bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

10

11

12

13
14
15
16
17
18
19
20
21
22
23

24

25

26
27
28
29
30
31
32
33
34

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Brain Modeling ToolKit: an Open Source
Software Suite for Multiscale Modeling of
Brain Circuits

Kael Dai', Sergey L. Gratiy', Yazan N. Billeh?, Richard Xu?, Binghuang Cai?, Nicholas Cain?, Atle E.
Rimehaug?, Alexander J. Stasik?, Gaute T. Einevoll?, Stefan Mihalas?, Christof Koch?, and Anton
Arkhipov®”

1 Allen Institute, Seattle, WA
2 Norwegian University of Life Sciences & University of Oslo, Oslo, Norway

* Correspondence: antona@alleninstitute.org

Abstract

Experimental studies in neuroscience are producing data at a rapidly increasing rate, providing exciting
opportunities and formidable challenges to existing theoretical and modeling approaches. To turn
massive datasets into predictive quantitative frameworks, the field needs software solutions for
systematic integration of data into realistic, multiscale models. Here we describe the Brain Modeling
ToolKit (BMTK), a software suite for building models and performing simulations at multiple levels of
resolution, from biophysically detailed multi-compartmental, to point-neuron, to population-statistical
approaches. Leveraging the SONATA file format and existing software such as NEURON, NEST, and
others, BMTK offers consistent user experience across multiple levels of resolution. It permits highly
sophisticated simulations to be set up with little coding required, thus lowering entry barriers to new
users. We illustrate successful applications of BMTK to large-scale simulations of a cortical area. BMTK is
an open-source package provided as a resource supporting modeling-based discovery in the community.

Introduction

Recent emergence of systematic large-scale efforts for comprehensive characterization of brain cell
types, their connectivity, and in vivo activity (e.g. (Amunts et al., 2016; Bouchard et al., 2016; Hawrylycz
et al., 2016; Koch and Jones, 2016; Martin and Chun, 2016; Vogelstein et al., 2016)) is fundamentally
reshaping neuroscience research. As the new extremely rich and multimodal data become increasingly
available to the community, the need is more urgent than ever to develop sophisticated modeling
approaches that could help distill new knowledge from the exuberant complexity of the brain reflected
in these datasets (Einevoll et al., 2019). While computational modeling, when combined with theoretical
and experimental approaches, clearly has a lot of potential to bridge properties of single cells with brain
connectivity, neural activity, and ultimately organism behavior, building such bridges has proven


mailto:antona@alleninstitute.org
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

35
36
37
38

39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

difficult. Some of the greatest barriers are presented by technical challenges of constructing and
simulating large and complex biologically-realistic models, integration of different modeling approaches,
and systematic sharing of models with the community. New software tools are required to overcome
these challenges and enable easy workflows for the new generation of computational models.

One may argue that simulating a huge number of neurons by itself is not a bottleneck any more (Bezaire
et al., 2016; Billeh, 2020; Markram et al., 2015), thanks to availability of supercomputers and the very
successful software packages that enable complex and highly parallelizable simulations, such as
NEURON (Carnevale and Hines, 2006), NEST (Gewaltig and Diesmann, 2007), GENESIS (Bower and
Beeman, 1997), MOOSE (Ray and Bhalla, 2008), Brian (Goodman and Brette, 2008), Xolotl (Gorur-
Shandilya et al., 2018), and others. However, existing simulation packages traditionally provide a
programming environment for users to develop modeling/simulation software code, rather than data-
driven interfaces for interactions with model or simulation data. To build sophisticated models, or even
to enable efficient simulations, users often need to become experts in the programming environment
and languages specific to a simulation package.

Several tools have been recently developed that address some aspects of these challenges, e.g.,
NeuroConstruct (Gleeson et al., 2007), LFPy (Hagen et al., 2018; Lindén et al., 2014), BioNet (Gratiy et
al., 2018), Open Source Brain (Gleeson et al., 2019), HNN (Neymotin et al., 2020), and NetPyNE (Dura-
Bernal et al., 2019). These tools do not necessarily provide their own simulation kernel, but instead may
rely on an existing simulation engine, such as NEURON, providing a user-friendly interface to this engine.
To achieve this, they take advantage of the recent developments of modeling file formats and universal
model description languages such as NeuroML (Cannon et al., 2014; Gleeson et al., 2010), PyNN
(Davison et al., 2009), NSDF (Ray et al., 2016), and SONATA (Dai et al., 2020). These new developments
indicate very welcome signs of progress in necessary software technology, promising improvements to
the practice of modeling in neuroscience.

Building upon these trends, we have developed and present here an extensive package for multiscale
modeling and simulation, called the Brain Modeling ToolKit (BMTK). While existing tools typically
provide an interface to only one simulation engine (for example, NetPyNE (Dura-Bernal et al., 2019) is a
powerful interface specifically to the NEURON simulation engine), BMTK has been explicitly developed
to furnish interfaces to multiple simulation engines, providing similar user experience in each case.
Currently, BMTK supports biophysically detailed, multi-compartmental simulations with NEURON via the
BioNet module (Carnevale and Hines, 2006), point-neuron simulations with NEST (Gewaltig and
Diesmann, 2007) via the PointNet module, and population-based simulation with diPDE (Cain et al.,
2016) via the PopNet module. Through the FilterNet module, BMTK enables filter-based models and
simulations, which are often useful, e.g., for providing inputs to simulations of brain networks. Models
at all these levels of resolution can be constructed using the BMTK Builder module. With these
capabilities, BMTK offers to users a single convenient environment for modeling and simulations across
multiple scales and approaches.

From the implementation point of view, BMTK is a Python package that can be installed on a personal
computer, a cluster or supercomputer, or in a cloud environment. BMTK provides a Python-based
modular environment for model building and simulation, where the model building stage is clearly
separated from simulation, as some of the applications leveraging real biological complexity of brain
composition and connectivity, like empirically driven placement of synapses, can cause model building


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

77
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99

100

101
102

103
104
105
106
107
108
109

110
111
112
113
114
115
116

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

to be computationally expensive. It is therefore often useful to build a model once and then load such
pre-built models from files for every new simulation. For simulations, BMTK provides a user experience
requiring little-to-no programming skills: instead of programming, users simply need to manipulate files
as inputs and outputs of simulations. However, advanced users can easily extend BMTK capabilities
through their own functions, as BMTK’s open-source Python-based design allows for enhancements in a
straightforward manner. In other words, one can use BMTK as a simple interface to harness the power
of existing simulation engines without the need for programming, or, alternatively, as a programming
environment. The diverse capabilities of BMTK are supported by the modeling file format SONATA (Dai
et al., 2020), which is unique in that it provides a complete description of models and simulation
inputs/outputs (i.e., various properties of cells, connectivity, and activity), employs highly efficient
binary solutions for computationally demanding components of models and simulations, and flexibly
supports multiple levels of modeling abstraction. Importantly, SONATA is compatible with the
neurophysiology data format NWB (Rubel et al., 2019), which makes it easy for BMTK to interface with
experimental data stored as NWB files.

BMTK has been developed with an emphasis on complex and large-scale models and simulations. As
such, through its integration with the excellent tools such as NEST and NEURON, it provides a powerful
interface permitting very efficient simulations of sophisticated models at multiple scales. This enables
easy access to a broad spectrum of computational applications leveraging the new streams of complex
information about the brain. However, BMTK also easily supports simpler simulations, including small
networks or single-neuron simulations. Overall, the tool is designed for user convenience and flexibility.
BMTK is provided freely to the community as an open-source software package
(https://alleninstitute.github.io/bmtk/) to facilitate development and simulation of models and support
systematic model sharing and reproducibility.

Results

BMTK Overview

BMTK is a Python-based software package (originally developed for Python 2.7 and currently supporting
Python 3.6+) for creating and simulating neural network models at multiple levels of resolution. It is also
an open-source software development kit, allowing users to modify the existing functionality and easily
add new extensions or modules. Currently BMTK contains a Builder module for creating models and four
simulator modules — BioNet, PointNet, PopNet, and FilterNet — for simulating the models at different
levels of granularity (Fig. 1).

The simulator modules are the application programming interfaces (APls) to simulation engines (Fig. 1),
i.e., these modules provide a Python interface to the underlying software packages that execute
simulations. The BioNet module provides an interface to NEURON (Carnevale and Hines, 2006) for
simulations that involve biophysically detailed, compartmental neuronal models or point-neuron
models; PointNet — to NEST (Gewaltig and Diesmann, 2007) for highly efficient point-neuron
simulations; PopNet — to the package diPDE (Cain et al., 2016), which implements a population density
approach for simulations of coupled networks of neuronal populations; and FilterNet — to BMTK's built-


https://alleninstitute.github.io/bmtk/
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

117
118

119

120

121
122
123
124
125
126
127
128
129

130

131
132
133
134
135
136
137
138
139
140

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

in solver of filter input-output transformations. The four modules provide a unified user experience for
interactions with any of the underlying simulation engines.

bmtk

simulator

builder bionet pointnet filternet popnet

=i A iy o'®

—- . ®

N

Ae— ‘ 2
|7 — = i“. f."/ .>sﬁ

AN

N

NEURON hest

Figure 1. Overview of BMTK. The BMTK software suite consists of several modules. The Builder module
contains functions for constructing network models. The simulator modules provide APIs to the
simulation engines. BioNet enables simulations of networks consisting of biophysically detailed, multi-
compartmental neuron models by interfacing with NEURON. PointNet supports simulations of point-
neuron networks via NEST. FilterNet permits simulations of arrays of filters (integrated with the specific
case of a model of visual processing by the mouse LGN). PopNet supports simulations with population-
statistical models by interfacing with the DiPDE tool. The BMTK modules can subserve multi-stage
operations by writing the outputs as files in SONATA format and reading such files as inputs for the next
stage of modeling or simulation.

Besides the similarity of user experience across modeling levels of resolution, perhaps the main
advantage of BMTK to users is that one does not need to become an expert in the programming
environments of any of the individual simulation engines, even if one is building and simulating very
sophisticated biologically-realistic network models. This is achieved by relying on the standardized data
format, SONATA (Dai et al., 2020), for representing model properties and simulation configurations, as
well as inputs and outputs. Users only need to provide SONATA files (either by building them using
BMTK Builder or by getting files from existing models), and BMTK’s simulator modules will do the rest by
translating the SONATA files into model instantiations and simulations by NEURON, NEST, or other
engines (Fig. 2). Not only does the SONATA format enable this simple workflow under BMTK, it also
supports easy model sharing across software packages, as SONATA is implemented in a broad range of


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

141
142
143
144
145

146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165
166

167
168
169
170
171
172
173
174
175
176
177

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

modeling tools, such as Blue Brain’s Brion/Brain (https://github.com/BlueBrain/Brion), pyNeuroML
(Cannon et al., 2014; Gleeson et al., 2010), pyNN (Davison et al., 2009), and NetPyNE (Dura-Bernal et al.,
2019). Moreover, SONATA’s specification for model inputs and output (spikes and time series of
membrane voltage, calcium concentration, etc.) is compatible via a converter with the experimental
neurophysiology file format NWB (Dai et al., 2020; Rubel et al., 2019).

As a result, the basic workflow under BMTK is straightforward and consistent across all levels of
resolution (Fig. 2). Model building is achieved by scripting in Python using the BMTK Builder module,
which specify attributes of and relationships between nodes and edges in the constructed network. This
step represents the most typical approach currently in use in the modeling field, where descriptive
declarations are used to build network instantiations — often constructing very sophisticated networks
with only a few lines of code. The output of this module is a set of SONATA files storing model
instantiations. The BMTK simulator modules (Fig. 2) then run simulations utilizing the SONATA files that
describe model composition, inputs (such as incoming spikes), and simulation configuration (duration,
etc.). At simulation completion and, if needed, throughout the simulation duration, the simulators write
output to disk also in the form of SONATA files.

The BMTK output in SONATA format can be then used for analysis and visualization. Whereas a basic
visualization of spiking output or firing rates is provided with BMTK, our design philosophy has been to
leave analysis and visualization to other packages. Given that the SONATA format is used for output files
and that SONATA can be converted to NWB (Dai et al., 2020; Rubel et al., 2019), analysis of BMTK output
is easily achieved with any package that can read SONATA or NWB, or indeed any package that can read
the HDF5 format, which underlies both SONATA’s and NWB’s spikes and time series storage.
Visualization of the simulated networks can also be achieved with specialized tools as long as they can
read SONATA format, which can be easily implemented via the open source pySONATA API (Dai et al.,
2020) (https://github.com/AllenlInstitute/sonata). One example of such visualization software that reads
SONATA is RTNeuron (Hernando et al., 2013), which was used throughout the figures below to visualize
examples of BMTK models.

The utility and versatility of BMTK is illustrated below using several examples. First, we describe the
BMTK Builder and how it can be used to create simple or very sophisticated network models. Next, we
use an example of a simple network consisting of two uniform populations of neurons (excitatory and
inhibitory), which we instantiate and simulate using biophysically-detailed compartmental neuronal
models in BioNet, point-neuron models in PointNet, and neuronal populations in PopNet. Next, we
describe the FilterNet module, which permits one to process stimuli through arrays of filters, currently
focusing on converting visual stimuli to spikes that can be used as inputs to simulations of neural
networks of vision. Finally, we illustrate the power of BMTK using a variety of real-world applications:
simulations of a 230,000-neuron model of mouse V1 implemented at the biophysically detailed and
point-neuron levels, computation of the extracellular current source density in simulated cortical tissue,
and high-throughput simulations of optogenetic perturbations to diverse cortical cell types.


https://github.com/BlueBrain/Brion
https://github.com/AllenInstitute/sonata
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Model Construction e —
/Analyms/Vlsuallzatlor\
Synapse models @ ) -
High-level - =
Confecivityivles specifications , .

net =

Cell models T‘

| NetworkBuilder () ) 2 )
/ / Incoming SR
/ N 2 / ° 3
4 net.add nodes(..) 4 Stimuli W V¥ ) PV
* ° .
.

net.add edges(..)
Configuration

— ONATA files
Nodes, Edges S ————
. i e
From Builder incoming g
Stimuli 2 I
(or from a P — E

database,

collaborators, etc.)

178 K

179  Figure 2. Basic workflow that is conserved across modules of BMTK. Input SONATA files (represented
180  symbolically as chests of drawers) determine the composition and properties of the nodes/network, as
181  well as incoming stimuli (spikes, firing rates, movies) and simulation configuration. Top: the model

182  construction stage. The BMTK Builder combines elements such as cell or synapse models, connectivity
183 rules, and others, via high-level specifications, instantiates the network model, and saves the

184  instantiation as a set of SONATA files. Bottom: simulation stage. The BMTK simulator modules take in
185  the SONATA files as inputs and perform simulations. The input SONATA files may be generated by the
186  BMTK Builder (dashed arrow), any other Builder software supporting SONATA, or from public

187 repositories, collaborators, etc. The BMTK simulator modules produce output, also in SONATA format,
188  typically containing spikes and/or time series (e.g., membrane voltage in selected cells, as a function of
189  time). Right: the SONATA files produced by the BMTK Builder or simulator modules can be analyzed in
190 terms of the model structure or simulated activity (using any analysis software supporting SONATA, or
191 the software that can read HDF5, CSV, and other components of SONATA specification).

192

193  Constructing Models with BMTK Builder

194  The BMTK Builder (Fig. 3) is a Python module within the BMTK package. By loading this module, one
195  accesses a variety of functions for building networks and saving results to files in SONATA format. The
196  two major types of tasks performed using the BMTK Builder are instantiating network nodes and

197  instantiating edges.

198  When instantiating nodes, one specifies a name for every node type as well as the number of nodes in
199 the type. Furthermore, optional properties of nodes can be specified, such as their positions, types, and
200 other attributes. Some of the attributes are reserved in SONATA format, but otherwise any attributes
201 can be created and assigned as users desire. Functions are provided to distribute values of node

202  properties according to desired distributions (such as distributing cell positions uniformly in a 3D

203  cylindrical volume).


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

204 Instantiation of edges follows similar logics. One specifies which populations of nodes should be

205 connected and adds attributes to those connections (edges), some of which are reserved SONATA

206 properties, but otherwise arbitrary attributes can be assigned. BMTK Builder supplies basic functions for
207 establishing probabilistic connectivity between nodes based, for example, on distance between the

208 nodes.

209 We emphasize that BMTK Builder is designed as a general framework open for extensions. It currently
210 provides functions that, for example, help one to distribute nodes or organize connections according to
211 certain logics, but users are encouraged to utilize their own functions as well. This is easily achieved by
212 the extensible Python interface of the Builder. Additional functions will be added to the core library of
213 the Builder per user feedback.

214  The BMTK Builder is versatile in that it can create both relatively simple network models or highly

215  complex and biologically realistic network models. Below, we describe simulations of networks

216  illustrating two such cases: a network consisting only of two neuronal populations with random

217  connectivity (Brunel, 2000) and a highly sophisticated network model of mouse V1 consisting of 17 cell
218  classes distributed in space across 6 cortical layers, with multiple connectivity rules that account for cell
219  classes, distances, and tuning of physiological responses (Billeh, 2020). Both networks were prepared
220  using BMTK Builder (for the former model, see examples in https://github.com/Alleninstitute/bmtk, and
221  for the latter, see https://portal.brain-map.org/explore/models/mv1-all-layers). It should be noted that,
222 naturally, complexity of a model, especially of the connectivity rules, strongly influences the computing
223  expense required for model building. For instance, generating the 230,000-neuron V1 model (Billeh,
224 2020) can take ~100 CPU-hours or more, depending on the connectivity rules used (note, however, that
225  instantiating a fully actualized model can be parallelized on a cluster). For cases like this, the BMTK’s
226  approach (Figs. 2, 3) of building the model and saving it in SONATA files for subsequent simulations,
227  rather than rebuilding the model every time a simulation is run, is clearly beneficial.

228 A unique feature of BMTK enabled by the SONATA format is that models prepared for one level of

229  resolution can largely be reused for another. For example, a network connectivity created by BMTK

230  Builder for a biophysically detailed simulation contains connections between individual cells as well as
231  descriptions of where synapses should be located on the dendrites of target neurons. This information is
232 stored in SONATA files, which can be used to run a BioNet biophysically detailed simulations. The same
233 files, however, can be used to run a PointNet simulation, which has no representation of dendrites (all
234  neurons are points). In the latter case, only the cell-to-cell connectivity information is used by PointNet,
235  whereas the dendritic locations are ignored. We also note that SONATA files produced by BMTK Builder
236 can be further edited directly, outside of BMTK, since they use well established formats such as HDF5
237  and CSV (Dai et al., 2020), which can be read and written by many software packages and programming
238  languages.


https://github.com/AllenInstitute/bmtk
https://portal.brain-map.org/explore/models/mv1-all-layers
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

239

240
241
242
243
244

245

246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

from bmtk.builder import NetworkBuilder

from bmtk.builder.auxi.node_params import positions_columinar @ Create Nodes)
net = NetworkBuilder("ei")
(net.add_nodes(N=8000, pop="exc’, model_name='Scnn1a’, )
morphology="Scnn1a_473845048_m",
model_type = ‘biophysical’,
model_template="nml:Cell_472363762.cell.nml’,
positions=positions_columinar(8000, radius=1000, height=500))
.

net.add_nodes(N=2500, pop="inh’, model_name="PV",
morphology="Pvalb_470522102_m", \
model_type = 'biophysical’,
model_template="nml:Cell_472912177.cell.nml’,
positions=positions_columinar(2500, radius=1000, heiguh1=500))4J

Set Connection Rules

L

net.add_edges(source={"pop": 'e'}, target={"pop": 'i'},
connection_rule=gaussian_distance,
dynamics_params="AMPA_ExcTolnh.json’',
model_template="Exp2Syn’,
syn_weight=0.1,
delay=1.5,
target_sections=["'somatic’, 'basal’)

net.add_edges(source={"pop" 'i'}, target={'pop": "e’},
connection_rule=random_connections,
dynamics_params="GABA_InhToExc.json’,
model_template="Exp2Syn’,
syn_weight=0.5, 5
delay=1.5, Build Network
target_sections=["apical’],
distance_range=[50.0, 100.0])

net.build()
net.save(output_dir="ei_network’')

Figure 3. BMTK Builder. The Builder module is used to design and instantiate network models. On the
left, examples of the Python commands used in BMTK Builder are presented (simple versions of these
commands are shown, for clarity), and on the right purpose of these commands is illustrated
schematically on the right. The main stages of model building workflow are defining the nodes and their
attributes, defining the connection rules, and then instantiating and saving the network.

Biophysically Detailed, Point-Neuron, and Population Simulations with BioNet, PointNet,

and PopNet

For simulating networks of interacting nodes, BMTK currently offers support at three levels of
resolution: biophysically detailed, compartmental models with BioNet (Gratiy et al., 2018), the interface
to NEURON (Carnevale and Hines, 2006); point-neuron models with PointNet, the interface to NEST
(Gewaltig and Diesmann, 2007); and population density dynamics models with PopNet, the interface to
diPDE (Cain et al., 2016). In all cases, a user provides as an input the SONATA files (Dai et al., 2020)
specifying the model (either constructed with BMTK Builder or obtained via other software, such as
NetPyNE (Dura-Bernal et al., 2019) or others; Fig. 2) and simulation configuration. The latter is supplied
in text-based JSON files containing SONATA-compliant specifications of simulation duration, paths to
input and output files, etc. (Dai et al., 2020). The BioNet, PointNet, or PopNet will then interpret the
files, run the simulation, and provide the output — such as spikes or various time series, e.g., membrane
voltage — also in SONATA format. One useful functionality provided by BMTK is writing the output to disk
at user-defined intervals during the simulation. In the case of parallelized simulations each CPU core will
cache intermediate results produced on the given core, with the final results collated from data across
all cores. See Documentation for more details (https://alleninstitute.github.io/bmtk/).



https://alleninstitute.github.io/bmtk/
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

262  Toillustrate applications of BioNet, PointNet, and PopNet, we constructed at each of the three levels of
263 resolution an instance of a simple randomly connected network with 10,000 excitatory neurons and
264 2,500 inhibitory neurons, receiving excitatory input from 1,000 external neurons (Brunel, 2000) (Fig. 4).
265  This network can exhibit a variety of possible dynamical regimes (Brunel, 2000), with different degrees
266  of synchrony and asynchrony between neurons and regularity of spiking of individual neurons. Here we
267 selected one of the possible regimes (the regime with synchronized neuronal populations and regular
268  spiking) for illustration at all three levels of resolution. The implementation of this can be found among
269  the examples at https://github.com/Alleninstitute/bmtk.

270  We first employed BMTK Builder to construct a 12,500-neuron network model using compartmental
271  neuron representations from the published model of Layer 4 of mouse V1 (Arkhipov et al., 2018), with
272 264 compartments for each excitatory and 121 compartments for each inhibitory neuron (Fig. 4A). The
273  neurons were interconnected with 0.1 probability and received spiking inputs from 1,000 Poisson firing
274  rate sources firing at the frequency of 150 Hz. The model was simulated using BioNet, and we adjusted
275  synaptic parameters to obtain the desired dynamical regime. To compare with the other levels of

276  resolution (below), we plotted the spike rasters and population firing rates, which show that neurons
277  fire in a synchronized and regular fashion (Fig. 4A). The population as a whole exhibits the main

278  frequency of ~20 Hz.

279 For the PointNet example, we took the model used for the BioNet simulation above and used all of its
280 components applicable to point-neuron simulations — such as the information about which cell connects
281  to which, but not where individual synapses are placed. Naturally, parameters of neurons and of

282  synapses (such as synaptic strengths) needed to be adjusted, as the meaning of many of such

283  parameters are very different between compartmental and point-neuron models. PointNet simulations
284  were carried out, and the synaptic weights were adjusted to obtain the dynamical regime (Fig. 4B)

285  similar to that in the BioNet simulation above, with the synchronized neurons emitting bursts of

286 population activity at ~20 Hz.

287 Finally, at the PopNet level (Fig. 4C), the network was reduced to three nodes — the excitatory, the
288 inhibitory, and the external stimulus populations, with connections between them. After building this
289  very simple network in BMTK Builder, we simulated it with PopNet and adjusted parameters to obtain
290 the desired dynamical regime. Since only the population rate was available here as the output, it was
291  impossible to judge the regularity of firing of individual neurons, but the population activity was clearly
292  similar to the BioNet and PointNet cases. The firing rate exhibited sharp oscillations of population

293  activity at ~20 Hz, with the activity reaching zero level between each peak, indicating complete silence
294 of all neurons at regular intervals. Note that, like in the BioNet and PointNet cases, the external

295  population here provides a constant level of activity (i.e., individual neurons in the external population
296  fire spikes at irregular intervals according to Poisson statistics, but their collective output at the

297  population level is approximately constant at all times).

298


https://github.com/AllenInstitute/bmtk
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A BioNet B PointNet

- . . o] -, .
R I L PR RPN A £ ] ’..":
™

10010 e R e excitatory 10010 : % e excitatory
: : « inhibitory g . « inhibitory
100001 + .. i U 10000 ' ] i 3 10
99901 + "% Hl: B 9990 A N I 8
g s : ' bl ¢ g B p Ty no2 » b N
o v L3S L 1 v =4 E
< 9980 RO * e : < 9980 o
- e 4 & o 3 . = 6
@©
. . . . - -
LY R : o
9970 e S SO 9970 g
T 4
9960 3% o« % S e s . 9960
§ 20 § 2
-~ - 10
L b
© © 0
= 0 = 0
1000 1050 1100 1150 1200 1000 1050 1100 1150 1200 1000 1050 1100 1150 1200
time (ms) time (ms) time (ms)

299

300  Figure 4. Biophysically detailed, point-neuron, and population simulations with BioNet, PointNet, and
301 PopNet. In all three cases, the interconnected populations of excitatory and inhibitory neurons receive
302  excitatory input from an external population (1,000 Poisson sources firing at the frequency of 150 Hz,
303 replaced by a uniform population in the PopNet case). (A) Biophysically detailed network of randomly
304 connected excitatory and inhibitory neurons, 12,500 total. An RTNeuron visualization of the network is
305 shown alongside its spiking output (spikes from a small portion of the network are shown, for clarity)
306 and the firing rate (for the whole excitatory population) produced by the BMTK’s BioNet module. (B) The
307 same network using the point-neuron approximation. An RTNeuron visualization and simulation output
308 from the BMTK’s PointNet module simulation are shown. (C) Population-based representation of the
309 same network. A schematic of the model and the output of population-density simulation (firing rate for
310 the excitatory population is shown) from BMTK’s PopNet module are illustrated.

311

312  Simulations Using Filter Arrays with FilterNet

313 Many models of the nervous system utilize filters — mathematical objects that take in multi-dimensional
314  data and return an output, typically by performing a convolution of the input data with certain

315  functions. FilterNet is a module of BMTK that allows users to operate with filters. A typical application
316  may be processing of peripheral sensory input (Fig. 5). For example, an array of filters may be used to
317  represent retinal cells, with the input being movies and the output being retinal firing rates or spikes.
318 These output signals in turn can be used as inputs to neurons deeper in the brain explicitly simulated
319 using other modules of BMTK, such as BioNet or PointNet.

320 Like the other simulation modules of BMTK, FilterNet is an API that allows users to specify and interact
321 with simulations. FilterNet provides a similar user experience to BioNet, PointNet, and PopNet, in that
322  users work with SONATA-formatted input files that determine functional forms and parameters of the
323 filters, whereas simulation configuration files determine simulation parameters, such as its duration,
324  and location of input and output files.

10


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

325
326
327
328
329
330
331
332
333
334

335
336
337
338
339
340
341
342
343
344
345
346

347
348
349
350
351
352
353
354
355
356

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The current implementation of FilterNet contains the LGNModel simulator, which was created to
provide thalamocortical inputs to biologically realistic models of the mouse visual cortex (Arkhipov et al.,
2018; Billeh, 2020). This simulator assumes that the input is a movie (a 3D array — two dimensions for
space and one for time) and produces the output which is a time-varying firing rate for each filter. A
filter here represents an individual cell in the Lateral Geniculate Nucleus (LGN) of mouse thalamus,
which projects to the visual cortex. Realistic parameters for such filters, optimized based on the
experimental recordings, are available online (http://portal.brain-map.org/explore/models/mv1-all-
layers). The FilterNet API can also be easily connected with user-defined functions modeling the input-
output filter relationship, which may represent various types of inputs (for example, other sensory
stimuli beyond the visual 3D arrays).

An example workflow of FilterNet with LGNModel is illustrated in Fig. 5. Here, a movie clip is provided as
a 3-dimensional matrix (schematically represented by an image on the top left). A user defines the
frame rate, so that the frames can be pinned to the output time axis, and also selects the types of the
filters to be used, their numbers, and how they are distributed in the visual space. The types of the
filters and their parameters can be taken from our online repository (http://portal.brain-
map.org/explore/models/mv1-all-layers) where the filters were optimized to match types of in vivo
responses of neurons in the mouse LGN (Billeh, 2020; Durand et al., 2016), or one can easily replace
these parameters with those of their own choosing. Each filter performs a spatially-temporally separable
convolution with the input movie array using two kernels — one operating on the time course of the
movie and the other in the visual space (frame pixels). The result of this transformation is rectified. The
output of each filter is then a time-varying firing rate, sampled at a frequency defined by the users.
FilterNet can also instantiate spike trains from these firing rates using a Poisson process (Fig. 5).

In typical applications one runs a simulation where a movie is passed through an array of filters, each
filter returning the firing rate and, potentially, a set of instantiated spike trains (each train corresponding
to a single trial). These spike trains can be used as inputs to models of neuronal networks (see an
example below of a network model of mouse V1 driven by spikes from the LGN, Fig. 6). In these
applications, the filters become external nodes for other BMTK simulations. Typically, the FilterNet
simulations would be done first and their output saved to files, and these outputs would then be reused
in subsequent network simulations. The critical intermediate step of determining which filter supplies
inputs to which target neuron in the simulated network is accomplished via BMTK Builder, where users
can define functions for connecting external nodes to internal ones. The subsequent simulations can be
performed with BioNet, PointNet, or PopNet.

11


http://portal.brain-map.org/explore/models/mv1-all-layers
http://portal.brain-map.org/explore/models/mv1-all-layers
http://portal.brain-map.org/explore/models/mv1-all-layers
http://portal.brain-map.org/explore/models/mv1-all-layers
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(" Spatial-Temporal Non-Linear Transform (Poisson) Spike N
Filter Generator

— <

time
inter-spike interval

activity

output

»

distribution

o
°
3
o

azimuth

\C J
INPUTS & CONFIGURATION OUTPUT SPIKES FILE
config.json network/Ign_nodes.h5 1 splkas.hS
{ 11040000110410004 .
“run®: { Ispikes
“tstop™ 3000.0 i network/lgn_node_types.csv :
node type id mode type morphology ... i3 Ign
100 bi K
“inputs™: { 101 bt natural_movie.npy :
"movie_input”: { 010101100100011000..... v-| | node_ids | _ timestamps
"input_type": "npy", -
"module": "movie", - e |0 0 | 50.010
"data_file™: "natural_movie.npy", . T )
“frame_rate" 30.0 run_fllternet.py . ) 0 112.250
} from bmtk.simulator.filternet import 2 |o 2 | 1155.100
) 2 ¢fg = Config.from_json('config.json’) L 3 | 1159.900
nﬁll.'v;z:;s"-.[{ cfg.build_env() i« o 4 | 1175.669
" o . net = FilterNetwork.from_config(cfg) 0 5 | 1500221
nodes_file": "network/ign_nodes.h5", || sim = FilterSimulator.from_config(cfg, net) 3 s |2011.112
sim.run() .

357

358  Figure 5. The FilterNet module. Top, general workflow in FilterNet. In case of a visual stimulus, a movie
359 is processed by an array of filters distributed in the visual space. Each filter convolves the frames of the
360 movie with the spatial and temporal kernels, performs rectification, and outputs a time depending firing
361 rate representing the response of the filter to the movie, which can be also converted to instantiations
362  of spike trains. Bottom, illustration of inputs and outputs of FilterNet. Inputs include specifications of
363 parameters such as duration, frame rate, and file locations, as well as contents of the files describing the
364  input patterns and filter properties and distributions. The “run_filternet.py” script is used to carry out
365  the calculations. The output may contain the time series of time-dependent firing rates for each filter
366  and spike trains (illustrated) generated from these time series.

367

368 Examples of BMTK Applications to Biological Problems

369 Finally, we present real-life examples of scientific simulations of brain circuits using BMTK. We illustrate
370  large-scale simulations of highly complex brain networks at different levels of resolution (Fig. 6);

371  computation of an extracellular electric potential, which is an observable relating the network activity
372  with measurements of a physical signal (Fig. 7); and versatile perturbations of network components to
373  mimic optogenetic experiments (Fig. 8).

374

375  Biophysical and Point-neuron Simulations of the Mouse Cortical Area V1

376  Arecent study (Billeh, 2020) integrated a wide array of experimental information on the composition
377  (cell class, intrinsic properties, and neuron morphologies), connection probabilities and synaptic

378  properties, as well as in vivo physiology of neuronal responses in the mouse primary visual cortex (area
379 V1) to construct a comprehensive model of this cortical area (Fig. 6A). The model was constructed using

12


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

380
381
382
383
384
385
386
387
388
389
390

3901
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408
409
410
411
412
413

414
415
416
417
418
419
420
421
422

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the BMTK Builder. It received thalamocortical inputs from the Lateral Geniculate Nucleus (LGN) of the
thalamus, which provided the external drive due to visual stimuli (as illustrated in Fig. 5 for the FllterNet
moduel): 17,400 filters responded to movies (as visual stimuli) and supplied resulting spike trains as
inputs to the V1 neurons. These filters represented 14 types of LGN cells, parameterized based on
experimental recordings from the LGN (Durand et al., 2016), and were distributed over the whole visual
space. The filters were connected to the V1 cells according to experimental data on anatomical and
functional properties of the LGN-to-V1 projections (e.g., (Bopp et al., 2017; Ji et al., 2015; Kloc and
Maffei, 2014; Lien and Scanziani, 2013, 2018; Morgenstern et al., 2016; Schoonover et al., 2014)).
Consequently, arbitrary movies can be used to stimulate the model, enabling direct comparison with
experimental trials that used specific movies shown to awake mice while recording extracellular
electrophysiology from V1 with the high-throughput Neuropixles probes (Siegle et al., 2019).

The model of V1 was constructed at two levels of resolution: the biophysical level (using compartmental
neuron models) and the point-neuron level. The biophysical version was in fact a hybrid model, as the
central portion of interest in the model, with ~50,000 neurons, was represented using compartmental
neuron models, whereas the remaining annulus was represented with point-neuron models (Fig. 6A).
The annulus’s role was primarily to provide a smooth boundary. This hybrid model was simulated with
BioNet/NEURON, relying on their ability to handle both compartmental and integrate-and-fire types of
models. The fully point-neuron version of the model consisted of Generalized Leaky Integrate-and-Fire
(GLIF) neuronal models and was simulated with PointNet/NEST. The neuronal models were sourced
from the Allen Cell Types Database (Gouwens et al., 2018, 2019; Teeter et al., 2018).

The two models were each other’s clones, in the sense that they used the same cell positions, individual
connections, and all other properties that were applicable to both levels of resolution (as opposed to
those applicable to only one level, e.g., dendritic targeting of synapses), the corresponding SONATA files
being prepared once in BMTK Builder and then used for both the BioNet and PointNet models. The
networks consisted of ~230,000 neurons, covering all layers of V1 from Layer 1 to Layer 6 and including
17 neuron classes (Billeh, 2020). The models used cell-class-dependent, distance-dependent, and
neuron-tuning-dependent connection probability rules and synaptic weight rules. Heavily constrained by
experimental data and trained on a small sample of visual stimuli (a single trial of 0.5 s of gray screen
and same duration drifting grating), the models generalized well to different stimuli and exhibited many
similarities with the experimental recordings. For example, they exhibited firing rates and levels of
direction selectivity across cortical layers and cell classes that were similar to experimental ones (Fig.
6B). From comparisons of these V1 model simulations to experimental recordings, several predictions
were made with regard to the logics of connectivity between cortical cells of different classes,
depending on the functional tuning of these cells (Billeh, 2020).

Benchmarks of BioNet simulations of this 230,00-neuron V1 model (Fig. 6C) show a close to ideal scaling
(i.e., twice faster on twice the number of CPUs) of both the simulation execution time and the model
loading time with the number of CPU cores. With the partition of 384 CPU cores, we observe the
throughput of approximately 1 second of simulated biological time for slightly over 1 hour of “wall
clock” (real) time. These results indicate that extensive simulations for such a large-scale and highly
detailed model are possible (Billeh, 2020), although that does require substantial computing resources.
On the other hand, we found that the point-neuron version of the V1 model could be simulated
efficiently with PointNet on a single CPU core, providing the performance of 1 second of simulated time
in approximately 3 minutes of real time. While one gains in speed even further with parallel PointNet

13


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

423 simulations of the V1 model, the convenience and speed of the self-contained single-core simulations
424 are such that typically users find them to be the preferred mode for PointNet simulations of such size.
425  Thus, BMTK’s PointNet enables simulations of large-scale models incorporating much biological

426  complexity even with modest computational resources.

427 It should be noted that the computational performance of BioNet and PointNet relies on the excellent
428  performance and parallelization capabilities of NEURON (Carnevale and Hines, 2006) and NEST (Gewaltig
429 and Diesmann, 2007). What these BMTK modules add is the convenience and interoperability. For

430 example, although NEURON provides powerful parallelization environment, users typically need to write
431 parallel code in that environment to run their simulations. Likewise, constructing sophisticated bio-

432 realistic models in NEURON or NEST requires substantial amount of coding. BMTK streamlines the latter
433  part through the uniform model building operations in BMTK Builder and obviates the former part for
434  the users by dealing with NEURON or NEST parallelization “under the hood”, so that users do not need
435  to write any code at all.

Biophysical M Biophysical [Point-neuron [Experiment
L1 23 14 . L5 : Le

Point-neuron - -
* —— simulation

~~~~~~~ —e— setup

64 128 256 512
number of cores

436

437  Figure 6. The biophysical and point-neuron V1 models. (A) Visualizations of the biophysical and point-
438 neuron models. The 230,000-neuron models emulate the central portion of the mouse V1, across the
439 full cortical depth, containing layers 1, 2/3, 4, 5, and 6 (layer boundaries are indicated). In the top model,
440  the core portion, ~50,000 neurons, is simulated using biophysically detailed compartmental neuronal

14


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

441
442
443
444
445
446
447
448
449
450
451
452
453

454

455
456
457
458
459
460
461
462
463
464
465
466

467
468
469
470
471
472
473
474
475
476

477
478
479
480
481
482

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

models, and the annulus around the core using leaky integrate-and-fire (LIF) point-neuron models. In
the bottom model, both core and the annulus employ the generalized LIF neuronal models. Neurons are
colored by cell class: hues of red for excitatory cells in layers 2/3, 4, 5, and 6, and blue, cyan and green
for Pvalb, SST, and Htr3a inhibitory class. (B) Summary of firing rates and direction selectivity index (DSI)
obtained from the biophysical and point-neuron simulations, vs. experimental extracellular
electrophysiology recordings, by cell class. The data were obtained from 2.5-second long presentations
of drifting gratings at 8 different directions, 10 trials each. “RS” and “FS” are experimentally determined
regular- and fast-spiking cells, roughly corresponding to excitatory and Pvalb inhibitory neurons; the SST
and Htr3a neurons could not be identified from experiments. (C) Performance benchmarks and scaling
of simulations and setup of the biophysical version of the V1 model using BMTK’s BioNet. The simulation
involved 0.5 s presentation of gray screen and 2.5 s of a drifting grating. The time shown is the wallclock
time it took to obtain 1 second of simulated time, averaged over 3 s of simulation. The dashed lines
indicate ideal scaling (relative to 125 cores, which is a typical choice for simulation of such scale).

Computation of the Extracellular Electric Potential

Computing the extracellular field potential in the modeled brain tissue is an important application
(Buzsaki et al., 2012; Einevoll et al., 2013, 2019; Gold et al., 2006; Lindén et al., 2011; Mitzdorf, 1987,
Senzai et al., 2019) that requires capturing the spatially distributed electric compartments and synapses,
as done in biophysically detailed network models. BMTK BioNet’s ability to perform such calculations is
illustrated in Fig. 7. BioNet allows users to compute the extracellular potential using the line-source
approximation (Gratiy et al., 2018; Plonsey, 1974). The potential is then processed to obtain the low-
frequency component — the local field potential (LFP), similar to other recently developed tools
providing such functionality (e.g., LFPy (Hagen et al., 2018; Lindén et al., 2014), NetPyNE (Dura-Bernal et
al., 2019)). BioNet allows users to set up an arbitrary number of recording sites and distribute them in
space. One can then use the LFP from multiple electrodes, for example, to compute the current source
density (CSD). The resulting LFP and CSD can be directly compared to experimental ones (Fig. 7).

The V1 model in Fig. 6 showed good agreement with experiments for firing rate metrics such as
direction selectivity. As a next step, one can use BMTK to investigate the extracellular field dynamics.
Fig. 7 shows one example among a number of model configurations generated (differing, e.g., in the
strengths of connections among cell types, the ways how LGN inputs are provided, or distribution of
synapses on the neuronal arbors). The CSD and the firing rates across the cortical layers are compared
with the experimental data (Siegle et al., 2019). Note that experimental data show substantial variability
across mice, and the example from one mouse shown is not representative of all observed CSD patterns.
A majority of the 47 mice in this dataset, however, do contain main features seen in Fig. 7: an early sink
(blue) in Layers 2/3-4 (L2/3-L4), which is then replaced by a source (red), and a delayed but strong sink
in L5-L6.

The model captures some of these properties of CSD, though not precisely. The L2/3-4 sink is more
sustained than in the experiment, and the later source in these layers is less prominent. The L5-L6 sink
starts earlier in the simulation and is narrower along the depth dimension. The overall magnitude of CSD
peaks and troughs is also smaller in simulation than in experiment. Nevertheless, it is reassuring that the
model captures overall trends in both the dynamics of the firing rates and the major features of CSD
(Fig. 7). Much further work is necessary to understand how the circuit architecture determines the

15


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

483 spiking and LFP/CSD responses. With BMTK and the bio-realistic V1 model (Billeh, 2020), iterations of
484  simulations and adjustments to the model circuit structure will shed light on this question and will lead
485 to improved agreement with experiments.

CSD from simulation 4 CSD from experiment
- —
-2001L2/3 : i 10 -200 23
— L4 -‘ = 5 L4 ' s
E -400 = w < ”;% £ -400 ' %
1':5_ L5 0 = % L5 2
K [a) [a}
& -600 . s 9 §-600 3]
L6 L6
-800 -10 -800
0 20 40 60 80 0 20 40 60 80
Time from flash onset (ms) Time from flash onset (ms)
301 — Model E2/3 E4 E5 E6
:__,q —— Experiment
o 20
o
o
£10
0L% L rorenas || ‘ || S || . .
12/3 14 15 16
60

Firing rate (Hz)
i
o

i
)

;”_M‘_f_,ﬂ&*\um

0 40 80 0 40 80 0 40 80 0 40 80
486 Time from flash onset (ms)

o

487  Figure 7. Computing extracellular field potential in BMTK. A simulation using a version of the V1 model
488 (Fig. 6) with the full-field flash stimulus is illustrated. The BioNet module of BMTK was used to run the
489  simulation and compute the extracellular potential at multiple virtual electrode locations along the

490  cortical depth; consequently, the potential was used to obtain the Local Field Potential and Current
491  Source Density (CSD). Top: CSD from the simulation and from a single mouse in experiment. Bottom:
492  firing rates for the excitatory (“E”) and inhibitory (“I”) populations in each layer (2/3, 4, 5, and 6). Black:
493  experiment mean. Gray: experiment standard deviation. Blue: simulation mean. Simulation rates are
494  averaged over all neurons in population and 10 trials. Experimental data are averaged over all neurons
495  of the given type recorded from 47 mice, 75 trials each.

496

497  Applications to Perturbative Studies of Brain Circuits
498  BMTK also offers approaches to apply a variety of perturbations and manipulations, which can be
499  specified in the simulation configuration file, e.g., by providing the list of cell IDs to be perturbed and

16


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

500
501
502
503

504
505
506
507
508
509
510
511
512
513

514
515
516
517
518
519

520

521
522
523
524
525
526
527

528
529
530
531
532
533
534
535
536
537

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

parameterizing the perturbation function. (The scripting interface permits further unlimited possibilities
for simulating custom perturbations.) See
https://github.com/Alleninstitute/bmtk/blob/develop/docs/tutorial /05 pointnet modeling.ipynb#5.-
Additional-Information

As an example, injection of current directly into neurons is a common technique that can be used
effectively to mimic optogenetic perturbations. A follow-up study (Cai et al., 2020) to the V1 model work
(Billeh, 2020) used this technique to investigate perturbations of neurons, from single to multiple at a
time, selected according to their location, cell class, and functional properties. Many thousands of
perturbative simulations were performed using the point-neuron version of the V1 model via the
BMTK’s PointNet module. The results agreed with the recent single-neuron optogenetics experiments
(Chettih and Harvey, 2019) and suggested coexistence of efficient and robust coding in cortical circuits
(Cai et al., 2020). Fig. 8 shows a complementary set of simulations conducted as part of that project,
which consist of silencing or activation of whole cell classes, including titrated perturbations. Currently,
BMTK offers an easy way of defining perturbations to either cell populations or a set of individual cells.

Fig. 8A shows spiking activity in the core of the V1 model (see Fig. 6) in response to visual stimulation
with a drifting grating, for a control condition and two types of perturbation to the Layer 6 excitatory
cells: complete silencing and modest activation of these neurons. With BMKT, it is easy to sample
perturbations to all cell classes in the model and characterize the effect of each on all the other classes.
This is illustrated in Fig. 8B, which uses the Optogenetic Modulation Index (OMI) to characterize the
effect of perturbation. The OMI of a neuron i is defined as:

i i
f erturbed _fcontrol
oMI; = 2

fplerturbed + fclontrol
where fpiertwbed and £, ..+ro; are the firings rate of this neuron during and in the absence of
perturbation, respectively. Negative OMI indicates suppression of cell’s firing due to perturbation
(OMI = —1 means that the cell is fully suppressed), and positive values indicate elevated firing due to
perturbation. Mean OMis for every cell class in Fig. 8B exhibit a rich pattern of various effects depending
on the population silenced, including non-intuitive effects of silencing the excitatory populations: e.g.,
silencing of excitatory populations in Layer 2/3 (E2/3) leads to suppression of E5, but mild activation of
E4 and E6.

Furthermore, BMTK permits one to sample the magnitude of perturbation (Fig. 8C), which can be done
with separate amplitude applied for each cell, e.g., by tying the amount of injected current to the
previously measured rheobase of each cell model. Fig. 8C shows the effect of such different
perturbation magnitudes applied to the excitatory E6 or inhibitory i6Pvalb cell classes. Both
perturbations lead to activation of i6Pvalb, but in the first case E6 firing increases, whereas in the
second it decreases. Non-intuitively, both perturbations result in suppression of activity in Layer 4. This
particular effect of Layer 6 perturbation is due to interlaminar projections from inhibitory Layer 6 Pvalb
neurons to upper layers. These results are consistent with the overall inhibitory modulation of
superficial layers by Layer 6, demonstrated experimentally (Olsen et al. 2012; Bortone, Olsen, and
Scanziani 2014).

17


https://github.com/AllenInstitute/bmtk/blob/develop/docs/tutorial/05_pointnet_modeling.ipynb#5.-Additional-Information
https://github.com/AllenInstitute/bmtk/blob/develop/docs/tutorial/05_pointnet_modeling.ipynb#5.-Additional-Information
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

538  Together, these examples demonstrate the capability of BMTK to sample a wide variety of perturbations
539  and therefore enable extensive comparisons with experiments and biologically meaningful predictive
540  studies.

No perturbation Silencing of E6 Activation of E6
50000/ ™ "1 T TS AR I H Ui s sy ) s wte p o) T R R I T I R S SR as] R S TR Ee T e
W& i R o e R R LY, bk th ] LA | Femepat fasid 4 LRl 31 AR S A e B N |
3.3 1t ' 12/3
i 1 ; § i f% ) H §
g $ e ot Pl S pdea a9 36 ayibpr el i il BT ) e Hgaalbid b bR IR |,
e REF 5 SRy et R di it ol 7} e s i b
525000 N 0 Dok e e ¢ s 3w PR 010 i ) gl 8 e Cton, R rge st LI IO GRgi R B
c "¢ 144 e X # % [k ¥ 34 il 3 ¢ $
8 i Eint !
3 B R e e e )
z s ‘”1.;“? !‘;ﬂ.w,,,,.«.qugi
S AR AR T TR : f
o { PE e | : :
Grey Driftin Grey GiaE G
Screen Gr’a:mg Screen Gr:at:ng Screen G.'atmg = E5 = Pvalb
[} 1000 2000 3600 0 1000 2000 3000 0 1000 2000 3000
Time (ms) Time (ms) Time (ms)
B Emsuencmg Simulations for Drifting Grating , ,, C Activation of E6 Activation of i6Pvalb
52;, 0.75 iBPvalb e
£6
§ ilHtr3a 0.50
S i23Htr3a |
3 i23Pvalb 0.25
S i23sst _ _
o i4Htr3a 0.00 g s
5 i4Pvalb | O 0.2
£ sst -0.25
& iSHtr3a 0.0
2 ispvalb -0.50 '
i5Sst =
i6Htr3a -0.2
-0.75
i6Pvalb
i6Sst ! B B z ) 00 -0.4
oY eRansLeRRaneoROR . n n o o o = o v n o o o = o
w [N <] [ o m [ . . - - . . . . 0 d . .
E mmgggﬁggggé’%ggg%g% P o Lol o~ m < w o =] — ~N m = "
SRR EI 2w 22 33 Injection Current (times of rheobase) Injection Current (times of rheobase)
542 Silencing Population

543  Figure 8. Simulation of optogenetic perturbations using BMTK. The point-neuron version of the V1

544  model (Fig. 6) is used here for illustration. Perturbations are achieved by injecting positive or negative
545  currentinto cells. (A) Raster plots from 3-second simulations (stimulus: 0.5 s gray followed by 2.5 s of a
546  drifting grating). Simulations without perturbation, with complete silencing of all Layer 6 excitatory cells
547 (E6), and activation of all E6 cells (current equal to 0.5 of the rheobase of each neuron at rest is injected)
548 are illustrated. The perturbation here is applied throughout the course of simulation. (B) Summary of
549 silencing individual cell classes in the V1 model, for the same visual stimulus as in (A). The cell classes
550 listed along the horizontal axis are silenced one by one, and the effect on each cell class (listed along the
551  vertical axis) is characterized using the Optogenetic Modulation Index (OMI; see Main text), averaged
552 over 10 trials and over all cells in the class. The entries “allHtr3a”, “allPvalb”, and “allSst” refer to

553  simulations where, e.g., the Sst class of neurons was silenced in all layers (“allSst”). (C) Activation of

554  Layer 6 excitatory or Pvalb inhibitory neurons, for the same visual stimulus as in (A). Different

555  amplitudes of perturbations are sampled. OMI is computed as in (B), and is shown for 3 select cell

556  classes. Due to inter-laminar projections of Layer 6 Pvalb interneurons to upper layers, activation of

557  either Layer 6 excitatory or Layer 6 inhibitory Pvalb cells leads to the suppression of activity in Layer 4.

558

559

18


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

560

561
562
563
564
565
566
567
568
569
570

571
572
573
574
575
576
577
578
579
580
581
582

583
584
585
586
587
588
589
590
591
592

593
594
595
596
597
598
599
600
601

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Discussion

The Brain Modeling ToolKit (BMTK) is a Python package that provides convenient and powerful user
interfaces for building and simulating computational models for neuroscience applications. Network
models, from very simple to highly complex and biologically realistic, can be constructed using BMTK
Builder. BMTK's FilterNet module provides functionality to process multi-dimensional stimuli via arrays
of filters, resulting in time series or spike trains that can be used, e.g., as incoming stimuli for network
simulations. The actual network simulations are carried out using BMTK modules BioNet, PointNet, and
PopNet, which take advantage of the powerful simulation engines NEURON (Carnevale and Hines, 2006),
NEST (Gewaltig and Diesmann, 2007), and diPDE (Cain et al., 2016). Through these modules, BMTK
supports simulations at multiple levels of modeling resolution — from filters and population dynamics, to
point-neuron and biophysically-detailed compartmental neuronal models.

There are multiple benefits of BMTK for users. The most standard practice in the field is to build
relatively simple networks, that can be described by a few lines of code. BMTK is fully compatible with
such a practice, as BMTK Builder supports exactly this approach. An additional benefit of modularity is
provided by separating the model building and simulating stages, so that it becomes easier to keep track
of specific instantiations of models that may be simulated with a variety of different input parameters.
On the other hand, a growing area of modeling applications is the development of very sophisticated
and biologically realistic models drawing on the extensive experimental datasets, and here BMTK is
useful as well. BMTK Builder enables very complex and computationally expensive approaches to
constructing network models, as exemplified by the model of mouse V1 described above (Billeh, 2020)
(Fig. 6). The same example also illustrates how, after constructing a model once, one can reuse many
components of the model for simulations at different levels of resolution, such as biophysical with
BioNet and point-neuron with PointNet.

Another aspect of benefits to users is the standardization of user experience. The simulation modules of
BMTK provide very similar interfaces for interacting with simulations at different levels of resolution,
whether with BioNet, PointNet, or PopNet. All steps in the modeling and simulation processes are

bound together by employing the SONATA format (Dai et al., 2020) for input and output files. This
simplifies and standardizes workflows, and also provides a backbone for sharing models and simulations
with the community. Beyond applications in BMTK itself, SONATA ensures a wide spectrum of
possibilities for sharing and reusing BMTK models with other tools, and vice versa, since SONATA is
supported by or compatible with a growing list of software tools and standards, including NetPyNE,
NeuroML, PyNN, RTNeuron, Brion/Brain, and NWB (Cannon et al., 2014; Davison et al., 2009; Dura-
Bernal et al., 2019; Gleeson et al., 2010; Hernando et al., 2013; Rubel et al., 2019).

Finally, BMTK enables even non-expert users to perform computationally efficient simulations. The
BMTK simulator modules enable simple straightforward simulations, but also harness the excellent
capabilities of NEURON (Carnevale and Hines, 2006) and NEST (Gewaltig and Diesmann, 2007) to carry
out very large-scale simulations with high computational efficiency, employing parallelization
techniques. The latter is an essential requirement for efficient simulations of large and biologically
realistic model networks. Previously, in many cases one had to become an expert in parallel
programming under the simulator environment and write their own parallel simulation code in that
environment. BMTK implements this step for users, so that even users with no experience in
programming can perform highly computationally demanding simulations very efficiently. At the same

19


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

602
603
604

605
606
607
608
609
610
611
612
613
614
615

616
617
618
619
620
621
622
623
624

625

626

627
628
629

630
631
632

633
634
635

636
637

638
639

640

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

time, due to BMTK'’s open-source design as a set of Python modules, those users who are more
proficient in software coding can easily implement additional capability of their choice by interfacing
their functions with BMTK.

As we showed above, BMTK is a mature tool providing ample opportunities for modeling applications.
One can build models, provide realistic inputs, such as visual inputs corresponding to arbitrary movies
that might be used in experiments, and perform extensive simulations of brain networks under realistic
conditions to obtain a variety of outputs (Figs. 5, 6). Current BMTK implementation easily supports
output of spikes, membrane voltages, and variables such as calcium concentration. BioNet also permits
one to simulate and save the extracellular potential for computing such metrics as LFP and CSD (Fig. 7).
Importantly, BMTK also permits a variety of perturbations applied to the simulated system, for example
in the form of current injections into neurons (Fig. 8). One critical application of such capabilities is
simulation of optogenetic perturbations of brain circuits, which has become a very powerful tool for
interrogating circuit function in experiments (e.g., (Boyden, 2015; Carrillo-Reid et al., 2017; Deisseroth,
2015; Kim et al., 2017; Li et al., 2015, 2019; Madisen et al., 2012)).

BMTK is intended as an open ecosystem that can grow and develop with time. While many useful
features are already available based on the initial applications, we intend to add new features, especially
driven by user feedback and requests. In addition, BMTK is an open-source project hosted on GitHub
(https://alleninstitute.github.io/bmtk/), and users are welcome to submit their own new features and
solutions to enhance the tool’s capabilities for everyone’s benefit. We anticipate that BMTK, combined

with the SONATA format, can be useful for a broad spectrum of applications on personal computers,
supercomputers, and in the cloud environments. Our hope is that BMTK will save effort of many
researchers who will be able to focus more on their scientific research and will fuel many discoveries at
the interface between modeling, theory, and experimentation.

Acknowledgments

3-D visualizations were generated using RTNeuron with the support of the Blue Brain Project. We are
grateful to Michael Hines for many helpful discussions and suggestions. We wish to thank the Allen
Institute founder, Paul G. Allen, for his vision, encouragement, and support.

References

Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., and Lippert, T. (2016). The Human Brain Project:
Creating a European Research Infrastructure to Decode the Human Brain. Neuron 92, 574-581.

Arkhipov, A., Gouwens, N.W., Billeh, Y.N., Gratiy, S., lyer, R., Wei, Z., Xu, Z., Abbasi-Asl, R., Berg, J., Buice,
M., et al. (2018). Visual physiology of the layer 4 cortical circuit in silico. PLoS Comput. Biol. 14,
€1006535.

Bezaire, M.J., Raikov, I., Burk, K., Vyas, D., and Soltesz, I. (2016). Interneuronal mechanisms of
hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife 5, e18566.

Billeh, Y.N. et al. (2020). Systematic Integration of Structural and Functional Data into Multi-Scale
Models of Mouse Primary Visual Cortex. Neuron 106, 388—403.

Bopp, R., Holler-Rickauer, S., Martin, K.A.C., and Schuhknecht, G.F.P. (2017). An Ultrastructural Study of

20


https://alleninstitute.github.io/bmtk/
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

641
642

643
644
645

646
647

648

649
650

651
652

653
654
655

656
657

658
659
660

661

662
663

664
665

666
667
668

669
670

671
672

673
674
675

676
677
678

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse. J.
Neurosci. 37, 2435 LP — 2448,

Bouchard, K.E., Aimone, J.B., Chun, M., Dean, T., Denker, M., Diesmann, M., Donofrio, D.D., Frank, L.M.,
Kasthuri, N., Koch, C., et al. (2016). High-Performance Computing in Neuroscience for Data-Driven
Discovery, Integration, and Dissemination. Neuron 92, 628—-631.

Bower, J., and Beeman, D. (1997). The Book of GENESIS: Exploring Realistic Neural Models with the
GEneral NEural SiImulation System (New York: Springer).

Boyden, E.S. (2015). Optogenetics and the future of neuroscience. Nat. Neurosci. 18, 1200-1201.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking
neurons. J. Comput. Neurosci. 8, 183—-208.

Buzsdki, G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular fields and currents — EEG,
ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407-420.

Cai, B., Billeh, Y.N., Chettih, S.N., Harvey, C.D., Koch, C., Arkhipov, A., and Mihalas, S. (2020). Modeling
robust and efficient coding in the mouse primary visual cortex using computational perturbations.
BioRxiv 2020.04.21.051268.

Cain, N., lyer, R., Koch, C., and Mihalas, S. (2016). The Computational Properties of a Simplified Cortical
Column Model. PLoS Comput. Biol. 12.

Cannon, R.C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., and Silver, R.A. (2014). LEMS: a
language for expressing complex biological models in concise and hierarchical form and its use in
underpinning NeuroML 2. Front. Neuroinform. 8, 79.

Carnevale, N., and Hines, M. (2006). The NEURON Book (New York: Cambridge University Press).

Carrillo-Reid, L., Yang, W., Kang Miller, J., Peterka, D.S., and Yuste, R. (2017). Imaging and Optically
Manipulating Neuronal Ensembles. Annu. Rev. Biophys. 46, 271-293.

Chettih, S.N., and Harvey, C.D. (2019). Single-neuron perturbations reveal feature-specific competition in
V1. Nature 567, 334-340.

Dai, K., Hernando, J., Billeh, Y.N., Gratiy, S.L., Planas, J., Davison, A.P., Dura-Bernal, S., Gleeson, P.,
Devresse, A., Dichter, B.K., et al. (2020). The SONATA data format for efficient description of large-scale
network models. PLOS Comput. Biol. 16, e1007696.

Davison, A.P., Briiderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., and Yger, P.
(2009). PyNN: A common interface for neuronal network simulators. Front. Neuroinform. 2.

Deisseroth, K. (2015). Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18,
1213-1225.

Dura-Bernal, S., Suter, B.A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez, F., Kedziora, D.J.,
Chadderdon, G.L., Kerr, C.C., Neymotin, S.A,, et al. (2019). NetPyNE, a tool for data-driven multiscale
modeling of brain circuits. Elife 8.

Durand, S., lyer, R., Mizuseki, K., De Vries, S., Mihalas, S., and Reid, R.C. (2016). A comparison of visual
response properties in the lateral geniculate nucleus and primary visual cortex of awake and
anesthetized mice. J. Neurosci. 36.

21


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

679
680

681
682

683

684
685

686
687
688

689
690
691
692

693
694

695
696

697
698

699
700
701

702
703
704

705
706
707

708
709

710
711
712

713
714
715

716
717

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Einevoll, G.T., Kayser, C., Logothetis, N.K., and Panzeri, S. (2013). Modelling and analysis of local field
potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14, 770-785.

Einevoll, G.T., Destexhe, A., Diesmann, M., Grln, S., Jirsa, V., de Kamps, M., Migliore, M., Ness, T. V,
Plesser, H.E., and Schiirmann, F. (2019). The Scientific Case for Brain Simulations. Neuron 102, 735-744.

Gewaltig, M.-0., and Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia 2, 1430.

Gleeson, P., Steuber, V., and Silver, R.A. (2007). <em>neuroConstruct</em>: A Tool for Modeling
Networks of Neurons in 3D Space. Neuron 54, 219-235.

Gleeson, P., Crook, S., Cannon, R.C., Hines, M.L., Billings, G.O., Farinella, M., Morse, T.M., Davison, A.P.,
Ray, S., Bhalla, U.S., et al. (2010). NeuroML: A language for describing data driven models of neurons
and networks with a high degree of biological detail. PLoS Comput. Biol. 6, 1-19.

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S., Piasini, E., Birgiolas, J.,
Cannon, R.C., Cayco-Gajic, N.A., et al. (2019). Open Source Brain: A Collaborative Resource for
Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits. Neuron
103, 395-411.e5.

Gold, C., Henze, D.A., Koch, C., and Buzsaki, G. (2006). On the Origin of the Extracellular Action Potential
Waveform: A Modeling Study. J. Neurophysiol. 95, 3113-3128.

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks in Python . Front.
Neuroinformatics 2, 5.

Gorur-Shandilya, S., Hoyland, A., and Marder, E. (2018). Xolotl: An Intuitive and Approachable Neuron
and Network Simulator for Research and Teaching . Front. Neuroinformatics 12, 87.

Gouwens, N.W., Berg, J., Feng, D., Sorensen, S.A., Zeng, H., Hawrylycz, M.J., Koch, C., and Arkhipov, A.
(2018). Systematic generation of biophysically detailed models for diverse cortical neuron types. Nat.
Commun. 9, 710.

Gouwens, N.W., Sorensen, S.A., Berg, J., Lee, C., Jarsky, T., Ting, J., Sunkin, S.M., Feng, D., Anastassiou,
C.A,, Barkan, E., et al. (2019). Classification of electrophysiological and morphological neuron types in
the mouse visual cortex. Nat. Neurosci. 22, 1182-1195.

Gratiy, S.L., Billeh, Y.N., Dai, K., Mitelut, C., Feng, D., Gouwens, N.W., Cain, N., Koch, C., Anastassiou,
C.A,, and Arkhipov, A. (2018). BioNet: A Python interface to NEURON for modeling large-scale networks.
PLoS One 13, e0201630.

Hagen, E., Naess, S., Ness, T. V, and Einevoll, G.T. (2018). Multimodal Modeling of Neural Network
Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0 . Front. Neuroinformatics 12, 92.

Hawrylycz, M., Anastassiou, C., Arkhipov, A., Berg, J., Buice, M., Cain, N., Gouwens, N.W., Gratiy, S., lyer,
R., Lee, J.H., et al. (2016). Inferring cortical function in the mouse visual system through large-scale
systems neuroscience. Proc. Natl. Acad. Sci. U. S. A. 113.

Hernando, J.B., Biddiscombe, J., Bohara, B., Eilemann, S., and Schirmann, F. (2013). Practical parallel
rendering of detailed neuron simulations. EGPGV ’13 Proc. 13th Eurographics Symp. Parallel Graph. Vis.
49-56.

Ji, X, Zingg, B., Mesik, L., Xiao, Z., Zhang, L.l., and Tao, H.W. (2015). Thalamocortical Innervation Pattern
in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb. Cortex 26, 2612—-2625.

22


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

718
719

720
721

722
723

724
725

726
727

728
729

730
731

732
733

734
735
736

737
738
739

740
741
742

743
744

745
746

747
748

749
750
751

752

753
754

755

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Kim, C.K., Adhikari, A., and Deisseroth, K. (2017). Integration of optogenetics with complementary
methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222—-235.

Kloc, M., and Maffei, A. (2014). Target-Specific Properties of Thalamocortical Synapses onto Layer 4 of
Mouse Primary Visual Cortex. J. Neurosci. 34, 15455 LP — 15465.

Koch, C., and Jones, A. (2016). Big Science, Team Science, and Open Science for Neuroscience. Neuron
92, 612-616.

Li, N., Chen, T.-W., Guo, Z. V, Gerfen, C.R., and Svoboda, K. (2015). A motor cortex circuit for motor
planning and movement. Nature 519, 51-56.

Li, N., Chen, S., Guo, Z. V, Chen, H., Huo, Y., Inagaki, H.K., Davis, C., Hansel, D., Guo, C., and Svoboda, K.
(2019). Spatiotemporal limits of optogenetic manipulations in cortical circuits. BioRxiv 642215.

Lien, A.D., and Scanziani, M. (2013). Tuned thalamic excitation is amplified by visual cortical circuits. Nat.
Neurosci. 16, 1315-1323.

Lien, A.D., and Scanziani, M. (2018). Cortical direction selectivity emerges at convergence of thalamic
synapses. Nature 558, 80—86.

Lindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Griin, S., Diesmann, M., and Einevoll, G.T. (2011).
Modeling the Spatial Reach of the LFP. Neuron 72, 859—-872.

Lindén, H., Hagen, E., Leski, S., Norheim, E., Pettersen, K., and Einevoll, G. (2014). LFPy: a tool for
biophysical simulation of extracellular potentials generated by detailed model neurons . Front.
Neuroinformatics 7, 41.

Madisen, L., Mao, T., Koch, H., Zhuo, J., Berenyi, A., Fujisawa, S., Hsu, Y.-W.A,, Garcia, A.J., Gu, X.,
Zanella, S., et al. (2012). A toolbox of Cre-dependent optogenetic transgenic mice for light-induced
activation and silencing. Nat. Neurosci. 15, 793—-802.

Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., Ailamaki, A.,
Alonso-Nanclares, L., Antille, N., Arsever, S., et al. (2015). Reconstruction and Simulation of Neocortical
Microcircuitry. Cell 163, 456—492.

Martin, C.L., and Chun, M. (2016). The BRAIN Initiative: Building, Strengthening, and Sustaining. Neuron
92,570-573.

Mitzdorf, U. (1987). Properties of the Evoked Potential Generators: Current Source-Density Analysis of
Visually Evoked Potentials in the Cat Cortex. Int. J. Neurosci. 33, 33-59.

Morgenstern, N.A., Bourg, J., and Petreanu, L. (2016). Multilaminar networks of cortical neurons
integrate common inputs from sensory thalamus. Nat. Neurosci. 19, 1034-1040.

Neymotin, S.A., Daniels, D.S., Caldwell, B., McDougal, R.A., Carnevale, N.T., Jas, M., Moore, C.1., Hines,
M.L., Hdmaldinen, M., and Jones, S.R. (2020). Human Neocortical Neurosolver (HNN), a new software
tool for interpreting the cellular and network origin of human MEG/EEG data. Elife 9, e51214.

Plonsey, R. (1974). The active fiber in a volume conductor. |IEEE Trans. Biomed. Eng. BME-21, 371-381.

Ray, S., and Bhalla, U. (2008). PyMOOSE: interoperable scripting in Python for MOOSE . Front.
Neuroinformatics 2, 6.

Ray, S., Chintaluri, C., Bhalla, U.S., and Wdjcik, D.K. (2016). NSDF: Neuroscience Simulation Data Format.

23


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084947; this version posted May 10, 2020. The copyright holder for this preprint (which

756

757
758
759

760
761
762

763
764

765
766
767

768
769
770

771
772
773

774

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Neuroinformatics 14, 147-167.

Rubel, O., Tritt, A., Dichter, B., Braun, T., Cain, N., Oliver, R., Clack, N., Davidson, T.J., Dougherty, M.,
Graddis, N., et al. (2019). NWB : N 2. 0 : An Accessible Data Standard for Neurophysiology. BioRxiv
523035.

Schoonover, C.E., Tapia, J.-C., Schilling, V.C., Wimmer, V., Blazeski, R., Zhang, W., Mason, C.A., and
Bruno, R.M. (2014). Comparative Strength and Dendritic Organization of Thalamocortical and
Corticocortical Synapses onto Excitatory Layer 4 Neurons. J. Neurosci. 34, 6746 LP — 6758.

Senzai, Y., Fernandez-Ruiz, A., and Buzsaki, G. (2019). Layer-Specific Physiological Features and
Interlaminar Interactions in the Primary Visual Cortex of the Mouse. Neuron 101, 500-513.e5.

Siegle, J.H., Jia, X., Durand, S., Gale, S., Bennett, C., Graddis, N., Heller, G., Ramirez, T.K., Choi, H.,
Luviano, J.A,, et al. (2019). A survey of spiking activity reveals a functional hierarchy of mouse
corticothalamic visual areas. BioRxiv 805010.

Teeter, C., lyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., Szafer, A,, Cain, N., Zeng, H., Hawrylycz,
M., et al. (2018). Generalized leaky integrate-and-fire models classify multiple neuron types. Nat.
Commun.

Vogelstein, J.T., Mensh, B., Hausser, M., Spruston, N., Evans, A.C., Kording, K., Amunts, K., Ebell, C.,
Muller, J., Telefont, M., et al. (2016). To the Cloud! A Grassroots Proposal to Accelerate Brain Science
Discovery. Neuron 92, 622-627.

24


https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

