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Abstract

Advances in single-cell RNA sequencing (scRNA-seq) have furthered the simultaneous
classification of thousands of cells in a single assay based on transcriptome profiling.
In most analysis protocols, single-cell type annotation relies on marker genes or RNA-
seq profiles, resulting in poor extrapolation. Here, we introduce scDeepSort
(https://github.com/ZJUFanLab/scDeepSort), a reference-free cell-type annotation
tool for single-cell transcriptomics that uses a deep learning model with a weighted
graph neural network. Using human and mouse scRNA-seq data resources, we
demonstrate the feasibility of scDeepSort and its high accuracy in labeling 764,741
cells involving 56 human and 32 mouse tissues. Significantly, scDeepSort
outperformed reference-dependent methods in annotating 76 external testing sScRNA-
seq datasets, including 126,384 cells (85.79%) from ten human tissues and 134,604
cells from 12 mouse tissues (81.30%). scDeepSort accurately revealed cell identities
without prior reference knowledge, thus potentially providing new insights into
mechanisms underlying biological processes, disease pathogenesis, and disease

progression at a single-cell resolution.
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Introduction

Recent advancements in single-cell RNA sequencing (scRNA-seq) that permit the
identification of various cell types based on transcriptomics at single-cell resolution
have facilitated our understanding of the heterogeneity of cellular phenotypes and
their composition within complex tissues®2. In the data processing protocols of ScCRNA-
seq experiments, cell-type annotation is a vital step for subsequent analysis3. Cell type
identification is commonly performed by mapping differentially expressed genes at the
level of pre-computed clusters with prior knowledge of cell markers like scCATCH%.
Another cell-based annotation strategy tries to compare the similarities between
single cell and reference database of bulk or single-cell RNA-seq profiles to determine
potential cellular identities. Several methods including SingleR>, CHETAH®, scMap’ and
scHCL® belong to this category. An increasing number of machine learning-based
annotation approaches—including CellAssign® and Garnett'®—have emerged as well
in recent years. Such methods rely heavily on references, namely RNA-seq profiles with
known cell types or known cell marker genes as prior knowledge, severely limiting the
extrapolation of these methods. Still, accurate cell-type annotation for single-cell

transcriptomic data remains a great challenge.

Fortunately, recent advances in deep learning have enabled major progress in the
ability of artificial intelligence techniques to integrate big data, incorporate existing
knowledge, and learn arbitrarily complex relationships'*'2. Given the state-of-the-art

accuracy deep learning has achieved in numerous prediction tasks, it has been
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increasingly used in biological research'?® and biomedical applications!4 such as drug
discovery®®, medical diagnosis'®, as well as various -omics tasks!’. For example,
Kermany et al. combined optical coherence tomography images with a deep-learning
framework and developed an efficient diagnostic tool to support the clinical decision
for patients with blinding retinal diseases'®. Chaudhary et al. established a deep
learning-based model using RNA-seq, miRNA-seq and methylation data of 360
hepatocellular carcinoma (HCC) patients to help predict patient survival'®. Graph
neural networks (GNNs) are connectionist models which capture the graph
dependence through message passing between the graph nodes. Unlike standard
neural networks, GNNs retain a state that represents information from its
neighborhood with arbitrary depth, which have demonstrated ground-breaking
performance on many learning tasks??. Moreover, recent published large-scale scRNA-
seq resources have provided the foundation for a GNN-based deep learning model

that can execute challenging prediction tasks.

In this study, we designed a reference-free cell-type annotation method called
scDeepSort, based on a weighted GNN framework, which addresses this challenge (see
Fig. 1 for an overview). Briefly, scDeepSort is learned by a weighted GNN model for
supervised training on recently published the most comprehensive single-cell
transcriptomics atlases—a human cell landscape (HCL®) consisting of 56 tissues and
562,977 cells and a mouse cell atlas (MCA??) consisting of 32 tissues and 201,764 cells
(Supplementary Table S1). scDeepSort showed high accuracy in cell type identification,

significantly outperforming four current excellent methods—CellAssign, Garnett,
4
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SingleR, and scMap—on 76 external human and mouse testing datasets including
126,384 cells from ten human tissues and 134,604 cells from 12 mouse tissues. The
present results indicated that scDeepSort can help scientists rapidly annotate a single
cell with an accurate cell label without prior reference knowledge, i.e., markers or
RNA-seq profiles, which may tremendously facilitate scRNA-seq studies and provide
novel insights into the mechanisms underlying biological processes and disease

pathogenesis and progression.

Results

General description of scDeepSort

In brief, we applied a supervised deep learning model based on a weighted GNN
framework to build the scDeepSort model with underlying data of human and mouse
single-cell transcriptomics atlases. First, dense representations for cells and genes
were obtained with dimensionality reduction methods initialize fixed-size node
embeddings, since the single-cell transcriptomics data are usually sparse matrices.
Principal component analysis (PCA) was used to extract dense representations for gene
nodes from the cell-gene data matrix, and cell node representations were then
calculated by the weighted sum of gene node representations and the cell-gene data
matrix. Then, an undirected and weighted graph containing cell nodes and gene nodes

was constructed from an adjacent weighted matrix by taking the gene expression as
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the weighted edges between cells and genes to model the intrinsic geometric

information, which constitutes scDeepSort’s first embedding layer (Fig. 2).

In detail, the scDeepSort model’s architecture consists of three components: the
embedding layer, the weighted graph aggregator layer and the linear classifier layer
(Fig. 2). The embedding layer stores representations of graph nodes, which are
initialized as previously described and are freezed during training. The weighted graph
aggregator layer uses inductive learning to ascertain graph structure information; in
this layer, GraphSAGE?? was applied as the backbone GNN framework and heavily
modified in some aspects. First, a normalized weighted adjacency matrix that is quite
different from the adjacent matrix used in conventional GNN models was proposed
and applied to the weighted cell-gene graph for each cell node, in consideration of the
wide difference of expression level and pattern for different genes and cells. Second,
a learnable sharing confidence for each gene node was incorporated into the weighted
graph in order to avoid batch effect and solve the missing value issues. Third, a self-
loop confidence was added to the weighted graph for each cell node. The weighted
graph aggregator layer generates a linear separable feature space for cells. The final
linear classifier layer classifies the final cell state representation produced from the

weighted graph aggregator layer into one of the predefined cell type categories.

During training for each cell-centered subgraph, the cell node representation, along
with its connected gene node representations from the embedding layer, was

extracted and then aggregated on the weighted graph aggregator layer by gathering
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information about the neighborhood and itself, which produced a new cell

representation for each cell. Once a label is predicted by the linear classifier layer, the

loss between this prediction and the correct label is computed and then used to

update the parameters of three layers until convergence (Fig. 2).
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Fig. 1. General conceptual framework and validation of scDeepSort. a) Human and

mouse single-cell transcriptomics atlases were curated from HCL and MCA as the

underlying data for training scDeepSort. The human and mouse atlases include

562,977 cells from 56 tissues and 201,764 cells from 32 tissues, respectively. b) For

each cell, a graph network was constructed of this cell, its genes and neighboring cells

for supervised learning scDeepSort with known cell labels from the transcriptomic

atlases. c) Internal human and mouse atlases datasets and external testing datasets of

single-cell transcriptomics data involving multiple tissues were employed to test the

performance of scDeepSort. Markers- and profiles-dependent annotation methods
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(CellAssign, Garnett, SingleR and scMap) were compared with scDeepSort on human

and mouse external testing datasets.
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Fig. 2. The weighted GNN algorithm of scDeepSort. The algorithm consists of
embedding, weighted graph aggregator and linear classifier layers. The embedding
layer stores the graph node representations and is freezed during training, wherein
dimensionality reduction methods (PCA and weighted sums) were used to generate
the initial fix-size node representations and the gene expression for each cell was
regarded as the weighted edge between cells and genes forming a weighted adjacent
matrix. In the weighted aggregator layer, a self-loop confidence for each cell node and
learnable sharing confidence for each gene node were incorporated into the
weighted cell-gene graph. For each cell-centered subgraph, weighted edges were
normalized and node itself and neighborhood were then gathered to generate a new

cell node representation during aggregation. The linear classifier layer categorizes the
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final cell state representation as a predefined cell type.

Performance on internal datasets

In this study, a total of 562,977 human cells from 56 tissues and 201,746 mouse cells
from 32 tissues which were collected from recently published HCL and MCA were
curated to construct single-cell transcriptomic atlases (Supplementary Table S1). For
each cell type, cells numbering fewer than 5%. of the total cells in each tissue were
dropped. For each tissue in the human and mouse atlases, cells of various types were
first merged and randomly divided into training and testing sets, ensuring that the ratio
of training and testing cells was set to 8:2 for each cell type. In total, this process
generated 443,566 training cells and 110,860 testing cells from the HCL, 160,519
training cells and 40,112 testing cells from the MCA (Fig. 2a). After supervised learning
on training sets, we evaluated the scDeepSort’s performance on HCL and MCA testing

sets.

scDeepSort assigned labels with a 94.76% accuracy on 110,860 human testing cells
and a 91.04% accuracy on 40,112 mouse testing cells (Fig. 2a). Although the accuracies
were only up to 80% on mouse fetal brain cells and testis cells, the median accuracies
across 56 human tissues and 32 mouse tissues reached 95.47% and 92.23% (Fig. 2b).
Across 56 human tissues and 32 mouse tissues, scDeepSort annotated the most cells,
with the accuracy ranging from 84.28% to 99.25% and from 73.88% to 97.88%,

respectively (Fig. 2c and 2d, Supplementary Table S2). The results demonstrate the
9
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feasibility of the GNN-based deep learning model for cell-type classification at a single-
cell resolution. scDeepSort were then systemically trained based on the HCL and MCA,

on 562,977 human cells from 56 tissues and 201,746 mouse cells from 32 tissues.
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accuracy is labelled beside the corresponding box. c) Accuracy of scDeepSort in
annotating the HCL testing set for 56 tissues (line chart). The bar chart shows the

number of test cells for each tissue. d) Accuracy of scDeepSort in annotating the MCA

testing set for 32 tissues.
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Performance comparison of scDeepSort with other methods

We collected human and mouse scRNA-seq data manually from high-quality studies,
forming 76 external testing datasets (Supplementary Table S3) to comprehensively
compare the performance of scDeepSort with other single-cell annotating methods.
For the markers-dependent methods (CellAssign and Garnett), CellMatch was used as
the reference for annotation. CellMatch is a comprehensive and tissue-specific cellular
taxonomy reference database providing a panel of 20,792 human and mouse marker
genes involved with 184 tissue types and 353 cell types. For profiles-dependent
methods (SingleR and scMap), the HCL and MCA underlying scDeepSort were used as
references. To ensure that all methods are able to predict the right cell identity, only
cell types that were recorded in both cell marker database (CellMatch) and RNA-seq
profiles (HCL and MCA) were selected to establish external testing datasets, which
generated a total of 260,988 testing cells for human and mouse (Supplementary Table

s4).

There are 27 human external testing datasets containing a total of 126,384 cells
involving 10 tissue: blood, brain, colorectum, fetal kidney, kidney, liver, lung, pancreas,
placenta and spleen. By mapping the predicted cell label with the real one
(Supplementary Table S5), scDeepSort annotated testing cells with a 85.79% accuracy,
higher than all other methods (CellAssign, 13.97%; Garnett, 26.27%; SingleR, 50.46%;
scMap, 20.14%; Table 1). scDeepSort assigned the most accurate cell labels across 10

tissues and across 22 cell types (Fig. 4a and 4b) compared to other methods, the

11
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accuracies of which were mostly lower than 40%. Although the median accuracy of

scDeepSort was 66.22%, its performance was significantly superior to other methods

(Fig. 4c). At the level of cell type among 10 tissues, the results were strikingly

concordant to the tissue-level results: the median accuracy of scDeepSort rose to

80.83%, whereas the median accuracies of CellAssign, SingleR and scMap were only

9.88%, 28.40% and 7.25% and that of Garnett was near 0% (Fig. 5d).

Table 1. Comparison of scDeepSort with other methods.

scDeepSort CellAssign Garnett SingleR scMap
Markers- Markers-
Method Markers-free NA NA
dependent dependent
Profiles-free NA NA Profiles-dependent Profiles-dependent
Human
Accuracy across 85.79% 13.97% 26.27% 50.46% 20.14%
(126,384)
external testing
Mouse
cells 81.30% 12.51% 8.25% 74.28% 32.39%
(134,604)
Accuracy across | Human 66.22+7.98% | 11.25+5.18% | 9.82+4.50% | 18.611+6.52% 9.26+4.14%
tissues
Mouse 91.4943.55% | 0.00+3.95% 0.02+1.16% | 80.46+3.95% 23.0814.33%
(median+SE)
Accuracy across | Human 80.83+4.48% | 9.88%3.36% 0.43+2.63% | 28.40%3.86% 7.2513.66%
cell types
Mouse 89.1943.76% | 4.15+4.15% 0.00+1.30% | 81.38+3.47% 9.30+3.34%

(median+SE)

NA, not available.

12
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Although scDeepSort outperformed other methods overall, it performed worse than
other methods on some individual testing datasets at the level of tissues and cell types.
For example, CellAssign obtained the highest accuracy among all methods on
annotating the fetal kidney, the 6™ pancreas, the last acinar cell and the 2"
mesenchymal cell datasets, etc. (Fig. 4a and 4b). On annotating the 1% brain and the
3™ pancreas datasets, SingleR perfectly classified the most cells’ identities (Fig. 5b).
The accuracy of Garnett and scMap both reached 100% on the 2" oligodendrocyte

dataset.

Surprisingly, all tested methods hardly predicted the accurate cell types on several
human testing datasets, e.g., the 2" and the 3™ brain, colorectum and most pancreas
datasets (Fig. 4a), corresponding to the brain neuron, colorectum enterocyte and
pancreas acinar datasets (Fig. 4b, Supplementary Table S5). For example, the 2,506
neurons in the 2" brain dataset?® were typically assighed as astrocytes by scDeepSort
(92.98%) and scMap (73.34%), as neutrophils by CellAssign (39.55%), as unknown by
Garnett (34.00%), and as T cells by SingleR (48.96%), whereas the 1,758 neurons in the
3" brain dataset?* were mainly classified as astrocytes by scDeepSort (91.81%) and
scMap (75.14%), as macrophages by CellAssign (28.33%), as unknown by Garnett
(67.12%), and as fetal enterocyte by SingleR (51.71%) (Supplementary Table S6). This
result indirectly indicated the similarity between neurons and astrocytes, possibly

because astrocytes can enter a neurogenic program by blocking Notch signaling?®.

13
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Fig. 4. Performance comparison on human external testing datasets. a) Heatmap and
distribution histogram of accuracies on 27 external testing datasets across 10 tissues
by scDeepSort, CellAssign, Garnett, SingleR and scMap. NA, not available. b) Heatmap
and distribution histogram of accuracies across 22 cell types. c¢) Boxplots summarized
the maximal, minimal, median and quantile tissue-level accuracies for each method.
The median accuracy is labelled beside the corresponding box. d) Boxplots
summarized the statistical parameters at the level of cell types. Differences between
multiple groups were determined using the matched ANOVA test by mixed-effects

analysis with Dunnett's multiple comparisons test (scDeepSort as control; *, p < 0.0332;
14
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** p<0.0021; ***, p < 0.0002; ****, p < 0.0001).

In the same manner, we also evaluated the performance of scDeepSort and other
methods on annotating 49 external testing datasets of mouse cells, which includes
134,604 cells from 12 tissues: blood, bone marrow, brain, fetal brain, intestine, kidney,
liver, lung, mammary gland, pancreas, spleen and testis. By mapping the predicted cell
label with the real one (Supplementary Table S5), scDeepSort and SingleR accurately
annotated the most cells for most of the external testing datasets (Fig. 5a and 5b). The
median accuracies for scDeepSort and SingleR reached 91.49% and 80.46% at the
tissue level (Fig. 5¢c). However, CellAssign and Garnett seemed unable to distinguish
the most cells’ identities, accurately predicted only 12.51% and 8.25% cell identities
across 134,604 mouse cells (Table 1). At the level of cell type among 12 tissues, the
results were strikingly similar (Fig. 5b): the median accuracy of scDeepSort and SingleR
still reached 89.19% and 81.38%, whereas the median accuracy of CellAssign and
Garnett were both low, to about 0% (Fig. 5¢c and 5d). For scMap, it accurately predicted
32.39% of cell identities overall testing cells and its median accuracies were 23.08%

and 9.30% at the levels of tissue and cell type, respectively (Table 1, Fig. 5c and 5d).

Interestingly, SingleR also performed well on the prediction task across the major
testing datasets, realizing 74.28% accuracy over all testing cells, only a little worse than
scDeepSort at 81.30% (Table 1). Although CellAssign and scMap performed poorly

overall, they outperformed scDeepSort on some testing datasets. For instance,
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CellAssign obtained the highest accuracy among all methods in annotating the fetal
brain dataset, the 15t and 8™ testis datasets and 6" macrophage dataset (Fig. 5a and
5b). In annotating the 2" B cell, erythroblasts, 2"¥ microglia and 6™ neuron datasets,
CellAssign perfectly classified the most cells” identities (Fig. 5b). The accuracy of scMap
achieved 100% in classifying the 28 cells in the 1% intestine dataset and 108 cells in the
2" pancreas dataset, corresponding to paneth and acinar cells, respectively. Among
mouse external testing datasets, Garnett’s accuracies were always low, ranging from

0% to 23.41% (Fig. 5a) and 0%-65.45% (Fig. 5b).
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Fig. 5. Performance comparison on mouse external testing datasets. a) Heatmap and
distribution histogram of accuracies on 49 external testing datasets across 18 tissues
by scDeepSort, CellAssign, Garnett, SingleR and scMap. NA, not available. b) Heatmap
and distribution histogram of accuracies across 32 cell types. c) Boxplots summarized
the maximal, minimal, median and quantile tissue-level accuracies for each method.
The median accuracy is labelled beside the corresponding box. d) Boxplots
summarized the statistical parameters at the level of cell types. Differences between
multiple groups were determined using the matched ANOVA test by mixed-effects
analysis with Dunnett's multiple comparisons test (scDeepSort as control; **, p <

0.0021; **** p < 0.0001).

We note that all methods seldom predicted accurate cell types for some mouse testing
datasets, e.g., the 3™ intestine and 8™ and 11 testis datasets. For example, the 3™
intestine dataset comprised 260 intestine paneth cells marked by marker genes in the
literature?®. However, many of these cells were predicted to be epithelial cells by
scDeepSort (92.69%), CellAssign (100%), SingleR (93.08%) and scMap (58.08%)
(Supplementary Table S6), which may be unsurprising, as paneth cells are post-mitotic

intestinal epithelial cells?’.

In short, scDeepSort performed significantly better than all reference-dependent
methods on 27 human datasets and 49 mouse datasets across 126,384 cells and
134,604 cells, respectively (Table 1). Some inconsistent predictions may have been

caused by insufficient training samples, as in the case of human pancreas acinar cells
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(2 training cells), human liver mesenchyme cell (1 training cell), human pancreas
mesenchyme cell (9 training cells), mouse bone marrow erythroblasts (11 training
cells), mouse brain ependymal cells (9 training cells), and mouse pancreas B cells (16
training cells) (Supplementary Table S5). Besides, the transcriptomics similarity
between transformable cells possibly lead to incorrect prediction, as shown in human
brain neuron datasets. Moreover, unclear definition of cell types, subtypes and their
relationship might cause imperfect mapping with the true cell identity, as the example

of the intestine paneth cells described previously.

Discussion

In this study, we developed a reference-free scalable cell-type annotation tool for
single-cell transcriptomics data by using a deep learning model with a weighted GNN.
From human and mouse scRNA-seq datasets, scDeepSort was able to be able to
annotate most cells under the context of a specific organ. Moreover, scDeepSort
significantly outperformed reference-based methods, i.e., the profiles-dependent
CellAssign and Garnett and the markers-dependent SingleR and scMap. It is noted that
the performance of our designed weighted GNN-based scDeepSort improves a lot in
predicting cell types for most internal datasets compared to the traditional GNN-based
deep learning model (Supplementary Table S2), indicating the superiority of our
weighted GNN-based deep learning model in processing big data like high-throughput

scRNA-seq data and in prediction. Moreover, the excellent performance of scDeepSort
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benefits from the recently published high-quality underlying data (HCL® and MCA?!)
with the same scRNA-seq platform, which are the most comprehensive scRNA-seq

data up to date across major tissues for human and mouse.

As reference-dependent methods, SingleR and scMap must compare cells with the
reference of RNA-seq profiles, while CellAssign and Garnett need to be trained before
annotating testing cells. Obviously, these reference-dependent methods are time-
consuming, especially when using large reference databases. In addition, the
increasing number of reference cell types and the corresponding markers or large RNA-
seq reference profiles requires a high-quality processor and large memory capacity.
However, scDeepSort realizes reference-free cell-type prediction, enabling fast

annotation that does not require precise server configuration.

Because markers or RNA-seq profiles from different organs may vary considerably for
the same cell type or be strikingly similar for different cell types®2%28, another strength
of scDeepSort is its comprehensive tissue-specific annotation, covering 56 human
tissues and 32 mouse tissues. For example, the default references of SingleR are
Encode?® and Blueprint Epigenomics3® for human cells and the Immunological Genome
Project3! for mouse cells, without user-defined tissue types, which might increase

incorrect cell identity predictions

Noted that there are some methods produced “not available” results when annotating
external testing datasets. Specifically, CellAssign is not able to process some scRNA-

seq data matrix containing cells with zero library sizes, and there may be too few
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training samples for some cell types at the root of a cell type hierarchy when training
the classifier using Garnett. As for SingleR and scMap, an error may be present when
executing hierarchical clustering on the SingleR scores and when fitting a linear model
to select features for scMap. Apparently, these shortages tremendously limit the

extension of these methods, which have not yet occurred when using scDeepSort.

Undoubtedly, scDeepSort’s performance depends on the underlying human and
mouse single-cell transcriptomics atlases. Limited training datasets might influence
cell-type annotation via scDeepSort, especially for these cell types without sufficient
training data. However, future scRNA-seq studies will enable the expansion and
perfection of atlases across the two species. Comprehensive integration of HCL, MCA
and external testing datasets will greatly improve the performance of scDeepSort in

turn.

Above all, the present results showed that scDeepSort can greatly help scientists sort
single cells with an accurate cell label without prior reference knowledge, i.e., markers
or RNA-seq profiles, significantly outperforming other popular annotation methods.
scDeepSort realizes the reference-free tissue-specific cell-type annotation for single-
cell transcriptomics data across two species by using comprehensive cell atlases, which
may tremendously facilitate scRNA-seq studies and provide novel insights into
mechanisms underlying biological process, as well as disease pathogenesis and

progression.
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Methods

Datasets

All scRNA-seq datasets were retrieved from several high-quality reports and the Gene
Expression Omnibus (GEO), including human and mouse primary tissues, wherein
unannotated cells were excluded and normal or healthy cells were included. The
human cell landscape (HCL, https://figshare.com/articles/HCL_DGE_Data/7235471)
provided data for 562,977 cells from 56 types of tissues and the mouse cell atlas (MCA,
https://figshare.com/articles/MCA_DGE_Data/5435866) provided 201,764 cells
involving 32 tissues. External testing datasets used for comparing scDeepSort with
other methods were freely available from public platforms detailed in Supplementary

Table S3.

Data preprocessing

All scRNA-seq data were preprocessed using R (version 3.6.1). For the Zheng dataset,
the raw count was processed in accordance with the pipeline detailed in the Satija Lab
tutorial, using Seurat 3.0, wherein cells with more than 2,500 or fewer than 200 unique
features or with mitochondrial counts greater than 5% were filtered out. For other
datasets, all cells in the datasets were included in the filtered matrices. Human and
mouse gene symbols were revised in accordance with NCBI gene data
(https://www.ncbi.nlm.nih.gov/gene/) updated on Jan. 10, 2020, wherein unmatched
genes and duplicated genes were removed. For all human and mouse datasets, the

raw data were normalized via the global-scaling normalization method LogNormalize
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in preparation for running the subsequent scDeepSort pipeline and other methods.

scDeepSort algorithm

scDeepSort consists of three components: the embedding layer, weighted graph
aggregator and linear classifier layers. The embedding layer stores the representation
of graph nodes and is freezed during training. The weighted graph aggregator layer
inductively learns graph structure information, generating linear separable feature
space for cells. In this layer, a modified version of the GraphSAGE information
processing framework was applied as the backbone GNN. The final linear classifier
layer classifies the final cell state representation produced from the weighted graph

aggregator layer into one of the predefined cell type categories.

Weighted cell-gene graph generation

To construct the weighted cell-gene graph, cells and genes were both treated as graph
nodes and the gene expression for each cell was regarded as the weighted edge
between cells and genes, constituting the embedding layer. First, we used
dimensionality reduction methods to obtain the node embeddings for cells and genes.
For an input single-cell data matrix D € R™"™ (m genes and n cells), principal
component analysis (PCA) was applied to extract dense representations of a fixed-size
dimension (d = 400) as gene representations. A weighted sum of gene representations
with single-cell data matrix D as input was used to obtain the cell representations with
the same dimension d. By collecting gene and cell representations, a matrix

X € R™MWX4 \yas constructed as the initial node embeddings. Second, a weighted
23
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2
adjacency matrix A € R™™™ was generated from the input single-cell data matrix

D, in which the gene expression (> 0) was directly regarded as the weights of edges

between cells and genes.

Aggregating process

To inductively learn graph structure information, we followed a graph neural network
framework called GraphSAGE. The essential processes of GraphSAGE are sampling a
batch of 500 nodes with their neighbors and aggregating graph neighborhood to
generate node representations for each node. However, we proposed a new weighted
graph aggregator layer to replace the aggregator of GraphSAGE. Let hﬁ‘ (a 200-
dimensional vector in our experiments) represents the embedding of node i in the k"

layer. Our weighted graph aggregator layer can be summarized as:
hf = o(W*AGG(R{™, hy)) + b1

where N(i) is the set of one-hop neighbors of node i. The output of the aggregate
function AGG is then transformed to target dimension by a linear transformation
shared among all nodes, followed by a non-linear activation function o called Rectified
Linear Unit (ReLU). In practice, we set k = 1. The aggregate function AGG contains two
newly techniques. The first technique is called weighted adjacency matrix
normalization. The main reasons for applying normalization to weighted adjacency

matrix are twofold. Gene expression varies a lot across different kinds of cells. For
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single cell, the expression level and pattern of different genes can also vary. Thus, we

normalize weighted adjacency matrix A as following:

aij
al-j — di Xe———
ZjeN(i)aij

where a;;, the weight of an edge from node j to node j, is the element of A, and d;
denotes the indegree of cell node i. The second technique is the learnable sharing
confidence. Due to batch effect and missing value issues, we proposed to add
learnable parameters to each edges as a confidence matrix while leveraging the
context of one-hop neighborhood of nodes in a weighted graph. For a gene node j, we
proposed a learnable sharing parameter f; as the confidence value for the edges
that interact with node j. Another learnable parameter a as the confidence value of
the self-loop edge for each cell. Its value will be shared among cells since we may
encounter with new cells in testing time. Therefore, the overall formulation of
gathering neighborhood information given each sub-graph of cell node i is stated
below:

ahf™" + ¥ jenyBaihf "

].( — k-1
hi=o(W T+ NG|

+b* 1)

A linear classifier layer

The weighted graph aggregator layer produces a latent feature space for the graph.
To classify the final cell state representation into one of the pre-defined cell-type

categories, we extract cell node representations and feed them into a linear classifier
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layer.
Vi = softmax(Wh{‘ + b)

Cross entropy loss was then used to measure the difference between the predicted

class distribution and the labels. Therefore, the objective function can be written as:

~

0 = argming — ) y.log 7y,

c
c=1

We train our model with the above objective function using a stochastic gradient
descent method called Adam, with default hyper parameters except for the learning

rate of 0.001 and the weight decay rate of 0.0005 until convergence or after 500

epochs.
scDeepSort performance evaluation on internal datasets

For each cell type, cells numbering at least more than 5%o of the total cells in each
tissue were included and randomly divided into training and testing sets, ensuring that
the ratio of training and testing cells was set to 8:2. For each tissue from the human
and mouse atlases, all training cells of various types were merged and supervised
learned with the GNN-based deep learning model for cell-type prediction on the

testing cells originated from the same tissue.
Performance comparison with other methods on external testing datasets

CellMatch, MCA or HCL were used as the reference datasets for reference-dependent
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methods. In order to compare the performance of scDeepSort with other methods on
annotating cell types of single-cell transcriptomics data, only the cell types that existed
in both cell marker database (CellMatch) and RNA-seq profiles (MCA and HCL) were

selected to construct the testing datasets.

For CellAssign, external testing datasets were first transformed as
SingleCellExperiment objects with a normalized matrix. The CellMatch database
containing tissue-specific cell markers was then used as reference. All other

parameters in CellAssign were kept as default (i.e., the learning rate was set to 0.01).

For Garnett, marker genes from the CellMatch database were extracted and checked
to train classifiers for each testing dataset. The parameter of the number of unknown
type cells was set as 50 during classification. Then, the trained classifiers were used to

classify the cells for each test dataset.

For SingleR and scMap, external testing datasets were transformed into SingleR and
SingleCellExperiment objects and annotated based on reference database of scRNA-
seq profiles. To annotate human and mouse testing datasets, sScRNA-seq profiles from
human and mouse cell atlases were used as the reference database for human and

mouse, respectively.

Accuracy evaluation

For scDeepSort, CellAssign, SingleR and scMap, accuracy is defined as the percentage
of consistent cells with the same cell type, as in the literature.
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Data availability

No new data was generated for this study. All data used in this study is publicly

available as previously described.

Code availability

scDeepSort is available as a python package
(https://github.com/ZJUFanLab/scDeepSort) and the source code and results of
comparison with other methods are available at github

(https://github.com/ZJUFanLab/scDeepSort_performace_ comparison).

Statistics

R (version 3.6.1) and GraphPad Prism 8.0.1 were used for the statistical analysis.
Differences between multiple groups were determined using the matched ANOVA test

by mixed-effects analysis with Dunnett's multiple comparisons test (significant with p

<0.0332).
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