference genome (**Figure 4**),
243 illustrating a correlation between the mutation pattern and the phylogenetic tree clades.
244 Observation of no recurrence of a mutation shows that the multiple mutations are the
245 results of founder effects.

246

247 In total, 55 unique mutations were detected, 2 and 20 of which are non-coding and
248 synonymous, respectively. Thirty-three unique amino acid substitutions are detected
249 (Table 2). 23 out of 30 genomes we analyzed have the 614G mutation. The D614G
250 mutation seems to have mutated with the two synonymous mutations in ORF1ab
251 (**Figure 4**). Besides 614G, three more amino acid substitutions were identified in the
252 spike protein (**Table 2**). G206A, T951I, G227S, S911F, A1420V, A3995F in ORF1a
253 and V772I, T1238I in Spike protein, V66L in ORF5 and S54L in ORF8 were found to
254 be specific to some isolates in Turkey (**Table 2**). The most abundant amino acid
255 substitutions (23/30) are P314L (ORF1b) and D614G (Spike), which are not specifically
256 enriched in Turkey and dispersed worldwide. ORF1a V378I and ORF9 S194L are found
257 in 7 and 6 of the 30 isolates, respectively, and show high frequency (15 folds with
258 respect to general) in Turkey.

259

260 The mutational landscape represents the natural classifications of major and sub-
261 clusters. These mutational footprints can be used to identify the clusters of the future
262 genomes. The combinations of mutations can be used as barcodes to group upcoming
263 virus genomes efficiently without a need for establishing evolutionary associations
264 across lineages, which is a computationally expensive procedure considering the
265 accumulating genomic data.

266

267 **3.5. Trace of the spread**

268 The number of mutations since December 2019 indicates that the SARS-CoV-2 genome
269 mutates twice a month, on average. As genome sequencing reveals mutations, it enables
270 a better understanding of the epidemiology by revealing the patterns of virus
271 transmission. The time-resolved phylogenetic distributions of the genomes collected in
272 Turkey suggested multiple independent sources of introduction (**Figure 5A**). Out of the
273 30 genomes analyzed in this work, the earliest introduction seems to have originated
274 from China. Other international imports include the US, Australia and Europe, probably
275 from the UK. There is a connection between Saudi Arabia and the two cities in Turkey.
276 Based on the model, this association is reciprocal. The Europe-based introductions are
277 seen in the genomes isolated in Istanbul. Within Turkey, a transmission hub appears to
278 be Ankara (**Figure 5B**). The isolates in 5 cities are associated with genomes collected in
279 Ankara (**Figure 5C**).

280

281 **3.6. Web application to trace virus transmission**

282 We have published a web application powered by Auspice
283 (sarscov2.adebalilab.org/latest). We employed the front-end package (Auspice) that

284 Nextstrain uses (Hadfield, et al. 2018). With increasing number of virus strains, not far
285 from now, it will be infeasible to display the entire phylogenetic tree even in modern
286 browsers. Nextstrain handles this problem by grouping the datasets based on the
287 continents. As the aim of this platform is to trace the spread of virus genomes associated
288 with Turkey, we will use representatives in the phylogenetic tree. The representative
289 sequences will cover all the subtypes. The genomes of the samples collected in Turkey
290 and their nearby sequences will be kept in the tree. With this approach, the web
291 application will always contain the genome data from Turkey and necessary information
292 of the subtypes with the representative sequences. An additional dimension we added to
293 the application is that it enables to trace virus across the cities of Turkey. This approach
294 is applicable to create a comprehensive platform for migration analysis for any country
295 or region of choice.

296

297 **4. Discussion**

298 There are two most abundant lineages of isolates in Turkey: sub-clusters 4 and 8. If the
299 30 samples unbiasedly represent the overall distribution of the strains in Turkey, sub-
300 clusters 4 and 8 might comprise approximately 80% of the genomes in the country. The
301 high divergence of the samples in these sub-clusters in Turkey relative to their
302 equivalents in other countries (Figure 3B) possibly suggests either or both of the two
303 scenarios; (i) the viruses dominantly circulating in Turkey were introduced to the
304 country later than other countries or (ii) this sub-cluster has been circulating in Turkey
305 at a relatively higher rate than other countries and because of that, it is more likely to
306 select the more diverged isolates by random sampling. Much more genomes should be
307 sequenced and analyzed to gain more insight into virus evolution. It is essential to

308 continuously follow up on the upcoming mutations when new samples are added to

309 GISAID database.

310

311 The phylogenetic analysis of the circulating genomes in a country is necessary to identify

312 the specific groups and their unique mutational patterns. The success of the COVID-19

313 diagnosis test kits, antibody tests and protein-targeting drugs possibly depend on genomic

314 variations. For antibody tests, if a mutation affects protein recognition, the sensitivity of

315 the test might drastically reduce. Therefore, mutation profiles of the isolates abundantly

316 circulating in the country should be taken into account to modify these tests. As

317 international travels are limited, viral genome profiles of the countries differ from each

318 other, which is known as bottleneck effect. If international transmissions are kept being

319 restricted, distinct cluster profiles might establish. Therefore, each country might need to

320 develop their specific tests targeting the abundant genomes circulating in local.

321

322 We must note that sample distribution is not in line with the case distribution across

323 Turkish cities. Due to this sampling bias as well as the low number of genomes, the spread

324 history is undoubtedly incomplete. For instance, only 3 of the 30 samples were collected

325 in Istanbul, which hosts approximately 60% of the COVID-19 cases. It is highly probable

326 that Istanbul will be revealed as the central hub when additional genomes are sequenced.

327 Moreover, there was no sample from Izmir, 3rd largest city. It should also be noted that

328 the lack of a sufficient number of genomes could have resulted in indirect associations

329 between the cities. More genomes are needed to complement this study with confidence.

330

331 The spread of the virus is traced by the personal declarations and travel history of the
332 infected people. As SARS-CoV-2 genomes spread, they leave foot prints behind
333 (mutations) allowing us to trace them. It is feasible to complement the conventional
334 approach with genome sequencing in an unbiased way. Implemented feature of city-
335 based tracing of the virus should be useful for authorities to take necessary measures to
336 prevent spread. This approach will be automated with a standard pipeline. We aim to
337 eliminate the technical limitations (because of the size) by applying filtering methods
338 without losing any relevant information.

339

340 **Acknowledgments**

341 This work, in part, is supported by the European Molecular Biology Organization
342 (EMBO) Installation Grant (OA) funded by The Scientific and Technological Research
343 Council of Turkey (TÜBİTAK). OA is additionally supported by International
344 Fellowship for Outstanding Researchers Program, TÜBİTAK 2232 and BAGEP (Young
345 Scientist Award by Science Academy, Turkey) 2019 grant. DÇ, ZK and BT are supported
346 by the TÜBİTAK STAR program 2247-C.

347

348 We would like to thank all the healthcare workers who save lives during the COVID-19
349 pandemic. We thank the research groups who made the genome datasets available for
350 accelerating research. So far, three groups in Turkey submitted genome sequences; 26
351 genomes were provided by the Ministry of Health (Fatma Bayrakdar, Ayşe Başak Altaş,
352 Yasemin Coşgun, Gülay Korukluoğlu, Selçuk Kılıç); 3 submitted by the GLAB (Ilker
353 Karacan, Tugba Kızılboga Akgun, Bugra Agaoglu, Gizem Alkurt, Jale Yıldız, Betsi
354 Köse, Elifnaz Çelik, Mehtap Aydin, Levent Doganay, Gizem Dinler); 1 submitted by

355 Erciyes University (Shaikh Terkis Islam Pavel, Hazel Yetiskin, Gunsu Aydin, Can
356 Holyavkin, Muhammet Ali Uygut, Zehra B Dursun, İlhami Celik, Alper Iseri, Aykut
357 Ozdarendeli).

358

359 We thank Dr. Barış Süzek and Dr. Batu Erman for their helpful comments on the
360 manuscript. We would like to acknowledge Cem Azgari for his contributions throughout
361 the project. We thank Molecular Biology Association for their leadership in taking the
362 initiative of forming a pool of volunteers in COVID-19 testing. Finally, we would like to
363 thank the members of Ecology and Evolutionary Biology Association in Turkey for
364 fruitful discussions regarding the preliminary analysis of the SARS-CoV-2 genomes.

365

366 **Authors' contribution**

367 OA conceived the study, designed the analysis, interpreted the results and wrote the first
368 draft. AB generated the multiple sequence alignments, BI generated the visualization
369 pipeline with auspice. BS generated the clusters based on the phylogenetic tree and
370 plotted cluster graphs. DC, ZK and BT assigned previously identified clusters to the
371 genomes, visualized the clusters aligned with the tree and identified mutations per
372 sample. All authors contributed to manuscript writing and revising.

373

374 **References**

375 Balaban M, Moshiri N, Mai U, Jia X, Mirarab S (2019). TreeCluster: Clustering biological
376 sequences using phylogenetic trees. PLoS One 14:e0221068
377 Bhattacharyya C, Das C, Ghosh A, Singh AK, Mukherjee S, Majumder PP, Basu A, Biswas NK
378 (2020). Global Spread of SARS-CoV-2 Subtype with Spike Protein Mutation D614G is Shaped

379 by Human Genomic Variations that Regulate Expression of TMPRSS2 and
380 MX1 Genes. bioRxiv 2020.2005.2004.075911

381 Dos Ramos F, Carrasco M, Doyle T, Brierley I (2004). Programmed -1 ribosomal frameshifting
382 in the SARS coronavirus. Biochem Soc Trans 32:1081-1083

383 Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T,
384 Neher RA (2018). Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34:4121-
385 4123

386 Huerta-Cepas J, Serra F, Bork P (2016). ETE 3: Reconstruction, Analysis, and Visualization of
387 Phylogenomic Data. Mol Biol Evol 33:1635-1638

388 Jaimes JA, Andre NM, Chappie JS, Millet JK, Whittaker GR (2020). Phylogenetic Analysis and
389 Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and
390 Proteolytically Sensitive Activation Loop. J Mol Biol

391 Katoh K, Standley DM (2016). A simple method to control over-alignment in the MAFFT
392 multiple sequence alignment program. Bioinformatics 32:1933-1942

393 Kelly JA, Dinman JD (2020). Structural and functional conservation of the programmed -1
394 ribosomal frameshift signal of SARS-CoV-2. bioRxiv 2020.2003.2013.991083

395 Li C, Yang Y, Ren L (2020). Genetic evolution analysis of 2019 novel coronavirus and
396 coronavirus from other species. Infect Genet Evol 82:104285

397 Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing
398 X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R,
399 Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B,
400 Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z
401 (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected
402 Pneumonia. N Engl J Med 382:1199-1207

403 Li X, Giorgi EE, Marichann MH, Foley B, Xiao C, Kong X-P, Chen Y, Korber B, Gao F (2020).
404 Emergence of SARS-CoV-2 through Recombination and Strong Purifying Selection. bioRxiv
405 2020.2003.2020.000885

406 Morais Júnior IJ, Polveiro RC, Souza GM, Bortolin DI, Sassaki FT, Lima ATM (2020). The
407 global population of SARS-CoV-2 is composed of six major subtypes. bioRxiv
408 2020.2004.2014.040782

409 Rambaut A, Holmes EC, Hill V, O'Toole Á, McCrone J, Ruis C, du Plessis L, Pybus OG (2020).
410 A dynamic nomenclature proposal for SARS-CoV-2 to assist genomic epidemiology. bioRxiv
411 2020.2004.2017.046086

412 Sagulenko P, Puller V, Neher RA (2018). TreeTime: Maximum-likelihood phylodynamic
413 analysis. Virus Evol 4:vex042

414 Shu Y, McCauley J (2017). GISAID: Global initiative on sharing all influenza data - from vision
415 to reality. Euro Surveill 22:

416 Shu Y, McCauley J (2017). GISAID: Global initiative on sharing all influenza data–from vision
417 to reality. Eurosurveillance 22:

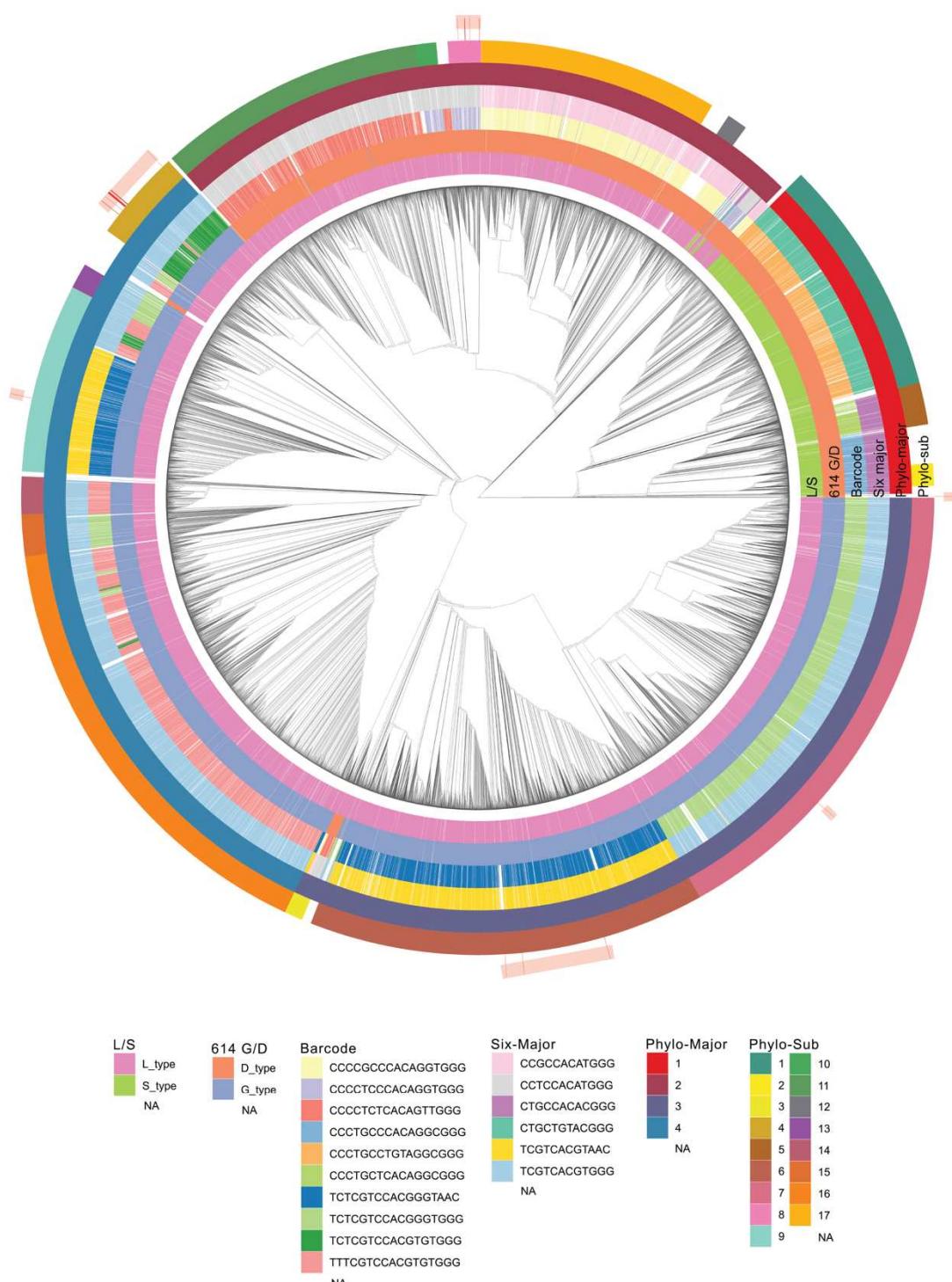
418 Strimmer K, Pybus OG (2001). Exploring the demographic history of DNA sequences using the
419 generalized skyline plot. Mol Biol Evol 18:2298-2305

420 Tang X, Wu C, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H, Wang Y, Qian Z, Cui J, Lu J
421 (2020). On the origin and continuing evolution of SARS-CoV-2. National Science Review
422 van Dorp L, Richard D, Tan CC, Shaw LP, Acman M, Balloux F (2020). No evidence for
423 increased transmissibility from recurrent mutations in SARS-CoV-2. bioRxiv
424 2020.2005.2021.108506

425 Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y (2017). ggtree: an r package for visualization and
426 annotation of phylogenetic trees with their covariates and other associated data. Methods in
427 Ecology and Evolution 8:28-36

428 Zhao Z, Sokhansanj BA, Rosen GL (2020). Characterizing geographical and temporal dynamics
429 of novel coronavirus SARS-CoV-2 using informative subtype markers. bioRxiv
430 2020.2004.2007.030759

431

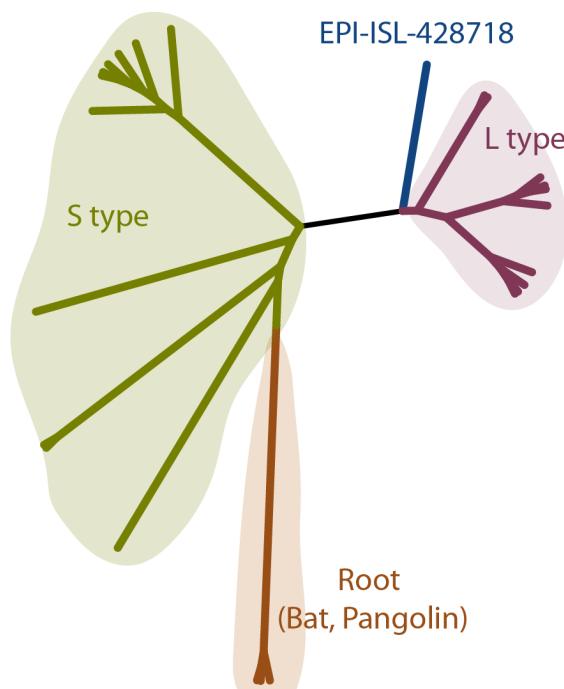

432 **Table 1 - The genome sequences identified in Turkey.** See the Supplementary Table
433 – S1 for the full list. All authors are listed in the acknowledgments in detail. The
434 genomes are sorted by the sample collection date.

Accession	Date	City	Lab	Authors
EPI_ISL_429866	3/16/20	Afyon	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_417413	3/17/20	Ankara	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_424366	3/17/20	Kayseri	Erciyes University	Pavel et al.
EPI_ISL_428712	3/17/20	Karaman	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429867	3/17/20	Balikesir	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429868	3/17/20	Eskisehir	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429869	3/17/20	Konya	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428716	3/18/20	Ankara	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428713	3/18/20	Ankara	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428715	3/18/20	Nevsehir	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428714	3/18/20	Kastamonu	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429865	3/18/20	Çanakkale	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428717	3/19/20	Kocaeli	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428718	3/19/20	Kocaeli	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428719	3/21/20	Siirt	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428720	3/21/20	Ankara	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428721	3/21/20	Ankara	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428722	3/22/20	Balikesir	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_428723	3/22/20	Aksaray	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429870	3/22/20	Sakarya	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429861	3/22/20	Ankara	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429862	3/22/20	Ankara	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429863	3/22/20	Sakarya	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429864	3/22/20	Sakarya	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429871	3/23/20	Ankara	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429873	3/23/20	Kocaeli	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_429872	3/25/20	Kocaeli	Ministry of Health Turkey	Bayrakdar et al.
EPI_ISL_427391	4/13/20	İstanbul	GLAB	Karacan et al.
EPI_ISL_428368	4/16/20	İstanbul	GLAB	Karacan et al.
EPI_ISL_428346	4/17/20	İstanbul	GLAB	Karacan et al.

435 **Table 2 - Amino acid substitutions observed in 30 samples.** The amino acid
436 substitutions observed in Turkey are listed. The number of the overall substitutions were
437 retrieved from CoV-GLUE database. The total number of genomes in the database was
438 inferred from the D614G substitution which we found to be 63% of all the genomes.
439 The substitutions that are observed at least in two isolates with enrichment factor greater
440 than 2 are marked with *. (nt: nucleotide; aa: amino acid; EF: enrichment factor; sub:
441 substitution)
442
443

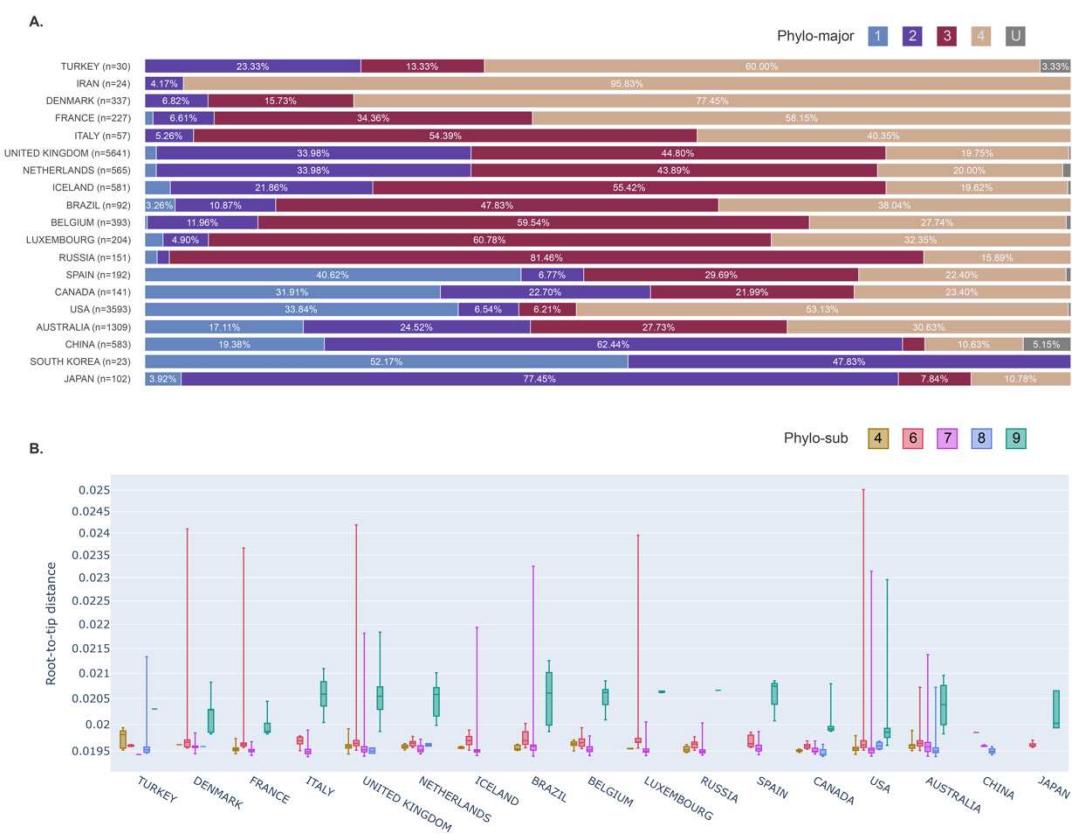
nt pos	nt sub	aa pos	aa sub	ORF	CoV- GLUE	Turkey (30)	CoV-GLUE fraction	Turkey fraction	EF
881	G > A	206	A > T	ORF1a	2	2	0.00	0.07	565.60
884	C > T	207	R > C	ORF1a	52	4	0.00	0.13	43.51
944	G > A	227	G > S	ORF1a	1	1	0.00	0.03	565.60
1397	G > A	378	V > I	ORF1a	206	7	0.01	0.23	19.22
1437	C > T	391	S > F	ORF1a	27	1	0.00	0.03	20.95
2997	C > T	911	S > F	ORF1a	1	1	0.00	0.03	565.60
3117	C > T	951	T > I	ORF1a	1	2	0.00	0.07	1131.19
4524	C > T	1420	A > V	ORF1a	1	1	0.00	0.03	565.60
8371	G > T	2702	Q > H	ORF1a	22	1	0.00	0.03	25.71
8653	G > T	2796	M > I	ORF1a	55	4	0.00	0.13	41.13
11083	G > T	3606	L > F	ORF1a	2222	8	0.13	0.27	2.04
12248	G > T	3995	A > S	ORF1a	1	1	0.00	0.03	565.60
12741	C > T	4159	T > I	ORF1a	4	2	0.00	0.07	282.80
12809	C > T	4182	L > F	ORF1a	3606	1	0.21	0.03	0.16
14122	G > T	219	G > C	ORF1b	3	1	0.00	0.03	188.53
14408	C > T	314	P > L	ORF1b	10651	23	0.63	0.77	1.22
17690	C > T	1408	S > L	ORF1b	36	3	0.00	0.10	47.13
21304	C > A	2613	R > N	ORF1b	5	1	0.00	0.03	113.12
21305	G > A	2613	R > N	ORF1b	5	1	0.00	0.03	113.12
21452	G > T	2662	G > V	ORF1b	2662	1	0.16	0.03	0.21
23403	A > G	614	D > G	ORF2	10691	23	0.63	0.77	1.22
23599	T > A	679	N > K	ORF2	2	1	0.00	0.03	282.80
23876	G > A	772	V > I	ORF2	1	1	0.00	0.03	565.60
25275	C > T	1238	T > I	ORF2	1	1	0.00	0.03	565.60
25563	G > T	57	Q > H	ORF3	4131	18	0.24	0.60	2.46
26718	G > T	66	V > L	ORF5	2	2	0.00	0.07	565.60
28054	C > T	54	S > L	ORF8	1	1	0.00	0.03	565.60
28109	G > T	72	Q > H	ORF8	72	2	0.00	0.07	15.71
28854	C > T	194	S > L	ORF9	220	6	0.01	0.20	15.43
28878	G > A	202	S > N	ORF9	66	1	0.00	0.03	8.57
28881	G > A	203	R > K	ORF9	3113	4	0.18	0.13	0.73
28882	G > A	203	R > K	ORF9	3113	4	0.18	0.13	0.73
28883	G > C	204	G > R	ORF9	3103	4	0.18	0.13	0.73

445

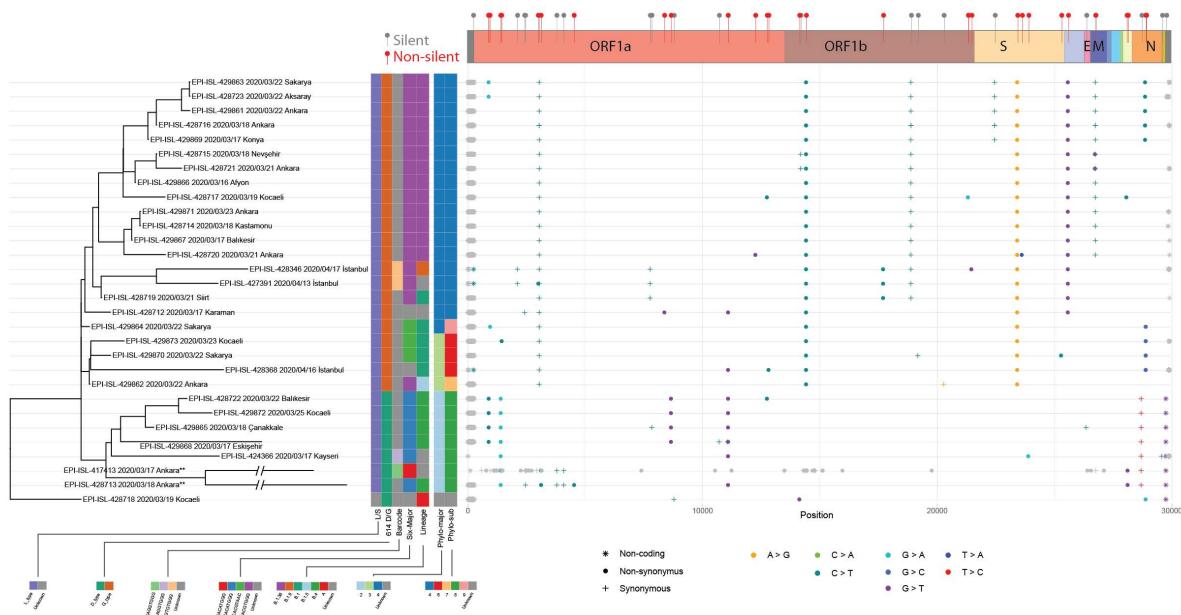

446

447 **Figure 1 - Phylogenetic tree of the 15,277 genomes retrieved from GISAID and their**
448 **groupings.** The time-resolved tree of SARS-CoV-2 appears in the center. Six clustering
449 methods were used to assign 15277 sequences to the clusters. The clusters are represented

450 as circular layers around the tree. The innermost shell (L/S) represents S and L type
451 according to 8782th and 28144th positions in the nucleotide. 614 G/D represents the
452 614th amino acid of the Spike protein. Barcode shows the 10 major subtypes of seventeen
453 positions in (nucleotide) multiple sequence alignment. Six-major clustering is based on 6
454 major subtypes of nucleotide combinations in particular positions. The fifth and sixth
455 layers show Phylo-majors and sub-clusters, respectively. Samples obtained from Turkey
456 are shown in the outermost shell and they are highlighted.


457

458


460 **Figure 2 - Phylogenetic tree of the transient type (EPI-ISL-428718) from S to L**
461 **strain.** The maximum likelihood tree was built with IQ-TREE. 10 S-type and 10 L-type
462 sequences are randomly selected from the assigned samples. The tree was rooted at the
463 genomes obtained from bat and pangolin.

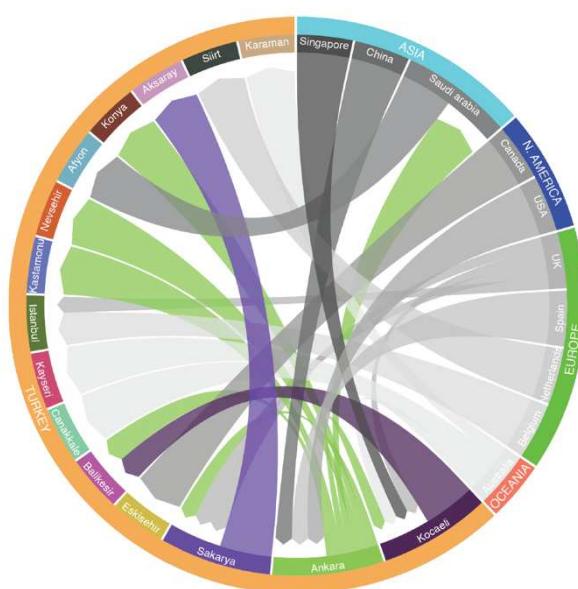
464

465

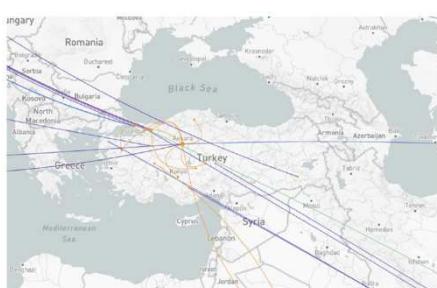
466 **Figure 3 – Phylo-cluster distribution and sub-cluster divergence.** (A) Percentages of
467 four major and unknown clusters across different countries. Unknown (U) samples are
468 the ones that cannot be grouped with the generated clusters. (B) Root-to-tip distances of
469 four phylo-sub clusters (4,6,7,8 and 9) found in Turkey, across different countries.

470

471 **Figure 4 - The mutation layout of the 30 samples from Turkey along with the**
472 **phylogenetic tree and clusters.** Phylogenetic tree (left) of SARS-CoV-2 samples
473 sequenced in Turkey. Assigned subtypes of seven clustering methods are specified with
474 different colors in the matrix. Dot-plot (right) of mutations detected in each genome
475 aligned with the corresponding sample. Single nucleotide changes are colored and shaped
476 based on the nucleotide change and synonymy. Gray color indicates that the mutation is
477 either non-informative (ie, due to sequencing errors) or corresponds to a gap or an
478 ambiguous nucleotide. Supplementary bar (top) provides the respective open reading
479 frame information for mutations, and their effects on coding the amino acid. EPI-ISL-
480 417413 had obvious sequencing errors, the mutations of this sampled were manually
481 curated and non-informative ones were treated as ambiguous mutations.


482

483


A.

C.

B.

484

485 **Figure 5 - Epidemiological phylogenetic and transmission analysis of the isolates**

486 **collected in Turkey.** Sequences sampled between 2019-03-19 and 2020-04-24 were

487 analyzed with Treetime and tracing between samples were visualized in Augur (version

488 6.4.3). (A) Closest (without internal nodes) leaves were used and assigned as

489 transmissions were visualized on Leaflet world map using latitude & longitude

490 information of locations. (B) Samples originated from Turkey were implied with orange

491 points and connections while the network of samples originated from other countries

492 demonstrated with blue lines and points. (C) Chord diagram was used as a graphical

493 method to display inter-flow directed associations between origins and destinations of

494 transmission data.