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Abstract 

Advances in single-cell RNA sequencing (scRNA-seq) have furthered the simultaneous 

classification of thousands of cells in a single assay based on transcriptome profiling. 

In most analysis protocols, single-cell type annotation relies on marker genes or RNA-

seq profiles, resulting in poor extrapolation. Here, we introduce scDeepSort 

(https://github.com/ZJUFanLab/scDeepSort), a reference-free cell-type annotation 

tool for single-cell transcriptomics that uses a deep learning model with a weighted 

graph neural network. Using human and mouse scRNA-seq data resources, we 

demonstrate the feasibility of scDeepSort and its high accuracy in labeling 764,741 

cells involving 56 human and 32 mouse tissues. Significantly, scDeepSort 

outperformed reference-dependent methods in annotating 76 external testing scRNA-

seq datasets, including 126,384 cells (85.79%) from ten human tissues and 134,604 

cells from 12 mouse tissues (81.30%). scDeepSort accurately revealed cell identities 

without prior reference knowledge, thus potentially providing new insights into 

mechanisms underlying biological processes, disease pathogenesis, and disease 

progression at a single-cell resolution.  
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Introduction 

Recent advancements in single-cell RNA sequencing (scRNA-seq) that permit the 

identification of various cell types based on transcriptomics at single-cell resolution 

have facilitated our understanding of the heterogeneity of cellular phenotypes and 

their composition within complex tissues1,2. In the data processing protocols of scRNA-

seq experiments, cell-type annotation is a vital step for subsequent analysis3. Cell type 

identification is commonly performed by mapping differentially expressed genes at the 

level of pre-computed clusters with prior knowledge of cell markers like scCATCH4. 

Another cell-based annotation strategy tries to compare the similarities between 

single cell and reference database of bulk or single-cell RNA-seq profiles to determine 

potential cellular identities. Several methods including SingleR5, CHETAH6, scMap7 and 

scHCL8 belong to this category. An increasing number of machine learning-based 

annotation approaches—including CellAssign9 and Garnett10—have emerged as well 

in recent years. Such methods rely heavily on references, namely RNA-seq profiles with 

known cell types or known cell marker genes as prior knowledge, severely limiting the 

extrapolation of these methods. Still, accurate cell-type annotation for single-cell 

transcriptomic data remains a great challenge. 

Fortunately, recent advances in deep learning have enabled major progress in the 

ability of artificial intelligence techniques to integrate big data, incorporate existing 

knowledge, and learn arbitrarily complex relationships11,12. Given the state-of-the-art 

accuracy deep learning has achieved in numerous prediction tasks, it has been 
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increasingly used in biological research13 and biomedical applications14 such as drug 

discovery15, medical diagnosis16, as well as various -omics tasks17. For example, 

Kermany et al. combined optical coherence tomography images with a deep-learning 

framework and developed an efficient diagnostic tool to support the clinical decision 

for patients with blinding retinal diseases18. Chaudhary et al. established a deep 

learning-based model using RNA-seq, miRNA-seq and methylation data of 360 

hepatocellular carcinoma (HCC) patients to help predict patient survival19. Graph 

neural networks (GNNs) are connectionist models which capture the graph 

dependence through message passing between the graph nodes. Unlike standard 

neural networks, GNNs retain a state that represents information from its 

neighborhood with arbitrary depth, which have demonstrated ground-breaking 

performance on many learning tasks20. Moreover, recent published large-scale scRNA-

seq resources have provided the foundation for a GNN-based deep learning model 

that can execute challenging prediction tasks. 

In this study, we designed a reference-free cell-type annotation method called 

scDeepSort, based on a weighted GNN framework, which addresses this challenge (see 

Fig. 1 for an overview). Briefly, scDeepSort is learned by a weighted GNN model for 

supervised training on recently published the most comprehensive single-cell 

transcriptomics atlases—a human cell landscape (HCL8) consisting of 56 tissues and 

562,977 cells and a mouse cell atlas (MCA21) consisting of 32 tissues and 201,764 cells 

(Supplementary Table S1). scDeepSort showed high accuracy in cell type identification, 

significantly outperforming four current excellent methods—CellAssign, Garnett, 
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SingleR, and scMap—on 76 external human and mouse testing datasets including 

126,384 cells from ten human tissues and 134,604 cells from 12 mouse tissues. The 

present results indicated that scDeepSort can help scientists rapidly annotate a single 

cell with an accurate cell label without prior reference knowledge, i.e., markers or 

RNA-seq profiles, which may tremendously facilitate scRNA-seq studies and provide 

novel insights into the mechanisms underlying biological processes and disease 

pathogenesis and progression. 

 

Results 

General description of scDeepSort 

In brief, we applied a supervised deep learning model based on a weighted GNN 

framework to build the scDeepSort model with underlying data of human and mouse 

single-cell transcriptomics atlases. First, dense representations for cells and genes 

were obtained with dimensionality reduction methods initialize fixed-size node 

embeddings, since the single-cell transcriptomics data are usually sparse matrices. 

Principal component analysis (PCA) was used to extract dense representations for gene 

nodes from the cell-gene data matrix, and cell node representations were then 

calculated by the weighted sum of gene node representations and the cell–gene data 

matrix. Then, an undirected and weighted graph containing cell nodes and gene nodes 

was constructed from an adjacent weighted matrix by taking the gene expression as 
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the weighted edges between cells and genes to model the intrinsic geometric 

information, which constitutes scDeepSort’s first embedding layer (Fig. 2). 

In detail, the scDeepSort model’s architecture consists of three components: the 

embedding layer, the weighted graph aggregator layer and the linear classifier layer 

(Fig. 2). The embedding layer stores representations of graph nodes, which are 

initialized as previously described and are freezed during training. The weighted graph 

aggregator layer uses inductive learning to ascertain graph structure information; in 

this layer, GraphSAGE22 was applied as the backbone GNN framework and heavily 

modified in some aspects. First, a normalized weighted adjacency matrix that is quite 

different from the adjacent matrix used in conventional GNN models was proposed 

and applied to the weighted cell-gene graph for each cell node, in consideration of the 

wide difference of expression level and pattern for different genes and cells. Second, 

a learnable sharing confidence for each gene node was incorporated into the weighted 

graph in order to avoid batch effect and solve the missing value issues. Third, a self-

loop confidence was added to the weighted graph for each cell node. The weighted 

graph aggregator layer generates a linear separable feature space for cells. The final 

linear classifier layer classifies the final cell state representation produced from the 

weighted graph aggregator layer into one of the predefined cell type categories. 

During training for each cell-centered subgraph, the cell node representation, along 

with its connected gene node representations from the embedding layer, was 

extracted and then aggregated on the weighted graph aggregator layer by gathering 
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information about the neighborhood and itself, which produced a new cell

representation for each cell. Once a label is predicted by the linear classifier layer, the

loss between this prediction and the correct label is computed and then used to

update the parameters of three layers until convergence (Fig. 2). 

Fig. 1. General conceptual framework and validation of scDeepSort. a) Human and

mouse single-cell transcriptomics atlases were curated from HCL and MCA as the

underlying data for training scDeepSort. The human and mouse atlases include

562,977 cells from 56 tissues and 201,764 cells from 32 tissues, respectively. b) For

each cell, a graph network was constructed of this cell, its genes and neighboring cells

for supervised learning scDeepSort with known cell labels from the transcriptomic

atlases. c) Internal human and mouse atlases datasets and external testing datasets of

single-cell transcriptomics data involving multiple tissues were employed to test the

performance of scDeepSort. Markers- and profiles-dependent annotation methods
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(CellAssign, Garnett, SingleR and scMap) were compared with scDeepSort on human

and mouse external testing datasets. 

Fig. 2. The weighted GNN algorithm of scDeepSort. The algorithm consists of

embedding, weighted graph aggregator and linear classifier layers. The embedding

layer stores the graph node representations and is freezed during training, wherein

dimensionality reduction methods (PCA and weighted sums) were used to generate

the initial fix-size node representations and the gene expression for each cell was

regarded as the weighted edge between cells and genes forming a weighted adjacent

matrix. In the weighted aggregator layer, a self-loop confidence for each cell node and

a learnable sharing confidence for each gene node were incorporated into the

weighted cell-gene graph. For each cell-centered subgraph, weighted edges were

normalized and node itself and neighborhood were then gathered to generate a new

cell node representation during aggregation. The linear classifier layer categorizes the
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final cell state representation as a predefined cell type. 

 

Performance on internal datasets 

In this study, a total of 562,977 human cells from 56 tissues and 201,746 mouse cells 

from 32 tissues which were collected from recently published HCL and MCA were 

curated to construct single-cell transcriptomic atlases (Supplementary Table S1). For 

each cell type, cells numbering fewer than 5‰ of the total cells in each tissue were 

dropped. For each tissue in the human and mouse atlases, cells of various types were 

first merged and randomly divided into training and testing sets, ensuring that the ratio 

of training and testing cells was set to 8:2 for each cell type. In total, this process 

generated 443,566 training cells and 110,860 testing cells from the HCL, 160,519 

training cells and 40,112 testing cells from the MCA (Fig. 2a). After supervised learning 

on training sets, we evaluated the scDeepSort’s performance on HCL and MCA testing 

sets.  

scDeepSort assigned labels with a 94.76% accuracy on 110,860 human testing cells 

and a 91.04% accuracy on 40,112 mouse testing cells (Fig. 2a). Although the accuracies 

were only up to 80% on mouse fetal brain cells and testis cells, the median accuracies 

across 56 human tissues and 32 mouse tissues reached 95.47% and 92.23% (Fig. 2b). 

Across 56 human tissues and 32 mouse tissues, scDeepSort annotated the most cells, 

with the accuracy ranging from 84.28% to 99.25% and from 73.88% to 97.88%, 

respectively (Fig. 2c and 2d, Supplementary Table S2). The results demonstrate the 
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feasibility of the GNN-based deep learning model for cell-type classification at a single-

cell resolution. scDeepSort were then systemically trained based on the HCL and MCA,

on 562,977 human cells from 56 tissues and 201,746 mouse cells from 32 tissues. 

Fig. 3. scDeepSort performance on internal datasets. a) Statistics of the HCL and MCA

training and testing sets, as well as the accuracy on all testing cells. b) Boxplots show

the distribution of accuracies on each tissue for HCL and MCA testing sets. The median

accuracy is labelled beside the corresponding box. c) Accuracy of scDeepSort in

annotating the HCL testing set for 56 tissues (line chart). The bar chart shows the

number of test cells for each tissue. d) Accuracy of scDeepSort in annotating the MCA

testing set for 32 tissues.  
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Performance comparison of scDeepSort with other methods 

We collected human and mouse scRNA-seq data manually from high-quality studies, 

forming 76 external testing datasets (Supplementary Table S3) to comprehensively 

compare the performance of scDeepSort with other single-cell annotating methods. 

For the markers-dependent methods (CellAssign and Garnett), CellMatch was used as 

the reference for annotation. CellMatch is a comprehensive and tissue-specific cellular 

taxonomy reference database providing a panel of 20,792 human and mouse marker 

genes involved with 184 tissue types and 353 cell types. For profiles-dependent 

methods (SingleR and scMap), the HCL and MCA underlying scDeepSort were used as 

references. To ensure that all methods are able to predict the right cell identity, only 

cell types that were recorded in both cell marker database (CellMatch) and RNA-seq 

profiles (HCL and MCA) were selected to establish external testing datasets, which 

generated a total of 260,988 testing cells for human and mouse (Supplementary Table 

S4).  

There are 27 human external testing datasets containing a total of 126,384 cells 

involving 10 tissue: blood, brain, colorectum, fetal kidney, kidney, liver, lung, pancreas, 

placenta and spleen. By mapping the predicted cell label with the real one 

(Supplementary Table S5), scDeepSort annotated testing cells with a 85.79% accuracy, 

higher than all other methods (CellAssign, 13.97%; Garnett, 26.27%; SingleR, 50.46%; 

scMap, 20.14%; Table 1). scDeepSort assigned the most accurate cell labels across 10 

tissues and across 22 cell types (Fig. 4a and 4b) compared to other methods, the 
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accuracies of which were mostly lower than 40%. Although the median accuracy of 

scDeepSort was 66.22%, its performance was significantly superior to other methods 

(Fig. 4c). At the level of cell type among 10 tissues, the results were strikingly 

concordant to the tissue-level results: the median accuracy of scDeepSort rose to 

80.83%, whereas the median accuracies of CellAssign, SingleR and scMap were only 

9.88%, 28.40% and 7.25% and that of Garnett was near 0% (Fig. 5d).  

Table 1. Comparison of scDeepSort with other methods. 

NA, not available. 

Method 

scDeepSort CellAssign Garnett SingleR scMap 

Markers-free 

Markers-

dependent 

Markers-

dependent 

NA NA 

Profiles-free NA NA Profiles-dependent Profiles-dependent 

Accuracy across 

external testing 

cells 

Human 

(126,384) 

85.79% 13.97% 26.27% 50.46% 20.14% 

Mouse 

(134,604) 

81.30% 12.51% 8.25% 74.28% 32.39% 

Accuracy across 

tissues 

(median+SE) 

Human 66.22±7.98% 11.25±5.18% 9.82±4.50% 18.61±6.52% 9.26±4.14% 

Mouse 91.49±3.55% 0.00±3.95% 0.02±1.16% 80.46±3.95% 23.08±4.33% 

Accuracy across 

cell types 

(median+SE) 

Human 80.83±4.48% 9.88±3.36% 0.43±2.63% 28.40±3.86% 7.25±3.66% 

Mouse 89.19±3.76% 4.15±4.15% 0.00±1.30% 81.38±3.47% 9.30±3.34% 
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Although scDeepSort outperformed other methods overall, it performed worse than 

other methods on some individual testing datasets at the level of tissues and cell types. 

For example, CellAssign obtained the highest accuracy among all methods on 

annotating the fetal kidney, the 6th pancreas, the last acinar cell and the 2nd 

mesenchymal cell datasets, etc. (Fig. 4a and 4b). On annotating the 1st brain and the 

3rd pancreas datasets, SingleR perfectly classified the most cells’ identities (Fig. 5b). 

The accuracy of Garnett and scMap both reached 100% on the 2nd oligodendrocyte 

dataset.  

Surprisingly, all tested methods hardly predicted the accurate cell types on several 

human testing datasets, e.g., the 2nd and the 3rd brain, colorectum and most pancreas 

datasets (Fig. 4a), corresponding to the brain neuron, colorectum enterocyte and 

pancreas acinar datasets (Fig. 4b, Supplementary Table S5). For example, the 2,506 

neurons in the 2nd brain dataset23 were typically assigned as astrocytes by scDeepSort 

(92.98%) and scMap (73.34%), as neutrophils by CellAssign (39.55%), as unknown by 

Garnett (34.00%), and as T cells by SingleR (48.96%), whereas the 1,758 neurons in the 

3rd brain dataset24 were mainly classified as astrocytes by scDeepSort (91.81%) and 

scMap (75.14%), as macrophages by CellAssign (28.33%), as unknown by Garnett 

(67.12%), and as fetal enterocyte by SingleR (51.71%) (Supplementary Table S6). This 

result indirectly indicated the similarity between neurons and astrocytes, possibly 

because astrocytes can enter a neurogenic program by blocking Notch signaling25. 
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Fig. 4. Performance comparison on human external testing datasets. a) Heatmap and

distribution histogram of accuracies on 27 external testing datasets across 10 tissues

by scDeepSort, CellAssign, Garnett, SingleR and scMap. NA, not available. b) Heatmap

and distribution histogram of accuracies across 22 cell types. c) Boxplots summarized

the maximal, minimal, median and quantile tissue-level accuracies for each method.

The median accuracy is labelled beside the corresponding box. d) Boxplots

summarized the statistical parameters at the level of cell types. Differences between

multiple groups were determined using the matched ANOVA test by mixed-effects

analysis with Dunnett's multiple comparisons test (scDeepSort as control; *, p < 0.0332;

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.13.094953doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.094953
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

**, p < 0.0021; ***, p < 0.0002; ****, p < 0.0001). 

 

In the same manner, we also evaluated the performance of scDeepSort and other 

methods on annotating 49 external testing datasets of mouse cells, which includes 

134,604 cells from 12 tissues: blood, bone marrow, brain, fetal brain, intestine, kidney, 

liver, lung, mammary gland, pancreas, spleen and testis. By mapping the predicted cell 

label with the real one (Supplementary Table S5), scDeepSort and SingleR accurately 

annotated the most cells for most of the external testing datasets (Fig. 5a and 5b). The 

median accuracies for scDeepSort and SingleR reached 91.49% and 80.46% at the 

tissue level (Fig. 5c). However, CellAssign and Garnett seemed unable to distinguish 

the most cells’ identities, accurately predicted only 12.51% and 8.25% cell identities 

across 134,604 mouse cells (Table 1). At the level of cell type among 12 tissues, the 

results were strikingly similar (Fig. 5b): the median accuracy of scDeepSort and SingleR 

still reached 89.19% and 81.38%, whereas the median accuracy of CellAssign and 

Garnett were both low, to about 0% (Fig. 5c and 5d). For scMap, it accurately predicted 

32.39% of cell identities overall testing cells and its median accuracies were 23.08% 

and 9.30% at the levels of tissue and cell type, respectively (Table 1, Fig. 5c and 5d).  

Interestingly, SingleR also performed well on the prediction task across the major 

testing datasets, realizing 74.28% accuracy over all testing cells, only a little worse than 

scDeepSort at 81.30% (Table 1). Although CellAssign and scMap performed poorly 

overall, they outperformed scDeepSort on some testing datasets. For instance, 
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CellAssign obtained the highest accuracy among all methods in annotating the fetal

brain dataset, the 1st and 8th testis datasets and 6th macrophage dataset (Fig. 5a and

5b). In annotating the 2nd B cell, erythroblasts, 2nd microglia and 6th neuron datasets,

CellAssign perfectly classified the most cells’ identities (Fig. 5b). The accuracy of scMap

achieved 100% in classifying the 28 cells in the 1st intestine dataset and 108 cells in the

2nd pancreas dataset, corresponding to paneth and acinar cells, respectively. Among

mouse external testing datasets, Garnett’s accuracies were always low, ranging from

0% to 23.41% (Fig. 5a) and 0%-65.45% (Fig. 5b).  
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Fig. 5. Performance comparison on mouse external testing datasets. a) Heatmap and 

distribution histogram of accuracies on 49 external testing datasets across 18 tissues 

by scDeepSort, CellAssign, Garnett, SingleR and scMap. NA, not available. b) Heatmap 

and distribution histogram of accuracies across 32 cell types. c) Boxplots summarized 

the maximal, minimal, median and quantile tissue-level accuracies for each method. 

The median accuracy is labelled beside the corresponding box. d) Boxplots 

summarized the statistical parameters at the level of cell types. Differences between 

multiple groups were determined using the matched ANOVA test by mixed-effects 

analysis with Dunnett's multiple comparisons test (scDeepSort as control; **, p < 

0.0021; ****, p < 0.0001). 

We note that all methods seldom predicted accurate cell types for some mouse testing 

datasets, e.g., the 3rd intestine and 8th and 11th testis datasets. For example, the 3rd 

intestine dataset comprised 260 intestine paneth cells marked by marker genes in the 

literature26. However, many of these cells were predicted to be epithelial cells by 

scDeepSort (92.69%), CellAssign (100%), SingleR (93.08%) and scMap (58.08%) 

(Supplementary Table S6), which may be unsurprising, as paneth cells are post-mitotic 

intestinal epithelial cells27. 

In short, scDeepSort performed significantly better than all reference-dependent 

methods on 27 human datasets and 49 mouse datasets across 126,384 cells and 

134,604 cells, respectively (Table 1). Some inconsistent predictions may have been 

caused by insufficient training samples, as in the case of human pancreas acinar cells 
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(2 training cells), human liver mesenchyme cell (1 training cell), human pancreas 

mesenchyme cell (9 training cells), mouse bone marrow erythroblasts (11 training 

cells), mouse brain ependymal cells (9 training cells), and mouse pancreas B cells (16 

training cells) (Supplementary Table S5). Besides, the transcriptomics similarity 

between transformable cells possibly lead to incorrect prediction, as shown in human 

brain neuron datasets. Moreover, unclear definition of cell types, subtypes and their 

relationship might cause imperfect mapping with the true cell identity, as the example 

of the intestine paneth cells described previously.  

 

Discussion 

In this study, we developed a reference-free scalable cell-type annotation tool for 

single-cell transcriptomics data by using a deep learning model with a weighted GNN. 

From human and mouse scRNA-seq datasets, scDeepSort was able to be able to 

annotate most cells under the context of a specific organ. Moreover, scDeepSort 

significantly outperformed reference-based methods, i.e., the profiles-dependent 

CellAssign and Garnett and the markers-dependent SingleR and scMap. It is noted that 

the performance of our designed weighted GNN-based scDeepSort improves a lot in 

predicting cell types for most internal datasets compared to the traditional GNN-based 

deep learning model (Supplementary Table S2), indicating the superiority of our 

weighted GNN-based deep learning model in processing big data like high-throughput 

scRNA-seq data and in prediction. Moreover, the excellent performance of scDeepSort 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.13.094953doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.094953
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

benefits from the recently published high-quality underlying data (HCL8 and MCA21) 

with the same scRNA-seq platform, which are the most comprehensive scRNA-seq 

data up to date across major tissues for human and mouse. 

As reference-dependent methods, SingleR and scMap must compare cells with the 

reference of RNA-seq profiles, while CellAssign and Garnett need to be trained before 

annotating testing cells. Obviously, these reference-dependent methods are time-

consuming, especially when using large reference databases. In addition, the 

increasing number of reference cell types and the corresponding markers or large RNA-

seq reference profiles requires a high-quality processor and large memory capacity. 

However, scDeepSort realizes reference-free cell-type prediction, enabling fast 

annotation that does not require precise server configuration. 

Because markers or RNA-seq profiles from different organs may vary considerably for 

the same cell type or be strikingly similar for different cell types8,21,28, another strength 

of scDeepSort is its comprehensive tissue-specific annotation, covering 56 human 

tissues and 32 mouse tissues. For example, the default references of SingleR are 

Encode29 and Blueprint Epigenomics30 for human cells and the Immunological Genome 

Project31 for mouse cells, without user-defined tissue types, which might increase 

incorrect cell identity predictions 

Noted that there are some methods produced “not available” results when annotating 

external testing datasets. Specifically, CellAssign is not able to process some scRNA-

seq data matrix containing cells with zero library sizes, and there may be too few 
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training samples for some cell types at the root of a cell type hierarchy when training 

the classifier using Garnett. As for SingleR and scMap, an error may be present when 

executing hierarchical clustering on the SingleR scores and when fitting a linear model 

to select features for scMap. Apparently, these shortages tremendously limit the 

extension of these methods, which have not yet occurred when using scDeepSort. 

Undoubtedly, scDeepSort’s performance depends on the underlying human and 

mouse single-cell transcriptomics atlases. Limited training datasets might influence 

cell-type annotation via scDeepSort, especially for these cell types without sufficient 

training data. However, future scRNA-seq studies will enable the expansion and 

perfection of atlases across the two species. Comprehensive integration of HCL, MCA 

and external testing datasets will greatly improve the performance of scDeepSort in 

turn.  

Above all, the present results showed that scDeepSort can greatly help scientists sort 

single cells with an accurate cell label without prior reference knowledge, i.e., markers 

or RNA-seq profiles, significantly outperforming other popular annotation methods. 

scDeepSort realizes the reference-free tissue-specific cell-type annotation for single-

cell transcriptomics data across two species by using comprehensive cell atlases, which 

may tremendously facilitate scRNA-seq studies and provide novel insights into 

mechanisms underlying biological process, as well as disease pathogenesis and 

progression. 
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Methods 

Datasets 

All scRNA-seq datasets were retrieved from several high-quality reports and the Gene 

Expression Omnibus (GEO), including human and mouse primary tissues, wherein 

unannotated cells were excluded and normal or healthy cells were included. The 

human cell landscape (HCL, https://figshare.com/articles/HCL_DGE_Data/7235471) 

provided data for 562,977 cells from 56 types of tissues and the mouse cell atlas (MCA, 

https://figshare.com/articles/MCA_DGE_Data/5435866) provided 201,764 cells 

involving 32 tissues. External testing datasets used for comparing scDeepSort with 

other methods were freely available from public platforms detailed in Supplementary 

Table S3. 

Data preprocessing 

All scRNA-seq data were preprocessed using R (version 3.6.1). For the Zheng dataset, 

the raw count was processed in accordance with the pipeline detailed in the Satija Lab 

tutorial, using Seurat 3.0, wherein cells with more than 2,500 or fewer than 200 unique 

features or with mitochondrial counts greater than 5% were filtered out. For other 

datasets, all cells in the datasets were included in the filtered matrices. Human and 

mouse gene symbols were revised in accordance with NCBI gene data 

(https://www.ncbi.nlm.nih.gov/gene/) updated on Jan. 10, 2020, wherein unmatched 

genes and duplicated genes were removed. For all human and mouse datasets, the 

raw data were normalized via the global-scaling normalization method LogNormalize 
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in preparation for running the subsequent scDeepSort pipeline and other methods. 

scDeepSort algorithm 

scDeepSort consists of three components: the embedding layer, weighted graph 

aggregator and linear classifier layers. The embedding layer stores the representation 

of graph nodes and is freezed during training. The weighted graph aggregator layer 

inductively learns graph structure information, generating linear separable feature 

space for cells. In this layer, a modified version of the GraphSAGE information 

processing framework was applied as the backbone GNN. The final linear classifier 

layer classifies the final cell state representation produced from the weighted graph 

aggregator layer into one of the predefined cell type categories. 

Weighted cell-gene graph generation 

To construct the weighted cell-gene graph, cells and genes were both treated as graph 

nodes and the gene expression for each cell was regarded as the weighted edge 

between cells and genes, constituting the embedding layer. First, we used 

dimensionality reduction methods to obtain the node embeddings for cells and genes. 

For an input single-cell data matrix  𝐷 ∈ ℝ𝑚×𝑛  (m genes and n cells), principal 

component analysis (PCA) was applied to extract dense representations of a fixed-size 

dimension (d = 400) as gene representations. A weighted sum of gene representations 

with single-cell data matrix D as input was used to obtain the cell representations with 

the same dimension d. By collecting gene and cell representations, a matrix 

𝑋 ∈ ℝ(𝑚+𝑛)×𝑑 was constructed as the initial node embeddings. Second, a weighted 
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adjacency matrix 𝐴 ∈ ℝ(𝑚+𝑛)2

 was generated from the input single-cell data matrix 

D, in which the gene expression (> 0) was directly regarded as the weights of edges 

between cells and genes. 

Aggregating process 

To inductively learn graph structure information, we followed a graph neural network 

framework called GraphSAGE. The essential processes of GraphSAGE are sampling a 

batch of 500 nodes with their neighbors and aggregating graph neighborhood to 

generate node representations for each node. However, we proposed a new weighted 

graph aggregator layer to replace the aggregator of GraphSAGE. Let ℎ𝑖
𝑘

  (a 200-

dimensional vector in our experiments) represents the embedding of node i in the kth 

layer. Our weighted graph aggregator layer can be summarized as: 

ℎ𝑖
𝑘 = 𝜎(𝑊𝑘−1𝐴𝐺𝐺(ℎ𝑖

𝑘−1, ℎ𝑁(𝑖)
𝑘−1) + 𝑏𝑘−1) 

where N(i) is the set of one-hop neighbors of node i. The output of the aggregate 

function AGG is then transformed to target dimension by a linear transformation 

shared among all nodes, followed by a non-linear activation function σ called Rectified 

Linear Unit (ReLU). In practice, we set k = 1. The aggregate function AGG contains two 

newly techniques. The first technique is called weighted adjacency matrix 

normalization. The main reasons for applying normalization to weighted adjacency 

matrix are twofold. Gene expression varies a lot across different kinds of cells. For 
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single cell, the expression level and pattern of different genes can also vary. Thus, we 

normalize weighted adjacency matrix A as following: 

𝑎𝑖𝑗 ← 𝑑𝑖 ×
𝑎𝑖𝑗

∑𝑗∈𝑁(𝑖)𝑎𝑖𝑗
 

where 𝑎𝑖𝑗, the weight of an edge from node j to node i, is the element of A, and 𝑑𝑖 

denotes the indegree of cell node i. The second technique is the learnable sharing 

confidence. Due to batch effect and missing value issues, we proposed to add 

learnable parameters to each edges as a confidence matrix while leveraging the 

context of one-hop neighborhood of nodes in a weighted graph. For a gene node j, we 

proposed a learnable sharing parameter 𝛽𝑗  as the confidence value for the edges 

that interact with node j. Another learnable parameter 𝛼 as the confidence value of 

the self-loop edge for each cell. Its value will be shared among cells since we may 

encounter with new cells in testing time. Therefore, the overall formulation of 

gathering neighborhood information given each sub-graph of cell node i is stated 

below: 

ℎ𝑖
𝑘 = 𝜎(𝑊𝑘−1  

𝛼ℎ𝑖
𝑘−1 + ∑𝑗∈𝑁(𝑖)𝛽𝑗𝑎𝑖𝑗ℎ𝑗

𝑘−1

1 + |𝑁(𝑖)|
+ 𝑏𝑘−1) 

A linear classifier layer 

The weighted graph aggregator layer produces a latent feature space for the graph. 

To classify the final cell state representation into one of the pre-defined cell-type 

categories, we extract cell node representations and feed them into a linear classifier 
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layer. 

𝑦̂𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ𝑖
𝑘 + 𝑏) 

Cross entropy loss was then used to measure the difference between the predicted 

class distribution and the labels. Therefore, the objective function can be written as: 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 − ∑ 𝑦𝑐𝑙𝑜𝑔

𝐶

𝑐=1

𝑦̂𝑐 

We train our model with the above objective function using a stochastic gradient 

descent method called Adam, with default hyper parameters except for the learning 

rate of 0.001 and the weight decay rate of 0.0005 until convergence or after 500 

epochs. 

scDeepSort performance evaluation on internal datasets 

For each cell type, cells numbering at least more than 5‰ of the total cells in each 

tissue were included and randomly divided into training and testing sets, ensuring that 

the ratio of training and testing cells was set to 8:2. For each tissue from the human 

and mouse atlases, all training cells of various types were merged and supervised 

learned with the GNN-based deep learning model for cell-type prediction on the 

testing cells originated from the same tissue. 

Performance comparison with other methods on external testing datasets 

CellMatch, MCA or HCL were used as the reference datasets for reference-dependent 
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methods. In order to compare the performance of scDeepSort with other methods on 

annotating cell types of single-cell transcriptomics data, only the cell types that existed 

in both cell marker database (CellMatch) and RNA-seq profiles (MCA and HCL) were 

selected to construct the testing datasets.  

For CellAssign, external testing datasets were first transformed as 

SingleCellExperiment objects with a normalized matrix. The CellMatch database 

containing tissue-specific cell markers was then used as reference. All other 

parameters in CellAssign were kept as default (i.e., the learning rate was set to 0.01). 

For Garnett, marker genes from the CellMatch database were extracted and checked 

to train classifiers for each testing dataset. The parameter of the number of unknown 

type cells was set as 50 during classification. Then, the trained classifiers were used to 

classify the cells for each test dataset. 

For SingleR and scMap, external testing datasets were transformed into SingleR and 

SingleCellExperiment objects and annotated based on reference database of scRNA-

seq profiles. To annotate human and mouse testing datasets, scRNA-seq profiles from 

human and mouse cell atlases were used as the reference database for human and 

mouse, respectively. 

Accuracy evaluation 

For scDeepSort, CellAssign, SingleR and scMap, accuracy is defined as the percentage 

of consistent cells with the same cell type, as in the literature. 
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Data availability 

No new data was generated for this study. All data used in this study is publicly 

available as previously described. 

Code availability 

scDeepSort is available as a python package 

(https://github.com/ZJUFanLab/scDeepSort) and the source code and results of 

comparison with other methods are available at github 

(https://github.com/ZJUFanLab/scDeepSort_performace_ comparison). 

Statistics 

R (version 3.6.1) and GraphPad Prism 8.0.1 were used for the statistical analysis. 

Differences between multiple groups were determined using the matched ANOVA test 

by mixed-effects analysis with Dunnett's multiple comparisons test (significant with p 

< 0.0332). 
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