

1 Brain Modeling ToolKit: an Open Source 2 Software Suite for Multiscale Modeling of 3 Brain Circuits

4

5 Kael Dai¹, Sergey L. Gratiy¹, Yazan N. Billeh¹, Richard Xu¹, Binghuang Cai¹, Nicholas Cain¹, Atle E.
6 Rimehaug², Alexander J. Stasik², Gaute T. Einevoll², Stefan Mihalas¹, Christof Koch¹, and Anton
7 Arkhipov^{1,*}

8 ¹ Allen Institute, Seattle, WA

9 ² Norwegian University of Life Sciences & University of Oslo, Oslo, Norway

10 * Correspondence: antona@alleninstitute.org

11

12 Abstract

13 Experimental studies in neuroscience are producing data at a rapidly increasing rate, providing exciting
14 opportunities and formidable challenges to existing theoretical and modeling approaches. To turn
15 massive datasets into predictive quantitative frameworks, the field needs software solutions for
16 systematic integration of data into realistic, multiscale models. Here we describe the Brain Modeling
17 ToolKit (BMTK), a software suite for building models and performing simulations at multiple levels of
18 resolution, from biophysically detailed multi-compartmental, to point-neuron, to population-statistical
19 approaches. Leveraging the SONATA file format and existing software such as NEURON, NEST, and
20 others, BMTK offers consistent user experience across multiple levels of resolution. It permits highly
21 sophisticated simulations to be set up with little coding required, thus lowering entry barriers to new
22 users. We illustrate successful applications of BMTK to large-scale simulations of a cortical area. BMTK is
23 an open-source package provided as a resource supporting modeling-based discovery in the community.

24

25 Introduction

26 Recent emergence of systematic large-scale efforts for comprehensive characterization of brain cell
27 types, their connectivity, and *in vivo* activity (e.g. (Amunts et al., 2016; Bouchard et al., 2016; Hawrylycz
28 et al., 2016; Koch and Jones, 2016; Martin and Chun, 2016; Vogelstein et al., 2016)) is fundamentally
29 reshaping neuroscience research. As the new extremely rich and multimodal data become increasingly
30 available to the community, the need is more urgent than ever to develop sophisticated modeling
31 approaches that could help distill new knowledge from the exuberant complexity of the brain reflected
32 in these datasets (Einevoll et al., 2019). While computational modeling, when combined with theoretical
33 and experimental approaches, clearly has a lot of potential to bridge properties of single cells with brain
34 connectivity, neural activity, and ultimately organism behavior, building such bridges has proven

35 difficult. Some of the greatest barriers are presented by technical challenges of constructing and
36 simulating large and complex biologically-realistic models, integration of different modeling approaches,
37 and systematic sharing of models with the community. New software tools are required to overcome
38 these challenges and enable easy workflows for the new generation of computational models.

39 One may argue that simulating a huge number of neurons by itself is not a bottleneck any more (Bezaire
40 et al., 2016; Billeh, 2020; Markram et al., 2015), thanks to availability of supercomputers and the very
41 successful software packages that enable complex and highly parallelizable simulations, such as
42 NEURON (Carnevale and Hines, 2006), NEST (Gewaltig and Diesmann, 2007), GENESIS (Bower and
43 Beeman, 1997), MOOSE (Ray and Bhalla, 2008), Brian (Goodman and Brette, 2008), Xolotl (Gorur-
44 Shandilya et al., 2018), and others. However, existing simulation packages traditionally provide a
45 programming environment for users to develop modeling/simulation software code, rather than data-
46 driven interfaces for interactions with model or simulation data. To build sophisticated models, or even
47 to enable efficient simulations, users often need to become experts in the programming environment
48 and languages specific to a simulation package.

49 Several tools have been recently developed that address some aspects of these challenges, e.g.,
50 NeuroConstruct (Gleeson et al., 2007), LFPy (Hagen et al., 2018; Lindén et al., 2014), BioNet (Gratia et
51 al., 2018), Open Source Brain (Gleeson et al., 2019), HNN (Neymotin et al., 2020), and NetPyNE (Dura-
52 Bernal et al., 2019). These tools do not necessarily provide their own simulation kernel, but instead may
53 rely on an existing simulation engine, such as NEURON, providing a user-friendly interface to this engine.
54 To achieve this, they take advantage of the recent developments of modeling file formats and universal
55 model description languages such as NeuroML (Cannon et al., 2014; Gleeson et al., 2010), PyNN
56 (Davison et al., 2009), NSDF (Ray et al., 2016), and SONATA (Dai et al., 2020). These new developments
57 indicate very welcome signs of progress in necessary software technology, promising improvements to
58 the practice of modeling in neuroscience.

59 Building upon these trends, we have developed and present here an extensive package for multiscale
60 modeling and simulation, called the Brain Modeling ToolKit (BMTK). While existing tools typically
61 provide an interface to only one simulation engine (for example, NetPyNE (Dura-Bernal et al., 2019) is a
62 powerful interface specifically to the NEURON simulation engine), BMTK has been explicitly developed
63 to furnish interfaces to multiple simulation engines, providing similar user experience in each case.
64 Currently, BMTK supports biophysically detailed, multi-compartmental simulations with NEURON via the
65 BioNet module (Carnevale and Hines, 2006), point-neuron simulations with NEST (Gewaltig and
66 Diesmann, 2007) via the PointNet module, and population-based simulation with dipDE (Cain et al.,
67 2016) via the PopNet module. Through the FilterNet module, BMTK enables filter-based models and
68 simulations, which are often useful, e.g., for providing inputs to simulations of brain networks. Models
69 at all these levels of resolution can be constructed using the BMTK Builder module. With these
70 capabilities, BMTK offers to users a single convenient environment for modeling and simulations across
71 multiple scales and approaches.

72 From the implementation point of view, BMTK is a Python package that can be installed on a personal
73 computer, a cluster or supercomputer, or in a cloud environment. BMTK provides a Python-based
74 modular environment for model building and simulation, where the model building stage is clearly
75 separated from simulation, as some of the applications leveraging real biological complexity of brain
76 composition and connectivity, like empirically driven placement of synapses, can cause model building

77 to be computationally expensive. It is therefore often useful to build a model once and then load such
78 pre-built models from files for every new simulation. For simulations, BMTK provides a user experience
79 requiring little-to-no programming skills: instead of programming, users simply need to manipulate files
80 as inputs and outputs of simulations. However, advanced users can easily extend BMTK capabilities
81 through their own functions, as BMTK's open-source Python-based design allows for enhancements in a
82 straightforward manner. In other words, one can use BMTK as a simple interface to harness the power
83 of existing simulation engines without the need for programming, or, alternatively, as a programming
84 environment. The diverse capabilities of BMTK are supported by the modeling file format SONATA (Dai
85 et al., 2020), which is unique in that it provides a complete description of models and simulation
86 inputs/outputs (i.e., various properties of cells, connectivity, and activity), employs highly efficient
87 binary solutions for computationally demanding components of models and simulations, and flexibly
88 supports multiple levels of modeling abstraction. Importantly, SONATA is compatible with the
89 neurophysiology data format NWB (Rubel et al., 2019), which makes it easy for BMTK to interface with
90 experimental data stored as NWB files.

91 BMTK has been developed with an emphasis on complex and large-scale models and simulations. As
92 such, through its integration with the excellent tools such as NEST and NEURON, it provides a powerful
93 interface permitting very efficient simulations of sophisticated models at multiple scales. This enables
94 easy access to a broad spectrum of computational applications leveraging the new streams of complex
95 information about the brain. However, BMTK also easily supports simpler simulations, including small
96 networks or single-neuron simulations. Overall, the tool is designed for user convenience and flexibility.
97 BMTK is provided freely to the community as an open-source software package
98 (<https://alleninstitute.github.io/bmtk/>) to facilitate development and simulation of models and support
99 systematic model sharing and reproducibility.

100

101 Results

102

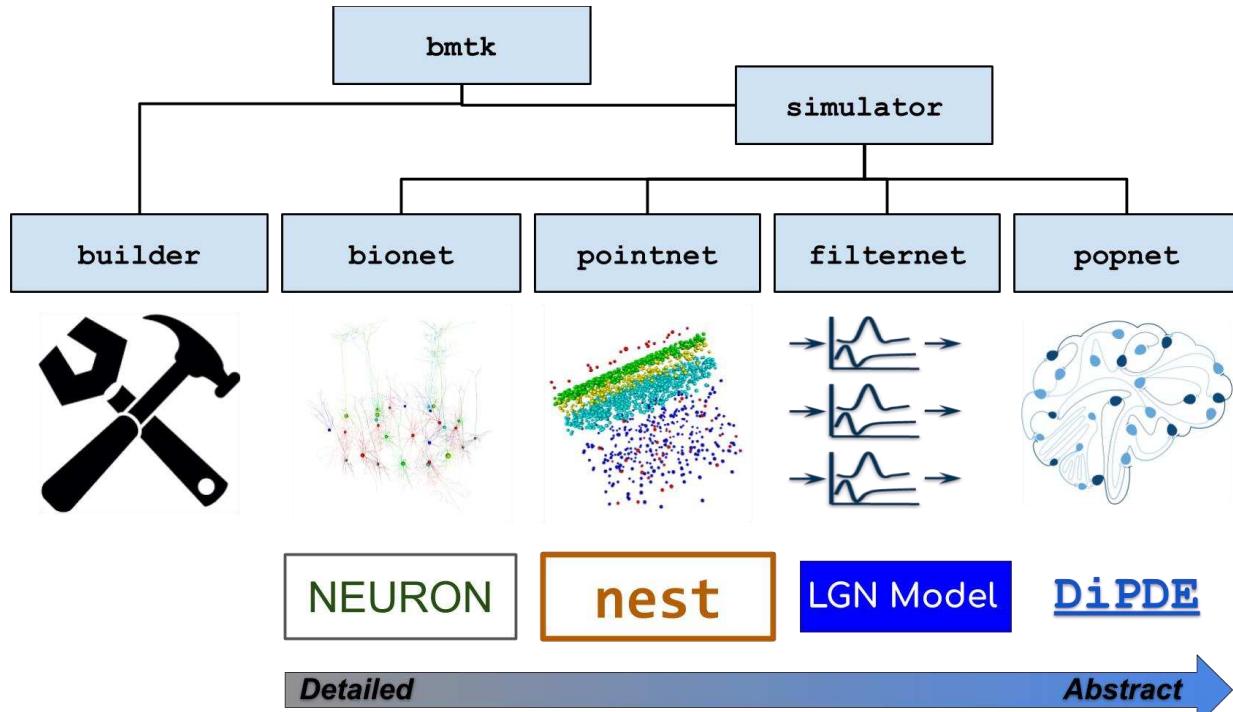
103 BMTK Overview

104 BMTK is a Python-based software package (originally developed for Python 2.7 and currently supporting
105 Python 3.6+) for creating and simulating neural network models at multiple levels of resolution. It is also
106 an open-source software development kit, allowing users to modify the existing functionality and easily
107 add new extensions or modules. Currently BMTK contains a Builder module for creating models and four
108 simulator modules – BioNet, PointNet, PopNet, and FilterNet – for simulating the models at different
109 levels of granularity (Fig. 1).

110 The simulator modules are the application programming interfaces (APIs) to *simulation engines* (Fig. 1),
111 i.e., these modules provide a Python interface to the underlying software packages that execute
112 simulations. The BioNet module provides an interface to NEURON (Carnevale and Hines, 2006) for
113 simulations that involve biophysically detailed, compartmental neuronal models or point-neuron
114 models; PointNet – to NEST (Gewaltig and Diesmann, 2007) for highly efficient point-neuron
115 simulations; PopNet – to the package diPDE (Cain et al., 2016), which implements a population density
116 approach for simulations of coupled networks of neuronal populations; and FilterNet – to BMTK's built-

117 in solver of filter input-output transformations. The four modules provide a unified user experience for
118 interactions with any of the underlying simulation engines.

119



120

121 **Figure 1. Overview of BMTK.** The BMTK software suite consists of several modules. The Builder module
122 contains functions for constructing network models. The simulator modules provide APIs to the
123 simulation engines. BioNet enables simulations of networks consisting of biophysically detailed, multi-
124 compartmental neuron models by interfacing with NEURON. PointNet supports simulations of point-
125 neuron networks via NEST. FilterNet permits simulations of arrays of filters (integrated with the specific
126 case of a model of visual processing by the mouse LGN). PopNet supports simulations with population-
127 statistical models by interfacing with the DiPDE tool. The BMTK modules can subserve multi-stage
128 operations by writing the outputs as files in SONATA format and reading such files as inputs for the next
129 stage of modeling or simulation.

130

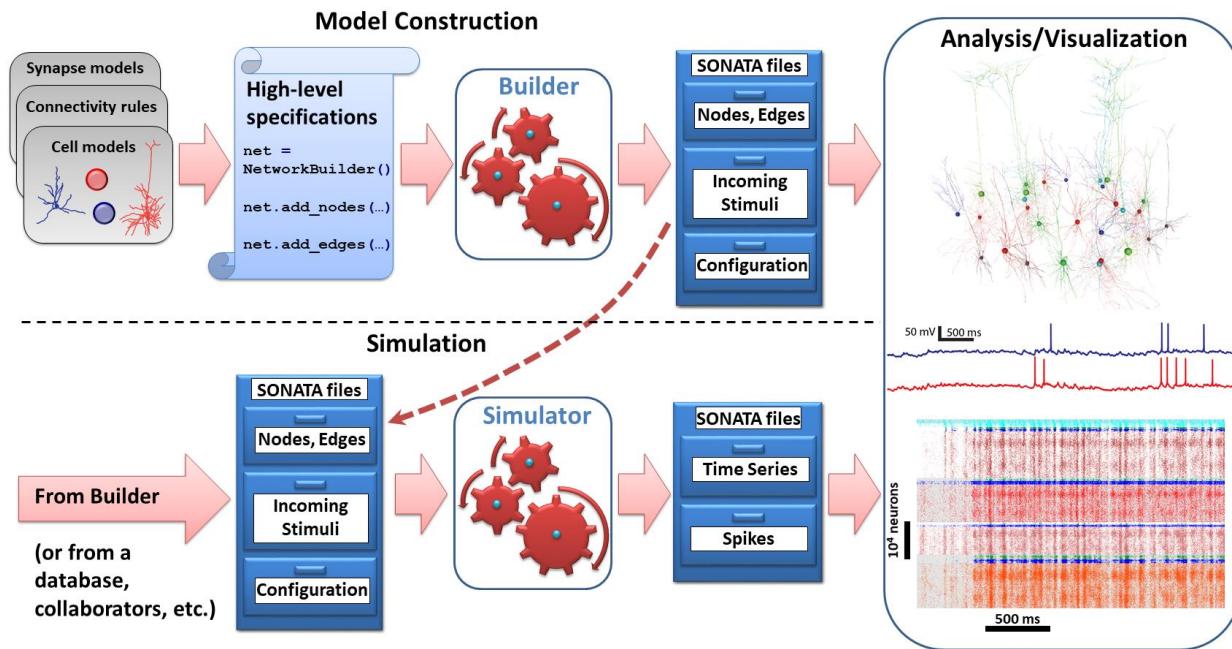
131 Besides the similarity of user experience across modeling levels of resolution, perhaps the main
132 advantage of BMTK to users is that one does not need to become an expert in the programming
133 environments of any of the individual simulation engines, even if one is building and simulating very
134 sophisticated biologically-realistic network models. This is achieved by relying on the standardized data
135 format, SONATA (Dai et al., 2020), for representing model properties and simulation configurations, as
136 well as inputs and outputs. Users only need to provide SONATA files (either by building them using
137 BMTK Builder or by getting files from existing models), and BMTK's simulator modules will do the rest by
138 translating the SONATA files into model instantiations and simulations by NEURON, NEST, or other
139 engines (Fig. 2). Not only does the SONATA format enable this simple workflow under BMTK, it also
140 supports easy model sharing across software packages, as SONATA is implemented in a broad range of

141 modeling tools, such as Blue Brain's Brion/Brain (<https://github.com/BlueBrain/Brion>), pyNeuroML
142 (Cannon et al., 2014; Gleeson et al., 2010), pyNN (Davison et al., 2009), and NetPyNE (Dura-Bernal et al.,
143 2019). Moreover, SONATA's specification for model inputs and output (spikes and time series of
144 membrane voltage, calcium concentration, etc.) is compatible via a converter with the experimental
145 neurophysiology file format NWB (Dai et al., 2020; Rubel et al., 2019).

146 As a result, the basic workflow under BMTK is straightforward and consistent across all levels of
147 resolution (**Fig. 2**). Model building is achieved by scripting in Python using the BMTK Builder module,
148 which specify attributes of and relationships between nodes and edges in the constructed network. This
149 step represents the most typical approach currently in use in the modeling field, where descriptive
150 declarations are used to build network instantiations – often constructing very sophisticated networks
151 with only a few lines of code. The output of this module is a set of SONATA files storing model
152 instantiations. The BMTK simulator modules (**Fig. 2**) then run simulations utilizing the SONATA files that
153 describe model composition, inputs (such as incoming spikes), and simulation configuration (duration,
154 etc.). At simulation completion and, if needed, throughout the simulation duration, the simulators write
155 output to disk also in the form of SONATA files.

156 The BMTK output in SONATA format can be then used for analysis and visualization. Whereas a basic
157 visualization of spiking output or firing rates is provided with BMTK, our design philosophy has been to
158 leave analysis and visualization to other packages. Given that the SONATA format is used for output files
159 and that SONATA can be converted to NWB (Dai et al., 2020; Rubel et al., 2019), analysis of BMTK output
160 is easily achieved with any package that can read SONATA or NWB, or indeed any package that can read
161 the HDF5 format, which underlies both SONATA's and NWB's spikes and time series storage.
162 Visualization of the simulated networks can also be achieved with specialized tools as long as they can
163 read SONATA format, which can be easily implemented via the open source pySONATA API (Dai et al.,
164 2020) (<https://github.com/AllenInstitute/sonata>). One example of such visualization software that reads
165 SONATA is RTNeuron (Hernando et al., 2013), which was used throughout the figures below to visualize
166 examples of BMTK models.

167 The utility and versatility of BMTK is illustrated below using several examples. First, we describe the
168 BMTK Builder and how it can be used to create simple or very sophisticated network models. Next, we
169 use an example of a simple network consisting of two uniform populations of neurons (excitatory and
170 inhibitory), which we instantiate and simulate using biophysically-detailed compartmental neuronal
171 models in BioNet, point-neuron models in PointNet, and neuronal populations in PopNet. Next, we
172 describe the FilterNet module, which permits one to process stimuli through arrays of filters, currently
173 focusing on converting visual stimuli to spikes that can be used as inputs to simulations of neural
174 networks of vision. Finally, we illustrate the power of BMTK using a variety of real-world applications:
175 simulations of a 230,000-neuron model of mouse V1 implemented at the biophysically detailed and
176 point-neuron levels, computation of the extracellular current source density in simulated cortical tissue,
177 and high-throughput simulations of optogenetic perturbations to diverse cortical cell types.



178
179
180
181
182
183
184
185
186
187
188
189
190
191

Figure 2. Basic workflow that is conserved across modules of BMTK. Input SONATA files (represented symbolically as chests of drawers) determine the composition and properties of the nodes/network, as well as incoming stimuli (spikes, firing rates, movies) and simulation configuration. Top: the model construction stage. The BMTK Builder combines elements such as cell or synapse models, connectivity rules, and others, via high-level specifications, instantiates the network model, and saves the instantiation as a set of SONATA files. Bottom: simulation stage. The BMTK simulator modules take in the SONATA files as inputs and perform simulations. The input SONATA files may be generated by the BMTK Builder (dashed arrow), any other Builder software supporting SONATA, or from public repositories, collaborators, etc. The BMTK simulator modules produce output, also in SONATA format, typically containing spikes and/or time series (e.g., membrane voltage in selected cells, as a function of time). Right: the SONATA files produced by the BMTK Builder or simulator modules can be analyzed in terms of the model structure or simulated activity (using any analysis software supporting SONATA, or the software that can read HDF5, CSV, and other components of SONATA specification).

192

193 Constructing Models with BMTK Builder

194 The BMTK Builder (**Fig. 3**) is a Python module within the BMTK package. By loading this module, one
195 accesses a variety of functions for building networks and saving results to files in SONATA format. The
196 two major types of tasks performed using the BMTK Builder are instantiating network nodes and
197 instantiating edges.

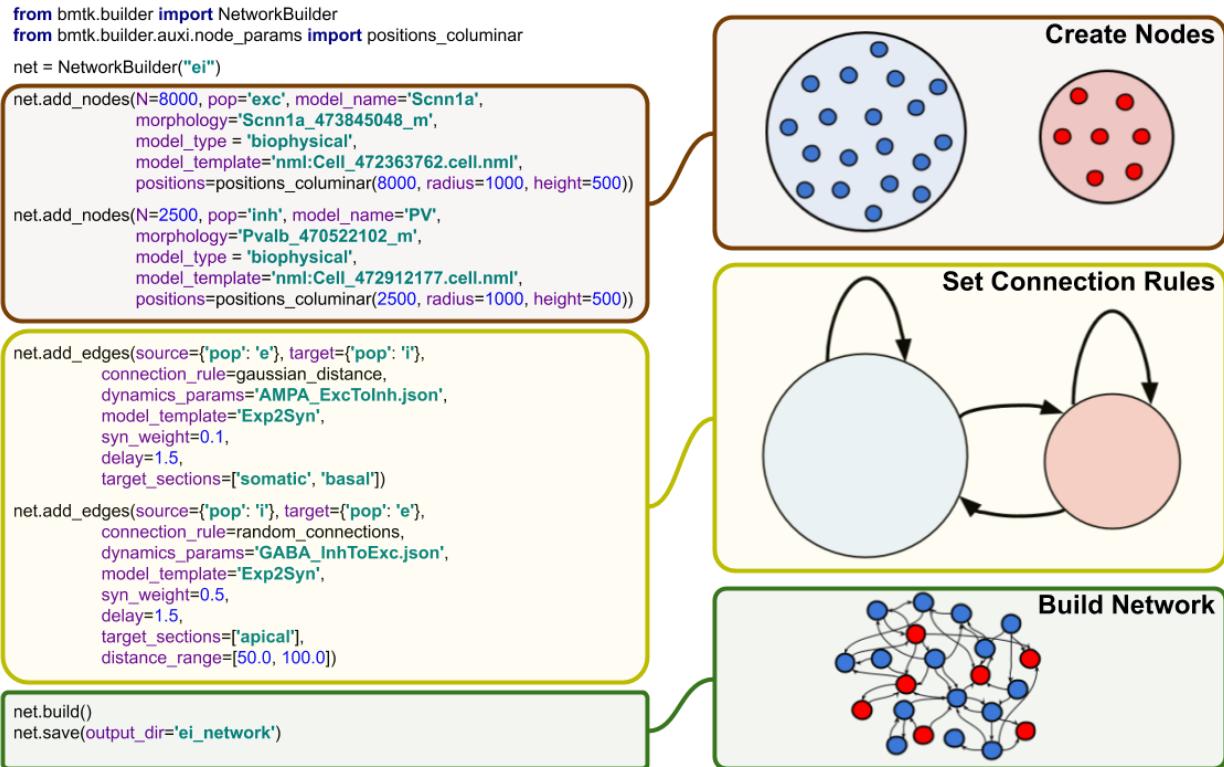
198 When instantiating nodes, one specifies a name for every node type as well as the number of nodes in
199 the type. Furthermore, optional properties of nodes can be specified, such as their positions, types, and
200 other attributes. Some of the attributes are reserved in SONATA format, but otherwise any attributes
201 can be created and assigned as users desire. Functions are provided to distribute values of node
202 properties according to desired distributions (such as distributing cell positions uniformly in a 3D
203 cylindrical volume).

204 Instantiation of edges follows similar logics. One specifies which populations of nodes should be
205 connected and adds attributes to those connections (edges), some of which are reserved SONATA
206 properties, but otherwise arbitrary attributes can be assigned. BMTK Builder supplies basic functions for
207 establishing probabilistic connectivity between nodes based, for example, on distance between the
208 nodes.

209 We emphasize that BMTK Builder is designed as a general framework open for extensions. It currently
210 provides functions that, for example, help one to distribute nodes or organize connections according to
211 certain logics, but users are encouraged to utilize their own functions as well. This is easily achieved by
212 the extensible Python interface of the Builder. Additional functions will be added to the core library of
213 the Builder per user feedback.

214 The BMTK Builder is versatile in that it can create both relatively simple network models or highly
215 complex and biologically realistic network models. Below, we describe simulations of networks
216 illustrating two such cases: a network consisting only of two neuronal populations with random
217 connectivity (Brunel, 2000) and a highly sophisticated network model of mouse V1 consisting of 17 cell
218 classes distributed in space across 6 cortical layers, with multiple connectivity rules that account for cell
219 classes, distances, and tuning of physiological responses (Billeh, 2020). Both networks were prepared
220 using BMTK Builder (for the former model, see examples in <https://github.com/AllenInstitute/bmtk>, and
221 for the latter, see <https://portal.brain-map.org/explore/models/mv1-all-layers>). It should be noted that,
222 naturally, complexity of a model, especially of the connectivity rules, strongly influences the computing
223 expense required for model building. For instance, generating the 230,000-neuron V1 model (Billeh,
224 2020) can take ~100 CPU-hours or more, depending on the connectivity rules used (note, however, that
225 instantiating a fully actualized model can be parallelized on a cluster). For cases like this, the BMTK's
226 approach (**Figs. 2, 3**) of building the model and saving it in SONATA files for subsequent simulations,
227 rather than rebuilding the model every time a simulation is run, is clearly beneficial.

228 A unique feature of BMTK enabled by the SONATA format is that models prepared for one level of
229 resolution can largely be reused for another. For example, a network connectivity created by BMTK
230 Builder for a biophysically detailed simulation contains connections between individual cells as well as
231 descriptions of where synapses should be located on the dendrites of target neurons. This information is
232 stored in SONATA files, which can be used to run a BioNet biophysically detailed simulations. The same
233 files, however, can be used to run a PointNet simulation, which has no representation of dendrites (all
234 neurons are points). In the latter case, only the cell-to-cell connectivity information is used by PointNet,
235 whereas the dendritic locations are ignored. We also note that SONATA files produced by BMTK Builder
236 can be further edited directly, outside of BMTK, since they use well established formats such as HDF5
237 and CSV (Dai et al., 2020), which can be read and written by many software packages and programming
238 languages.



239

240 **Figure 3. BMTK Builder.** The Builder module is used to design and instantiate network models. On the
241 left, examples of the Python commands used in BMTK Builder are presented (simple versions of these
242 commands are shown, for clarity), and on the right purpose of these commands is illustrated
243 schematically on the right. The main stages of model building workflow are defining the nodes and their
244 attributes, defining the connection rules, and then instantiating and saving the network.

245

246 Biophysically Detailed, Point-Neuron, and Population Simulations with BioNet, PointNet, 247 and PopNet

248 For simulating networks of *interacting* nodes, BMTK currently offers support at three levels of
249 resolution: biophysically detailed, compartmental models with BioNet (Gratiy et al., 2018), the interface
250 to NEURON (Carnevale and Hines, 2006); point-neuron models with PointNet, the interface to NEST
251 (Gewaltig and Diesmann, 2007); and population density dynamics models with PopNet, the interface to
252 diPDE (Cain et al., 2016). In all cases, a user provides as an input the SONATA files (Dai et al., 2020)
253 specifying the model (either constructed with BMTK Builder or obtained via other software, such as
254 NetPyNE (Dura-Bernal et al., 2019) or others; **Fig. 2**) and simulation configuration. The latter is supplied
255 in text-based JSON files containing SONATA-compliant specifications of simulation duration, paths to
256 input and output files, etc. (Dai et al., 2020). The BioNet, PointNet, or PopNet will then interpret the
257 files, run the simulation, and provide the output – such as spikes or various time series, e.g., membrane
258 voltage – also in SONATA format. One useful functionality provided by BMTK is writing the output to disk
259 at user-defined intervals during the simulation. In the case of parallelized simulations each CPU core will
260 cache intermediate results produced on the given core, with the final results collated from data across
261 all cores. See Documentation for more details (<https://alleninstitute.github.io/bmtk/>).

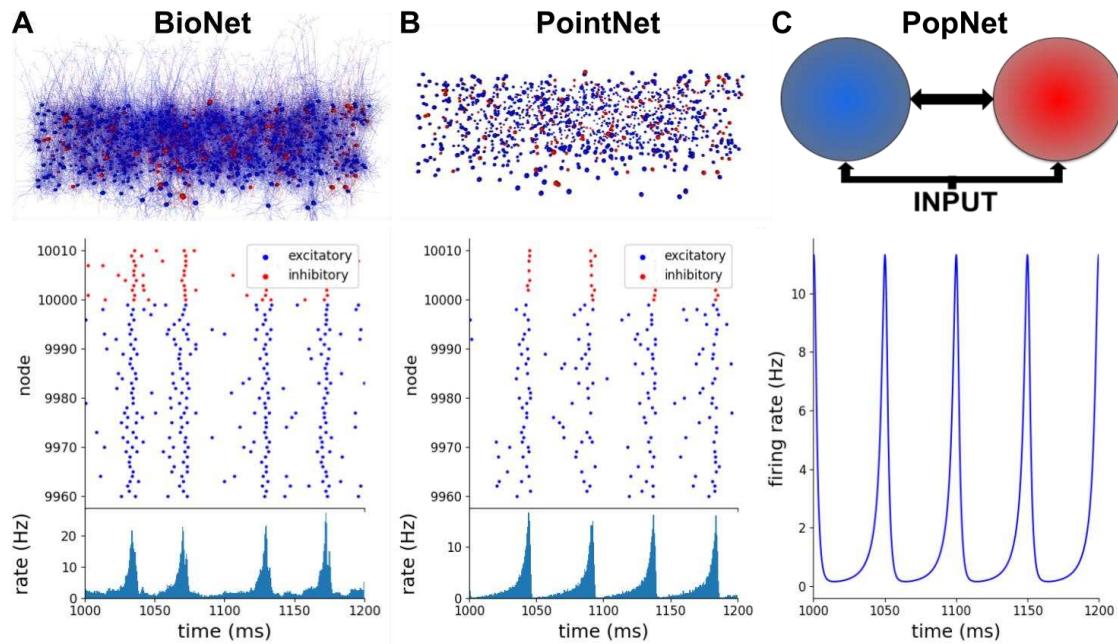
262 To illustrate applications of BioNet, PointNet, and PopNet, we constructed at each of the three levels of
263 resolution an instance of a simple randomly connected network with 10,000 excitatory neurons and
264 2,500 inhibitory neurons, receiving excitatory input from 1,000 external neurons (Brunel, 2000) (**Fig. 4**).
265 This network can exhibit a variety of possible dynamical regimes (Brunel, 2000), with different degrees
266 of synchrony and asynchrony between neurons and regularity of spiking of individual neurons. Here we
267 selected one of the possible regimes (the regime with synchronized neuronal populations and regular
268 spiking) for illustration at all three levels of resolution. The implementation of this can be found among
269 the examples at <https://github.com/AllenInstitute/bmtk>.

270 We first employed BMTK Builder to construct a 12,500-neuron network model using compartmental
271 neuron representations from the published model of Layer 4 of mouse V1 (Arkhipov et al., 2018), with
272 264 compartments for each excitatory and 121 compartments for each inhibitory neuron (**Fig. 4A**). The
273 neurons were interconnected with 0.1 probability and received spiking inputs from 1,000 Poisson firing
274 rate sources firing at the frequency of 150 Hz. The model was simulated using BioNet, and we adjusted
275 synaptic parameters to obtain the desired dynamical regime. To compare with the other levels of
276 resolution (below), we plotted the spike rasters and population firing rates, which show that neurons
277 fire in a synchronized and regular fashion (**Fig. 4A**). The population as a whole exhibits the main
278 frequency of ~20 Hz.

279 For the PointNet example, we took the model used for the BioNet simulation above and used all of its
280 components applicable to point-neuron simulations – such as the information about which cell connects
281 to which, but not where individual synapses are placed. Naturally, parameters of neurons and of
282 synapses (such as synaptic strengths) needed to be adjusted, as the meaning of many of such
283 parameters are very different between compartmental and point-neuron models. PointNet simulations
284 were carried out, and the synaptic weights were adjusted to obtain the dynamical regime (**Fig. 4B**)
285 similar to that in the BioNet simulation above, with the synchronized neurons emitting bursts of
286 population activity at ~20 Hz.

287 Finally, at the PopNet level (**Fig. 4C**), the network was reduced to three nodes – the excitatory, the
288 inhibitory, and the external stimulus populations, with connections between them. After building this
289 very simple network in BMTK Builder, we simulated it with PopNet and adjusted parameters to obtain
290 the desired dynamical regime. Since only the population rate was available here as the output, it was
291 impossible to judge the regularity of firing of individual neurons, but the population activity was clearly
292 similar to the BioNet and PointNet cases. The firing rate exhibited sharp oscillations of population
293 activity at ~20 Hz, with the activity reaching zero level between each peak, indicating complete silence
294 of all neurons at regular intervals. Note that, like in the BioNet and PointNet cases, the external
295 population here provides a constant level of activity (i.e., individual neurons in the external population
296 fire spikes at irregular intervals according to Poisson statistics, but their collective output at the
297 population level is approximately constant at all times).

298



299

300 **Figure 4. Biophysically detailed, point-neuron, and population simulations with BioNet, PointNet, and**
301 **PopNet.** In all three cases, the interconnected populations of excitatory and inhibitory neurons receive
302 excitatory input from an external population (1,000 Poisson sources firing at the frequency of 150 Hz,
303 replaced by a uniform population in the PopNet case). (A) Biophysically detailed network of randomly
304 connected excitatory and inhibitory neurons, 12,500 total. An RTNeuron visualization of the network is
305 shown alongside its spiking output (spikes from a small portion of the network are shown, for clarity)
306 and the firing rate (for the whole excitatory population) produced by the BMTK's BioNet module. (B) The
307 same network using the point-neuron approximation. An RTNeuron visualization and simulation output
308 from the BMTK's PointNet module simulation are shown. (C) Population-based representation of the
309 same network. A schematic of the model and the output of population-density simulation (firing rate for
310 the excitatory population is shown) from BMTK's PopNet module are illustrated.

311

312 Simulations Using Filter Arrays with FilterNet

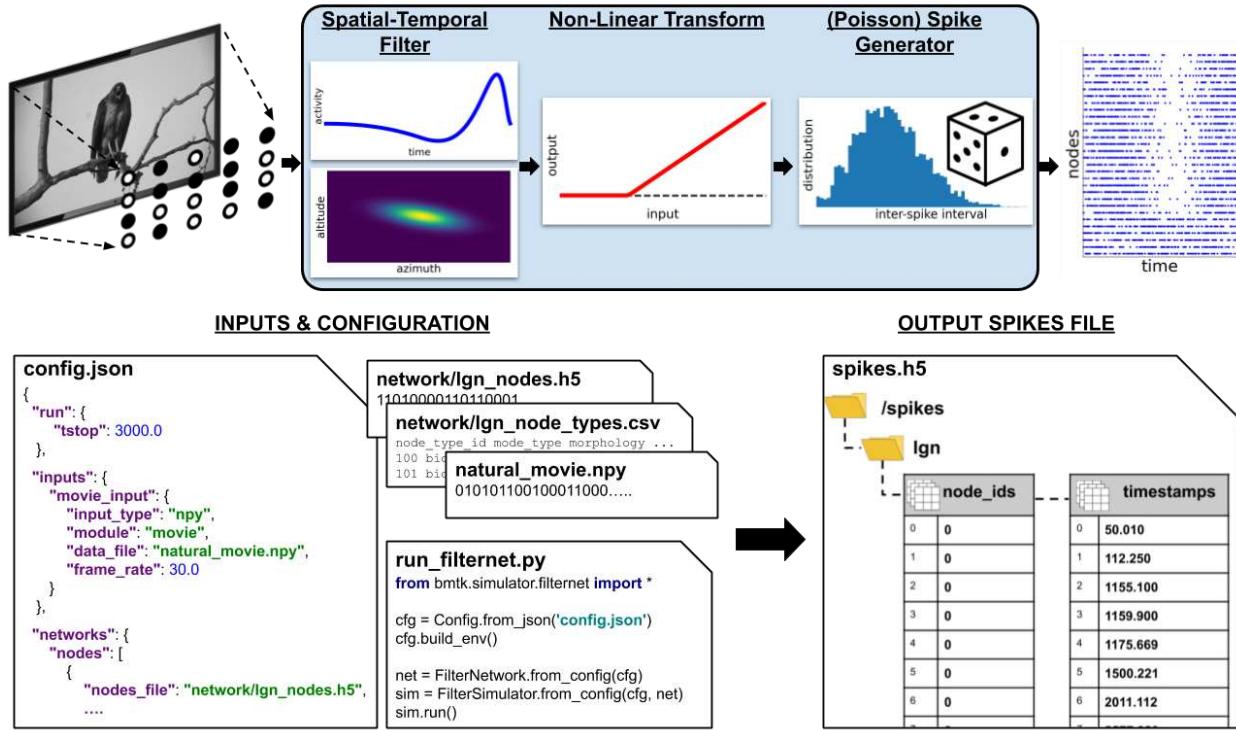
313 Many models of the nervous system utilize filters – mathematical objects that take in multi-dimensional
314 data and return an output, typically by performing a convolution of the input data with certain
315 functions. FilterNet is a module of BMTK that allows users to operate with filters. A typical application
316 may be processing of peripheral sensory input (Fig. 5). For example, an array of filters may be used to
317 represent retinal cells, with the input being movies and the output being retinal firing rates or spikes.
318 These output signals in turn can be used as inputs to neurons deeper in the brain explicitly simulated
319 using other modules of BMTK, such as BioNet or PointNet.

320 Like the other simulation modules of BMTK, FilterNet is an API that allows users to specify and interact
321 with simulations. FilterNet provides a similar user experience to BioNet, PointNet, and PopNet, in that
322 users work with SONATA-formatted input files that determine functional forms and parameters of the
323 filters, whereas simulation configuration files determine simulation parameters, such as its duration,
324 and location of input and output files.

325 The current implementation of FilterNet contains the LGNModel simulator, which was created to
326 provide thalamocortical inputs to biologically realistic models of the mouse visual cortex (Arkhipov et al.,
327 2018; Billeh, 2020). This simulator assumes that the input is a movie (a 3D array – two dimensions for
328 space and one for time) and produces the output which is a time-varying firing rate for each filter. A
329 filter here represents an individual cell in the Lateral Geniculate Nucleus (LGN) of mouse thalamus,
330 which projects to the visual cortex. Realistic parameters for such filters, optimized based on the
331 experimental recordings, are available online (<http://portal.brain-map.org/explore/models/mv1-all-layers>). The FilterNet API can also be easily connected with user-defined functions modeling the input-
332 output filter relationship, which may represent various types of inputs (for example, other sensory
333 stimuli beyond the visual 3D arrays).
334

335 An example workflow of FilterNet with LGNModel is illustrated in **Fig. 5**. Here, a movie clip is provided as
336 a 3-dimensional matrix (schematically represented by an image on the top left). A user defines the
337 frame rate, so that the frames can be pinned to the output time axis, and also selects the types of the
338 filters to be used, their numbers, and how they are distributed in the visual space. The types of the
339 filters and their parameters can be taken from our online repository (<http://portal.brain-map.org/explore/models/mv1-all-layers>) where the filters were optimized to match types of *in vivo*
340 responses of neurons in the mouse LGN (Billeh, 2020; Durand et al., 2016), or one can easily replace
341 these parameters with those of their own choosing. Each filter performs a spatially-temporally separable
342 convolution with the input movie array using two kernels – one operating on the time course of the
343 movie and the other in the visual space (frame pixels). The result of this transformation is rectified. The
344 output of each filter is then a time-varying firing rate, sampled at a frequency defined by the users.
345 FilterNet can also instantiate spike trains from these firing rates using a Poisson process (**Fig. 5**).
346

347 In typical applications one runs a simulation where a movie is passed through an array of filters, each
348 filter returning the firing rate and, potentially, a set of instantiated spike trains (each train corresponding
349 to a single trial). These spike trains can be used as inputs to models of neuronal networks (see an
350 example below of a network model of mouse V1 driven by spikes from the LGN, **Fig. 6**). In these
351 applications, the filters become external nodes for other BMTK simulations. Typically, the FilterNet
352 simulations would be done first and their output saved to files, and these outputs would then be reused
353 in subsequent network simulations. The critical intermediate step of determining which filter supplies
354 inputs to which target neuron in the simulated network is accomplished via BMTK Builder, where users
355 can define functions for connecting external nodes to internal ones. The subsequent simulations can be
356 performed with BioNet, PointNet, or PopNet.



357

358 **Figure 5. The FilterNet module.** Top, general workflow in FilterNet. In case of a visual stimulus, a movie
359 is processed by an array of filters distributed in the visual space. Each filter convolves the frames of the
360 movie with the spatial and temporal kernels, performs rectification, and outputs a time depending firing
361 rate representing the response of the filter to the movie, which can be also converted to instantiations
362 of spike trains. Bottom, illustration of inputs and outputs of FilterNet. Inputs include specifications of
363 parameters such as duration, frame rate, and file locations, as well as contents of the files describing the
364 input patterns and filter properties and distributions. The “run_filternet.py” script is used to carry out
365 the calculations. The output may contain the time series of time-dependent firing rates for each filter
366 and spike trains (illustrated) generated from these time series.

367

368 Examples of BMTK Applications to Biological Problems

369 Finally, we present real-life examples of scientific simulations of brain circuits using BMTK. We illustrate
370 large-scale simulations of highly complex brain networks at different levels of resolution (Fig. 6);
371 computation of an extracellular electric potential, which is an observable relating the network activity
372 with measurements of a physical signal (Fig. 7); and versatile perturbations of network components to
373 mimic optogenetic experiments (Fig. 8).

374

375 Biophysical and Point-neuron Simulations of the Mouse Cortical Area V1

376 A recent study (Billeh, 2020) integrated a wide array of experimental information on the composition
377 (cell class, intrinsic properties, and neuron morphologies), connection probabilities and synaptic
378 properties, as well as *in vivo* physiology of neuronal responses in the mouse primary visual cortex (area
379 V1) to construct a comprehensive model of this cortical area (Fig. 6A). The model was constructed using

380 the BMTK Builder. It received thalamocortical inputs from the Lateral Geniculate Nucleus (LGN) of the
381 thalamus, which provided the external drive due to visual stimuli (as illustrated in **Fig. 5** for the FilterNet
382 moduel): 17,400 filters responded to movies (as visual stimuli) and supplied resulting spike trains as
383 inputs to the V1 neurons. These filters represented 14 types of LGN cells, parameterized based on
384 experimental recordings from the LGN (Durand et al., 2016), and were distributed over the whole visual
385 space. The filters were connected to the V1 cells according to experimental data on anatomical and
386 functional properties of the LGN-to-V1 projections (e.g., (Bopp et al., 2017; Ji et al., 2015; Kloc and
387 Maffei, 2014; Lien and Scanziani, 2013, 2018; Morgenstern et al., 2016; Schoonover et al., 2014)).
388 Consequently, arbitrary movies can be used to stimulate the model, enabling direct comparison with
389 experimental trials that used specific movies shown to awake mice while recording extracellular
390 electrophysiology from V1 with the high-throughput Neuropixles probes (Siegle et al., 2019).

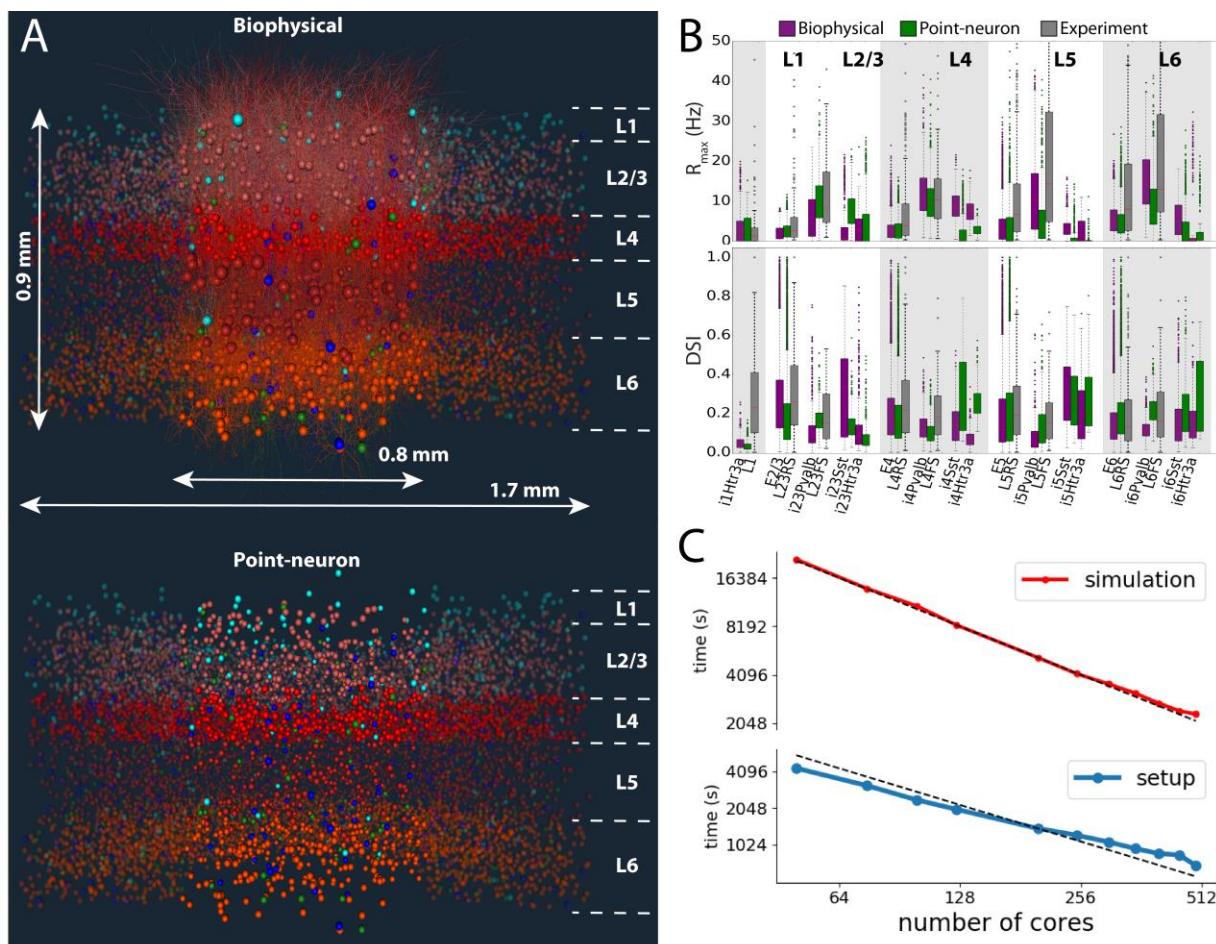
391 The model of V1 was constructed at two levels of resolution: the biophysical level (using compartmental
392 neuron models) and the point-neuron level. The biophysical version was in fact a hybrid model, as the
393 central portion of interest in the model, with ~50,000 neurons, was represented using compartmental
394 neuron models, whereas the remaining annulus was represented with point-neuron models (**Fig. 6A**).
395 The annulus's role was primarily to provide a smooth boundary. This hybrid model was simulated with
396 BioNet/NEURON, relying on their ability to handle both compartmental and integrate-and-fire types of
397 models. The fully point-neuron version of the model consisted of Generalized Leaky Integrate-and-Fire
398 (GLIF) neuronal models and was simulated with PointNet/NEST. The neuronal models were sourced
399 from the Allen Cell Types Database (Gouwens et al., 2018, 2019; Teeter et al., 2018).

400 The two models were each other's clones, in the sense that they used the same cell positions, individual
401 connections, and all other properties that were applicable to both levels of resolution (as opposed to
402 those applicable to only one level, e.g., dendritic targeting of synapses), the corresponding SONATA files
403 being prepared once in BMTK Builder and then used for both the BioNet and PointNet models. The
404 networks consisted of ~230,000 neurons, covering all layers of V1 from Layer 1 to Layer 6 and including
405 17 neuron classes (Billeh, 2020). The models used cell-class-dependent, distance-dependent, and
406 neuron-tuning-dependent connection probability rules and synaptic weight rules. Heavily constrained by
407 experimental data and trained on a small sample of visual stimuli (a single trial of 0.5 s of gray screen
408 and same duration drifting grating), the models generalized well to different stimuli and exhibited many
409 similarities with the experimental recordings. For example, they exhibited firing rates and levels of
410 direction selectivity across cortical layers and cell classes that were similar to experimental ones (**Fig.**
411 **6B**). From comparisons of these V1 model simulations to experimental recordings, several predictions
412 were made with regard to the logics of connectivity between cortical cells of different classes,
413 depending on the functional tuning of these cells (Billeh, 2020).

414 Benchmarks of BioNet simulations of this 230,00-neuron V1 model (**Fig. 6C**) show a close to ideal scaling
415 (i.e., twice faster on twice the number of CPUs) of both the simulation execution time and the model
416 loading time with the number of CPU cores. With the partition of 384 CPU cores, we observe the
417 throughput of approximately 1 second of simulated biological time for slightly over 1 hour of "wall
418 clock" (real) time. These results indicate that extensive simulations for such a large-scale and highly
419 detailed model are possible (Billeh, 2020), although that does require substantial computing resources.
420 On the other hand, we found that the point-neuron version of the V1 model could be simulated
421 efficiently with PointNet on a single CPU core, providing the performance of 1 second of simulated time
422 in approximately 3 minutes of real time. While one gains in speed even further with parallel PointNet

423 simulations of the V1 model, the convenience and speed of the self-contained single-core simulations
424 are such that typically users find them to be the preferred mode for PointNet simulations of such size.
425 Thus, BMTK's PointNet enables simulations of large-scale models incorporating much biological
426 complexity even with modest computational resources.

427 It should be noted that the computational performance of BioNet and PointNet relies on the excellent
428 performance and parallelization capabilities of NEURON (Carnevale and Hines, 2006) and NEST (Gewaltig
429 and Diesmann, 2007). What these BMTK modules add is the convenience and interoperability. For
430 example, although NEURON provides powerful parallelization environment, users typically need to write
431 parallel code in that environment to run their simulations. Likewise, constructing sophisticated bio-
432 realistic models in NEURON or NEST requires substantial amount of coding. BMTK streamlines the latter
433 part through the uniform model building operations in BMTK Builder and obviates the former part for
434 the users by dealing with NEURON or NEST parallelization “under the hood”, so that users do not need
435 to write any code at all.



436
437 **Figure 6. The biophysical and point-neuron V1 models.** (A) Visualizations of the biophysical and point-
438 neuron models. The 230,000-neuron models emulate the central portion of the mouse V1, across the
439 full cortical depth, containing layers 1, 2/3, 4, 5, and 6 (layer boundaries are indicated). In the top model,
440 the core portion, ~50,000 neurons, is simulated using biophysically detailed compartmental neuronal

441 models, and the annulus around the core using leaky integrate-and-fire (LIF) point-neuron models. In
442 the bottom model, both core and the annulus employ the generalized LIF neuronal models. Neurons are
443 colored by cell class: hues of red for excitatory cells in layers 2/3, 4, 5, and 6, and blue, cyan and green
444 for Pvalb, SST, and Htr3a inhibitory class. (B) Summary of firing rates and direction selectivity index (DSI)
445 obtained from the biophysical and point-neuron simulations, vs. experimental extracellular
446 electrophysiology recordings, by cell class. The data were obtained from 2.5-second long presentations
447 of drifting gratings at 8 different directions, 10 trials each. “RS” and “FS” are experimentally determined
448 regular- and fast-spiking cells, roughly corresponding to excitatory and Pvalb inhibitory neurons; the SST
449 and Htr3a neurons could not be identified from experiments. (C) Performance benchmarks and scaling
450 of simulations and setup of the biophysical version of the V1 model using BMTK’s BioNet. The simulation
451 involved 0.5 s presentation of gray screen and 2.5 s of a drifting grating. The time shown is the wallclock
452 time it took to obtain 1 second of simulated time, averaged over 3 s of simulation. The dashed lines
453 indicate ideal scaling (relative to 125 cores, which is a typical choice for simulation of such scale).

454

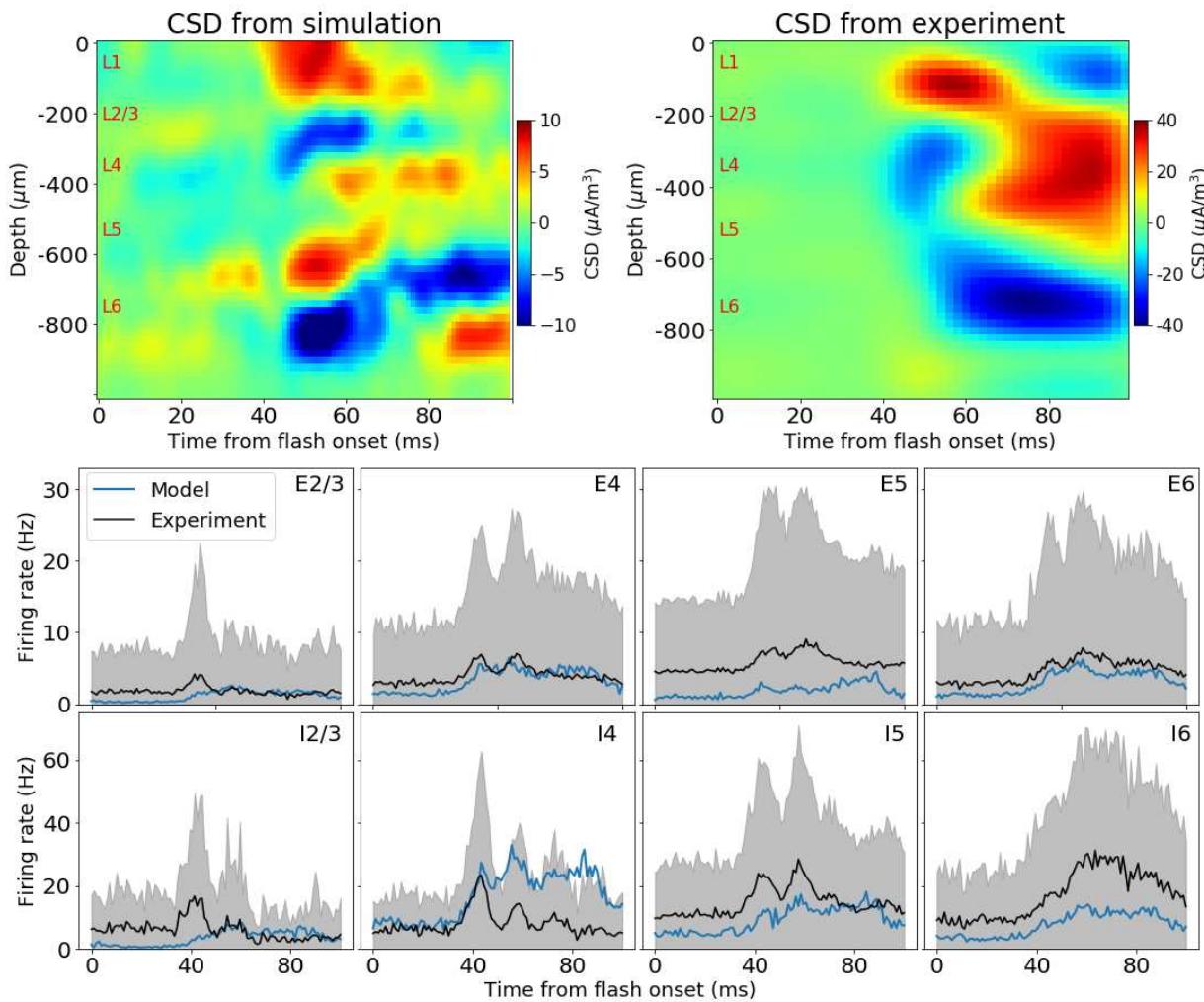
455 [Computation of the Extracellular Electric Potential](#)

456 Computing the extracellular field potential in the modeled brain tissue is an important application
457 (Buzsáki et al., 2012; Einevoll et al., 2013, 2019; Gold et al., 2006; Lindén et al., 2011; Mitzdorf, 1987;
458 Senzai et al., 2019) that requires capturing the spatially distributed electric compartments and synapses,
459 as done in biophysically detailed network models. BMTK BioNet’s ability to perform such calculations is
460 illustrated in **Fig. 7**. BioNet allows users to compute the extracellular potential using the line-source
461 approximation (Gratiy et al., 2018; Plonsey, 1974). The potential is then processed to obtain the low-
462 frequency component – the local field potential (LFP), similar to other recently developed tools
463 providing such functionality (e.g., LFPy (Hagen et al., 2018; Lindén et al., 2014), NetPyNE (Dura-Bernal et
464 al., 2019)). BioNet allows users to set up an arbitrary number of recording sites and distribute them in
465 space. One can then use the LFP from multiple electrodes, for example, to compute the current source
466 density (CSD). The resulting LFP and CSD can be directly compared to experimental ones (**Fig. 7**).

467 The V1 model in **Fig. 6** showed good agreement with experiments for firing rate metrics such as
468 direction selectivity. As a next step, one can use BMTK to investigate the extracellular field dynamics.
469 **Fig. 7** shows one example among a number of model configurations generated (differing, e.g., in the
470 strengths of connections among cell types, the ways how LGN inputs are provided, or distribution of
471 synapses on the neuronal arbors). The CSD and the firing rates across the cortical layers are compared
472 with the experimental data (Siegle et al., 2019). Note that experimental data show substantial variability
473 across mice, and the example from one mouse shown is not representative of all observed CSD patterns.
474 A majority of the 47 mice in this dataset, however, do contain main features seen in **Fig. 7**: an early sink
475 (blue) in Layers 2/3-4 (L2/3-L4), which is then replaced by a source (red), and a delayed but strong sink
476 in L5-L6.

477 The model captures some of these properties of CSD, though not precisely. The L2/3-4 sink is more
478 sustained than in the experiment, and the later source in these layers is less prominent. The L5-L6 sink
479 starts earlier in the simulation and is narrower along the depth dimension. The overall magnitude of CSD
480 peaks and troughs is also smaller in simulation than in experiment. Nevertheless, it is reassuring that the
481 model captures overall trends in both the dynamics of the firing rates and the major features of CSD
482 (**Fig. 7**). Much further work is necessary to understand how the circuit architecture determines the

483 spiking and LFP/CSD responses. With BMTK and the bio-realistic V1 model (Billeh, 2020), iterations of
484 simulations and adjustments to the model circuit structure will shed light on this question and will lead
485 to improved agreement with experiments.



486

487 **Figure 7. Computing extracellular field potential in BMTK.** A simulation using a version of the V1 model
488 (Fig. 6) with the full-field flash stimulus is illustrated. The BioNet module of BMTK was used to run the
489 simulation and compute the extracellular potential at multiple virtual electrode locations along the
490 cortical depth; consequently, the potential was used to obtain the Local Field Potential and Current
491 Source Density (CSD). Top: CSD from the simulation and from a single mouse in experiment. Bottom:
492 firing rates for the excitatory (“E”) and inhibitory (“I”) populations in each layer (2/3, 4, 5, and 6). Black:
493 experiment mean. Gray: experiment standard deviation. Blue: simulation mean. Simulation rates are
494 averaged over all neurons in population and 10 trials. Experimental data are averaged over all neurons
495 of the given type recorded from 47 mice, 75 trials each.

496

497 Applications to Perturbative Studies of Brain Circuits

498 BMTK also offers approaches to apply a variety of perturbations and manipulations, which can be
499 specified in the simulation configuration file, e.g., by providing the list of cell IDs to be perturbed and

500 parameterizing the perturbation function. (The scripting interface permits further unlimited possibilities
501 for simulating custom perturbations.) See
502 https://github.com/AllenInstitute/bmtk/blob/develop/docs/tutorial/05_pointnet_modeling.ipynb#5.-
503 Additional-Information

504 As an example, injection of current directly into neurons is a common technique that can be used
505 effectively to mimic optogenetic perturbations. A follow-up study (Cai et al., 2020) to the V1 model work
506 (Billeh, 2020) used this technique to investigate perturbations of neurons, from single to multiple at a
507 time, selected according to their location, cell class, and functional properties. Many thousands of
508 perturbative simulations were performed using the point-neuron version of the V1 model via the
509 BMTK's PointNet module. The results agreed with the recent single-neuron optogenetics experiments
510 (Chettih and Harvey, 2019) and suggested coexistence of efficient and robust coding in cortical circuits
511 (Cai et al., 2020). **Fig. 8** shows a complementary set of simulations conducted as part of that project,
512 which consist of silencing or activation of whole cell classes, including titrated perturbations. Currently,
513 BMTK offers an easy way of defining perturbations to either cell populations or a set of individual cells.

514 **Fig. 8A** shows spiking activity in the core of the V1 model (see **Fig. 6**) in response to visual stimulation
515 with a drifting grating, for a control condition and two types of perturbation to the Layer 6 excitatory
516 cells: complete silencing and modest activation of these neurons. With BMTK, it is easy to sample
517 perturbations to all cell classes in the model and characterize the effect of each on all the other classes.
518 This is illustrated in **Fig. 8B**, which uses the Optogenetic Modulation Index (OMI) to characterize the
519 effect of perturbation. The OMI of a neuron i is defined as:

520

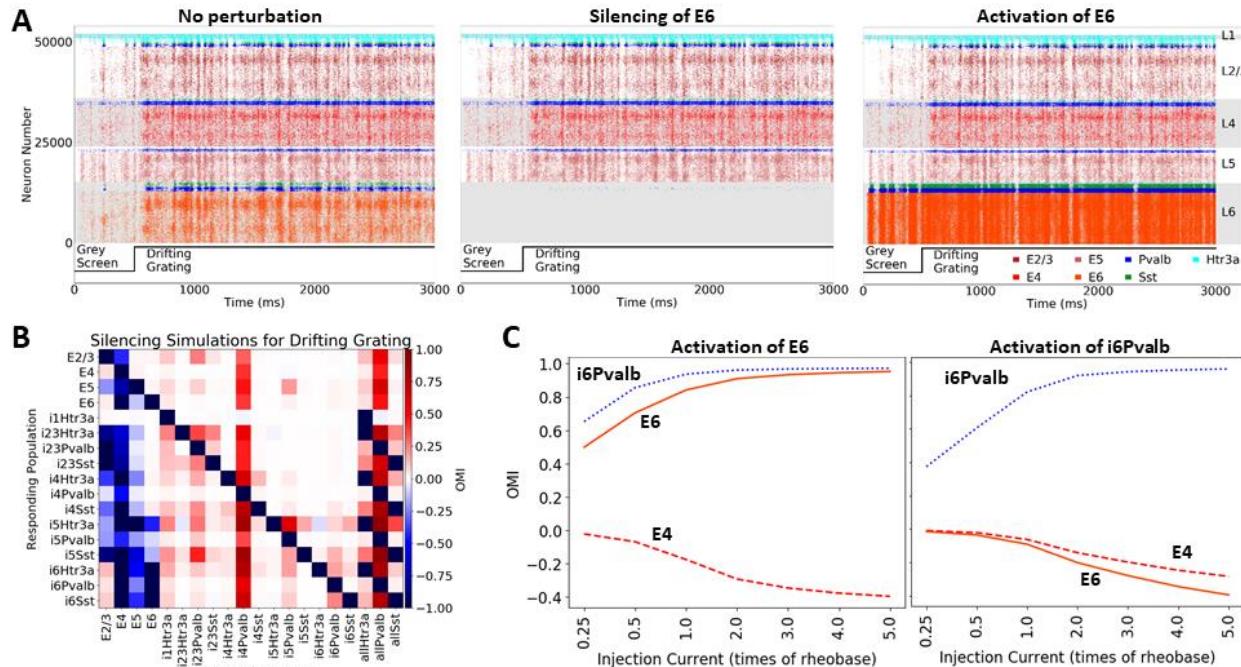
$$\text{OMI}_i = \frac{f_{\text{perturbed}}^i - f_{\text{control}}^i}{f_{\text{perturbed}}^i + f_{\text{control}}^i}$$

521 where $f_{\text{perturbed}}^i$ and f_{control}^i are the firings rate of this neuron during and in the absence of
522 perturbation, respectively. Negative OMI indicates suppression of cell's firing due to perturbation
523 (OMI = -1 means that the cell is fully suppressed), and positive values indicate elevated firing due to
524 perturbation. Mean OMIs for every cell class in **Fig. 8B** exhibit a rich pattern of various effects depending
525 on the population silenced, including non-intuitive effects of silencing the excitatory populations: e.g.,
526 silencing of excitatory populations in Layer 2/3 (E2/3) leads to suppression of E5, but mild activation of
527 E4 and E6.

528 Furthermore, BMTK permits one to sample the magnitude of perturbation (**Fig. 8C**), which can be done
529 with separate amplitude applied for each cell, e.g., by tying the amount of injected current to the
530 previously measured rheobase of each cell model. **Fig. 8C** shows the effect of such different
531 perturbation magnitudes applied to the excitatory E6 or inhibitory i6Pvalb cell classes. Both
532 perturbations lead to activation of i6Pvalb, but in the first case E6 firing increases, whereas in the
533 second it decreases. Non-intuitively, both perturbations result in suppression of activity in Layer 4. This
534 particular effect of Layer 6 perturbation is due to interlaminar projections from inhibitory Layer 6 Pvalb
535 neurons to upper layers. These results are consistent with the overall inhibitory modulation of
536 superficial layers by Layer 6, demonstrated experimentally (Olsen et al. 2012; Bortone, Olsen, and
537 Scanziani 2014).

538 Together, these examples demonstrate the capability of BMTK to sample a wide variety of perturbations
539 and therefore enable extensive comparisons with experiments and biologically meaningful predictive
540 studies.

541



542

543 **Figure 8. Simulation of optogenetic perturbations using BMTK.** The point-neuron version of the V1
544 model (Fig. 6) is used here for illustration. Perturbations are achieved by injecting positive or negative
545 current into cells. (A) Raster plots from 3-second simulations (stimulus: 0.5 s gray followed by 2.5 s of a
546 drifting grating). Simulations without perturbation, with complete silencing of all Layer 6 excitatory cells
547 (E6), and activation of all E6 cells (current equal to 0.5 of the rheobase of each neuron at rest is injected)
548 are illustrated. The perturbation here is applied throughout the course of simulation. (B) Summary of
549 silencing individual cell classes in the V1 model, for the same visual stimulus as in (A). The cell classes
550 listed along the horizontal axis are silenced one by one, and the effect on each cell class (listed along the
551 vertical axis) is characterized using the Optogenetic Modulation Index (OMI; see Main text), averaged
552 over 10 trials and over all cells in the class. The entries "allHtr3a", "allPvalb", and "allSst" refer to
553 simulations where, e.g., the Sst class of neurons was silenced in all layers ("allSst"). (C) Activation of
554 Layer 6 excitatory or Pvalb inhibitory neurons, for the same visual stimulus as in (A). Different
555 amplitudes of perturbations are sampled. OMI is computed as in (B), and is shown for 3 select cell
556 classes. Due to inter-laminar projections of Layer 6 Pvalb interneurons to upper layers, activation of
557 either Layer 6 excitatory or Layer 6 inhibitory Pvalb cells leads to the suppression of activity in Layer 4.

558

559

560 Discussion

561 The Brain Modeling ToolKit (BMTK) is a Python package that provides convenient and powerful user
562 interfaces for building and simulating computational models for neuroscience applications. Network
563 models, from very simple to highly complex and biologically realistic, can be constructed using BMTK
564 Builder. BMTK's FilterNet module provides functionality to process multi-dimensional stimuli via arrays
565 of filters, resulting in time series or spike trains that can be used, e.g., as incoming stimuli for network
566 simulations. The actual network simulations are carried out using BMTK modules BioNet, PointNet, and
567 PopNet, which take advantage of the powerful simulation engines NEURON (Carnevale and Hines, 2006),
568 NEST (Gewaltig and Diesmann, 2007), and diPDE (Cain et al., 2016). Through these modules, BMTK
569 supports simulations at multiple levels of modeling resolution – from filters and population dynamics, to
570 point-neuron and biophysically-detailed compartmental neuronal models.

571 There are multiple benefits of BMTK for users. The most standard practice in the field is to build
572 relatively simple networks, that can be described by a few lines of code. BMTK is fully compatible with
573 such a practice, as BMTK Builder supports exactly this approach. An additional benefit of modularity is
574 provided by separating the model building and simulating stages, so that it becomes easier to keep track
575 of specific instantiations of models that may be simulated with a variety of different input parameters.
576 On the other hand, a growing area of modeling applications is the development of very sophisticated
577 and biologically realistic models drawing on the extensive experimental datasets, and here BMTK is
578 useful as well. BMTK Builder enables very complex and computationally expensive approaches to
579 constructing network models, as exemplified by the model of mouse V1 described above (Billeh, 2020)
580 (Fig. 6). The same example also illustrates how, after constructing a model once, one can reuse many
581 components of the model for simulations at different levels of resolution, such as biophysical with
582 BioNet and point-neuron with PointNet.

583 Another aspect of benefits to users is the standardization of user experience. The simulation modules of
584 BMTK provide very similar interfaces for interacting with simulations at different levels of resolution,
585 whether with BioNet, PointNet, or PopNet. All steps in the modeling and simulation processes are
586 bound together by employing the SONATA format (Dai et al., 2020) for input and output files. This
587 simplifies and standardizes workflows, and also provides a backbone for sharing models and simulations
588 with the community. Beyond applications in BMTK itself, SONATA ensures a wide spectrum of
589 possibilities for sharing and reusing BMTK models with other tools, and vice versa, since SONATA is
590 supported by or compatible with a growing list of software tools and standards, including NetPyNE,
591 NeuroML, PyNN, RTNeuron, Brion/Brain, and NWB (Cannon et al., 2014; Davison et al., 2009; Dura-
592 Bernal et al., 2019; Gleeson et al., 2010; Hernando et al., 2013; Rubel et al., 2019).

593 Finally, BMTK enables even non-expert users to perform computationally efficient simulations. The
594 BMTK simulator modules enable simple straightforward simulations, but also harness the excellent
595 capabilities of NEURON (Carnevale and Hines, 2006) and NEST (Gewaltig and Diesmann, 2007) to carry
596 out very large-scale simulations with high computational efficiency, employing parallelization
597 techniques. The latter is an essential requirement for efficient simulations of large and biologically
598 realistic model networks. Previously, in many cases one had to become an expert in parallel
599 programming under the simulator environment and write their own parallel simulation code in that
600 environment. BMTK implements this step for users, so that even users with no experience in
601 programming can perform highly computationally demanding simulations very efficiently. At the same

602 time, due to BMTK's open-source design as a set of Python modules, those users who are more
603 proficient in software coding can easily implement additional capability of their choice by interfacing
604 their functions with BMTK.

605 As we showed above, BMTK is a mature tool providing ample opportunities for modeling applications.
606 One can build models, provide realistic inputs, such as visual inputs corresponding to arbitrary movies
607 that might be used in experiments, and perform extensive simulations of brain networks under realistic
608 conditions to obtain a variety of outputs (Figs. 5, 6). Current BMTK implementation easily supports
609 output of spikes, membrane voltages, and variables such as calcium concentration. BioNet also permits
610 one to simulate and save the extracellular potential for computing such metrics as LFP and CSD (Fig. 7).
611 Importantly, BMTK also permits a variety of perturbations applied to the simulated system, for example
612 in the form of current injections into neurons (Fig. 8). One critical application of such capabilities is
613 simulation of optogenetic perturbations of brain circuits, which has become a very powerful tool for
614 interrogating circuit function in experiments (e.g., (Boyden, 2015; Carrillo-Reid et al., 2017; Deisseroth,
615 2015; Kim et al., 2017; Li et al., 2015, 2019; Madisen et al., 2012)).

616 BMTK is intended as an open ecosystem that can grow and develop with time. While many useful
617 features are already available based on the initial applications, we intend to add new features, especially
618 driven by user feedback and requests. In addition, BMTK is an open-source project hosted on GitHub
619 (<https://alleninstitute.github.io/bmtk/>), and users are welcome to submit their own new features and
620 solutions to enhance the tool's capabilities for everyone's benefit. We anticipate that BMTK, combined
621 with the SONATA format, can be useful for a broad spectrum of applications on personal computers,
622 supercomputers, and in the cloud environments. Our hope is that BMTK will save effort of many
623 researchers who will be able to focus more on their scientific research and will fuel many discoveries at
624 the interface between modeling, theory, and experimentation.

625

626 Acknowledgments

627 3-D visualizations were generated using RTNeuron with the support of the Blue Brain Project. We are
628 grateful to Michael Hines for many helpful discussions and suggestions. We wish to thank the Allen
629 Institute founder, Paul G. Allen, for his vision, encouragement, and support.

630 References

631 Amunts, K., Ebner, C., Muller, J., Telefont, M., Knoll, A., and Lippert, T. (2016). The Human Brain Project:
632 Creating a European Research Infrastructure to Decode the Human Brain. *Neuron* **92**, 574–581.

633 Arkhipov, A., Gouwens, N.W., Billeh, Y.N., Gratiy, S., Iyer, R., Wei, Z., Xu, Z., Abbasi-Asl, R., Berg, J., Buice,
634 M., et al. (2018). Visual physiology of the layer 4 cortical circuit in silico. *PLoS Comput. Biol.* **14**,
635 e1006535.

636 Bezaire, M.J., Raikov, I., Burk, K., Vyas, D., and Soltesz, I. (2016). Interneuronal mechanisms of
637 hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. *Elife* **5**, e18566.

638 Billeh, Y.N. et al. (2020). Systematic Integration of Structural and Functional Data into Multi-Scale
639 Models of Mouse Primary Visual Cortex. *Neuron* **106**, 388–403.

640 Bopp, R., Holler-Rickauer, S., Martin, K.A.C., and Schuhknecht, G.F.P. (2017). An Ultrastructural Study of

641 the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse. *J.
642 Neurosci.* 37, 2435 LP – 2448.

643 Bouchard, K.E., Aimone, J.B., Chun, M., Dean, T., Denker, M., Diesmann, M., Donofrio, D.D., Frank, L.M.,
644 Kasthuri, N., Koch, C., et al. (2016). High-Performance Computing in Neuroscience for Data-Driven
645 Discovery, Integration, and Dissemination. *Neuron* 92, 628–631.

646 Bower, J., and Beeman, D. (1997). The Book of GENESIS: Exploring Realistic Neural Models with the
647 GEneral NEural SImulation System (New York: Springer).

648 Boyden, E.S. (2015). Optogenetics and the future of neuroscience. *Nat. Neurosci.* 18, 1200–1201.

649 Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking
650 neurons. *J. Comput. Neurosci.* 8, 183–208.

651 Buzsáki, G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular fields and currents — EEG,
652 ECoG, LFP and spikes. *Nat. Rev. Neurosci.* 13, 407–420.

653 Cai, B., Billeh, Y.N., Chettih, S.N., Harvey, C.D., Koch, C., Arkhipov, A., and Mihalas, S. (2020). Modeling
654 robust and efficient coding in the mouse primary visual cortex using computational perturbations.
655 BioRxiv 2020.04.21.051268.

656 Cain, N., Iyer, R., Koch, C., and Mihalas, S. (2016). The Computational Properties of a Simplified Cortical
657 Column Model. *PLoS Comput. Biol.* 12.

658 Cannon, R.C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., and Silver, R.A. (2014). LEMS: a
659 language for expressing complex biological models in concise and hierarchical form and its use in
660 underpinning NeuroML 2. *Front. Neuroinform.* 8, 79.

661 Carnevale, N., and Hines, M. (2006). The NEURON Book (New York: Cambridge University Press).

662 Carrillo-Reid, L., Yang, W., Kang Miller, J., Peterka, D.S., and Yuste, R. (2017). Imaging and Optically
663 Manipulating Neuronal Ensembles. *Annu. Rev. Biophys.* 46, 271–293.

664 Chettih, S.N., and Harvey, C.D. (2019). Single-neuron perturbations reveal feature-specific competition in
665 V1. *Nature* 567, 334–340.

666 Dai, K., Hernando, J., Billeh, Y.N., Gratiy, S.L., Planas, J., Davison, A.P., Dura-Bernal, S., Gleeson, P.,
667 Devresse, A., Dichter, B.K., et al. (2020). The SONATA data format for efficient description of large-scale
668 network models. *PLOS Comput. Biol.* 16, e1007696.

669 Davison, A.P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., and Yger, P.
670 (2009). PyNN: A common interface for neuronal network simulators. *Front. Neuroinform.* 2.

671 Deisseroth, K. (2015). Optogenetics: 10 years of microbial opsins in neuroscience. *Nat. Neurosci.* 18,
672 1213–1225.

673 Dura-Bernal, S., Suter, B.A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez, F., Kedziora, D.J.,
674 Chadderton, G.L., Kerr, C.C., Neymotin, S.A., et al. (2019). NetPyNE, a tool for data-driven multiscale
675 modeling of brain circuits. *Elife* 8.

676 Durand, S., Iyer, R., Mizuseki, K., De Vries, S., Mihalas, S., and Reid, R.C. (2016). A comparison of visual
677 response properties in the lateral geniculate nucleus and primary visual cortex of awake and
678 anesthetized mice. *J. Neurosci.* 36.

679 Einevoll, G.T., Kayser, C., Logothetis, N.K., and Panzeri, S. (2013). Modelling and analysis of local field
680 potentials for studying the function of cortical circuits. *Nat. Rev. Neurosci.* **14**, 770–785.

681 Einevoll, G.T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M., Migliore, M., Ness, T. V.,
682 Plesser, H.E., and Schürmann, F. (2019). The Scientific Case for Brain Simulations. *Neuron* **102**, 735–744.

683 Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool). *Scholarpedia* **2**, 1430.

684 Gleeson, P., Steuber, V., and Silver, R.A. (2007). neuroConstruct: A Tool for Modeling
685 Networks of Neurons in 3D Space. *Neuron* **54**, 219–235.

686 Gleeson, P., Crook, S., Cannon, R.C., Hines, M.L., Billings, G.O., Farinella, M., Morse, T.M., Davison, A.P.,
687 Ray, S., Bhalla, U.S., et al. (2010). NeuroML: A language for describing data driven models of neurons
688 and networks with a high degree of biological detail. *PLoS Comput. Biol.* **6**, 1–19.

689 Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S., Piasini, E., Birgiolas, J.,
690 Cannon, R.C., Cayco-Gajic, N.A., et al. (2019). Open Source Brain: A Collaborative Resource for
691 Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits. *Neuron*
692 **103**, 395–411.e5.

693 Gold, C., Henze, D.A., Koch, C., and Buzsáki, G. (2006). On the Origin of the Extracellular Action Potential
694 Waveform: A Modeling Study. *J. Neurophysiol.* **95**, 3113–3128.

695 Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks in Python . *Front.*
696 *Neuroinformatics* **2**, 5.

697 Gorur-Shandilya, S., Hoyland, A., and Marder, E. (2018). Xolotl: An Intuitive and Approachable Neuron
698 and Network Simulator for Research and Teaching . *Front. Neuroinformatics* **12**, 87.

699 Gouwens, N.W., Berg, J., Feng, D., Sorensen, S.A., Zeng, H., Hawrylycz, M.J., Koch, C., and Arkhipov, A.
700 (2018). Systematic generation of biophysically detailed models for diverse cortical neuron types. *Nat.*
701 *Commun.* **9**, 710.

702 Gouwens, N.W., Sorensen, S.A., Berg, J., Lee, C., Jarsky, T., Ting, J., Sunkin, S.M., Feng, D., Anastassiou,
703 C.A., Barkan, E., et al. (2019). Classification of electrophysiological and morphological neuron types in
704 the mouse visual cortex. *Nat. Neurosci.* **22**, 1182–1195.

705 Gratiy, S.L., Billeh, Y.N., Dai, K., Mitelut, C., Feng, D., Gouwens, N.W., Cain, N., Koch, C., Anastassiou,
706 C.A., and Arkhipov, A. (2018). BioNet: A Python interface to NEURON for modeling large-scale networks.
707 *PLoS One* **13**, e0201630.

708 Hagen, E., Næss, S., Ness, T. V., and Einevoll, G.T. (2018). Multimodal Modeling of Neural Network
709 Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0 . *Front. Neuroinformatics* **12**, 92.

710 Hawrylycz, M., Anastassiou, C., Arkhipov, A., Berg, J., Buice, M., Cain, N., Gouwens, N.W., Gratiy, S., Iyer,
711 R., Lee, J.H., et al. (2016). Inferring cortical function in the mouse visual system through large-scale
712 systems neuroscience. *Proc. Natl. Acad. Sci. U. S. A.* **113**.

713 Hernando, J.B., Biddiscombe, J., Bohara, B., Eilemann, S., and Schürmann, F. (2013). Practical parallel
714 rendering of detailed neuron simulations. *EGPGV'13 Proc. 13th Eurographics Symp. Parallel Graph. Vis.*
715 49–56.

716 Ji, X., Zingg, B., Mesik, L., Xiao, Z., Zhang, L.I., and Tao, H.W. (2015). Thalamocortical Innervation Pattern
717 in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. *Cereb. Cortex* **26**, 2612–2625.

718 Kim, C.K., Adhikari, A., and Deisseroth, K. (2017). Integration of optogenetics with complementary
719 methodologies in systems neuroscience. *Nat. Rev. Neurosci.* **18**, 222–235.

720 Kloc, M., and Maffei, A. (2014). Target-Specific Properties of Thalamocortical Synapses onto Layer 4 of
721 Mouse Primary Visual Cortex. *J. Neurosci.* **34**, 15455 LP – 15465.

722 Koch, C., and Jones, A. (2016). Big Science, Team Science, and Open Science for Neuroscience. *Neuron*
723 **92**, 612–616.

724 Li, N., Chen, T.-W., Guo, Z. V, Gerfen, C.R., and Svoboda, K. (2015). A motor cortex circuit for motor
725 planning and movement. *Nature* **519**, 51–56.

726 Li, N., Chen, S., Guo, Z. V, Chen, H., Huo, Y., Inagaki, H.K., Davis, C., Hansel, D., Guo, C., and Svoboda, K.
727 (2019). Spatiotemporal limits of optogenetic manipulations in cortical circuits. *BioRxiv* 642215.

728 Lien, A.D., and Scanziani, M. (2013). Tuned thalamic excitation is amplified by visual cortical circuits. *Nat.*
729 *Neurosci.* **16**, 1315–1323.

730 Lien, A.D., and Scanziani, M. (2018). Cortical direction selectivity emerges at convergence of thalamic
731 synapses. *Nature* **558**, 80–86.

732 Lindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Diesmann, M., and Einevoll, G.T. (2011).
733 Modeling the Spatial Reach of the LFP. *Neuron* **72**, 859–872.

734 Lindén, H., Hagen, E., Leski, S., Norheim, E., Pettersen, K., and Einevoll, G. (2014). LFPy: a tool for
735 biophysical simulation of extracellular potentials generated by detailed model neurons . *Front.*
736 *Neuroinformatics* **7**, 41.

737 Madisen, L., Mao, T., Koch, H., Zhuo, J., Berenyi, A., Fujisawa, S., Hsu, Y.-W.A., Garcia, A.J., Gu, X.,
738 Zanella, S., et al. (2012). A toolbox of Cre-dependent optogenetic transgenic mice for light-induced
739 activation and silencing. *Nat. Neurosci.* **15**, 793–802.

740 Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., Ailamaki, A.,
741 Alonso-Nanclares, L., Antille, N., Arsever, S., et al. (2015). Reconstruction and Simulation of Neocortical
742 Microcircuitry. *Cell* **163**, 456–492.

743 Martin, C.L., and Chun, M. (2016). The BRAIN Initiative: Building, Strengthening, and Sustaining. *Neuron*
744 **92**, 570–573.

745 Mitzdorf, U. (1987). Properties of the Evoked Potential Generators: Current Source-Density Analysis of
746 Visually Evoked Potentials in the Cat Cortex. *Int. J. Neurosci.* **33**, 33–59.

747 Morgenstern, N.A., Bourg, J., and Petreanu, L. (2016). Multilaminar networks of cortical neurons
748 integrate common inputs from sensory thalamus. *Nat. Neurosci.* **19**, 1034–1040.

749 Neymotin, S.A., Daniels, D.S., Caldwell, B., McDougal, R.A., Carnevale, N.T., Jas, M., Moore, C.I., Hines,
750 M.L., Hämäläinen, M., and Jones, S.R. (2020). Human Neocortical Neurosolver (HNN), a new software
751 tool for interpreting the cellular and network origin of human MEG/EEG data. *Elife* **9**, e51214.

752 Plonsey, R. (1974). The active fiber in a volume conductor. *IEEE Trans. Biomed. Eng.* **BME-21**, 371–381.

753 Ray, S., and Bhalla, U. (2008). PyMOOSE: interoperable scripting in Python for MOOSE . *Front.*
754 *Neuroinformatics* **2**, 6.

755 Ray, S., Chintaluri, C., Bhalla, U.S., and Wójcik, D.K. (2016). NSDF: Neuroscience Simulation Data Format.

756 Neuroinformatics 14, 147–167.

757 Rubel, O., Tritt, A., Dichter, B., Braun, T., Cain, N., Oliver, R., Clack, N., Davidson, T.J., Dougherty, M.,
758 Graddis, N., et al. (2019). NWB : N 2 . 0 : An Accessible Data Standard for Neurophysiology. BioRxiv
759 523035.

760 Schoonover, C.E., Tapia, J.-C., Schilling, V.C., Wimmer, V., Blazeski, R., Zhang, W., Mason, C.A., and
761 Bruno, R.M. (2014). Comparative Strength and Dendritic Organization of Thalamocortical and
762 Corticocortical Synapses onto Excitatory Layer 4 Neurons. J. Neurosci. 34, 6746 LP – 6758.

763 Senzai, Y., Fernandez-Ruiz, A., and Buzsáki, G. (2019). Layer-Specific Physiological Features and
764 Interlaminar Interactions in the Primary Visual Cortex of the Mouse. Neuron 101, 500-513.e5.

765 Siegle, J.H., Jia, X., Durand, S., Gale, S., Bennett, C., Graddis, N., Heller, G., Ramirez, T.K., Choi, H.,
766 Luviano, J.A., et al. (2019). A survey of spiking activity reveals a functional hierarchy of mouse
767 corticothalamic visual areas. BioRxiv 805010.

768 Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., Szafer, A., Cain, N., Zeng, H., Hawrylycz,
769 M., et al. (2018). Generalized leaky integrate-and-fire models classify multiple neuron types. Nat.
770 Commun.

771 Vogelstein, J.T., Mensh, B., Häusser, M., Spruston, N., Evans, A.C., Kording, K., Amunts, K., Ebell, C.,
772 Muller, J., Telefont, M., et al. (2016). To the Cloud! A Grassroots Proposal to Accelerate Brain Science
773 Discovery. Neuron 92, 622–627.

774