
1

Brain Modeling ToolKit: an Open Source 1

Software Suite for Multiscale Modeling of 2

Brain Circuits 3

 4

Kael Dai1, Sergey L. Gratiy1, Yazan N. Billeh1, Richard Xu1, Binghuang Cai1, Nicholas Cain1, Atle E. 5

Rimehaug2, Alexander J. Stasik2, Gaute T. Einevoll2, Stefan Mihalas1, Christof Koch1, and Anton 6

Arkhipov1,* 7

1 Allen Institute, Seattle, WA 8

2 Norwegian University of Life Sciences & University of Oslo, Oslo, Norway 9

* Correspondence: antona@alleninstitute.org 10

 11

Abstract 12

Experimental studies in neuroscience are producing data at a rapidly increasing rate, providing exciting 13

opportunities and formidable challenges to existing theoretical and modeling approaches. To turn 14

massive datasets into predictive quantitative frameworks, the field needs software solutions for 15

systematic integration of data into realistic, multiscale models. Here we describe the Brain Modeling 16

ToolKit (BMTK), a software suite for building models and performing simulations at multiple levels of 17

resolution, from biophysically detailed multi-compartmental, to point-neuron, to population-statistical 18

approaches. Leveraging the SONATA file format and existing software such as NEURON, NEST, and 19

others, BMTK offers consistent user experience across multiple levels of resolution. It permits highly 20

sophisticated simulations to be set up with little coding required, thus lowering entry barriers to new 21

users. We illustrate successful applications of BMTK to large-scale simulations of a cortical area. BMTK is 22

an open-source package provided as a resource supporting modeling-based discovery in the community. 23

 24

Introduction 25

Recent emergence of systematic large-scale efforts for comprehensive characterization of brain cell 26

types, their connectivity, and in vivo activity (e.g. (Amunts et al., 2016; Bouchard et al., 2016; Hawrylycz 27

et al., 2016; Koch and Jones, 2016; Martin and Chun, 2016; Vogelstein et al., 2016)) is fundamentally 28

reshaping neuroscience research. As the new extremely rich and multimodal data become increasingly 29

available to the community, the need is more urgent than ever to develop sophisticated modeling 30

approaches that could help distill new knowledge from the exuberant complexity of the brain reflected 31

in these datasets (Einevoll et al., 2019). While computational modeling, when combined with theoretical 32

and experimental approaches, clearly has a lot of potential to bridge properties of single cells with brain 33

connectivity, neural activity, and ultimately organism behavior, building such bridges has proven 34

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

mailto:antona@alleninstitute.org
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

difficult. Some of the greatest barriers are presented by technical challenges of constructing and 35

simulating large and complex biologically-realistic models, integration of different modeling approaches, 36

and systematic sharing of models with the community. New software tools are required to overcome 37

these challenges and enable easy workflows for the new generation of computational models. 38

One may argue that simulating a huge number of neurons by itself is not a bottleneck any more (Bezaire 39

et al., 2016; Billeh, 2020; Markram et al., 2015), thanks to availability of supercomputers and the very 40

successful software packages that enable complex and highly parallelizable simulations, such as 41

NEURON (Carnevale and Hines, 2006), NEST (Gewaltig and Diesmann, 2007), GENESIS (Bower and 42

Beeman, 1997), MOOSE (Ray and Bhalla, 2008), Brian (Goodman and Brette, 2008), Xolotl (Gorur-43

Shandilya et al., 2018), and others. However, existing simulation packages traditionally provide a 44

programming environment for users to develop modeling/simulation software code, rather than data-45

driven interfaces for interactions with model or simulation data. To build sophisticated models, or even 46

to enable efficient simulations, users often need to become experts in the programming environment 47

and languages specific to a simulation package. 48

Several tools have been recently developed that address some aspects of these challenges, e.g., 49

NeuroConstruct (Gleeson et al., 2007), LFPy (Hagen et al., 2018; Lindén et al., 2014), BioNet (Gratiy et 50

al., 2018), Open Source Brain (Gleeson et al., 2019), HNN (Neymotin et al., 2020), and NetPyNE (Dura-51

Bernal et al., 2019). These tools do not necessarily provide their own simulation kernel, but instead may 52

rely on an existing simulation engine, such as NEURON, providing a user-friendly interface to this engine. 53

To achieve this, they take advantage of the recent developments of modeling file formats and universal 54

model description languages such as NeuroML (Cannon et al., 2014; Gleeson et al., 2010), PyNN 55

(Davison et al., 2009), NSDF (Ray et al., 2016), and SONATA (Dai et al., 2020). These new developments 56

indicate very welcome signs of progress in necessary software technology, promising improvements to 57

the practice of modeling in neuroscience. 58

Building upon these trends, we have developed and present here an extensive package for multiscale 59

modeling and simulation, called the Brain Modeling ToolKit (BMTK). While existing tools typically 60

provide an interface to only one simulation engine (for example, NetPyNE (Dura-Bernal et al., 2019) is a 61

powerful interface specifically to the NEURON simulation engine), BMTK has been explicitly developed 62

to furnish interfaces to multiple simulation engines, providing similar user experience in each case. 63

Currently, BMTK supports biophysically detailed, multi-compartmental simulations with NEURON via the 64

BioNet module (Carnevale and Hines, 2006), point-neuron simulations with NEST (Gewaltig and 65

Diesmann, 2007) via the PointNet module, and population-based simulation with diPDE (Cain et al., 66

2016) via the PopNet module. Through the FilterNet module, BMTK enables filter-based models and 67

simulations, which are often useful, e.g., for providing inputs to simulations of brain networks. Models 68

at all these levels of resolution can be constructed using the BMTK Builder module. With these 69

capabilities, BMTK offers to users a single convenient environment for modeling and simulations across 70

multiple scales and approaches. 71

From the implementation point of view, BMTK is a Python package that can be installed on a personal 72

computer, a cluster or supercomputer, or in a cloud environment. BMTK provides a Python-based 73

modular environment for model building and simulation, where the model building stage is clearly 74

separated from simulation, as some of the applications leveraging real biological complexity of brain 75

composition and connectivity, like empirically driven placement of synapses, can cause model building 76

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

to be computationally expensive. It is therefore often useful to build a model once and then load such 77

pre-built models from files for every new simulation. For simulations, BMTK provides a user experience 78

requiring little-to-no programming skills: instead of programming, users simply need to manipulate files 79

as inputs and outputs of simulations. However, advanced users can easily extend BMTK capabilities 80

through their own functions, as BMTK’s open-source Python-based design allows for enhancements in a 81

straightforward manner. In other words, one can use BMTK as a simple interface to harness the power 82

of existing simulation engines without the need for programming, or, alternatively, as a programming 83

environment. The diverse capabilities of BMTK are supported by the modeling file format SONATA (Dai 84

et al., 2020), which is unique in that it provides a complete description of models and simulation 85

inputs/outputs (i.e., various properties of cells, connectivity, and activity), employs highly efficient 86

binary solutions for computationally demanding components of models and simulations, and flexibly 87

supports multiple levels of modeling abstraction. Importantly, SONATA is compatible with the 88

neurophysiology data format NWB (Rubel et al., 2019), which makes it easy for BMTK to interface with 89

experimental data stored as NWB files. 90

BMTK has been developed with an emphasis on complex and large-scale models and simulations. As 91

such, through its integration with the excellent tools such as NEST and NEURON, it provides a powerful 92

interface permitting very efficient simulations of sophisticated models at multiple scales. This enables 93

easy access to a broad spectrum of computational applications leveraging the new streams of complex 94

information about the brain. However, BMTK also easily supports simpler simulations, including small 95

networks or single-neuron simulations. Overall, the tool is designed for user convenience and flexibility. 96

BMTK is provided freely to the community as an open-source software package 97

(https://alleninstitute.github.io/bmtk/) to facilitate development and simulation of models and support 98

systematic model sharing and reproducibility. 99

 100

Results 101

 102

BMTK Overview 103

BMTK is a Python-based software package (originally developed for Python 2.7 and currently supporting 104

Python 3.6+) for creating and simulating neural network models at multiple levels of resolution. It is also 105

an open-source software development kit, allowing users to modify the existing functionality and easily 106

add new extensions or modules. Currently BMTK contains a Builder module for creating models and four 107

simulator modules – BioNet, PointNet, PopNet, and FilterNet – for simulating the models at different 108

levels of granularity (Fig. 1). 109

The simulator modules are the application programming interfaces (APIs) to simulation engines (Fig. 1), 110

i.e., these modules provide a Python interface to the underlying software packages that execute 111

simulations. The BioNet module provides an interface to NEURON (Carnevale and Hines, 2006) for 112

simulations that involve biophysically detailed, compartmental neuronal models or point-neuron 113

models; PointNet – to NEST (Gewaltig and Diesmann, 2007) for highly efficient point-neuron 114

simulations; PopNet – to the package diPDE (Cain et al., 2016), which implements a population density 115

approach for simulations of coupled networks of neuronal populations; and FilterNet – to BMTK’s built-116

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://alleninstitute.github.io/bmtk/
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

in solver of filter input-output transformations. The four modules provide a unified user experience for 117

interactions with any of the underlying simulation engines. 118

 119

 120

Figure 1. Overview of BMTK. The BMTK software suite consists of several modules. The Builder module 121

contains functions for constructing network models. The simulator modules provide APIs to the 122

simulation engines. BioNet enables simulations of networks consisting of biophysically detailed, multi-123

compartmental neuron models by interfacing with NEURON. PointNet supports simulations of point-124

neuron networks via NEST. FilterNet permits simulations of arrays of filters (integrated with the specific 125

case of a model of visual processing by the mouse LGN). PopNet supports simulations with population-126

statistical models by interfacing with the DiPDE tool. The BMTK modules can subserve multi-stage 127

operations by writing the outputs as files in SONATA format and reading such files as inputs for the next 128

stage of modeling or simulation. 129

 130

Besides the similarity of user experience across modeling levels of resolution, perhaps the main 131

advantage of BMTK to users is that one does not need to become an expert in the programming 132

environments of any of the individual simulation engines, even if one is building and simulating very 133

sophisticated biologically-realistic network models. This is achieved by relying on the standardized data 134

format, SONATA (Dai et al., 2020), for representing model properties and simulation configurations, as 135

well as inputs and outputs. Users only need to provide SONATA files (either by building them using 136

BMTK Builder or by getting files from existing models), and BMTK’s simulator modules will do the rest by 137

translating the SONATA files into model instantiations and simulations by NEURON, NEST, or other 138

engines (Fig. 2). Not only does the SONATA format enable this simple workflow under BMTK, it also 139

supports easy model sharing across software packages, as SONATA is implemented in a broad range of 140

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

modeling tools, such as Blue Brain’s Brion/Brain (https://github.com/BlueBrain/Brion), pyNeuroML 141

(Cannon et al., 2014; Gleeson et al., 2010), pyNN (Davison et al., 2009), and NetPyNE (Dura-Bernal et al., 142

2019). Moreover, SONATA’s specification for model inputs and output (spikes and time series of 143

membrane voltage, calcium concentration, etc.) is compatible via a converter with the experimental 144

neurophysiology file format NWB (Dai et al., 2020; Rubel et al., 2019). 145

As a result, the basic workflow under BMTK is straightforward and consistent across all levels of 146

resolution (Fig. 2). Model building is achieved by scripting in Python using the BMTK Builder module, 147

which specify attributes of and relationships between nodes and edges in the constructed network. This 148

step represents the most typical approach currently in use in the modeling field, where descriptive 149

declarations are used to build network instantiations – often constructing very sophisticated networks 150

with only a few lines of code. The output of this module is a set of SONATA files storing model 151

instantiations. The BMTK simulator modules (Fig. 2) then run simulations utilizing the SONATA files that 152

describe model composition, inputs (such as incoming spikes), and simulation configuration (duration, 153

etc.). At simulation completion and, if needed, throughout the simulation duration, the simulators write 154

output to disk also in the form of SONATA files. 155

The BMTK output in SONATA format can be then used for analysis and visualization. Whereas a basic 156

visualization of spiking output or firing rates is provided with BMTK, our design philosophy has been to 157

leave analysis and visualization to other packages. Given that the SONATA format is used for output files 158

and that SONATA can be converted to NWB (Dai et al., 2020; Rubel et al., 2019), analysis of BMTK output 159

is easily achieved with any package that can read SONATA or NWB, or indeed any package that can read 160

the HDF5 format, which underlies both SONATA’s and NWB’s spikes and time series storage. 161

Visualization of the simulated networks can also be achieved with specialized tools as long as they can 162

read SONATA format, which can be easily implemented via the open source pySONATA API (Dai et al., 163

2020) (https://github.com/AllenInstitute/sonata). One example of such visualization software that reads 164

SONATA is RTNeuron (Hernando et al., 2013), which was used throughout the figures below to visualize 165

examples of BMTK models. 166

The utility and versatility of BMTK is illustrated below using several examples. First, we describe the 167

BMTK Builder and how it can be used to create simple or very sophisticated network models. Next, we 168

use an example of a simple network consisting of two uniform populations of neurons (excitatory and 169

inhibitory), which we instantiate and simulate using biophysically-detailed compartmental neuronal 170

models in BioNet, point-neuron models in PointNet, and neuronal populations in PopNet. Next, we 171

describe the FilterNet module, which permits one to process stimuli through arrays of filters, currently 172

focusing on converting visual stimuli to spikes that can be used as inputs to simulations of neural 173

networks of vision. Finally, we illustrate the power of BMTK using a variety of real-world applications: 174

simulations of a 230,000-neuron model of mouse V1 implemented at the biophysically detailed and 175

point-neuron levels, computation of the extracellular current source density in simulated cortical tissue, 176

and high-throughput simulations of optogenetic perturbations to diverse cortical cell types. 177

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://github.com/BlueBrain/Brion
https://github.com/AllenInstitute/sonata
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

178
Figure 2. Basic workflow that is conserved across modules of BMTK. Input SONATA files (represented 179

symbolically as chests of drawers) determine the composition and properties of the nodes/network, as 180

well as incoming stimuli (spikes, firing rates, movies) and simulation configuration. Top: the model 181

construction stage. The BMTK Builder combines elements such as cell or synapse models, connectivity 182

rules, and others, via high-level specifications, instantiates the network model, and saves the 183

instantiation as a set of SONATA files. Bottom: simulation stage. The BMTK simulator modules take in 184

the SONATA files as inputs and perform simulations. The input SONATA files may be generated by the 185

BMTK Builder (dashed arrow), any other Builder software supporting SONATA, or from public 186

repositories, collaborators, etc. The BMTK simulator modules produce output, also in SONATA format, 187

typically containing spikes and/or time series (e.g., membrane voltage in selected cells, as a function of 188

time). Right: the SONATA files produced by the BMTK Builder or simulator modules can be analyzed in 189

terms of the model structure or simulated activity (using any analysis software supporting SONATA, or 190

the software that can read HDF5, CSV, and other components of SONATA specification). 191

 192

Constructing Models with BMTK Builder 193

The BMTK Builder (Fig. 3) is a Python module within the BMTK package. By loading this module, one 194

accesses a variety of functions for building networks and saving results to files in SONATA format. The 195

two major types of tasks performed using the BMTK Builder are instantiating network nodes and 196

instantiating edges. 197

When instantiating nodes, one specifies a name for every node type as well as the number of nodes in 198

the type. Furthermore, optional properties of nodes can be specified, such as their positions, types, and 199

other attributes. Some of the attributes are reserved in SONATA format, but otherwise any attributes 200

can be created and assigned as users desire. Functions are provided to distribute values of node 201

properties according to desired distributions (such as distributing cell positions uniformly in a 3D 202

cylindrical volume). 203

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

Instantiation of edges follows similar logics. One specifies which populations of nodes should be 204

connected and adds attributes to those connections (edges), some of which are reserved SONATA 205

properties, but otherwise arbitrary attributes can be assigned. BMTK Builder supplies basic functions for 206

establishing probabilistic connectivity between nodes based, for example, on distance between the 207

nodes. 208

We emphasize that BMTK Builder is designed as a general framework open for extensions. It currently 209

provides functions that, for example, help one to distribute nodes or organize connections according to 210

certain logics, but users are encouraged to utilize their own functions as well. This is easily achieved by 211

the extensible Python interface of the Builder. Additional functions will be added to the core library of 212

the Builder per user feedback. 213

The BMTK Builder is versatile in that it can create both relatively simple network models or highly 214

complex and biologically realistic network models. Below, we describe simulations of networks 215

illustrating two such cases: a network consisting only of two neuronal populations with random 216

connectivity (Brunel, 2000) and a highly sophisticated network model of mouse V1 consisting of 17 cell 217

classes distributed in space across 6 cortical layers, with multiple connectivity rules that account for cell 218

classes, distances, and tuning of physiological responses (Billeh, 2020). Both networks were prepared 219

using BMTK Builder (for the former model, see examples in https://github.com/AllenInstitute/bmtk, and 220

for the latter, see https://portal.brain-map.org/explore/models/mv1-all-layers). It should be noted that, 221

naturally, complexity of a model, especially of the connectivity rules, strongly influences the computing 222

expense required for model building. For instance, generating the 230,000-neuron V1 model (Billeh, 223

2020) can take ~100 CPU-hours or more, depending on the connectivity rules used (note, however, that 224

instantiating a fully actualized model can be parallelized on a cluster). For cases like this, the BMTK’s 225

approach (Figs. 2, 3) of building the model and saving it in SONATA files for subsequent simulations, 226

rather than rebuilding the model every time a simulation is run, is clearly beneficial. 227

A unique feature of BMTK enabled by the SONATA format is that models prepared for one level of 228

resolution can largely be reused for another. For example, a network connectivity created by BMTK 229

Builder for a biophysically detailed simulation contains connections between individual cells as well as 230

descriptions of where synapses should be located on the dendrites of target neurons. This information is 231

stored in SONATA files, which can be used to run a BioNet biophysically detailed simulations. The same 232

files, however, can be used to run a PointNet simulation, which has no representation of dendrites (all 233

neurons are points). In the latter case, only the cell-to-cell connectivity information is used by PointNet, 234

whereas the dendritic locations are ignored. We also note that SONATA files produced by BMTK Builder 235

can be further edited directly, outside of BMTK, since they use well established formats such as HDF5 236

and CSV (Dai et al., 2020), which can be read and written by many software packages and programming 237

languages. 238

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://github.com/AllenInstitute/bmtk
https://portal.brain-map.org/explore/models/mv1-all-layers
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

 239

Figure 3. BMTK Builder. The Builder module is used to design and instantiate network models. On the 240

left, examples of the Python commands used in BMTK Builder are presented (simple versions of these 241

commands are shown, for clarity), and on the right purpose of these commands is illustrated 242

schematically on the right. The main stages of model building workflow are defining the nodes and their 243

attributes, defining the connection rules, and then instantiating and saving the network. 244

 245

Biophysically Detailed, Point-Neuron, and Population Simulations with BioNet, PointNet, 246

and PopNet 247

For simulating networks of interacting nodes, BMTK currently offers support at three levels of 248

resolution: biophysically detailed, compartmental models with BioNet (Gratiy et al., 2018), the interface 249

to NEURON (Carnevale and Hines, 2006); point-neuron models with PointNet, the interface to NEST 250

(Gewaltig and Diesmann, 2007); and population density dynamics models with PopNet, the interface to 251

diPDE (Cain et al., 2016). In all cases, a user provides as an input the SONATA files (Dai et al., 2020) 252

specifying the model (either constructed with BMTK Builder or obtained via other software, such as 253

NetPyNE (Dura-Bernal et al., 2019) or others; Fig. 2) and simulation configuration. The latter is supplied 254

in text-based JSON files containing SONATA-compliant specifications of simulation duration, paths to 255

input and output files, etc. (Dai et al., 2020). The BioNet, PointNet, or PopNet will then interpret the 256

files, run the simulation, and provide the output – such as spikes or various time series, e.g., membrane 257

voltage – also in SONATA format. One useful functionality provided by BMTK is writing the output to disk 258

at user-defined intervals during the simulation. In the case of parallelized simulations each CPU core will 259

cache intermediate results produced on the given core, with the final results collated from data across 260

all cores. See Documentation for more details (https://alleninstitute.github.io/bmtk/). 261

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://alleninstitute.github.io/bmtk/
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

To illustrate applications of BioNet, PointNet, and PopNet, we constructed at each of the three levels of 262

resolution an instance of a simple randomly connected network with 10,000 excitatory neurons and 263

2,500 inhibitory neurons, receiving excitatory input from 1,000 external neurons (Brunel, 2000) (Fig. 4). 264

This network can exhibit a variety of possible dynamical regimes (Brunel, 2000), with different degrees 265

of synchrony and asynchrony between neurons and regularity of spiking of individual neurons. Here we 266

selected one of the possible regimes (the regime with synchronized neuronal populations and regular 267

spiking) for illustration at all three levels of resolution. The implementation of this can be found among 268

the examples at https://github.com/AllenInstitute/bmtk. 269

We first employed BMTK Builder to construct a 12,500-neuron network model using compartmental 270

neuron representations from the published model of Layer 4 of mouse V1 (Arkhipov et al., 2018), with 271

264 compartments for each excitatory and 121 compartments for each inhibitory neuron (Fig. 4A). The 272

neurons were interconnected with 0.1 probability and received spiking inputs from 1,000 Poisson firing 273

rate sources firing at the frequency of 150 Hz. The model was simulated using BioNet, and we adjusted 274

synaptic parameters to obtain the desired dynamical regime. To compare with the other levels of 275

resolution (below), we plotted the spike rasters and population firing rates, which show that neurons 276

fire in a synchronized and regular fashion (Fig. 4A). The population as a whole exhibits the main 277

frequency of ~20 Hz. 278

For the PointNet example, we took the model used for the BioNet simulation above and used all of its 279

components applicable to point-neuron simulations – such as the information about which cell connects 280

to which, but not where individual synapses are placed. Naturally, parameters of neurons and of 281

synapses (such as synaptic strengths) needed to be adjusted, as the meaning of many of such 282

parameters are very different between compartmental and point-neuron models. PointNet simulations 283

were carried out, and the synaptic weights were adjusted to obtain the dynamical regime (Fig. 4B) 284

similar to that in the BioNet simulation above, with the synchronized neurons emitting bursts of 285

population activity at ~20 Hz. 286

Finally, at the PopNet level (Fig. 4C), the network was reduced to three nodes – the excitatory, the 287

inhibitory, and the external stimulus populations, with connections between them. After building this 288

very simple network in BMTK Builder, we simulated it with PopNet and adjusted parameters to obtain 289

the desired dynamical regime. Since only the population rate was available here as the output, it was 290

impossible to judge the regularity of firing of individual neurons, but the population activity was clearly 291

similar to the BioNet and PointNet cases. The firing rate exhibited sharp oscillations of population 292

activity at ~20 Hz, with the activity reaching zero level between each peak, indicating complete silence 293

of all neurons at regular intervals. Note that, like in the BioNet and PointNet cases, the external 294

population here provides a constant level of activity (i.e., individual neurons in the external population 295

fire spikes at irregular intervals according to Poisson statistics, but their collective output at the 296

population level is approximately constant at all times). 297

 298

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://github.com/AllenInstitute/bmtk
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

 299

Figure 4. Biophysically detailed, point-neuron, and population simulations with BioNet, PointNet, and 300

PopNet. In all three cases, the interconnected populations of excitatory and inhibitory neurons receive 301

excitatory input from an external population (1,000 Poisson sources firing at the frequency of 150 Hz, 302

replaced by a uniform population in the PopNet case). (A) Biophysically detailed network of randomly 303

connected excitatory and inhibitory neurons, 12,500 total. An RTNeuron visualization of the network is 304

shown alongside its spiking output (spikes from a small portion of the network are shown, for clarity) 305

and the firing rate (for the whole excitatory population) produced by the BMTK’s BioNet module. (B) The 306

same network using the point-neuron approximation. An RTNeuron visualization and simulation output 307

from the BMTK’s PointNet module simulation are shown. (C) Population-based representation of the 308

same network. A schematic of the model and the output of population-density simulation (firing rate for 309

the excitatory population is shown) from BMTK’s PopNet module are illustrated. 310

 311

Simulations Using Filter Arrays with FilterNet 312

Many models of the nervous system utilize filters – mathematical objects that take in multi-dimensional 313

data and return an output, typically by performing a convolution of the input data with certain 314

functions. FilterNet is a module of BMTK that allows users to operate with filters. A typical application 315

may be processing of peripheral sensory input (Fig. 5). For example, an array of filters may be used to 316

represent retinal cells, with the input being movies and the output being retinal firing rates or spikes. 317

These output signals in turn can be used as inputs to neurons deeper in the brain explicitly simulated 318

using other modules of BMTK, such as BioNet or PointNet. 319

Like the other simulation modules of BMTK, FilterNet is an API that allows users to specify and interact 320

with simulations. FilterNet provides a similar user experience to BioNet, PointNet, and PopNet, in that 321

users work with SONATA-formatted input files that determine functional forms and parameters of the 322

filters, whereas simulation configuration files determine simulation parameters, such as its duration, 323

and location of input and output files. 324

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

The current implementation of FilterNet contains the LGNModel simulator, which was created to 325

provide thalamocortical inputs to biologically realistic models of the mouse visual cortex (Arkhipov et al., 326

2018; Billeh, 2020). This simulator assumes that the input is a movie (a 3D array – two dimensions for 327

space and one for time) and produces the output which is a time-varying firing rate for each filter. A 328

filter here represents an individual cell in the Lateral Geniculate Nucleus (LGN) of mouse thalamus, 329

which projects to the visual cortex. Realistic parameters for such filters, optimized based on the 330

experimental recordings, are available online (http://portal.brain-map.org/explore/models/mv1-all-331

layers). The FilterNet API can also be easily connected with user-defined functions modeling the input-332

output filter relationship, which may represent various types of inputs (for example, other sensory 333

stimuli beyond the visual 3D arrays). 334

An example workflow of FilterNet with LGNModel is illustrated in Fig. 5. Here, a movie clip is provided as 335

a 3-dimensional matrix (schematically represented by an image on the top left). A user defines the 336

frame rate, so that the frames can be pinned to the output time axis, and also selects the types of the 337

filters to be used, their numbers, and how they are distributed in the visual space. The types of the 338

filters and their parameters can be taken from our online repository (http://portal.brain-339

map.org/explore/models/mv1-all-layers) where the filters were optimized to match types of in vivo 340

responses of neurons in the mouse LGN (Billeh, 2020; Durand et al., 2016), or one can easily replace 341

these parameters with those of their own choosing. Each filter performs a spatially-temporally separable 342

convolution with the input movie array using two kernels – one operating on the time course of the 343

movie and the other in the visual space (frame pixels). The result of this transformation is rectified. The 344

output of each filter is then a time-varying firing rate, sampled at a frequency defined by the users. 345

FilterNet can also instantiate spike trains from these firing rates using a Poisson process (Fig. 5). 346

In typical applications one runs a simulation where a movie is passed through an array of filters, each 347

filter returning the firing rate and, potentially, a set of instantiated spike trains (each train corresponding 348

to a single trial). These spike trains can be used as inputs to models of neuronal networks (see an 349

example below of a network model of mouse V1 driven by spikes from the LGN, Fig. 6). In these 350

applications, the filters become external nodes for other BMTK simulations. Typically, the FilterNet 351

simulations would be done first and their output saved to files, and these outputs would then be reused 352

in subsequent network simulations. The critical intermediate step of determining which filter supplies 353

inputs to which target neuron in the simulated network is accomplished via BMTK Builder, where users 354

can define functions for connecting external nodes to internal ones. The subsequent simulations can be 355

performed with BioNet, PointNet, or PopNet. 356

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

http://portal.brain-map.org/explore/models/mv1-all-layers
http://portal.brain-map.org/explore/models/mv1-all-layers
http://portal.brain-map.org/explore/models/mv1-all-layers
http://portal.brain-map.org/explore/models/mv1-all-layers
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

 357

Figure 5. The FilterNet module. Top, general workflow in FilterNet. In case of a visual stimulus, a movie 358

is processed by an array of filters distributed in the visual space. Each filter convolves the frames of the 359

movie with the spatial and temporal kernels, performs rectification, and outputs a time depending firing 360

rate representing the response of the filter to the movie, which can be also converted to instantiations 361

of spike trains. Bottom, illustration of inputs and outputs of FilterNet. Inputs include specifications of 362

parameters such as duration, frame rate, and file locations, as well as contents of the files describing the 363

input patterns and filter properties and distributions. The <run_filternet.py= script is used to carry out 364

the calculations. The output may contain the time series of time-dependent firing rates for each filter 365

and spike trains (illustrated) generated from these time series. 366

 367

Examples of BMTK Applications to Biological Problems 368

Finally, we present real-life examples of scientific simulations of brain circuits using BMTK. We illustrate 369

large-scale simulations of highly complex brain networks at different levels of resolution (Fig. 6); 370

computation of an extracellular electric potential, which is an observable relating the network activity 371

with measurements of a physical signal (Fig. 7); and versatile perturbations of network components to 372

mimic optogenetic experiments (Fig. 8). 373

 374

Biophysical and Point-neuron Simulations of the Mouse Cortical Area V1 375

A recent study (Billeh, 2020) integrated a wide array of experimental information on the composition 376

(cell class, intrinsic properties, and neuron morphologies), connection probabilities and synaptic 377

properties, as well as in vivo physiology of neuronal responses in the mouse primary visual cortex (area 378

V1) to construct a comprehensive model of this cortical area (Fig. 6A). The model was constructed using 379

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

the BMTK Builder. It received thalamocortical inputs from the Lateral Geniculate Nucleus (LGN) of the 380

thalamus, which provided the external drive due to visual stimuli (as illustrated in Fig. 5 for the FIlterNet 381

moduel): 17,400 filters responded to movies (as visual stimuli) and supplied resulting spike trains as 382

inputs to the V1 neurons. These filters represented 14 types of LGN cells, parameterized based on 383

experimental recordings from the LGN (Durand et al., 2016), and were distributed over the whole visual 384

space. The filters were connected to the V1 cells according to experimental data on anatomical and 385

functional properties of the LGN-to-V1 projections (e.g., (Bopp et al., 2017; Ji et al., 2015; Kloc and 386

Maffei, 2014; Lien and Scanziani, 2013, 2018; Morgenstern et al., 2016; Schoonover et al., 2014)). 387

Consequently, arbitrary movies can be used to stimulate the model, enabling direct comparison with 388

experimental trials that used specific movies shown to awake mice while recording extracellular 389

electrophysiology from V1 with the high-throughput Neuropixles probes (Siegle et al., 2019). 390

The model of V1 was constructed at two levels of resolution: the biophysical level (using compartmental 391

neuron models) and the point-neuron level. The biophysical version was in fact a hybrid model, as the 392

central portion of interest in the model, with ~50,000 neurons, was represented using compartmental 393

neuron models, whereas the remaining annulus was represented with point-neuron models (Fig. 6A). 394

The annulus’s role was primarily to provide a smooth boundary. This hybrid model was simulated with 395

BioNet/NEURON, relying on their ability to handle both compartmental and integrate-and-fire types of 396

models. The fully point-neuron version of the model consisted of Generalized Leaky Integrate-and-Fire 397

(GLIF) neuronal models and was simulated with PointNet/NEST. The neuronal models were sourced 398

from the Allen Cell Types Database (Gouwens et al., 2018, 2019; Teeter et al., 2018). 399

The two models were each other’s clones, in the sense that they used the same cell positions, individual 400

connections, and all other properties that were applicable to both levels of resolution (as opposed to 401

those applicable to only one level, e.g., dendritic targeting of synapses), the corresponding SONATA files 402

being prepared once in BMTK Builder and then used for both the BioNet and PointNet models. The 403

networks consisted of ~230,000 neurons, covering all layers of V1 from Layer 1 to Layer 6 and including 404

17 neuron classes (Billeh, 2020). The models used cell-class-dependent, distance-dependent, and 405

neuron-tuning-dependent connection probability rules and synaptic weight rules. Heavily constrained by 406

experimental data and trained on a small sample of visual stimuli (a single trial of 0.5 s of gray screen 407

and same duration drifting grating), the models generalized well to different stimuli and exhibited many 408

similarities with the experimental recordings. For example, they exhibited firing rates and levels of 409

direction selectivity across cortical layers and cell classes that were similar to experimental ones (Fig. 410

6B). From comparisons of these V1 model simulations to experimental recordings, several predictions 411

were made with regard to the logics of connectivity between cortical cells of different classes, 412

depending on the functional tuning of these cells (Billeh, 2020). 413

Benchmarks of BioNet simulations of this 230,00-neuron V1 model (Fig. 6C) show a close to ideal scaling 414

(i.e., twice faster on twice the number of CPUs) of both the simulation execution time and the model 415

loading time with the number of CPU cores. With the partition of 384 CPU cores, we observe the 416

throughput of approximately 1 second of simulated biological time for slightly over 1 hour of <wall 417

clock= (real) time. These results indicate that extensive simulations for such a large-scale and highly 418

detailed model are possible (Billeh, 2020), although that does require substantial computing resources. 419

On the other hand, we found that the point-neuron version of the V1 model could be simulated 420

efficiently with PointNet on a single CPU core, providing the performance of 1 second of simulated time 421

in approximately 3 minutes of real time. While one gains in speed even further with parallel PointNet 422

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

simulations of the V1 model, the convenience and speed of the self-contained single-core simulations 423

are such that typically users find them to be the preferred mode for PointNet simulations of such size. 424

Thus, BMTK’s PointNet enables simulations of large-scale models incorporating much biological 425

complexity even with modest computational resources. 426

It should be noted that the computational performance of BioNet and PointNet relies on the excellent 427

performance and parallelization capabilities of NEURON (Carnevale and Hines, 2006) and NEST (Gewaltig 428

and Diesmann, 2007). What these BMTK modules add is the convenience and interoperability. For 429

example, although NEURON provides powerful parallelization environment, users typically need to write 430

parallel code in that environment to run their simulations. Likewise, constructing sophisticated bio-431

realistic models in NEURON or NEST requires substantial amount of coding. BMTK streamlines the latter 432

part through the uniform model building operations in BMTK Builder and obviates the former part for 433

the users by dealing with NEURON or NEST parallelization <under the hood=, so that users do not need 434

to write any code at all. 435

 436

Figure 6. The biophysical and point-neuron V1 models. (A) Visualizations of the biophysical and point-437

neuron models. The 230,000-neuron models emulate the central portion of the mouse V1, across the 438

full cortical depth, containing layers 1, 2/3, 4, 5, and 6 (layer boundaries are indicated). In the top model, 439

the core portion, ~50,000 neurons, is simulated using biophysically detailed compartmental neuronal 440

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

models, and the annulus around the core using leaky integrate-and-fire (LIF) point-neuron models. In 441

the bottom model, both core and the annulus employ the generalized LIF neuronal models. Neurons are 442

colored by cell class: hues of red for excitatory cells in layers 2/3, 4, 5, and 6, and blue, cyan and green 443

for Pvalb, SST, and Htr3a inhibitory class. (B) Summary of firing rates and direction selectivity index (DSI) 444

obtained from the biophysical and point-neuron simulations, vs. experimental extracellular 445

electrophysiology recordings, by cell class. The data were obtained from 2.5-second long presentations 446

of drifting gratings at 8 different directions, 10 trials each. <RS= and <FS= are experimentally determined 447

regular- and fast-spiking cells, roughly corresponding to excitatory and Pvalb inhibitory neurons; the SST 448

and Htr3a neurons could not be identified from experiments. (C) Performance benchmarks and scaling 449

of simulations and setup of the biophysical version of the V1 model using BMTK’s BioNet. The simulation 450

involved 0.5 s presentation of gray screen and 2.5 s of a drifting grating. The time shown is the wallclock 451

time it took to obtain 1 second of simulated time, averaged over 3 s of simulation. The dashed lines 452

indicate ideal scaling (relative to 125 cores, which is a typical choice for simulation of such scale). 453

 454

Computation of the Extracellular Electric Potential 455

Computing the extracellular field potential in the modeled brain tissue is an important application 456

(Buzsáki et al., 2012; Einevoll et al., 2013, 2019; Gold et al., 2006; Lindén et al., 2011; Mitzdorf, 1987; 457

Senzai et al., 2019) that requires capturing the spatially distributed electric compartments and synapses, 458

as done in biophysically detailed network models. BMTK BioNet’s ability to perform such calculations is 459

illustrated in Fig. 7. BioNet allows users to compute the extracellular potential using the line-source 460

approximation (Gratiy et al., 2018; Plonsey, 1974). The potential is then processed to obtain the low-461

frequency component – the local field potential (LFP), similar to other recently developed tools 462

providing such functionality (e.g., LFPy (Hagen et al., 2018; Lindén et al., 2014), NetPyNE (Dura-Bernal et 463

al., 2019)). BioNet allows users to set up an arbitrary number of recording sites and distribute them in 464

space. One can then use the LFP from multiple electrodes, for example, to compute the current source 465

density (CSD). The resulting LFP and CSD can be directly compared to experimental ones (Fig. 7). 466

The V1 model in Fig. 6 showed good agreement with experiments for firing rate metrics such as 467

direction selectivity. As a next step, one can use BMTK to investigate the extracellular field dynamics. 468

Fig. 7 shows one example among a number of model configurations generated (differing, e.g., in the 469

strengths of connections among cell types, the ways how LGN inputs are provided, or distribution of 470

synapses on the neuronal arbors). The CSD and the firing rates across the cortical layers are compared 471

with the experimental data (Siegle et al., 2019). Note that experimental data show substantial variability 472

across mice, and the example from one mouse shown is not representative of all observed CSD patterns. 473

A majority of the 47 mice in this dataset, however, do contain main features seen in Fig. 7: an early sink 474

(blue) in Layers 2/3-4 (L2/3-L4), which is then replaced by a source (red), and a delayed but strong sink 475

in L5-L6. 476

The model captures some of these properties of CSD, though not precisely. The L2/3-4 sink is more 477

sustained than in the experiment, and the later source in these layers is less prominent. The L5-L6 sink 478

starts earlier in the simulation and is narrower along the depth dimension. The overall magnitude of CSD 479

peaks and troughs is also smaller in simulation than in experiment. Nevertheless, it is reassuring that the 480

model captures overall trends in both the dynamics of the firing rates and the major features of CSD 481

(Fig. 7). Much further work is necessary to understand how the circuit architecture determines the 482

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

spiking and LFP/CSD responses. With BMTK and the bio-realistic V1 model (Billeh, 2020), iterations of 483

simulations and adjustments to the model circuit structure will shed light on this question and will lead 484

to improved agreement with experiments. 485

 486

Figure 7. Computing extracellular field potential in BMTK. A simulation using a version of the V1 model 487

(Fig. 6) with the full-field flash stimulus is illustrated. The BioNet module of BMTK was used to run the 488

simulation and compute the extracellular potential at multiple virtual electrode locations along the 489

cortical depth; consequently, the potential was used to obtain the Local Field Potential and Current 490

Source Density (CSD). Top: CSD from the simulation and from a single mouse in experiment. Bottom: 491

firing rates for the excitatory (<E=) and inhibitory (<I=) populations in each layer (2/3, 4, 5, and 6). Black: 492

experiment mean. Gray: experiment standard deviation. Blue: simulation mean. Simulation rates are 493

averaged over all neurons in population and 10 trials. Experimental data are averaged over all neurons 494

of the given type recorded from 47 mice, 75 trials each. 495

 496

Applications to Perturbative Studies of Brain Circuits 497

BMTK also offers approaches to apply a variety of perturbations and manipulations, which can be 498

specified in the simulation configuration file, e.g., by providing the list of cell IDs to be perturbed and 499

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

17

parameterizing the perturbation function. (The scripting interface permits further unlimited possibilities 500

for simulating custom perturbations.) See 501

https://github.com/AllenInstitute/bmtk/blob/develop/docs/tutorial/05_pointnet_modeling.ipynb#5.-502

Additional-Information 503

As an example, injection of current directly into neurons is a common technique that can be used 504

effectively to mimic optogenetic perturbations. A follow-up study (Cai et al., 2020) to the V1 model work 505

(Billeh, 2020) used this technique to investigate perturbations of neurons, from single to multiple at a 506

time, selected according to their location, cell class, and functional properties. Many thousands of 507

perturbative simulations were performed using the point-neuron version of the V1 model via the 508

BMTK’s PointNet module. The results agreed with the recent single-neuron optogenetics experiments 509

(Chettih and Harvey, 2019) and suggested coexistence of efficient and robust coding in cortical circuits 510

(Cai et al., 2020). Fig. 8 shows a complementary set of simulations conducted as part of that project, 511

which consist of silencing or activation of whole cell classes, including titrated perturbations. Currently, 512

BMTK offers an easy way of defining perturbations to either cell populations or a set of individual cells. 513

Fig. 8A shows spiking activity in the core of the V1 model (see Fig. 6) in response to visual stimulation 514

with a drifting grating, for a control condition and two types of perturbation to the Layer 6 excitatory 515

cells: complete silencing and modest activation of these neurons. With BMKT, it is easy to sample 516

perturbations to all cell classes in the model and characterize the effect of each on all the other classes. 517

This is illustrated in Fig. 8B, which uses the Optogenetic Modulation Index (OMI) to characterize the 518

effect of perturbation. The OMI of a neuron � is defined as: 519

OMI� = �āĂ�ýþ�ÿĂā� 2 �ĀĀÿý�Ā�� �āĂ�ýþ�ÿĂā� + �ĀĀÿý�Ā�� 520

where �āĂ�ýþ�ÿĂā� and �ĀĀÿý�Ā�� are the firings rate of this neuron during and in the absence of 521

perturbation, respectively. Negative OMI indicates suppression of cell’s firing due to perturbation 522

(OMI = 21 means that the cell is fully suppressed), and positive values indicate elevated firing due to 523

perturbation. Mean OMIs for every cell class in Fig. 8B exhibit a rich pattern of various effects depending 524

on the population silenced, including non-intuitive effects of silencing the excitatory populations: e.g., 525

silencing of excitatory populations in Layer 2/3 (E2/3) leads to suppression of E5, but mild activation of 526

E4 and E6. 527

Furthermore, BMTK permits one to sample the magnitude of perturbation (Fig. 8C), which can be done 528

with separate amplitude applied for each cell, e.g., by tying the amount of injected current to the 529

previously measured rheobase of each cell model. Fig. 8C shows the effect of such different 530

perturbation magnitudes applied to the excitatory E6 or inhibitory i6Pvalb cell classes. Both 531

perturbations lead to activation of i6Pvalb, but in the first case E6 firing increases, whereas in the 532

second it decreases. Non-intuitively, both perturbations result in suppression of activity in Layer 4. This 533

particular effect of Layer 6 perturbation is due to interlaminar projections from inhibitory Layer 6 Pvalb 534

neurons to upper layers. These results are consistent with the overall inhibitory modulation of 535

superficial layers by Layer 6, demonstrated experimentally (Olsen et al. 2012; Bortone, Olsen, and 536

Scanziani 2014). 537

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://github.com/AllenInstitute/bmtk/blob/develop/docs/tutorial/05_pointnet_modeling.ipynb#5.-Additional-Information
https://github.com/AllenInstitute/bmtk/blob/develop/docs/tutorial/05_pointnet_modeling.ipynb#5.-Additional-Information
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

18

Together, these examples demonstrate the capability of BMTK to sample a wide variety of perturbations 538

and therefore enable extensive comparisons with experiments and biologically meaningful predictive 539

studies. 540

 541

 542

Figure 8. Simulation of optogenetic perturbations using BMTK. The point-neuron version of the V1 543

model (Fig. 6) is used here for illustration. Perturbations are achieved by injecting positive or negative 544

current into cells. (A) Raster plots from 3-second simulations (stimulus: 0.5 s gray followed by 2.5 s of a 545

drifting grating). Simulations without perturbation, with complete silencing of all Layer 6 excitatory cells 546

(E6), and activation of all E6 cells (current equal to 0.5 of the rheobase of each neuron at rest is injected) 547

are illustrated. The perturbation here is applied throughout the course of simulation. (B) Summary of 548

silencing individual cell classes in the V1 model, for the same visual stimulus as in (A). The cell classes 549

listed along the horizontal axis are silenced one by one, and the effect on each cell class (listed along the 550

vertical axis) is characterized using the Optogenetic Modulation Index (OMI; see Main text), averaged 551

over 10 trials and over all cells in the class. The entries <allHtr3a=, <allPvalb=, and <allSst= refer to 552

simulations where, e.g., the Sst class of neurons was silenced in all layers (<allSst=). (C) Activation of 553

Layer 6 excitatory or Pvalb inhibitory neurons, for the same visual stimulus as in (A). Different 554

amplitudes of perturbations are sampled. OMI is computed as in (B), and is shown for 3 select cell 555

classes. Due to inter-laminar projections of Layer 6 Pvalb interneurons to upper layers, activation of 556

either Layer 6 excitatory or Layer 6 inhibitory Pvalb cells leads to the suppression of activity in Layer 4. 557

 558

 559

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

Discussion 560

The Brain Modeling ToolKit (BMTK) is a Python package that provides convenient and powerful user 561

interfaces for building and simulating computational models for neuroscience applications. Network 562

models, from very simple to highly complex and biologically realistic, can be constructed using BMTK 563

Builder. BMTK’s FilterNet module provides functionality to process multi-dimensional stimuli via arrays 564

of filters, resulting in time series or spike trains that can be used, e.g., as incoming stimuli for network 565

simulations. The actual network simulations are carried out using BMTK modules BioNet, PointNet, and 566

PopNet, which take advantage of the powerful simulation engines NEURON (Carnevale and Hines, 2006), 567

NEST (Gewaltig and Diesmann, 2007), and diPDE (Cain et al., 2016). Through these modules, BMTK 568

supports simulations at multiple levels of modeling resolution – from filters and population dynamics, to 569

point-neuron and biophysically-detailed compartmental neuronal models. 570

There are multiple benefits of BMTK for users. The most standard practice in the field is to build 571

relatively simple networks, that can be described by a few lines of code. BMTK is fully compatible with 572

such a practice, as BMTK Builder supports exactly this approach. An additional benefit of modularity is 573

provided by separating the model building and simulating stages, so that it becomes easier to keep track 574

of specific instantiations of models that may be simulated with a variety of different input parameters. 575

On the other hand, a growing area of modeling applications is the development of very sophisticated 576

and biologically realistic models drawing on the extensive experimental datasets, and here BMTK is 577

useful as well. BMTK Builder enables very complex and computationally expensive approaches to 578

constructing network models, as exemplified by the model of mouse V1 described above (Billeh, 2020) 579

(Fig. 6). The same example also illustrates how, after constructing a model once, one can reuse many 580

components of the model for simulations at different levels of resolution, such as biophysical with 581

BioNet and point-neuron with PointNet. 582

Another aspect of benefits to users is the standardization of user experience. The simulation modules of 583

BMTK provide very similar interfaces for interacting with simulations at different levels of resolution, 584

whether with BioNet, PointNet, or PopNet. All steps in the modeling and simulation processes are 585

bound together by employing the SONATA format (Dai et al., 2020) for input and output files. This 586

simplifies and standardizes workflows, and also provides a backbone for sharing models and simulations 587

with the community. Beyond applications in BMTK itself, SONATA ensures a wide spectrum of 588

possibilities for sharing and reusing BMTK models with other tools, and vice versa, since SONATA is 589

supported by or compatible with a growing list of software tools and standards, including NetPyNE, 590

NeuroML, PyNN, RTNeuron, Brion/Brain, and NWB (Cannon et al., 2014; Davison et al., 2009; Dura-591

Bernal et al., 2019; Gleeson et al., 2010; Hernando et al., 2013; Rubel et al., 2019). 592

Finally, BMTK enables even non-expert users to perform computationally efficient simulations. The 593

BMTK simulator modules enable simple straightforward simulations, but also harness the excellent 594

capabilities of NEURON (Carnevale and Hines, 2006) and NEST (Gewaltig and Diesmann, 2007) to carry 595

out very large-scale simulations with high computational efficiency, employing parallelization 596

techniques. The latter is an essential requirement for efficient simulations of large and biologically 597

realistic model networks. Previously, in many cases one had to become an expert in parallel 598

programming under the simulator environment and write their own parallel simulation code in that 599

environment. BMTK implements this step for users, so that even users with no experience in 600

programming can perform highly computationally demanding simulations very efficiently. At the same 601

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

20

time, due to BMTK’s open-source design as a set of Python modules, those users who are more 602

proficient in software coding can easily implement additional capability of their choice by interfacing 603

their functions with BMTK. 604

As we showed above, BMTK is a mature tool providing ample opportunities for modeling applications. 605

One can build models, provide realistic inputs, such as visual inputs corresponding to arbitrary movies 606

that might be used in experiments, and perform extensive simulations of brain networks under realistic 607

conditions to obtain a variety of outputs (Figs. 5, 6). Current BMTK implementation easily supports 608

output of spikes, membrane voltages, and variables such as calcium concentration. BioNet also permits 609

one to simulate and save the extracellular potential for computing such metrics as LFP and CSD (Fig. 7). 610

Importantly, BMTK also permits a variety of perturbations applied to the simulated system, for example 611

in the form of current injections into neurons (Fig. 8). One critical application of such capabilities is 612

simulation of optogenetic perturbations of brain circuits, which has become a very powerful tool for 613

interrogating circuit function in experiments (e.g., (Boyden, 2015; Carrillo-Reid et al., 2017; Deisseroth, 614

2015; Kim et al., 2017; Li et al., 2015, 2019; Madisen et al., 2012)). 615

BMTK is intended as an open ecosystem that can grow and develop with time. While many useful 616

features are already available based on the initial applications, we intend to add new features, especially 617

driven by user feedback and requests. In addition, BMTK is an open-source project hosted on GitHub 618

(https://alleninstitute.github.io/bmtk/), and users are welcome to submit their own new features and 619

solutions to enhance the tool’s capabilities for everyone’s benefit. We anticipate that BMTK, combined 620

with the SONATA format, can be useful for a broad spectrum of applications on personal computers, 621

supercomputers, and in the cloud environments. Our hope is that BMTK will save effort of many 622

researchers who will be able to focus more on their scientific research and will fuel many discoveries at 623

the interface between modeling, theory, and experimentation. 624

 625

Acknowledgments 626

3-D visualizations were generated using RTNeuron with the support of the Blue Brain Project. We are 627

grateful to Michael Hines for many helpful discussions and suggestions. We wish to thank the Allen 628

Institute founder, Paul G. Allen, for his vision, encouragement, and support. 629

References 630

Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., and Lippert, T. (2016). The Human Brain Project: 631

Creating a European Research Infrastructure to Decode the Human Brain. Neuron 92, 574–581. 632

Arkhipov, A., Gouwens, N.W., Billeh, Y.N., Gratiy, S., Iyer, R., Wei, Z., Xu, Z., Abbasi-Asl, R., Berg, J., Buice, 633

M., et al. (2018). Visual physiology of the layer 4 cortical circuit in silico. PLoS Comput. Biol. 14, 634

e1006535. 635

Bezaire, M.J., Raikov, I., Burk, K., Vyas, D., and Soltesz, I. (2016). Interneuronal mechanisms of 636

hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife 5, e18566. 637

Billeh, Y.N. et al. (2020). Systematic Integration of Structural and Functional Data into Multi-Scale 638

Models of Mouse Primary Visual Cortex. Neuron 106, 388–403. 639

Bopp, R., Holler-Rickauer, S., Martin, K.A.C., and Schuhknecht, G.F.P. (2017). An Ultrastructural Study of 640

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://alleninstitute.github.io/bmtk/
https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse. J. 641

Neurosci. 37, 2435 LP – 2448. 642

Bouchard, K.E., Aimone, J.B., Chun, M., Dean, T., Denker, M., Diesmann, M., Donofrio, D.D., Frank, L.M., 643

Kasthuri, N., Koch, C., et al. (2016). High-Performance Computing in Neuroscience for Data-Driven 644

Discovery, Integration, and Dissemination. Neuron 92, 628–631. 645

Bower, J., and Beeman, D. (1997). The Book of GENESIS: Exploring Realistic Neural Models with the 646

GEneral NEural SImulation System (New York: Springer). 647

Boyden, E.S. (2015). Optogenetics and the future of neuroscience. Nat. Neurosci. 18, 1200–1201. 648

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking 649

neurons. J. Comput. Neurosci. 8, 183–208. 650

Buzsáki, G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular fields and currents — EEG, 651

ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420. 652

Cai, B., Billeh, Y.N., Chettih, S.N., Harvey, C.D., Koch, C., Arkhipov, A., and Mihalas, S. (2020). Modeling 653

robust and efficient coding in the mouse primary visual cortex using computational perturbations. 654

BioRxiv 2020.04.21.051268. 655

Cain, N., Iyer, R., Koch, C., and Mihalas, S. (2016). The Computational Properties of a Simplified Cortical 656

Column Model. PLoS Comput. Biol. 12. 657

Cannon, R.C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., and Silver, R.A. (2014). LEMS: a 658

language for expressing complex biological models in concise and hierarchical form and its use in 659

underpinning NeuroML 2. Front. Neuroinform. 8, 79. 660

Carnevale, N., and Hines, M. (2006). The NEURON Book (New York: Cambridge University Press). 661

Carrillo-Reid, L., Yang, W., Kang Miller, J., Peterka, D.S., and Yuste, R. (2017). Imaging and Optically 662

Manipulating Neuronal Ensembles. Annu. Rev. Biophys. 46, 271–293. 663

Chettih, S.N., and Harvey, C.D. (2019). Single-neuron perturbations reveal feature-specific competition in 664

V1. Nature 567, 334–340. 665

Dai, K., Hernando, J., Billeh, Y.N., Gratiy, S.L., Planas, J., Davison, A.P., Dura-Bernal, S., Gleeson, P., 666

Devresse, A., Dichter, B.K., et al. (2020). The SONATA data format for efficient description of large-scale 667

network models. PLOS Comput. Biol. 16, e1007696. 668

Davison, A.P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., and Yger, P. 669

(2009). PyNN: A common interface for neuronal network simulators. Front. Neuroinform. 2. 670

Deisseroth, K. (2015). Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 671

1213–1225. 672

Dura-Bernal, S., Suter, B.A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez, F., Kedziora, D.J., 673

Chadderdon, G.L., Kerr, C.C., Neymotin, S.A., et al. (2019). NetPyNE, a tool for data-driven multiscale 674

modeling of brain circuits. Elife 8. 675

Durand, S., Iyer, R., Mizuseki, K., De Vries, S., Mihalas, S., and Reid, R.C. (2016). A comparison of visual 676

response properties in the lateral geniculate nucleus and primary visual cortex of awake and 677

anesthetized mice. J. Neurosci. 36. 678

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

Einevoll, G.T., Kayser, C., Logothetis, N.K., and Panzeri, S. (2013). Modelling and analysis of local field 679

potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14, 770–785. 680

Einevoll, G.T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M., Migliore, M., Ness, T. V, 681

Plesser, H.E., and Schürmann, F. (2019). The Scientific Case for Brain Simulations. Neuron 102, 735–744. 682

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia 2, 1430. 683

Gleeson, P., Steuber, V., and Silver, R.A. (2007). neuroConstruct: A Tool for Modeling 684

Networks of Neurons in 3D Space. Neuron 54, 219–235. 685

Gleeson, P., Crook, S., Cannon, R.C., Hines, M.L., Billings, G.O., Farinella, M., Morse, T.M., Davison, A.P., 686

Ray, S., Bhalla, U.S., et al. (2010). NeuroML: A language for describing data driven models of neurons 687

and networks with a high degree of biological detail. PLoS Comput. Biol. 6, 1–19. 688

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S., Piasini, E., Birgiolas, J., 689

Cannon, R.C., Cayco-Gajic, N.A., et al. (2019). Open Source Brain: A Collaborative Resource for 690

Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits. Neuron 691

103, 395-411.e5. 692

Gold, C., Henze, D.A., Koch, C., and Buzsáki, G. (2006). On the Origin of the Extracellular Action Potential 693

Waveform: A Modeling Study. J. Neurophysiol. 95, 3113–3128. 694

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks in Python . Front. 695

Neuroinformatics 2, 5. 696

Gorur-Shandilya, S., Hoyland, A., and Marder, E. (2018). Xolotl: An Intuitive and Approachable Neuron 697

and Network Simulator for Research and Teaching . Front. Neuroinformatics 12, 87. 698

Gouwens, N.W., Berg, J., Feng, D., Sorensen, S.A., Zeng, H., Hawrylycz, M.J., Koch, C., and Arkhipov, A. 699

(2018). Systematic generation of biophysically detailed models for diverse cortical neuron types. Nat. 700

Commun. 9, 710. 701

Gouwens, N.W., Sorensen, S.A., Berg, J., Lee, C., Jarsky, T., Ting, J., Sunkin, S.M., Feng, D., Anastassiou, 702

C.A., Barkan, E., et al. (2019). Classification of electrophysiological and morphological neuron types in 703

the mouse visual cortex. Nat. Neurosci. 22, 1182–1195. 704

Gratiy, S.L., Billeh, Y.N., Dai, K., Mitelut, C., Feng, D., Gouwens, N.W., Cain, N., Koch, C., Anastassiou, 705

C.A., and Arkhipov, A. (2018). BioNet: A Python interface to NEURON for modeling large-scale networks. 706

PLoS One 13, e0201630. 707

Hagen, E., Næss, S., Ness, T. V, and Einevoll, G.T. (2018). Multimodal Modeling of Neural Network 708

Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0 . Front. Neuroinformatics 12, 92. 709

Hawrylycz, M., Anastassiou, C., Arkhipov, A., Berg, J., Buice, M., Cain, N., Gouwens, N.W., Gratiy, S., Iyer, 710

R., Lee, J.H., et al. (2016). Inferring cortical function in the mouse visual system through large-scale 711

systems neuroscience. Proc. Natl. Acad. Sci. U. S. A. 113. 712

Hernando, J.B., Biddiscombe, J., Bohara, B., Eilemann, S., and Schürmann, F. (2013). Practical parallel 713

rendering of detailed neuron simulations. EGPGV ’13 Proc. 13th Eurographics Symp. Parallel Graph. Vis. 714

49–56. 715

Ji, X., Zingg, B., Mesik, L., Xiao, Z., Zhang, L.I., and Tao, H.W. (2015). Thalamocortical Innervation Pattern 716

in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb. Cortex 26, 2612–2625. 717

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

Kim, C.K., Adhikari, A., and Deisseroth, K. (2017). Integration of optogenetics with complementary 718

methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235. 719

Kloc, M., and Maffei, A. (2014). Target-Specific Properties of Thalamocortical Synapses onto Layer 4 of 720

Mouse Primary Visual Cortex. J. Neurosci. 34, 15455 LP – 15465. 721

Koch, C., and Jones, A. (2016). Big Science, Team Science, and Open Science for Neuroscience. Neuron 722

92, 612–616. 723

Li, N., Chen, T.-W., Guo, Z. V, Gerfen, C.R., and Svoboda, K. (2015). A motor cortex circuit for motor 724

planning and movement. Nature 519, 51–56. 725

Li, N., Chen, S., Guo, Z. V, Chen, H., Huo, Y., Inagaki, H.K., Davis, C., Hansel, D., Guo, C., and Svoboda, K. 726

(2019). Spatiotemporal limits of optogenetic manipulations in cortical circuits. BioRxiv 642215. 727

Lien, A.D., and Scanziani, M. (2013). Tuned thalamic excitation is amplified by visual cortical circuits. Nat. 728

Neurosci. 16, 1315–1323. 729

Lien, A.D., and Scanziani, M. (2018). Cortical direction selectivity emerges at convergence of thalamic 730

synapses. Nature 558, 80–86. 731

Lindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Diesmann, M., and Einevoll, G.T. (2011). 732

Modeling the Spatial Reach of the LFP. Neuron 72, 859–872. 733

Lindén, H., Hagen, E., Leski, S., Norheim, E., Pettersen, K., and Einevoll, G. (2014). LFPy: a tool for 734

biophysical simulation of extracellular potentials generated by detailed model neurons . Front. 735

Neuroinformatics 7, 41. 736

Madisen, L., Mao, T., Koch, H., Zhuo, J., Berenyi, A., Fujisawa, S., Hsu, Y.-W.A., Garcia, A.J., Gu, X., 737

Zanella, S., et al. (2012). A toolbox of Cre-dependent optogenetic transgenic mice for light-induced 738

activation and silencing. Nat. Neurosci. 15, 793–802. 739

Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., Ailamaki, A., 740

Alonso-Nanclares, L., Antille, N., Arsever, S., et al. (2015). Reconstruction and Simulation of Neocortical 741

Microcircuitry. Cell 163, 456–492. 742

Martin, C.L., and Chun, M. (2016). The BRAIN Initiative: Building, Strengthening, and Sustaining. Neuron 743

92, 570–573. 744

Mitzdorf, U. (1987). Properties of the Evoked Potential Generators: Current Source-Density Analysis of 745

Visually Evoked Potentials in the Cat Cortex. Int. J. Neurosci. 33, 33–59. 746

Morgenstern, N.A., Bourg, J., and Petreanu, L. (2016). Multilaminar networks of cortical neurons 747

integrate common inputs from sensory thalamus. Nat. Neurosci. 19, 1034–1040. 748

Neymotin, S.A., Daniels, D.S., Caldwell, B., McDougal, R.A., Carnevale, N.T., Jas, M., Moore, C.I., Hines, 749

M.L., Hämäläinen, M., and Jones, S.R. (2020). Human Neocortical Neurosolver (HNN), a new software 750

tool for interpreting the cellular and network origin of human MEG/EEG data. Elife 9, e51214. 751

Plonsey, R. (1974). The active fiber in a volume conductor. IEEE Trans. Biomed. Eng. BME-21, 371–381. 752

Ray, S., and Bhalla, U. (2008). PyMOOSE: interoperable scripting in Python for MOOSE . Front. 753

Neuroinformatics 2, 6. 754

Ray, S., Chintaluri, C., Bhalla, U.S., and Wójcik, D.K. (2016). NSDF: Neuroscience Simulation Data Format. 755

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

Neuroinformatics 14, 147–167. 756

Rubel, O., Tritt, A., Dichter, B., Braun, T., Cain, N., Oliver, R., Clack, N., Davidson, T.J., Dougherty, M., 757

Graddis, N., et al. (2019). NWB : N 2 . 0 : An Accessible Data Standard for Neurophysiology. BioRxiv 758

523035. 759

Schoonover, C.E., Tapia, J.-C., Schilling, V.C., Wimmer, V., Blazeski, R., Zhang, W., Mason, C.A., and 760

Bruno, R.M. (2014). Comparative Strength and Dendritic Organization of Thalamocortical and 761

Corticocortical Synapses onto Excitatory Layer 4 Neurons. J. Neurosci. 34, 6746 LP – 6758. 762

Senzai, Y., Fernandez-Ruiz, A., and Buzsáki, G. (2019). Layer-Specific Physiological Features and 763

Interlaminar Interactions in the Primary Visual Cortex of the Mouse. Neuron 101, 500-513.e5. 764

Siegle, J.H., Jia, X., Durand, S., Gale, S., Bennett, C., Graddis, N., Heller, G., Ramirez, T.K., Choi, H., 765

Luviano, J.A., et al. (2019). A survey of spiking activity reveals a functional hierarchy of mouse 766

corticothalamic visual areas. BioRxiv 805010. 767

Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., Szafer, A., Cain, N., Zeng, H., Hawrylycz, 768

M., et al. (2018). Generalized leaky integrate-and-fire models classify multiple neuron types. Nat. 769

Commun. 770

Vogelstein, J.T., Mensh, B., Häusser, M., Spruston, N., Evans, A.C., Kording, K., Amunts, K., Ebell, C., 771

Muller, J., Telefont, M., et al. (2016). To the Cloud! A Grassroots Proposal to Accelerate Brain Science 772

Discovery. Neuron 92, 622–627. 773

 774

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084947doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.08.084947
http://creativecommons.org/licenses/by-nc-nd/4.0/

