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Trans-acting expression quantitative trait loci (trans-eQTLs) are genetic variants affecting the expression

of distant genes. They account for ≥70% expression heritability and could therefore facilitate uncovering

mechanisms underlying the origination of complex diseases. However, unlike cis-eQTLs, identifying trans-

eQTLs is challenging because of small effect sizes, tissue-specificity, and the severe multiple-testing bur-

den. Trans-eQTLs affect multiple target genes, but aggregating evidence over individual SNP-gene asso-

ciations is hampered by strong gene expression correlations resulting in correlated p-values. Our method

Tejaas predicts trans-eQTLs by performing L2-regularized ‘reverse’ multiple regression of each SNP on

all genes, aggregating evidence from many small trans-effects while being unaffected by the strong ex-

pression correlations. Combined with a novel non-linear, unsupervised k-nearest-neighbor method to re-

move confounders, Tejaas predicted 18851 unique trans-eQTLs across 49 tissues from GTEx. They are en-

riched in open chromatin, enhancers and other regulatory regions. Many overlap with disease-associated

SNPs, pointing to tissue-specific transcriptional regulation mechanisms. Tejaas is available under GPL at

https://github.com/soedinglab/tejaas.

Introduction 1

The detection,prevention and therapeutics of complex diseases, such as atherosclerosis,Alzheimer’s 2

disease or schizophrenia, can improve with better understanding of the genetic pathways underly- 3

ing these diseases. Over the last decade, genome-wide association studies (GWASs) have identi�ed 4

tens of thousands of bona �de genetic loci associated with complex traits and diseases. However, 5

it remains unclear how most of the disease-associated variants exert their e�ects and in�uence 6

disease risk. Over 90% of the GWAS variants are single-nucleotide polymorphisms (SNPs) in 7

noncoding regions [1], potentially regulating gene expression that in�uence disease risk. Indeed, 8

eQTL mapping has identi�ed many genetic variants that a�ect gene expression. These have been 9

mostly limited to cis-eQTLs, which modulate the expression of proximal genes (usually within ±1 10

Mbp), while little is known about trans-eQTLs, which modulate distal genes or those residing on 11

di�erent chromosomes. 12

The discovery of trans-eQTLs is critical to advance our understanding of causative disease 13

pathways because they account for a large proportion of the heritability of gene expression. 14

Several recent studies converge on an estimate of 60%-90% genetic variance in gene expression 15

contributed by trans-eQTLs and only 10%-40% by cis-eQTLs (see Table 1 in [2] for an overview). 16

However, in contrast to cis-eQTLs, trans-eQTLs are notoriously di�cult to discover. The stan- 17

dard method involves simple regression of each gene on all SNPs. For cis-eQTLs, the number of 18

association tests is limited to SNPs in the vicinity of each gene, while for trans-eQTLs, testing all 19

genes against all SNPs imposes a hefty multiple testing burden. The major impediment, however, 20
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comes from the small e�ect sizes of trans-eQTLs on individual genes. Moreover, combining signals 21

across multiple tissues is hindered by the tissue-speci�city of trans-eQTLs. 22

Several studies searched for trans-eQTLs among restricted sets to reduce the multiple test- 23

ing burden; for instance among trait-associated SNPs [3] or among SNPs with signi�cant cis- 24

associations [4]. A few methods have been developed to �nd trans-eQTLs using distinctive 25

biological signatures. For example, GNetLMM [5] implicitly assumes that a trans-eQTL targets a 26

trans-eGene via an intermediate cis-eGene. Their method tests for association between the SNP 27

and the candidate gene using a linear mixed model, while conditioning on another set of genes 28

that a�ect the candidate gene but are uncorrelated to the cis-eGene. Another method [6] used 29

tensor decomposition to succinctly encode the behavior of coregulated gene networks with latent 30

components that represent the major modes of variation in gene expression across patients and 31

tissues, testing for association between SNPs and the latent components. A class of methods using 32

mediation analysis try to identify the genetic control points or cis-mediators of gene co-expression 33

networks [7–9]. These methods regress the candidate trans-eGene on the cis-eGene (not on the 34

SNP) by adaptively selecting for potential confounding variables using the SNP as an “instrumental 35

variable”. More recently, a method for imputing gene expression was used to learn and predict 36

each gene’s expression from its cis-eQTLs, and then the observed gene expressions were tested 37

for association with the predicted gene expressions to �nd trans-eGenes [10]. 38

Trans-eQTLs are believed to a�ect the expression of a proximal di�usible factor such as a 39

transcription, RNA-binding or signaling factor, chromatin modi�er, or possibly a non-coding RNA, 40

which in turn directly or indirectly a�ects the expression of the trans genes [11]. It is therefore 41

expected that trans-eQTLs a�ect tens or hundreds of target genes in trans. Many examples in 42

humans (see, e.g. [12, 13]) and strong evidence in yeast [14] support this hypothesis. If this 43

information could be used e�ectively to predict trans-eQTLs, it might easily compensate their 44

weaker e�ect sizes and multiple testing burden. 45

We expect the target genes to have more signi�cant p-values for association with their trans- 46

eQTL than expected by chance. Brynedal et al. [15] presented a method (CPMA) that tests 47

whether the distribution of regression p-values for association of the candidate SNP with each 48

gene expression level has an excess of low p-values arising from the association of the target genes 49

with the SNP. However, the p-values inherit the strong correlation from their gene expressions. 50

Therefore, if one gene has a p-value near zero by chance, many strongly correlated genes will 51

also have very low p-values. This makes it di�cult to decide if an enrichment of p-values near 52

zero is due to trans genes or due to chance, diminishing the power of the method signi�cantly. 53

Here, we circumvent the problem by reversing the direction of regression (Fig. 1). Instead 54

of regressing each expression level on the SNP’s minor allele count, Tejaas performs multiple 55

regression of the SNP on all genes jointly. In this way, no matter how strong the correlations, 56

they do not negatively impact the test for association between gene expressions and SNP. This 57

approach brings two decisive advantages: First, the information from each and every target gene 58

is accumulated while automatically taking their redundancy through correlations into account. 59

Therefore, the more target genes a SNP has, the more sensitive Tejaas will be, even when individual 60

e�ect sizes are much below the signi�cance level for individual gene-SNP association tests. Second, 61

the multiple testing burden is reduced because association is tested for all genes at once. To correct 62

for known and unknown confounder variables, we present a novel nonlinear, nonparametric 63

K-nearest neighbor correction and demonstrate its e�ectiveness in simulations. 64

We applied Tejaas to the Genotype Tissue Expression (GTEx) dataset and predicted 18851 65

trans-eQTLs in 49 tissues with a p-value threshold for genome-wide signi�cance of ? < 5 × 10
−8, 66

which corresponds to false discovery rates below 5%. These putative trans-eQTLs are signi�cantly 67

enriched in various functional genomic signatures such as chromatin accessibility, functional 68

histone marks and reporter assay annotations, and are also enriched among GWAS SNPs associated 69

to various complex traits. 70
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Fig. 1 | Forward and reverse regression for trans-eQTL discovery. Trans-eQTLs affect multiple genes simul-

taneously by exerting a cis-effect on a diffusible trans-acting factor such as a transcription factor (TF) (left).

In forward regression (FR), we perform univariate regression of the expression level of each gene individually

on the candidate SNP’s genotype (= centered minor allele frequency) and estimate whether the distribution of

resulting association p-values is enriched near zero. In reverse regression (Tejaas), we perform L2-regularized

multiple regression of the candidate SNP’s genotype jointly on all gene expression levels. Crucially, reverse re-

gression is not negatively affected by correlations between gene expression levels.

Results 71

Methods overview. Tejaas (Trans-EQTLs by JointAssociationAnalysiS) computes the Reverse 72

Regression RR-score q rev to discover and rank trans-eQTLs, making use of the expectation that 73

each trans-eQTL has multiple target genes. To our knowledge, only one other method makes use 74

of it, the “forward” regression method CPMA by Brynedal et al. [15]. In order to compare Tejaas 75

with CPMA, we implemented our own version of Forward Regression (FR) within Tejaas, as there 76

is no publicly available software for CPMA. We used MatrixEQTL [16] as representative of all 77

methods using single SNP-gene regression. 78

The FR-score qfwd and the RR-score q rev are summarized in Fig. 1. For details, see Online 79

Methods, Supplementary Sec. 1 and 2. The FR score evaluates the distribution of the p-values for 80

the pairwise linear association of a candidate SNP with each of the � gene expression levels. SNPs 81

without trans-e�ect should have uniformly distributed p-values, while we expect trans-eQTLs to 82

have a distribution that is enriched near zero, contributed by their target genes. 83

Reverse Regression (RR) performs a multiple linear regression using expression levels of all 84

genes to explain the genotype of a candidate SNP. Let x denote the vector of centered minor 85

allele counts of a SNP for # samples and Y be the � × # matrix of preprocessed expression levels 86

for � genes. We model x with a normal distribution whose mean depends linearly on the gene 87

expression through a vector of regression coe�cients #: 88

? (x | Y) ∝ N
(

x | #T
Y, If2

)

. (1)

Generally, the number of explanatory variables (genes) is much larger than the number of samples 89

(� � #) in currently available eQTL data sets. To avoid over�tting, we introduce a normal prior 90

on #, with mean 0 and variance W2, 91

?(#) = N
(

# | 0, W2
)

. (2)

This !2 regularization pushes the e�ect size of non-target genes towards zero. We calculated the 92

signi�cance of the trans-eQTL model (# ≠ 0) compared to the null model (# = 0) using Bayes 93
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theorem to obtain 94

ln

(

% (# ≠ 0 | x,Y)

% (# = 0 | x,Y)

)

=
1

2
x
T
Wx + const (3)

with 95

W :=
1

f2
Y

T

(

YY
T +

f2

W2
I�

)−1

Y . (4)

We therefore de�ned the RR-score as q rev := x
T
Wx. 96

The null distribution of q rev is di�erent for every SNP and can be obtained by randomly 97

permuting the sample labels of the genotype multiple times. Although it is computationally 98

infeasible to obtain the null distribution empirically for each SNP independently, we were able 99

to analytically calculate the expectation and variance of q rev under this permuted null model 100

(Supplementary Appendix 1). Assuming that the null distribution is Gaussian, which holds well 101

in practice (Supplementary Sec. 2.6 and Fig. S1), we calculate a p-value to get the signi�cance of 102

any observed q rev. 103

The assumption of normality of the RR-score null distribution breaks down when standard 104

confounder correction methods are used (Supplementary Fig. S2, Sec. 2.6 and Sec. 3.1). Therefore, 105

we developed a novel, non-parametric, non-linear confounder correction using k-nearest neighbors, 106

which we call KNN correction (Supplementary Sec. 3.2). The KNN correction does not require 107

the confounders to be known but e�ciently corrects for both hidden and known confounders 108

(Supplementary Fig. S4, Sec. 5.4 and Fig. S9). 109

Tejaas is a fast and e�ciently MPI-parallelized software (Supplementary Fig. S3) written in 110

Python and C++. It is open-source and released under GNU General Public License v3 (Code 111

Availability). 112

Simulation studies. WeappliedTejaas reverse regression, FR andMatrixEQTL on semi-synthetic 113

datasets to compare their performance in well-de�ned settings. The simulations also allowed us 114

to �nd optimum values for the number of nearest neighbors  and the e�ect size variance W2. 115

For simulations, we followed the strategy of Hore et al. [6] (Online Methods and Supplementary 116

Sec. 4). Brie�y, for each simulation with 12 639 SNPs and 12 639 genes, we randomly selected 800 117

SNPs as cis-eQTLs, out of which 30were also trans-eQTLs. The cis target genes of the trans-eQTLs 118

were considered as transcription factors (TFs) and regulated multiple target genes downstream. 119

Some strategies were di�erent from the work of Hore et al.to make the simulations more realistic. 120

First, we sampled the genotype directly from real data. Second, we used the covariance matrix of 121

real gene expression as the background noise for the synthetic gene expression. Third, we included 122

the �rst three genotype principal components as confounders to mimic population substructure. 123

We measured the performance in predicting the planted trans-eQTLs by the partial area under 124

the ROC curve (pAUC) up to a false positive rate (FPR) of 0.1. 125

Figure 2a shows how the pAUC is a�ected by three confounder correction methods: (1) without 126

any confounder correction (None), (2) the de facto standard method using residuals after linear 127

regression with known confounders (CCLM) and (3) the K-nearest-neighbor correction (KNN). 128

For Tejaas, we set W = 0.2 and  = 30 empirically (Supplementary Figs. S5–7). To avoid false 129

discovery of cis-eQTLs as trans-eQTLs, we masked all cis genes within ±1Mb of each candidate 130

SNP for Tejaas and Forward Regression (Supplementary Sec. 2.9). 131

The best combination of method and confounder correction is Tejaas with KNN correction 132

(Fig. 2a). CCLM is e�ective for MatrixEQTL but it does not work in combination with Tejaas 133

because it renders the null q rev distribution non-Gaussian and thereby leads to wrong p-values 134

(Supplementary Fig. S2, Sec. 2.6 and Sec. 3.1). For FR and MatrixEQTL, CCLM works much better 135

than KNN because we provided it with the known confounders, whereas KNN did not and can 136

not use these. Unlike in simulations, we do not have exact knowledge of most of the confounders 137
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Fig. 2 | Sensitivity for trans-eQTL discovery on simulated data. We compared the performance of Tejaas

reverse regression, forward regression (FR) (similar to CPMA) and MatrixEQTL, by computing the partial area

under the ROC curve (pAUC) up to a false positive rate (FPR) of 0.1. A perfect method has pAUC=0.1 and a

random one 0.005. pAUCs are averaged over 20 simulations. a, pAUC for different confounder correction meth-

ods: no correction (None), correction using linear regression of known confounders (CCLM) on inverse normal

transformed gene expression, and our k-nearest neighbors correction with K=30 (KNN). b, pAUC for different

numbers of target genes for the cis transcription factor (TF) mediating the trans-eQTL (from top to bottom) and

different mean effect sizes of the TF on the target genes (from left to right).

in real data. Hence it is encouraging that the KNN correction works well even without knowledge 138

of the confounders. 139

In Fig. 2b, we analyzed the methods’ performance depending on (1) the number of target 140

genes of the TF linked to the trans-eQTL and (2) the e�ect size of the TF on the target genes. 141

For MatrixEQTL and FR, we chose the CCLM correction and for Tejaas, the KNN correction. 142

Surprisingly, FR has slightly lower pAUC than MatrixEQTL throughout. The pAUC of Tejaas 143

is at least two-fold higher than the next best method under all conditions, although it does not 144

use the known confounders. At mean e�ect size 0.2, the pAUC is up to 5 times higher than that 145

of MatrixEQTL. The higher pAUC of Tejaas than other methods is persistent when varying the 146

number of confounders and the e�ect size of confounders (Supplementary Fig. S8). 147

Genotype Tissue Expression trans-eQTL analysis. We applied Tejaas to data from the 148

Genotype Tissue Expression (GTEx) project [17–19]. The GTEx project aims to provide insights 149

into mechanisms of gene regulation by collecting RNA-Seq gene expression measurements from 150

54 tissues in hundreds of human donors, of which we used 49 tissues that have ≥ 70 samples with 151

both genotype and expression measurements. 152

We downloaded GTEx v8 data (Data Availability), converted the gene expression read counts 153

obtained from phASER to standardized TPMs (Transcripts per Millions), and used the KNN 154

correction with 30 nearest neighbors to remove confounders (Supplementary Sec. 5). Using a small 155

hold-out test set for adipose subcutaneous tissue, we obtained W = 0.1. We noticed that in four 156

tissues, this choice led to non-Gaussian distributions of q rev on null SNPs. A systematic analysis of 157

the non-Gaussianity led to a choice of W = 0.006 for these remaining four tissues (Supplementary 158

Sec. 5.5 and Fig. S10). For each candidate SNP, we removed all cis genes within ±1Mbp to avoid 159
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Fig. 3 | Tejaas identifies many thousands of putative trans-eQTLs in GTEx data. In each of the 49 GTEx

tissues, we applied the KNN confounder correction and calculated genome-wide reverse regression p-values

with Tejaas. Cis geneswithin±1Mb of the candidate SNPwere excluded from the regression. From the genome-

wide significant SNPs (p < 5×10−8) we selected the strongest as lead trans-eQTLs, removing SNPs in strong

LD (r2 ≥ 0.5) with a lead SNP. a, Number of lead trans-eQTLs discovered per tissue, on a logarithmic scale.

For GTEx tissue abbreviations, see Supplementary Appendix 2. The dotted line indicates the cut-off used for

choosing tissues for enrichment analysis. b, Proportion of trans-eQTLs discovered in a given number of tissues

(excluding brain tissues). 70%of the lead trans-eQTLs are not in strong LDwith any lead trans-eQTL fromanother

tissue. c, Number of lead trans-eQTLs discovered in a tissue (log scale) versus the number of samples for that

tissue. d, Trans-eQTLs act via cis-eGenes. Number of lead trans-eQTLs versus the number of discovered lead

trans-eQTLs that also happen to be cis-eQTLs in GTEx consortium analysis [4]. e, Representative examples of

quantile-quantile plots for artery aorta (ARTAORT) and EBV-transformed lymphocytes (LCL) with their negative

controls (dashed), obtained by randomly permuting the sample IDs of genotypes. f, Representative examples

trans-eQTL maps for ARTAORT and LCL, with genomic positions of trans-eQTLs (x-axis) against the genomic

positions of their target genes (y-axis). The diagonal band corresponds to cis-eQTLs.

detecting the relatively stronger cis-eQTL signals and thereby in�ating q rev (Supplementary 160

Fig. S12). All SNPs with a genome-wide signi�cant p-value (? ≤ 5 × 10
−8) were predicted as 161

trans-eQTLs. To reduce redundancy, we pruned the list by retaining only the trans-eQTLs with 162
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lowest p-values in each independent LD region de�ned by SNPs with A2 > 0.5. 163

The LD-pruned lists contain 16 929 unique lead trans-eQTLs in non-brain GTEx tissues and 164

1 922 in brain tissues (Fig. 3a). For comparison, the latest analysis by the GTEx consortium on 165

the the same data yielded 142 trans-eQTLs across 49 tissues analyzed at 5% false discovery rate 166

(FDR), of which 41 were observed in testis [4]. To get a rough estimate of our FDRs at the cut-o� 167

p-value of 5 × 10
−8, we note that the expectation value of the number of false positive predictions 168

for 8 × 10
6 tested SNPs per tissue is about 0.4, and even less after LD-pruning. Hence for a tissue 169

with ) predicted trans- eQTLs below the cut-o� p-value, the FDR should be roughly ≤ 0.4/) . It 170

follows that 47 out of 49 tissues have FDRs at cut-o� below 5% with many much below that. 171

The predicted trans-eQTLs are tissue-speci�c, with 70% occurring in single tissues (Fig. 3b). The 172

number of trans-eQTLs discovered increases roughly exponentially with the number of samples 173

(Fig. 3c) for # > 250, pointing to the importance of sample size to discover more trans-eQTLs. 174

Interestingly, about a quarter of trans-eQTLs predicted in each tissue are also signi�cant cis-eQTLs 175

(Fig. 3d). The e�ects on the target genes could plausibly be mediated by these cis-eGenes. The 176

quantile-quantile plots for two representative tissues demonstrate the enrichment in signi�cant 177

Tejaas p-values, while the negative controls show the expected uniform distribution of p-values 178

(Fig. 3e), con�rming the correctness of the p-values reported by Tejaas. The maps of trans-eQTLs 179

and their target genes (Fig. 3f) illustrate similar patterns as observed earlier in yeast [14]. 180

Functional enrichment analyses of trans-eQTLs. Given the known di�culties to replicate 181

and validate trans-eQTLs [3, 20] and the lack of RNA-Seq datasets with coverage of tissues other 182

than whole blood, we tested the validity of our results by analyzing the enrichment of the predicted 183

trans-eQTLs in functionally annotated genomic regions. One would expect only true eQTLs to 184

be enriched in these regions. The functional enrichment measurements were compared to a set 185

of randomly chosen SNPs from the GTEx genotypes (Supplementary Sec. 5.6). The trans-eQTLs 186

were discovered excluding all genes in the vicinity of that SNP and therefore it is unlikely to 187

observe functional enrichments driven by falsely discovered cis-eQTLs. 188

In Fig. 4, we show the functional enrichment of tissues which had more than 64 trans-eQTLs, as 189

indicated by the dotted line in Fig. 3a. This mostly includes non-brain tissues. With low number 190

of trans-eQTLs, enrichment analyses would be statistically unreliable, as for example, observed 191

when comparing all the brain tissues (Supplementary Fig. S16). 192

DNase I hypersensitive sites (DHSs) mark accessible regions of the chromatin and could indicate 193

regulatory or biochemical activity, such as promoters, enhancers or actively transcribed regions. 194

Predicted trans-eQTLs occurmore often than expected by chancewithin theDHS regionsmeasured 195

and aggregated across 125 cell and tissue types [21], with signi�cant positive DHS enrichment 196

(? ≤ 0.05) in 30 out of 34 tissues and a p-value ≤ 0.01 in 26 tissues (Fig. 4a). Using data available 197

in the GTEx Portal, we also found enrichment across a range of annotated regulatory elements 198

such as enhancers and transcription binding sites (Supplementary Fig. S11). The enrichment in 199

open chromatin and annotated regulatory regions suggest that the predicted trans-eQTLs possess 200

regulatory activity more often than expected by chance. 201

Trans-eQTLs may also act via cis-eQTLs, where the cis-eGene (for example, some known 202

TF) regulates other distant genes. Indeed, we observed a signi�cant enrichment of trans-eQTLs 203

being also cis-eQTLs [4] in the same tissue (Fig. 4b). The cis-eGenes of the novel trans-eQTLs 204

have a higher proportion of protein-coding genes than the background distribution of all GTEx 205

cis-eGenes (orange, Fig. 4d). Although the cis-a�ected genes are not enriched in TFs (gold, Fig. 4d), 206

the trans-eQTLs are enriched proximal (≤ 100Kb) to TFs (�rst line in Fig. 4b). 207

In Fig. 4b, we show the enrichment of the trans-eQTLs being also reporter assay QTLs (raQTLs) 208

for two cell types, K562 and HepG2 [22]. Reporter assay QTLs (raQTLs) are SNPs that a�ect 209

the activity of promoter or enhancer elements. K562 is an erythroleukemia cell line with strong 210

similarities to whole blood tissue and HepG2 cells are derived from hepatocellular carcinoma 211
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Fig. 4 | The discovered lead trans-eQTLs are enriched in open chromatin and regulatory regions. Log2 en-

richments (x-axis) within accessible chromatin regions from [21]. The significance is denoted by * for p ≤ 0.05,

** for p ≤ 0.01, and *** for p ≤ 0.001. The GTEx tissues are ordered by the number of lead trans-eQTLs. For their

abbreviations, see Supplementary Appendix 2. b, Log2 enrichments near known eQTLs and reporter assay QTLs

(raQTLs) [22]. Cis-TF: enrichment to occur within±100 kbp from transcription factors reported in [23]; Cis-eQTL:

enrichment among cis-eQTLs SNPs reported in the GTEx v8 analysis [4]; raQTL: enrichment in raQTL regions

showing enhancer-like activity in K562 or HepG2 cells [22]. Heatmap colors encode log2 enrichment, circular

marks signify p < 0.01. The area of the colored circles on x-axis labels indicates the log number of discovered

lead trans-eQTLs. Left plot: mean log2 enrichment across all tissues. c, Log2 enrichments within tissue-specific

regulatory regions. Only tissues that could be matched to the corresponding tissue annotation in the Roadmap

Epigenomics Project [24] and had at least 10 trans-eQTLs are shown. Enhancers and bivalently marked regions

show clear enrichments for most tissues. d, Types of transcripts affected in cis by the lead trans-eQTLs. Only

tissues with at least 10 cis-affected transcripts (numbers on top) are shown.

with similarities to liver tissue. The trans-eQTLs from whole blood and liver are strongly enriched 212

(? < 0.01), suggesting that at least some trans-eQTLs act via altering the activity of putative 213

regulatory elements in a cell-type-speci�c manner. 214

With the high sensitivity to discover trans-eQTL by Tejaas, it becomes possible to describe 215

and disentangle tissue-speci�c enrichments. Using chromatin state predictions from a set of 216

tissues from the Roadmap Epigenomics project [24], we show that the trans-eQTLs are enriched in 217

enhancer, bivalent and repressed polycomb regions of their matched tissues (Fig. 4c). As expected, 218

they are depleted in the inaccessible heterochromatin regions for most of the tissues. 219

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.05.07.083386doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.083386
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

W
HL

BL
D

M
SC

LS
K

UT
ER

US
AR

TC
RN

SP
LE

EN
AR

TA
OR

T
TE

ST
IS

BR
NA

M
Y

CL
NT

RN
TH

YR
OI

D
BR

NA
CC

PR
ST

TE
SK

IN
NS

NE
RV

ET
AD

PS
BQ

BR
EA

ST
LU

NG
AD

PV
SC

SK
IN

S
AR

TT
BL

BR
NN

CC LC
L

ST
M

AC
H

HR
TL

V
FI

BR
BL

S
AD

RN
LG

PN
CR

EA
S

BR
NC

HB
BR

NH
PT

SN
TT

RM
OV

AR
Y

CL
NS

GM
HR

TA
A

BR
NC

TX
A

0

1

2

lo
g 2

 G
W

AS
 e

nr
ich

m
en

t

**
*

**
* **

* **
* **
*

**
* **

* **
*

**
**

*

**
**

* **
*

*
**

*
** **

**
* **

* **
*

** ** *
**

*

b

W
HL

BL
D

M
SC

LS
K

UT
ER

US
AR

TC
RN

SP
LE

EN
AR

TA
OR

T
TE

ST
IS

BR
NA

M
Y

CL
NT

RN
TH

YR
OI

D
BR

NA
CC

PR
ST

TE
SK

IN
NS

NE
RV

ET
AD

PS
BQ

BR
EA

ST
LU

NG
AD

PV
SC

SK
IN

S
AR

TT
BL

BR
NN

CC LC
L

ST
M

AC
H

HR
TL

V
FI

BR
BL

S
AD

RN
LG

PN
CR

EA
S

BR
NC

HB
BR

NH
PT

SN
TT

RM
OV

AR
Y

CL
NS

GM
HR

TA
A

BR
NC

TX
A

Aging
Allergy

Anthropometric
Blood cell counts

Breast cancer
Cardiometabolic

Digestive system
Endocrine system
Hair morphology

Immune
Psychiatric-neurologic

Skeletal system

1

2

3

4

lo
g 1

0(
p)

log2
enrichment

0
2
4

Fig. 5 | Trans-eQTLs are enriched amongGWAS risk SNPs for complex diseases. a, Trans-eQTLs are enriched

with SNPs from theGWASCatalog.Significance is denoted by * for p≤ 0.05, ** for p≤ 0.01, and *** for p≤ 0.001.

b, Enrichment of lead trans-eQTLs discovered in GTEx tissues (x-axis) among GWAS SNPs associated with

specific disease categories (y-axis). Bubble size indicates log2 enrichment, bubble color indicates significance

(−log10(p)). Bubbles are shown for positive enrichment with p ≤ 0.1.

We checked for possible confounding due to population substructure and cross-mappable genes 220

(by ambiguously mapped reads). Some of the trans-eQTLs have quite di�erent allele frequencies 221

between GTEx subpopulations (Supplementary Fig. S14). After adapting our null background to 222

match the distribution of allele frequency di�erences (between subpopulations) of the predicted 223

trans-eQTLs, the enrichments in DHS and GWAS are not signi�cantly a�ected (Supplementary 224

Fig. S15). Saha et al. [25] had earlier raised the concern of false trans signals from ambiguously 225

mapped reads. We found similar enrichment in DHS and cis-eQTLs even after masking all possible 226

cross-mappable genes for each tested SNP(Supplementary Fig. S13). 227

Association with complex diseases. We investigated the overlap between trans-eQTLs dis- 228

covered by Tejaas and GWAS variants to search for trans-regulatory mechanisms that a�ect 229

complex diseases. First, we checked for every tissue, whether more trans-eQTLs overlap with 230

GWAS catalog SNPs [26] than expected by chance. Out of the 28 tissues that have more than 100 231

lead trans-eQTLs, 27 tissues showed positive enrichment in the GWAS catalog SNPs (Fig. 5a). 21 232

tissues had an enrichment p-value ? ≤ 0.05, 20 had ? ≤ 0.01 and 15 had ? ≤ 0.001. The GWAS 233

catalog SNPs overlapping the trans-eQTLs are associated with a wide range of traits, many of 234

which are not related to complex diseases. 235

To focus on associations with complex diseases, we used the imputed GWAS summary statistics 236

from 87 complex diseases compiled by Barbeira et al. [27]. These 87 traits were broadly classi�ed 237
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into 12 disease categories. Trans-eQTLs from several tissues are enriched in disease categories 238

that suggest a physiological link (Fig. 5b). Trans-eQTLs in whole blood (WHLBLD), heart atrial 239

appendage (HRTAA), and transformed lymphocytes (LCL) are 1.7-fold, 7-fold, and 6.42-fold 240

enriched in cardiometabolic traits, with ? = 0.01, ? = 0.008 and ? = 0.0012, respectively. Whole 241

blood trans-eQTLs are also 1.3-fold enriched (? = 0.0014) in blood related traits, such as variations 242

in di�erent blood cell counts, e.g. eosinophil, granulocyte, lymphocyte,monocyte, etc. Trans-eQTLs 243

discovered in the thyroid gland overlap (2.8-fold enriched, ? = 0.03) with endocrine-associated 244

SNPs. Adipose visceral (ADPVSC) trans-eQTLs are enriched among breast cancer SNPs (7.89-fold, 245

? = 0.02). Some associations seem unexpected and could hint at interesting, unknown roles of 246

certain tissues in speci�c diseases, for instance the overlap of the transverse colon (CLNTRN) 247

trans-eQTLs with anthropometric and breast cancer SNPs, or the nucleus accumbens (BRNACC) 248

with allergies. More insight can be obtained from the disease-speci�c enrichment for each tissue 249

in Supplementary Fig. S18, such as stomach (STMACH) trans-eQTLs enriched in SNPs associated 250

with Crohn’s disease (13-fold, ? = 0.01), or heart artery aorta trans-eQTLs enriched in SNPs 251

associated with hypothyroidism (4.94-fold, ? = 0.06). 252

To investigate possible implications and mechanisms of the predicted trans-eQTLs that are also 253

GWAS SNPs, we focused on trans-eQTLs found in tissues that are suggestive of a physiological 254

relation to their associated GWAS traits. For each of them, we examined their top 20 target genes. 255

SNP rs60977503 (chr2:217006659), predicted to be a trans-eQTL in breast tissue, overlaps with a 256

GWAS hit in estrogen receptor-negative breast cancer. Among the top 20 predicted target genes 257

of rs60977503 we found four genes associated with breast cancer. These include FAM183A, which 258

is upregulated in breast cancer cells in response to Notch signaling [28]; MUC4, expressed in 95% 259

of breast carcinomas [29]; HSPB6, which is downregulated in breast cancer [30, 31] and CCL28, 260

which promotes breast cancer proliferation, tumor growth and metastasis [32]. 261

Similarly, SNP rs4538604, predicted as a trans-eQTL in stomach, resides in the in�ammatory 262

bowel disease (IBD) 5 locus that has also been associated with Crohn’s disease [33]. Some of 263

its cis-genes have been linked to the disease, such as RAPGEF6, implicated in recovery after 264

mucosal injury [34] and SLC22A5 [35]. Among the top predicted trans target genes of rs4538604 265

is the receptor for the chemotactic and in�ammatory peptide anaphylatoxin C5a (C5AR1). It has 266

been found to be di�erentially expressed in ulcerative colitis patients [36] and IBD patients that 267

respond to Anti-TNFU [37]. The trans-targets RPS21 and ZNF773 are associated with colorectal 268

cancer [38,39], andCDC42SE2 is upregulated in IBD [40]. At least seven otherGWAS hits associated 269

with Crohn’s disease overlap with predicted trans-eQTLs, four in small intestine and two more in 270

spleen tissue [41], highlighting the potential relevance of our predictions. 271

As a third example, rs12040085 is a predicted trans-eQTL in adipose visceral tissue in the 1p33 272

locus. This region is a GWAS locus related to body mass index (BMI) and body fat percentage. 273

Eight of the top 20 predicted trans target gene of rs12040085 are directly associated with BMI, 274

obesity, and body height. Four of them, CDIN1 (chr15), LINGO1 (chr15), LINC01184 (chr5) and 275

LOC105369911 (chr12), lie within reported GWAS loci related to BMI, body height and obesity 276

and are located on di�erent chromosomes from rs12040085 [42–45]. The target genes TRDMT1, 277

ZNF418, NAT1 and CDC7 have been experimentally associated through their expression levels or 278

through knockouts, or are used as biomarkers, for waist circumference, BMI, obesity or insulin 279

resistance [46–50]. 280

These examples point to the important role that trans-eQTLs could play in complex diseases. 281

It will of course require larger analysis and more automated methods to integrate multiple data 282

sources for �nemapping and analyzing all predicted candidates. All our results and scripts used in 283

this study are made public to facilitate further analyses. 284
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Discussion 285

Trans-eQTL discovery has come into focus over the past few years, since multiple studies consis- 286

tently found that 60%–90% of the heritable gene expression variance is contributed by trans-eQTLs. 287

The recently proposed omnigenic model of complex traits highlights the importance of trans- 288

regulated networks in understanding causative disease pathways [2, 51]. According to this model, 289

most of the genetic variance is driven by weak trans e�ects of peripheral genes on a set of core 290

genes, which in turn a�ect the risk to develop the disease. However, trans-eQTLs are more di�- 291

cult to discover than cis-eQTLs due to the extra multiple testing burden and their small e�ect 292

sizes. Existing methods would require enormous sample sizes – more than one million by some 293

estimates [52] – to reliably identify trans-eQTLs, and it will take years to develop such resources. 294

Here, we proposed an unconventional approach that reverses the regression direction to predict 295

trans-eQTLs with small e�ects on the expression of multiple targeted genes by aggregating their 296

explanatory signal while being una�ected by expression correlations. We created a fast, parallel 297

open-source software and showed its power using semi-synthetic data. With its combination of 298

reverse regression and KNN correction, Tejaas is more powerful than other existing methods to 299

predict trans-eQTLs. We then applied Tejaas on the GTEx dataset and predicted thousands of 300

trans-eQTLs at genome-wide signi�cance. To our knowledge, these results represent the �rst 301

systematic large-scale prediction of trans-eQTLs in the GTEx dataset. Simple regression of SNP- 302

gene pairs could not have predicted those trans-eQTLs because of their low e�ect sizes. Forward 303

regression, on the other hand, is impeded by the strong correlated noise of the gene expression 304

levels [15]. 305

The large number of predicted trans-eQTLs allowed us to obtain statistically signi�cant en- 306

richments for them in regions characterized as functional or regulatory according to various 307

independent experimental genome-wide procedures. So far, most studies have predicted too few 308

trans-eQTLs for such an analysis. Other studies are large-scale meta-analysis projects whose 309

inherent selection biases did not allow for enrichment analyses. For example, the meta-analysis 310

of 31 684 individuals on whole blood by the eQTLGen consortium [3], which predicted 3 853 311

trans-eQTLs, tested only GWAS-associated SNPs for trans-e�ects. Consequently, the discovered 312

trans-eQTLs inherited the enrichments of the GWAS SNPs. 313

One major source of false trans-eQTL predictions could be population substructure. False 314

associations between SNPs and gene expression levels can arise if both of them are in�uenced 315

by subpopulation membership, for example via life style or via epistatic e�ects with the genetic 316

background. We would expect such false positive trans-eQTLs to show up in several tissues. 317

The observation that 70% of the predicted trans-eQTLs are tissue-speci�c and only ∼ 5% are 318

found simultaneously in 5 or more tissues (Fig. 3b) indicates that false positives do not make up 319

a large part of our predictions. Some of the trans-eQTLs have quite di�erent allele frequencies 320

between populations, but subsequent analyses using matched null background showed signi�cant 321

DHS enrichment and GWAS enrichment (Supplementary Fig. S14). This suggests weak if any 322

confounding by population substructure in our approach. 323

The new KNN correction is a simple but e�cient method for removing confounders. It can 324

correct out non-linear confounding e�ects, therefore it should work even if those e�ects are not 325

well approximated by linear, additive models. It also does not require the confounders to be known. 326

For future eQTL pipelines, it could prove to be very useful when applied after correcting the 327

known confounders with linear methods. 328

There are several limitations to our method. First, reverse regression cannot identify the target 329

genes of a discovered trans-eQTL, because the !2 regularization does not encourage sparsity and 330

therefore is not well suited for selecting the informative covariates. Second, the standard deviation 331

W of the normal prior is not learnt from the data, but is set empirically. As expected, a high value 332

of W (> 0.2) could lead to over�tting, whereas a low value of (e.g. W < 0.001) can severely reduce 333
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the sensitivity to discover trans-eQTLs. Third, the input gene expression cannot be corrected 334

for confounders using the standard approach of regressing the known confounders or hidden 335

PEER factors [53] (Supplementary Sec. 3.1). Fourth, Tejaas is not designed to pick up strong, 336

single SNP-gene associations. All trans-eQTLs identi�ed to date, including the meta-analysis on 337

whole blood with 31 684 individuals [3], were discovered by strong e�ects on a single, distant 338

gene. Hence, by design, Tejaas might not replicate these existing trans-eQTLs with statistical 339

signi�cance, although we did �nd signi�cant replication in whole blood (Supplementary Appendix 340

3). We therefore expect Tejaas and existing methods to be quite complementary. 341

In the future we plan to improve Tejaas by encouraging sparsity in the regression coe�cients, 342

because we expect only a small fraction of the ∼ 20 000 genes to be targets of a typical trans-eQTL. 343

One widely adopted Bayesian approach is to use a sparsity-enforcing prior such as a spike-and-slab 344

prior for the e�ect sizes, which has been previously used with success in other contexts such as 345

�ne-mapping in GWAS [54, 55]. Using such prior will improve trans-eQTL discovery, remove the 346

dependency on W, and enable more accurate selection of trans-eQTL target genes. 347

Robust identi�cation of trans-eQTLs will help us to dissect the interplay between genetic 348

variation, expression levels of genes and the risk for complex diseases. We will need to further 349

increase the number of samples in eQTL datasets. In addition, we need statistical methods with 350

high sensitivity and accuracy to discover trans-eQTLs. Tejaas represents a major step towards 351

this goal and predicts about two orders of magnitude more trans-eQTLs on the GTEx v8 dataset 352

than the state of the art at < 5% false discovery rate. We hope that Tejaas will help to realize the 353

tremendous value of the RNA-seq eQTL datasets that are already available or in production. 354
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Methods

Forward Regression. For each SNP, we calculated the p-values
of association with all the � genes independently. Under the null
hypothesis that the SNP is not a trans-eQTL, these p-values will
be independent and identically distributed (iid) with a uniform
probability density function,

? ∼ Unif (0, 1) . (5)

We sort the p-values in increasing order; the : th smallest value
is called the : th order statistic and is denoted as ? (:) . Then ? (:)
will be a Beta-distributed random variable,

? (:) ∼ Beta (:, � + 1 − :) . (6)

and the expectation of ln(? (:) ) will be

E

[

ln
(

? (:)

)]

= k (:) − k (� + 1) (7)

where k denotes the digamma function. If the candidate SNP is a
trans-eQTL and there is an enrichment of p-values near zero, then

the cumulative sum of
(

E
[

ln(? (:) )
]

− ln(? (:) )
)

over : will in-

crease monotonically, pass through a maximum and then decrease
to an asymptotic value of zero. Hence, we de�ned the FR-score as,

qfwd = max
:

�
∑

:=1

(

E

[

ln
(

? (:)

)]

− ln
(

? (:)

))

= max
:

 
∑

:=1

(

k (:) − k (� + 1) − ln ? (:)

)

(8)

It would be su�cient to calculate the qfwd from only the �rst  
genes because the rest will not contribute to the low p-values.
We obtained an empirical null distribution for qfwd by permuting
the columns of the real genotype matrix – thereby removing any
association with the gene expression but retaining the correlation
between the gene expression levels. For each SNP, we calculated
the p-value for qfwd from this empirical null.

Reverse regression. Let x be the genotype vector for a candi-
date SNP and Y be the � × # matrix of gene expression levels for
� genes and # samples. Both x and Y are centered and normalized.
We model x with a univariate normal distribution whose mean
depends linearly on the gene expression

% (x | Y, #) ∝ N

(

x | #TY, If2
)

. (9)

where # is the vector of regression coe�cients. and f2 is the vari-
ance of the candidate SNP. The number of samples # will usually
be on the order of a hundred to a few thousand, much smaller
than the number of explanatory variables � ≈ 20 000. Therefore,
simple maximization of the likelihood would lead to overtrained

#. Hence we de�ne a normal prior on #,

# ∼ N

(

# | 0, IW2
)

. (10)

LetH1 be the trans-eQTL model which allows # ≠ 0 andH0 be
the null model for which # = 0. According to Bayes’ theorem,

% (H1 | x,Y)

=
% (x | Y,H1) % (H1)

% (x | Y,H1) % (H1) + % (x | Y,H0) % (H0)

=

(

1 +

(

% (x | Y,H1) % (H1)

% (x | Y,H0) % (H0)

)−1
)−1

(11)

The probability for the model H1 is a monotonically increasing
function of the likelihood ratio,

% (x | Y,H1)

% (x | Y,H0)
=

∫

% (x, # | Y) 3#

% (x | Y, # = 0)

=

∫

% (x | Y, #) % (#)

% (x | Y, # = 0)
3#

=

∫

1
(

2cW2
)�/2

exp

(

#TYx

f2
−

#T

2f2

(

YYT +
f2

W2

)

#

)

3#

=
1

(

2cW2
)�/2

|�|1/2
exp

(

1

2f2
xTYT

�
−1Yx

)

, (12)

where we have de�ned � := YYT +
(

f2/W2
)

I� . The integration
was done using the technique of quadratic complementation. Mo-
tivated by Eq. 12, we de�ned our test statistic RR-score, denoted
qrev, as

qrev =
1

f2
xTYT

�
−1Yx = xTWx (13)

where

W :=
1

f2
YT

(

YYT +
f2

W2
I�

)−1

Y . (14)

Null model. Given qrev for the candidate SNP, we would like to
know how signi�cant this score is. We obtain the null model qnullrev
by permuting the elements of x. The distribution of qnullrev will be dif-
ferent for every candidate SNP depending on their minor allele fre-
quency (MAF) and the variance of the genotype (f2). We derived
analytical expressions for the expectation value `@ :=

〈

qnullrev

〉

and variance f2
@ := Var

[

qnullrev

]

under the permutation null model
for any symmetric matrix W and any centered vector x (see Sup-
plementary Text, Appendix 1). Our analytical calculations of `@
and f@ match those obtained from the empirical permutation of

x (Supplementary Fig. S1). We approximate qnullrev byN

(

`@ , f
2
@

)

.
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Finally, the p-value of qrev for the candidate SNP is

? ≈ Φ

(

qrev − `@

f@

)

, (15)

where Φ(I) denotes the cumulative normal distribution for a ran-
dom variable I.

KNN correction. Gene expression measurements are notorious
for being dominated by strong confounding e�ects and the subtle
e�ects of trans-eQTLs are at risk of being drowned out by these
strong systematic noise. For the KNN correction, we assume that
confounding e�ects dominate the gene expression. If the samples
are close to one another in the expression space, we expect them to
be a�ected by the same confounders. Let y= and x= be the vectors
of expression levels and genotypes respectively for the = th sample.
The contribution of confounding e�ects on y= can be corrected by
removing the average expression among the  nearest neighbors
of that sample:

y= ← y= −
1

 

∑

<∈NN =

y< (16)

x= ← x= −
1

 

∑

<∈NN =

x< . (17)

The nearest neighbors NN = is calculated from the euclidean dis-
tances between the samples in a reduced dimension gene expres-
sion space. We also remove genotype confounders (such as popu-
lation substructure) which might lead to similar gene expressions.
KNN was shown to be a useful approach for many learning tasks,
and since its naive form has a single parameter ( ), over�tting
does not typically occur [56, 57]. The choice of  should be such
that it captures the locally varying e�ects of the confounders. A
very small value of  would not be able to render the statistical
noise, while a very large value of  will start removing long-range
trans-e�ects (Supplementary Fig. S6). KNN correction does not
require the knowledge of known covariates, it is unsupervised
and non-linear. Since KNN does not reduce the rank of the gene
expression matrix, it works well with Tejaas.

Simulationmethod. Simulated data consisted of genotype and
gene expression for 450 individuals. After pre-�ltering of the GTEx
genotype, we randomly sampled 12 639 SNPs. We randomly se-
lected 800 SNPs to be cis-eQTLs. From these cis-eQTLs,we selected
a subset 30 SNPs to be trans-eQTLs. We simulated the gene ex-
pression data for 12 639 genes, containing non-genetic signals
(background noise and confounding factors) and genetic signals
(cis and trans e�ects) following the strategy of Hore et al. [6]. Each
gene contained only one SNP, equivalent to assuming that there
is at most one cis-eQTL per gene. Hore et al.used heteroscedas-
tic background noise, but we created a correlated Gaussian noise
with a covariance matrix obtained from the gene expressions in

the artery aorta tissue of GTEx. We used the �rst three principal
components of the genotype along with 7 other hypothetical co-
variates to generate the confounding e�ects. Each confounding
factor was assumed to be a�ecting a set of randomly chosen 6 320

genes with e�ect sizes sampled from N (0, 1). The strength of cis-
e�ects were sampled from Gamma (4, 0.1) and the direction was
chosen randomly. For the trans-eQTLs, the strength of cis-e�ect
was constant (0.6). Additive combination of the noise, the e�ect of
confounding factors and the e�ect of cis-eQTLs gives a temporary
gene expression matrix, on top of which the e�ects of trans-eQTLs
were added. The cis target gene of the trans-eQTLs is considered
a transcription factor (TF), which regulated multiple target genes
downstream. This ensured that the trans-eQTLs were indirectly
associated with the target genes with practically low e�ect sizes.
The e�ect sizes of the TF on the target genes were sampled from
Gamma

(

ktrans, 0.02
)

. We performed simulations with 50, 100 and
150 target genes and sampled the e�ect sizes of the TFs on the
target genes according to a Gamma distribution with mean e�ect
size between 0.1 and 0.4. See Supplementary Sec. 3 for further
details.

GTEx data and quality control. We analyzed 49 tissues with
≥ 70 samples with available genotype and expression measure-
ments from the GTEx v8 project. We downloaded the genotype
�les and phased RNA-seq read count expression matrix. The ob-
tained genotype was quality �ltered by the GTEx consortium [4].
Genotype was split in chromosomes, variants with missing values
were �ltered out and sex chromosomes were removed. 8 048 655
variants with minor allele frequency (MAF) ≥ 0.01 were retained
for further analysis. We calculated TPMs (Transcripts Per Million)
from the phASER expression matrix. We retained genes with ex-
pression values > 0.1 and more than 6 mapped reads in at least
20% of the samples.

For �nding target genes of the trans-eQTLs, we needed the ex-
plicit covariate-corrected gene expression. We downloaded the
covariate �les from the GTEx portal [58] and used the �rst 5 prin-
cipal components of the genotype, donor sex, WGS sequencing
platform (HiSeq 2000 or HiSeq X) and WGS library construction
protocol (PCR-based or PCR-free). Additionally, from phenotype
�les available in dbGaP, we included donor age and post mortem
interval in minutes (‘TRISCHD’) as covariates. We inverse normal
transformed the TPMs and used CCLM to remove the e�ect of
covariates.

LD pruning. We calculated LD between variants with PLINK
using an A2 > 0.5 within an 200kbp sliding window. We pruned
the list of trans-eQTLs by retaining only those lowest p-values in
each independent LD regions.

Functional enrichment. For every functional annotation, we
sampled 5000 random SNPs from the GTEx genotype. The fraction
of random annotated SNPs averaged over 50 replicates gives the
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background frequency. The fraction of annotated trans-eQTLs
divided by the background frequency gives the annotation enrich-
ment. We used a binomial test to calculate the p-values for the
enrichment d. If ) is the number of trans-eQTLs in the tissue, then
the probability of �nding : annotated trans-eQTLs is,

% (G = :) = Binomial
(

), :,
〈

5bg
〉

)

. (18)

where
〈

5bg
〉

is the background frequency and % (G > :) gives us
the p-value for the tissue-GWAS pair. See also Supplementary
Sec. 5.6.

GWAS data. We obtained GWAS summary statistics for 87 com-
plex traits compiled by Barbeira et al. [27]. These studies were
imputed and harmonized to GTEx v8 variants with MAF ≥ 0.01

in European samples.

GWAS enrichment. For every GWAS, we sampled 5000 ran-
dom SNPs from the GTEx genotype. The fraction of random SNPs
that overlap with the GWAS averaged over 300 replicates gives
the background frequency. The fraction of trans-eQTLs that over-
lap with the GWAS divided by the background frequency gives
the GWAS enrichment. We calculated the p-values for enrich-
ment in the same way as functional enrichment. For category-
wise enrichment, we checked the overlap of trans-eQTLs with all
disease-associated SNPs in that category. For global enrichment,
we checked the overlap of trans-eQTLs with all disease-associated
SNPs in the dataset. For the 87 GWAS traits, all SNPs with ? < 10−7

were considered to be a signi�cant GWAS hit. See also Supplemen-
tary Sec. 6.2.

Data availability

This study analyzed data from the GTEx project, which are
publicly available by application from dbGap (Study Accession
phs000424.v8.p2). The results for the GTEx Analysis v8 were down-
loaded from the GTEx portal (https://gtexportal.org). The
GWAS catalogwas downloaded from https://www.ebi.ac.uk/gw
as/home, and the GWAS summary statistics from 87 traits harmo-
nized and imputed to GTEx v8 variants are available at https://do
i.org/10.5281/zenodo.3657902. We have publicly released the
trans-eQTLs discovered by applying our Tejaas method to GTEx
data; the summary association statistics for 49 tissues are available
at http://wwwuser.gwdg.de/~compbiol/tejaas/2020_03. Re-
porter Assay QTLs were obtained from https://sure.nki.nl/.
DHS annotations were obtained from [21] https://resource
s.altius.org/publications/Nature_Thurman_et_al/. Tissue-
matched regulatory elements were downloaded from the Roadmap
Epigenomics Project https://egg2.wustl.edu/roadmap/web
_portal/chr_state_learning.html. GENCODE annotations
v26 downloaded from https://www.gencodegenes.org/human

/release_26.html Transcription Factors dataset was obtained
from [23] http://humantfs.ccbr.utoronto.ca/download.php

Code Availability

Tejaas is open-source code released under the GNU General Public
License version 3. It is available at https://github.com/soedi
nglab/tejaas.

The code used for simulations is available at https://github.c
om/banskt/trans-eqtl-simulation. The code used for GTEx
analyses is available at https://github.com/banskt/trans-
eqtl-pipeline. Other software used: MatrixEQTL [16], down-
loaded from http://www.bios.unc.edu/research/genomic_s
oftware/Matrix_eQTL; PLINK [59], downloaded from https:
//www.cog-genomics.org/plink/2.0/; LDstore [60], down-
loaded from http://www.christianbenner.com/; VCFTools [61],
downloaded from http://vcftools.sourceforge.net/.
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