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Abstract

Infection with human cytomegalovirus (HCMV) can cause severe complications in
immunocompromised individuals and congenitally infected children. Characterizing
heterogeneous viral populations and their evolution by high-throughput sequencing of
clinical specimens requires the accurate assembly of individual strains or sequence
variants and suitable variant calling methods. However, the performance of most
methods has not been assessed for populations composed of low divergent viral
strains with large genomes, such as HCMV. In an extensive benchmarking study, we
evaluated 15 assemblers and six variant callers on ten lab-generated benchmark data
sets created with two different library preparation protocols, to identify best practices

and challenges for analyzing such data.

Most assemblers, especially metaSPAdes and IVA, performed well across a range of
metrics in recovering abundant strains. However, only one, Savage, recovered low
abundant strains and in a highly fragmented manner. Two variant callers, LoFreq and
VarScan2, excelled across all strain abundances. Both shared a large fraction of false
positive (FP) variant calls, which were strongly enriched in T to G changes in a “G.G”
context. The magnitude of this context-dependent systematic error is linked to the
experimental protocol. We provide all benchmarking data, results and the entire
benchmarking workflow named QuasiModo, Quasispecies Metric determination on
omics, under the GNU General Public License v3.0 (https://github.com/hzi-
bifo/Quasimodo), to enable full reproducibility and further benchmarking on these and

other data.
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Introduction

Human cytomegalovirus (HCMV) causes a lifelong infection that is typically without
major clinical symptoms. After primary infection HCMV persists latently in infected
cells [1]. Primary or (re-)infections and reactivation of HCMV can cause significant
morbidity and severe complications in immunocompromised individuals, such as HIV-
infected persons, transplant recipients or congenitally infected children [2,3]. HCMV
has a double-stranded DNA genome of approximately 235 kb, including terminal and
internal repeats, which contains at least 170 open reading frames [4]. With genome
sizes of known viruses ranging from ~1 kb (Circovirus SFBeef) to 2 Mb (Pandoravirus
salinus) [5], HCMV belongs to the larger known viruses and has co-evolved with its
host for millions of years [6]. Multiple HCMV strain infections (i.e. with more than one
strain at the same time) probably contribute to prolonged viremia, delayed viral

clearance and other complications [7—10].

The establishment of high-throughput sequencing techniques and accompanying
bioinformatics analysis methods has greatly advanced viral genomic research [11-16].
Assembling viral genomes of individual virus strains from a mixed population and
variant calling are essential for characterizing the evolution and genetic diversity of
viral pathogens such as HCMV in vivo. Although HCMV mutates and evolves more
slowly than many RNA viruses and not any faster than other herpes viruses, high
levels of genetic variation due to mixed (i.e. multiple) viral strain infections in an
individual are often observed [17-20]. These multiple strain infections likely result from

reactivation of latent strains and/or re-infections [17,21,22].

Assemblers leverage short read sequence data by linking sequences using kmer or
read graphs, and, in some cases, variant frequencies, to reconstruct viral haplotypes,
such as the recently developed HaROLD [23], which makes use of longitudinal
sequence data. There are also many variant callers available, including programs for
calling low-frequency variants, such as LoFreq [24], VarScan2 [25], and the
commercial CLC Genomics Workbench [26]. Those programs use information on
basecall and mapping quality to determine if a variant site in a read may be due to

sequencing error, mapping bias or reflects true biological diversity [24—26].

A recent study on simulated and mock viromes suggests that the choice of assembler

largely influences virome characterization [27]. Several assemblers that we evaluated,
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including IDBA-UD [28], SPAdes [29], Ray [30] and Megahit [31], were previously
assessed on more divergent, simulated and spiked mock viromes [27,32]. This in one
case included strains of less than 97% average nucleotide identity (ANI) [33], which
resulted in shorter assemblies for low divergent community members. Viral haplotype
assemblers reconstruct small viral genomes, such as HIV, Zika and hepatitis C virus,
with good genome fractions. However, these may be highly fragmented, in case of
Savage [34], or consist of longer contigs with a substantial amount of misassemblies,
in case of PEhaplo [35], QuasiRecomb [36] and PredictHaplo [37]. Viral haplotype
assemblers have so far been mostly evaluated on much smaller and more divergent
genomes (genome size around 10 kb with divergence of up to 12.7%) [34,38]. They
have not been assessed on substantially larger genomes with low density of variants
so far. A recent assessment of variant callers [39] reported variable, in part
complementary performances of FreeBayes [40], LoFreq, VarDict [41], and VarScan2
in minority variant detection on simulated short read data from Respiratory Syncytial

Virus (RSV), which is a small virus with a 15 kb genome size.

So far, strain-level assembly and variant calling methods have not been evaluated for
large DNA viruses, where runtime and memory consumption of the algorithms might
also be critical, nor on benchmark data that include experimental biases of library
preparation and sequencing. To investigate these issues, in the largest benchmark of
its kind so far, we created and sequenced ten samples of HCMV strains with different
mixing ratios and then evaluated 21 computational methods on the resulting WGS
data. Analysis of these lab-created benchmark data sets allowed us to dissect the

effects of computational methods and library preparation protocols.

Results

Creation and quality control of viral sequence samples

To produce a benchmark dataset of mixed viral strains that also includes technical
artifacts introduced in experimental data generation, we created viral strain mixtures
mimicking clinical samples from patients with mixed strain infections in vitro. For this,
we combined viral DNA of the HCMV strains TB40/E BAC4 and AD169 (designated

as "TA”), derived directly from bacterial artificial chromosomes (BAC) with these viral
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genomes and prepared from Escherichia coli, or the strains TB40/E BAC4 and Merlin
(designated as “TM”), which were amplified in human cell-cultures, respectively, at
mixing ratios of 1:1, 1:10 and 1:50. The ANIs between each pair of those strains are
around 0.977 (Table S1). In addition, pure strains were sequenced separately in each
experiment, resulting in four data sets with the TB40/E and AD169 strains without
target enrichment and the TB40/E and Merlin strain after enrichment. For the TA
mixture experiments, we used a library preparation protocol (protocol 1, details in
Material and Methods) without target enrichment, for the TM mixtures a protocol
including target enrichment (protocol 2). All ten samples (6 HCMV strain mixtures and
4 pure strains) were sequenced using 2x 300 bp paired-end sequencing (lllumina
MiSeq), resulting in 1.58 million raw reads on average per sample. After quality control,

1.1 million quality reads per sample with average base quality above 30 remained.

As the HCMV strains for the TA mixtures and corresponding pure strain samples were
extracted from E. coli BACs, E. coli reads were found in those samples with an
average fraction of 48.6+16.5% (Table S2). Based on the genome size of HCMV
(235K) and E. coli (4.6M), the abundance of contaminating E. coli is thus around 5%.
The three TM data sets and the pure Merlin strain, TM-0-1, did not include detectable
bacterial contamination, but 51.7% of the reads of TM-1-0 (pure TB40/E strain) were

of human origin.

Strain-resolved genome assembly

For mixed strain data sets, the ultimate aim for assembly is to recover the genomes of
individual strains. To obtain a comprehensive performance overview for existing
software, we evaluated the performances of the generic (meta-)genome assemblers
SPAdes, metaSPAdes [42], Megahit, ABySS [43], Ray, IDBA-UD, Tadpole, which is a
part of the BBMAP toolkit [44] and IVA [45], Vicuna [46], as well as the viral haplotype
assemblers Savage, PredictHaplo, PEhaplo, QuasiRecomb, ShoRAH [47] and
VirGenA [48] on our data sets (Material and Methods).

Assemblies were assessed based on common assembly quality metrics with
metaQUAST [49], such as genome fraction, duplication ratio, largest alignment,
NGADS50 using both strain genomes as references for the respective mixtures (Methods,

Figure 1). The genome fraction is defined as the fraction of the reference genome
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covered by at least one contig. The duplication ratio is the number of bases of the
reference genome covered, divided by the total number of aligned bases from the
assembly. The largest alignment is the size of the biggest contig that aligned to the
reference genome. The NGAS0 value of an assembly is calculated by first sorting the
aligned contigs, after being split at misassembly events, by size in descending order
and returning the length of the contig that exceeds 50% genome fraction. If an
assembler fails to produce 50% genome fraction, the NGA50 value cannot be
calculated and was set to 0 kb. To further summarize the performance of assemblers
on the HCMV datasets, we defined a composite quality metric for strain-resolved
assembly performances, consisting of a weighted score combining the metaQUAST
assembly metrics “duplication ratio”, “genome fraction”, “largest alignment”, “NGA50”,
“number of contigs”, and “number of mismatches per 100 kb” (Materials and Methods).
In this weighted score, we considered genome fraction and largest alignment the most
important metrics, since they reflect the ability of the assembler to reconstruct

individual strains and the completeness of the largest assembly.

All programs reconstructed the genome sequence much better for the dominant than
for the minor strain. With the weighted summary score, metaSPAdes achieved the
highest score (8.57), with a large genome fraction assembled (54.5+6.4% versus
45.3+12.4% for IVA, mean + standard deviation) and second best for largest alignment
(145.9+56.6 kb), NGA50 (102.3+69.0 kb), number of contigs (12.5+9.0) and
duplication ratio (1.01+£0.01) (Figure 1, Table S3-4). Next were IVA (8.12), which was
ranked best for largest alignment, NGA50, and number of contigs, and ABySS (7.50)
(Figure 1, Table S3-4). IVA produced on average the fewest (8.1+£7.9), and longest
contigs (159.6+77.8 kb), especially for abundant strains (160.8+72.3 kb) (1/0, 50/1,
10/1), with only very few parts of the genomes covered multiple times (duplication ratio
of 1.01+£0.03) (Figure 1-2, Table S3). The Tadpole assembly had the lowest duplication
ratio (1.001£0.001) and the fewest mismatches per 100 kb (32.2+54.4, Figure 1-2,
Table S3). However, this was mainly because it assembled very little data and
generated short contigs (NGA50 10.9+15.4 kb) that covered less than half
(33.8+15.6 %) of the underlying genomes.

The haplotype assembler Savage in reference-based mode recovered the most
(64.4+27.2% genome fraction) of both strains, even for the low abundant ones (1/10,

1/50) (Figure 2). However, it produced shorter contigs (largest contig length 21.5£22.8
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kb) and many duplicates (1.38+0.23). Megahit recovered most (93.4+5.7%) of the
genome sequence for the dominant strains, followed by ABySS (92.7+3.1%), SPAdes
(91.844.1%) and Ray (91.6+7.8%), however much less for the low abundant strains
(38.3+20.0%, 37.3+14.5%, 35.2+6.6%, 12.2+4.5%, respectively). MetaSPAdes and
IVA also recovered a relatively large fraction (83.4+28.2% and 86.4+21.2%,
respectively) of the dominant strains, but only little (38.7+28.4% and 8.5+6.0%

respectively) of the genome for low abundant strains.

All other haplotype assemblers, i.e. Savage in de novo mode, PredictHaplo, PEhaplo,
QuasiRecomb, ShoRAH and VirGenA, assembled no contigs and were terminated
after running for more than 10 days using 24 CPU cores. Furthermore, we also tested
1000 random weights sets to calculate the summary score, and the top two
assemblers (metaSPAdes and IVA) maintained this ranking for ~850 out of 1000 sets.
This suggests that the assemblers with good performance deliver a high quality

assembly across most metrics.

As genome assembly can be computationally intensive and time consuming, we also
benchmarked the disk space consumption (IO output), memory (maximum memory
requirement) and run time of the different algorithms. Ray and ABySS used less than
300 MB for the output while IVA, SPAdes, metaSPAdes and Savage consumed more
than 20 GB of disk space for output or intermediate output (Figure 3). Megahit was the
most memory efficient assembler, using less than 1 GB memory, whereas ABySS,
Savage and Vicuna consumed more than 10 GB. As to the run times, Megahit required
around ten minutes for each assembly, while Vicuna and Savage needed more than
20 hours on a server with sixty-two 2.4GHZ CPUs, 200 TB disk space and 1 TB

memory.

Variant calling

We evaluated the variant callers LoFreq, VarScan2, the low frequency variant caller
of the CLC genomics workbench, BCFtools [50], FreeBayes and the GATK
HaplotypeCaller [51] on the six mixed strain and four pure strain (three different strains,
details in material and methods) WGS samples. A ground truth was generated by

pairwise genome alignment of the respective strains with MUMmer [52] (Methods,
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Figure 4), which identified around 3500-4000 variants, including ~200 short insertions
and deletions (InDels). Sites in these genomes were then classified as variant or non-
variant in this alignment, and compared to predicted variants, to determine true
positive (TP), false negative (FN) and false positive (FP) calls. Since the major strain
in each mixture was used as reference, we could evaluate the performance of those
variant callers in identifying low frequency variants originating from the minor strain in
the mixture, with the expected low frequency variants being 2% and 10%, respectively,
in the mixtures with ratios of 1:50 and 1:10. Variant calls for which a false nucleotide
was predicted for a variant site were also considered as false positives. Based on the
number of TP, FN and FPs we calculated precision, recall and the F1-score as

detection quality metrics for each caller and sample. Precision, or purity, reflects the

e ; it thus quantifies
TP+FP

fraction of predicted variants that are true variants: precision =

how reliable the predictions of a particular method are. Recall is sometimes also

known as completeness, and measures the fraction of truly existing variants in a data

TP
TP+FN

set that have been detected by a caller (recall = ), it thus measures how

complete the predictions of a caller are with respect to the variants that are there to

discover. To allow a comparison based on a single metric, the F1-score is commonly

. . . .. . isionx 1
used, which is the harmonic mean of precision and recall, i.e. F, = 2 x 2o 2xTecte
precision+recall

Applying the commonly used cutoff of 20 for Phred quality scores (QUAL) [53] for
accepting predicted variants, we evaluated the performance of variant callers on single
nucleotide polymorphisms (SNPs). LoFreq achieved the best average precision
(0.940+0.011) and VarScan2 the highest recall (0.872+0.050, Figure 5A, Table S5)
across mixture samples. LoFreq and VarScan2 consistently performed best across
samples, with average F1-scores, of 0.890+0.009 and 0.880+0.011, respectively
(Figure 5B, Table S5). CLC had a slightly lower F1-score (0.806+0.025), and was more
variable in performance across samples, while BCFtools, GATK and Freebayes
performed poorly (F1-score: 0.166+0.288, 0.261+0.388 and 0.289+0.428,
respectively), particularly due to low recall (0.122+0.230, 0.215+0.338 and
0.253+0.386). Across all strains and abundance ratios tested, LoFreq consistently
performed well, while VarScan2 was consistent across abundance ratios but
performed differently for the two strain mixtures (varied in precision) and CLC’s recall

dropped dramatically for mixture TM-1-50. BCFtools, GATK and FreeBayes performed
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poorly in comparison for all samples, and for highly diluted samples, their recall was
almost 0. To analyze the effect of their returned Phred quality scores on variant callers’
performances, we evaluated both SNPs and InDels called with different thresholds for
their quality scores using a recall-precision curve. LoFreq had the best recall-precision
balance followed by VarScan2 and CLC, while FreeBayes demonstrated high
performance on samples TA-1-1 and TM-1-1 (Figure S1). To compare variant caller
performances under optimized performance conditions, we also determined
performances of variants called using the best F1-scores over these different settings
across all samples. Notably, the performance of FreeBayes increased substantially,
and that of CLC slightly, while the performances of other methods remained similar
(Figure 5C and 5D, Figure S2, Table S6).

The callers achieving good recall, LoFreq, CLC and VarScan2, identified around 2400
to 2700 shared true positive SNPs from all mixed strain samples when using a quality
score threshold of 20 (Figure 6). On the pure strain samples, where no SNPs were
expected, LoFreq and VarScan2 predicted 61+33 and 71+42 false positives,
respectively, substantially less than for the mixed strain samples (164+59 and
381+163). Notably, of these false positives in mixtures, 70.7£17.3% (based on LoFreq
predictions) and 37.6+7.9% (based on VarScan2) were shared (Figure S3). This
significant overlap (Fisher’s exact test p-value <2.2x10'®, odds ratio 3416.8+1601.1),
indicates a systematic shared bias regardless of variant callers. Variant calling (Figure
S4) indicated that allele frequencies intended by dilutions were closely reached with

protocol 2 (TM mixture) and differed slightly more for protocol 1 (TA mixture).

Genomic context of variant calls

We analyzed whether there was a specific genomic signal associated with variant calls,
considering separately correct and false calls using mutational context analysis [54—
56]. Focusing exemplarily on LoFreq, this approach analyzes the frequency of a
certain SNP together with its sequence context, specifically the flanking3' and 5’ bases.
For the predictions of a certain caller, the genomic context of the six substitution types
(CtoA,CtoG,CtoT, TtoA, TtoC and T to G) was calculated with the R package
SomaticSignatures [56] for the six mixtures and four pure strain samples (2 samples
of TB40/E, 1 of Merlin, and 1 of AD169). Since the analysis is not strand-specific, the
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above were considered equivalent with Gto T, GtoC, Gto A,Ato T,AtoGand Ato
C, respectively. We observed a strong, context-independent preference for Cto T or
T to C transitions (with a fraction of 0.803+0.016 of all variant calls across samples;
top panel of Figure 7A and Figure 7B), which was even more pronounced for the true
positives (middle panel of Figure 7A and Figure 7B), but not for FPs. For variants
observed across pairwise combinations of 30 E. coli and 30 HIV genomes, which were
obtained from NCBI RefSeq database (Table S7), respectively, we observed
concordant results (Figure S5-S6). For these data, transitions accounted for

0.716+0.058 and 0.681+0.017 of variants between genome pairs, respectively.

We found a pronounced context dependent signal for false positive calls of LoFreq
and VarScan2. Here, T to G variants in a G.G context correspond mostly to FPs in the
TA and TM mixtures (57.1£10.0% and 86.8+18.3%, respectively; bottom panel of
Figure 7A and Figure 7B). This enrichment is highly significant (p-value <0.0001,
Fisher’'s exact test), with an odds ratio of around 45.2 for the TM mixture; i.e. T to G
calls are 45.2 times more frequent in this context than in others and 19.9 more frequent
for the TA mixture. For false variant calls on the pure Merlin and AD169 samples, T to
G calls in a G.G context were even more dominant. For LoFreq on the pure Merlin
(TM-0-1) sample, the genomic context pattern of false calls is highly correlated with
the context pattern of false positives for all mixed strain samples, with an average
Pearson correlation of 0.903 (p-value <0.0001). For the AD169 strain and respective
mixtures, this correlation (Pearson) is lower, on average 0.697, but still highly

significant (p-value <0.0001).

The allele frequencies of the FP LoFreq variants were substantially lower than those
of the true positive variants (Figure S7, Wilcoxon test p-value <2.2x107%), except for
the TA-1-50 sample, which had the highest-level E. coli cloning vector contamination.
False T to G calls in a G.G context had a lower frequency than other false calls (p-
value 1.181x107° for TM mixtures: Figure S8, 8.16x10"° for TA mixtures). The allele
frequency of those FP SNPs was slightly lower in protocol 2 (TM, 0.0237+0.0522) than
in protocol 1 (TA, 0.0242+0.0121) with a Wilcoxon p-value = 0.000559, 95% CI =
[0.00363, 0.0120]. The extent of the signal differed between samples created with
different protocols. Though the overall FP rate was similar, the context-dependent
false calls T to G in G.G doubled in protocol 2 (Figure 7A, 7B). We found no such

signal for false LoFreq variants calls on MiSeq sequencing data from HIV lab data [57],
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even though the frequency of GTG/CAC patterns in both genomes are similar (Figure
S9).

Materials and methods

Creation and sequencing of HCMV strain mixtures

We created mixtures for two pairs of strains: “TB40/E BAC4” with “AD169 subclone
HB5” (TA) and TB40/E BAC4 with strain Merlin (TM). For each strain pair, mixtures
with three different mixing ratios, 1:1, 1:10 and 1:50, were created. Accordingly, strains
“AD169” and “Merlin” are the dominant strains in the mixtures, and their genomes were
used as reference for variant calling in mixed samples. In addition, the pure strains
were sequenced. The name of the mixture specifies the included strains and the
mixing ratio. For instance, a mixture of TB40/E and Merlin with a ratio of 1:10 is
denoted by TM-1-10. Pure strain samples are denoted as TA-1-0 for TB40/E and TA-
0-1 for AD169, which were created with protocol 1 (details, see below), as well as TM-
1-0 for TB40/E and TM-0-1 for Merlin, created with protocol 2.

Two protocols were used to generate the sequencing libraries. In protocol 1, the DNA
of TA mixtures (TA-1-1, TA-1-10 and TA-1-50) and pure strain samples (TA-0-1, TA-
1-0) was extracted from the BAC host E. coli strain GS1783 using the Plasmid Midi Kit
(Macherey Nagel). Library preparation was performed using an Ultra |l FS-Kit from
NEB according to the standard protocol from the manufacturer. Fragmentation time
was 10 minutes and the library was amplified 4 cycles for the mixtures and 5 cycles
for the pure BACs, multiplexed and sequenced on a MiSeq (lllumina) using reagent kit

v3 to generate 2 x 300 bp paired-end reads.

Protocol 2 was used to generate the TM mixture data sets (TM-1-1, TM-1-10, TM-1-
50) and the pure strain samples data sets (Merlin, TM-0-1 and TB40/E BAC4, TM-1-
0). The HCMV strains TB40/E BAC4 and Merlin were isolated from cell cultures. The
library preparation was performed as we previously described [20] with the KAPA
library preparation kit (KAPA Biosystems, USA) with a few modifications. After PCR
pre-amplification (6-14 cycles) with adapter specific primers, up to 750 ng of DNA was
target enriched for HCMV fragments using HCMV specific RNA baits. HCMV enriched

libraries were indexed, amplified (17 to 20 cycles) using TruGrade oligonucleotides
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(Integrated DNA Technologies), multiplexed and sequenced on a MiSeq (lllumina)

using reagent kit v3 to generate 2 x 300 bp paired-end reads.

Quality control of the sequencing data

Sequencing reads produced by the MiSeq sequencer were quality controlled using
fastp v0.19.4 [58]. Fastp is an all in one FASTQ data preprocessing toolkit with
functionalities including quality control, adapter detection, trimming, error correction,
sequence filtering and splitting. The remaining adapter sequences were clipped from
the raw reads as well as bases at the 5’ or 3’ of the reads with a base quality score of
less than 20. Reads shorter than 130 bp after trimming were removed. The remaining
PhiX sequences (originating from the lllumina PhiX spike-in control) were also
removed from the dataset by mapping all quality-controlled reads against the PhiX
reference genome downloaded from Illlumina using BWA-MEM v0.7.17 [59].
Contamination from E. coli and the human host were also removed using the same

method.

Consensus assembly and evaluation

To benchmark the performance of commonly used assemblers, we evaluated SPAdes
v3.12.0 (with kmer sizes: 21, 33, 55, 77, 99, 127 and --careful option), metaSPAdes
v3.12.0 (kmer sizes: 21, 33, 55, 77, 99, 127), Megahit v1.1.3 (kmer sizes: 21, 41, 61,
81, 101, 121, 141, 151, ), Ray (kmer size: 31), ABySS v2.1.4 (kmer size: 96), IDBA
v1.1.3 (default settings), Tadpole v37.99 (default settings), IVA v1.0.9 (default settings)
and Vicuna v1.3 (default settings). The quality of the resulting contigs or scaffolds was
then assessed with metaQUAST v5.0.2. Only contigs longer than 500 bp were taken
into account. Since the reference genomes of those strains are highly similar, with an
ANI around 98%, only unique mappings were considered in the assessment, i.e. not
allowing a single contig to map to both reference genomes in the combined reference
report. The metrics include the overall number of aligned contigs, the largest alignment,
genome fraction, duplicate ratio, NGA50, number of mismatches per 100 kb. Here,
“‘largest alignment” refers to the largest contig or scaffold that mapped to the reference

genome. “Genome fraction” represents the fraction of the genome recovered by
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contigs from an assembly. The “duplication ratio” is the total number of aligned bases
in the assembly divided by the total number of those in the reference
(https://github.com/ablab/quast). NGA50 is the N50 value of the contigs that mapped
to the reference genomes with contigs being split at misassemblies. The NGAS50 value
cannot be calculated for the assemblies which recover less than 50% of the genome
in terms of genome fraction and was set to 0 instead to ensure comparability. The
individual reference report from metaQUAST was used to evaluate the performance
for abundant or low abundant strains in mixtures. All overall metrics values regardless
of the specific strain in the mixture were calculated using the combined reference
report from metaQUAST, except for NGA50.

Haplotype reconstruction

Of viral quasispecies assemblers, we ran PEHaplo v0.1, PredictHaplo v0.4, Savage
v0.4.0, QuasiRecomb v1.2, ShoRAH v1.9.95 and VirGenA v1.4 using default settings
(for details see the code repository). We did not run HaROLD, as this requires
longitudinal clinical samples from the same source. The haplotype assemblies were
evaluated using metaQUAST together with the consensus assemblies mentioned

above.

A composite quality metric for strain-resolved assembly

To summarize assembly performances, we defined a weighted score based on the
metaQUAST assembly metrics using combined reference including genome fraction,
largest alignment, NGA50, duplication ratio, number of contigs, and number of
mismatches per 100 kb. As NGA50 is not available in the combined reference report
of metaQUAST, we used the average NGA50 based on individual genomes from the
individual references report. Of these metrics, we considered genome fraction and
largest alignment as the most important metrics, since they reflect the ability of the
assembler to reconstruct individual strains. To calculate a weighted summary score
for assembler performance, we weighted the above metrics by the factors 0.3, 0.3, 0.1,

0.1, 0.1 and 0.1 (genome fraction, largest alignment, NGA50, duplication ratio, number
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of contigs, and number of mismatches per 100 kb), respectively. The score of an
assembler with metric i was formulated based on the scale average performance sp;

and then multiplied by a factor of 10 to ensure the score is in the range of 0-10:

score; = 10 X weight; X sp;

, Where sp; is the scaled performance for metric i. The value was scaled into 0-1

with min-max normalization defined as follows:

;g —nmain .
P —, if p bigger better
maxr — min

max — p;
—p?’ if p smaller better
max — min

Spi =

In the formula, p;is the average performance across all samples of the given
assembler for metric i and the min and max are the smallest and largest average

performance value on metric i among all assemblers.

Determination of genome differences between two strains

MUMmer v3.23 with default setting was used to align two genomes of the strains in
each mixture and to identify the differences between genomes as ground
truth. Command “show-snps” of the MUMmer package was employed to determine
the SNPs and short InDels differing between two aligned genomes with parameter
setting “--CTHr”, where the repeat regions were masked. The genomic differences
between TB40/E and Merlin were considered as the ground truth variants for the TM
mixtures, while differences between TB40/E and AD169 were considered as the

ground truth for the TA mixtures.

Variant calling

Quality controlled reads were mapped against the reference genome of the HCMV
strains Merlin and AD169 using BWA-MEM with a seed length of 31. HCMV Merlin
and AD169 genomes were used as reference genomes, as they were the major strains
in all mixtures. The resulting BAM files were deduplicated with the Picard package

(http://broadinstitute.github.io/picard/) to remove possible amplification duplicates that
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may bias the allele frequency of identified variants. To compare the performance of
different variant callers, we used LoFreq (parameter: -q 20 -Q 20 -m 20), VarScan2 (-
--min-avg-qual 20 --p-value 0.01), FreeBayes (--p 1 -m 20 -q 20 -F 0.01 --min-
coverage 10), CLC (overall read depth =10, average basecall quality =20,
forward/reverse read balance 0.1-0.9 and variant frequency 20.1%), BCFtools (--p
0.01 --ploidy 1 -mv -Ob) and GATK HaplotypeCaller (--min-base-quality-score 20 -
ploidy 1) to identify variants. The variants from the difference between genomes
detected by MUMmer were considered as positive variants. Based on this standard,
precision, recall, and F1-score were computed to evaluate those callers. The pairwise
genome differences of 30 E. coli or 30 HIV genomes were determined by MUMmer as
well. To evaluate the performance of different callers for SNP and InDel prediction, the
command vcfeval in RTG-tools [60] was used to generate recall-precision curves
based on the Phred scaled “QUAL” score field (--squash-ploidy -f QUAL --sample ALT).

Data and code availability

The benchmarking program developed in this study is available under the GNU
General Public License V3.0 at https://github.com/hzi-bifo/Quasimodo. This program
can be also used to assess variant calling and assembly results for other viral mixed
strain data sets (see readme of the repository for details). All assembly and variant
calling results are freely accessible on Zenodo (10.5281/zenodo.3739874). The

sequence data were deposited in ENA with accession number PRJEB32127.

Discussion and conclusions

Mixed infections with multiple HCMV strains are commonly observed in patients with
active HCMV replication [10,17-20]. Accurately reconstructing the genomic
sequences of the individual haplotypes has implications for gaining a deeper
understanding of viral pathogenicity and viral diversity within the host. To identify the
most suitable software for analysis of mixed viral genome sequencing samples with

low evolutionary divergence and comparatively large genomes, we evaluated multiple
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state-of-the-art assemblers and variant callers on lab-generated strain mixtures of
HCMV.

In the assembly benchmarking, most metagenome and genome assemblers, in
particular metaSPAdes and IVA, recovered the abundant strains well in terms of
metrics such as genome fraction, contig length and mismatches. When also
considering strains of low abundance, Savage recovered the largest fractions of both
underlying genomes in the reference-based mode. However, this was achieved in a
highly fragmented manner, consistent with reports by the authors (Table 3 [34]). Thus,
the state-of-the-art in assembly methods, including both generic (meta-)genome and
specialized viral quasispecies assemblers, does not yet reconstruct large viral HCMV
genomes of low abundance and low variant density with high quality. This may not be
surprising since these programs were originally designed primarily for mixtures of
large and much more divergent microbial genomes, or for viral genomes with a tenth
of the size of the HCMV genome, but a higher variant density. In terms of resource
usage, Ray and ABySS produced the smallest outputs, while megahit was the most
memory efficient, as well as fastest assembler with good performance (weighted

score >5).

Of the variant callers, LoFreq most faithfully identified only true variants across all
samples, closely followed by VarScan2. Both had high F1-scores even on the samples
with high mixing ratios. When analyzing the genomic context of the predicted variants,
for true positive calls, we observed a context independent enrichment of Tto C and C
to T transitions. A preference for transitions over transversions is common in molecular
evolution [61,62]. This is the case in terms of observed mutations and because
transitions more often lead to synonymous mutations that tend to be neutral, rather
than under negative selection, as most nonsynonymous changes on the population

level.

For false variant calls, we found a striking enrichment of T to G changes in a G.G
context, representing an unreported context-dependent signal. Calls with this pattern
had lower allele frequencies than true positive variant calls and were more pronounced
in sample with more PCR cycles used (protocol 2, 6-14 cycles versus 4 in protocol 1),
indicating a link to DNA amplification. Amplification error introduced in PCR cycles will
accumulate exponentially and occur at frequencies that depend on when they were

introduced: PCR-induced errors are mostly of lower frequency unless introduced in
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one of the very early amplification cycles [57]. Schirmer and co-workers studied the
error profiles for the amplicon sequencing using MiSeq with different library
preparation methods and showed that the library preparation method and the choice
of primers are the most significant sources of bias and cause distinct error patterns
[63]. They also observed a run-specific preference for the substituting nucleotide. They
observed that A and C were more prone to substitution errors (A to C and C to A)
compared to G and T, which differ from our results. We could not find the context
dependent signal for an HIV quasispecies data set that had been generated with
Nextera XT DNA Library Prep chemistry (lllumina) on lllumina’s MiSeq platform,
suggesting that the false positive pattern originates from a step unique to the HCMV
sequencing protocol, such as pre-amplification and amplification PCR during library

preparation.

Notably, the experimental protocols substantially affected the nature of the generated
data and bioinformatics results. Protocol 1 led to substantial amplification of E. coli
host DNA and thus lower coverage of the viral strains. This, together with the resulting
differences in actual mixing ratios relative to protocol 2 likely explain the higher recall
and slightly lower precision observed in variant detection (Figure S4). An earlier study
based on simulated sequencing data also showed that variant calling on lower
coverage samples achieved higher recall and lower precision [64]. Protocol 2 used
more extensive DNA amplification together with cultivation in human cell culture. This
resulted in higher coverage of viral strain genomes in comparison to protocol 1, and
the doubling of context-dependent false positive variant calls within a G.G context

discussed above (Figure 7).

Taken together, our results suggest that for strain mixtures of large DNA viruses with
low variant density, many assemblers reconstruct the abundant strain with high quality,
but assembly of the low abundant strains is still challenging. Variant callers designed
for low frequency variant detection provided the best results and detected most true
variants. These findings are relevant for the interpretation of program outputs when
analyzing clinical patient samples. We also provide a resource that facilitates further
benchmarking, including our result evaluation and visualization software QuasiModo,
all produced benchmarking data sets and results, for flexible assessment of further

methods on these and similar data sets.
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Key points

The strain-resolved de novo assembly of large DNA virus with low variant
density is challenging to all evaluated assemblers. Some generic
(meta-)genome assemblers, such as metaSPAdes and IVA, performed
particularly well in recovering the dominant strain.

LoFreq and VarScan2 are good choices for identifying low frequency variants
from strain mixture of large DNA viruses.

The pattern of false variant calls likely links to the experimental protocol used
to generate the sequencing data. More ampilification cycles led to more
pronounced false positive variant calls.

All the analyses can be reproduced using QuasiModo developed in this study.
QuasiModo can be also utilized to evaluate other methods using the

benchmarking data sets in this study or similar data sets.
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