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Abbreviations

ADAMTS, A disintegrin and metalloproteinase with thrombospondin motifs; ApoA1,
Apolipoprotein A1; ApoA2, Apolipoprotein A-Il; BLAST, Basic local alignment search
tool; CPMG, Carr-Purcell-Meiboom-Gill; COMP, Cartilage oligomeric matrix protein;
CD14, Cluster of differentiation 14; DAPC, Discriminant analysis of principal
components; ECM, Extracellular matrix; FDR, False discovery rate; H & E,
Haematoxylin and eosin; HDL, High density lipoprotein; HKJC, Hong Kong Jockey
Club; Lasso, Least absolute shrinkage and selection operator; LBP,
Lipopolysaccharide binding protein; MMP, Matrix metalloproteinase; MSI,
Metabolomics Standards Initiative; MCP, Metacarpophalangeal; MTP,
Metatarsophalangeal; OA, Osteoarthritis; POD, Palmar/plantar osteochondral
disease; PFA, Paraformaldehyde; PCA, Principal component analysis; PQN,
Probabilistic quotient normalisation; Saf O, Safranin O; SF, Synovial fluid; TIC, Total

ion current.

Abstract

Osteoarthritis (OA) is characterised by loss of articular cartilage, synovial membrane
dysfunction and subchondral sclerosis. Few studies have used a global approach to
stratify equine synovial fluid (SF) molecular profiles according to OA severity. SF
was collected from 58 metacarpophalangeal (MCP) and metatarsophalangeal joints
of racing Thoroughbred horses (Hong Kong Jockey Club; HKJC) and 83 MCP joints
of mixed breed horses from an abattoir and equine hospital (biobank). Joints were
histologically and macroscopically assessed for OA severity. For proteomic analysis,

native SF and SF loaded onto ProteoMiner™ equalisation columns, to deplete high
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abundant proteins, were analysed using liquid chromatography-tandem mass
spectrometry (LC-MS/MS) and label-free quantification. Validation of selected
differentially expressed proteins was undertaken using clinical SF collected during
diagnostic investigations. Native SF metabolites were analysed using 1D 'H Nuclear
Magnetic Resonance (NMR). 1,834 proteins and 40 metabolites were identified in
equine SF. Afamin levels decreased with synovitis severity and four uncharacterised
proteins decreased with OA severity. Gelsolin and lipoprotein binding protein
decreased with OA severity and apolipoprotein A1 levels increased for mild and
moderate OA. Within the biobank, glutamate levels decreased with OA severity and
for the HKJC cohort, 2-aminobutyrate, alanine and creatine increased with severity.
Proteomic and metabolomic integration was undertaken using linear regression via
Lasso penalisation modelling, incorporating 29 variables (R2=0.82) with principal
component 2 able to discriminate advanced OA from earlier stages, predominantly
driven by H9GZQ9, F6ZR63 and alanine. Combining biobank and HKJC datasets,
discriminant analysis of principal components modelling prediction was good for mild
OA (90%). This study has stratified equine OA using both metabolomic and
proteomic SF profiles and identified a panel of markers of interest which may be
applicable to grading OA severity. This is also the first study to undertake
computational integration of NMR metabolomic and LC-MS/MS proteomic datasets

of any biological system.
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Introduction

The age-related degenerative musculoskeletal condition osteoarthritis (OA) is mainly
characterised by articular cartilage degradation, synovitis, subchondral bone
sclerosis and abnormal bone proliferation (1, 2). OA is an important welfare issue for
equids, with up to 60% of lameness cases attributed to OA, leading to substantial
morbidity and mortality (3-5). Although it is known that degradation of the
extracellular matrix (ECM) is driven by increased enzymatic activity of multiple matrix
metalloproteinases (MMPs) and a disintegrin and metalloproteinases with
thrombospondin motifs (ADAMTSSs), the underlying pathogenesis of OA is yet to be
fully understood (6—8). Currently, equine OA is predominantly diagnosed through
radiography, however due to the slow onset of the condition this often leads to
substantial pathology of the joint and articular cartilage degradation prior to diagnosis
(9). There is therefore a need to develop accurate biomarkers of early OA which can
be applied to a clinical setting and allow for timely intervention, as well as improving
our understanding of OA pathogenesis and identifying potentially novel therapeutic

targets.

Currently, no equine OA-specific biomarkers have been identified to aid an early
clinical diagnosis (10). For human OA diagnosis, increased synovial fluid (SF)
abundances of both matrix metalloproteinases (MMPs) and cartilage oligomeric
matrix protein (COMP) have been identified as markers of interest (11). For horses,
MMP activity has also shown OA diagnostic potential, however studies investigating
COMP levels have shown conflicting results with SF COMP abundance unable to
stage equine OA (12-19). However, these markers are generated following

significant joint pathology, including substantial articular cartilage degradation, and
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thus there is a need to identify markers at an earlier disease stage, when

intervention would be most beneficial.

Palmar/plantar osteochondral disease (POD), located at the distal condyles of
metacarpal Il and metatarsal lll, is a highly prevalent pathology of racehorses,
resultant of repetitive joint overload during cyclic locomotion at high-speed (20-22).
POD lesions range in severity, from mild to end-stage disease, and as the disease
originates within the subchondral bone, provides an effective model to investigate

subchondral bone mediated OA (23).

The inner layer of the joint capsule consists of a one-cell thick lining of synoviocytes
within a hyaluronic acid and collagen matrix, called the synovial membrane, which
produces SF (24, 25). SF primarily acts as a lubricant within the joint, protecting
hyaline articular cartilage surfaces (26). However, SF also provides a pool of
nutrients for surrounding tissues and a medium of cellular communication with the
semi-permeable synovial membrane allowing passive protein transfer and
synoviocytes secreting regulatory cytokines and growth factors (24—28). Due to the
close relationship, both in terms of location and biological communication that SF
holds with surrounding tissues which are primarily altered during OA, and its
accessibility, SF can provide a unique source of chemical information and holds

great promise for biomarker discovery (10, 29).

Various studies have utilised 'H nuclear magnetic resonance (NMR) to investigate
metabolite markers associated with OA in various species, including pigs, dogs,
humans and horses (10, 30-35). Lacitignola et al. identified a panel of ten
metabolites which were elevated in equine OA SF compared to a normal control

group. This panel included alanine, acetate, N-acetyl glucosamine, pyruvate, citrate,
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creatine/creatinine, choline, glycerol, lactate and a-glucose. However, no studies to
date have used 'H NMR to stratify OA to identify changes to the metabolite profile at

different stages of OA severity.

Several studies have used mass spectrometry (MS) based methodologies to
investigate equine OA SF (36—40). The relatively recent development of liquid
chromatography tandem mass spectrometry (LC-MS/MS) has enabled a method
which can quickly, with high sensitivity, quantify proteins present within biological
fluids of high complexity (25). Protein biomarker discovery is however hindered by
the large protein concentration dynamic range exhibited by SF, meaning that highly
abundant proteins can mask those of less abundance (41, 42). ProteoMiner™
protein enrichment columns (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK)
have however been developed which utilise combinational ligand library technology,
depleting highly abundant proteins and subsequently enriching low abundance
proteins to reduce this dynamic range (43—-45). This methodology has successfully
been used to investigate OA in equine SF (38). However, this technique has not yet
been utilised with SF to enable OA stratification, analysing SF at different OA

severities.

Increased activity of MMPs, ADAMTSs, cathepsins and serine proteases during OA
leads to cartilage breakdown and the generation of OA-specific peptide degradation
products (neopeptides) (46—48). Numerous studies investigating equine tissue have
identified potential OA neopeptides of interest using ex-vivo cartilage and SF (37, 38,
46, 49). As OA neopeptides have also been shown to be a driver of OA pain,
identification and quantification of neopeptides has the potential to stratify OA,
providing markers of early OA pathology and providing potential novel OA

therapeutic and analgesic targets (50).
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Within this study we have interrogated equine SF from horses with naturally
occurring OA and those exhibiting POD pathology, as a subchondral bone mediated
OA model using both '"H NMR metabolomics and LC-MS/MS proteomics to stratify
equine OA. This is the first study to use both techniques on the same samples and

the first to statistically integrate NMR-led metabolomics with MS-based proteomics.

Experimental Procedures

Experimental Design and Statistical Rationale

A total of 141 separate equine SF samples were analysed during this study.
Depending on the analysis undertaken, biological replicates ranged from n=8-34 per
group for OA grading and n=17-38 per group for synovitis grading (Table 1). Joints
with a microscopic or macroscopic OA grade of 0 were considered the control group,
ranging from n=8-17. Metabolite and protein abundances were analysed by t-test or
ANOVA, depending on the number of groups, with p values corrected for multiple
testing using the Benjamini-Hochberg false discovery rate method. For NMR
metabolomics and LC-MS/MS proteomics dataset integration, the Mahalanobis
distance on principal components was calculated and Chi-squared testing
undertaken to identify potential outliers. A linear regression, using Lasso (least
absolute shrinkage and selection operator) penalisation to select the most important
variables, was applied to combined datasets for both the biobank and Hong Kong
Jockey Club (HKJC) sample groups. Additionally, correlations of all variables
(proteins and metabolites) with macroscopic OA score were calculated, with
significant variables (p < 0.05) included for further analysis. Significant variables

across all analyses were then selected in a dataset, combining both biobank and


https://doi.org/10.1101/2020.05.04.077305
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.077305; this version posted May 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Stratification of Equine Osteoarthritis

HKJC results, and discriminant analysis of principal components (DAPC) was used

to predict different levels of disease severity.

Sample Collection and Processing

Equine post mortem samples were collected from a commercial abattoir, The Philip
Leverhulme Equine Hospital, University of Liverpool and The Hong Kong Jockey
Club (HKJC) Equine Hospital. Abattoir and Philip Leverhulme Equine Hospital
samples were collected from horses of mixed breed and sex and represented
naturally occurring OA disease. HKJC samples were exclusively from Thoroughbred
racehorses (aged 3-10 years old) with a high prevalence of POD, providing a model

for subchondral bone mediated OA.

University of Liverpool Biobank

Following euthanasia at the abattoir (F Drury & Sons, Swindon, UK) distal equine
forelimbs were transported to the University of Liverpool. Horses euthanised at the
Philip Leverhulme Equine Hospital, University of Liverpool, were processed on site.
Within 8 hr of euthanasia the metacarpophalangeal (MCP) joint was opened
aseptically and the distal metacarpal Il photographed. SF was removed using a 10
ml syringe, transferred to a plain eppendorf, centrifuged at 2,540g and 4°C for 5 min,
supernatant removed, snap frozen in liquid nitrogen and stored at -80°C (51) (Figure
S1). SF was separated into separate 1 ml eppendorfs prior to snap freezing to
optimise study design prior to multi ‘omics’ analysis and integration (52). Wedge
sections of articular cartilage/subchondral bone (measuring 4.0 cmx 1.5cm x 0.5
cm) were also sampled from the distal condylar region of metacarpal Ill, lateral to the

sagittal ridge, and placed into 4% paraformaldehyde (PFA, Sigma-Aldrich,
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Gillingham, UK) in phosphate buffered saline (PBS, Sigma-Aldrich) (Figure S2).
Following decalcification in ethylenediaminetetraacetic acid (EDTA, Sigma-Aldrich),
these were then sectioned and stained with Haematoxylin and eosin (H & E) (TCS

Biosciences Ltd, Buckingham, UK) and Safranin O (BDH Chemicals, Poole, UK).

As biobank samples were obtained from a commercial abattoir and equine hospital,
horses sampled were of mixed breed and sex and represented naturally occurring

OA disease.

Hong Kong Jockey Club

HKJC samples were collected using the same collection protocols as used for the
University of Liverpool equine biobank. In addition, synovial membranes were also
dissected, fixed in 4% PFA and processed to prepare H & E stained histology slides.
For HKJC samples, both MCP and metatarsophalangeal (MTP) joints were sampled.
Following snap freezing with liquid nitrogen, frozen SF samples were shipped to

Liverpool on dry ice.

Clinical Synovial Fluid Collection for ELISA

During clinical diagnostic investigations of horses presenting to The Philip
Leverhulme Equine Hospital, University of Liverpool between 2014 and 2017, excess
aspirated SF from live horses was collected and subsequently processed using the
same processing steps as used for biobank and HKJC SF samples. Clinical OA was
diagnosed via clinical examination, radiography and/or arthroscopy. Healthy/control
SF samples were collected during clinical examinations, including diagnostic
analgesia, whereby the joint involved was not identified as the cause of the current

lameness. However, underlying joint pathology, not leading to a clinical
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manifestation, could not be ruled out. These clinical SF samples were used for
enzyme-linked immunosorbent assay (ELISA) validations of altered protein

abundances.

Osteoarthritis Pathology: Macroscopic and Microscopic Scoring

Biobank distal metacarpal Il articular surfaces were assessed for macroscopic OA
pathology using the equine OARSI scoring scale (53). Histological sections were
also assessed for microscopic OA related pathology using the microscopic aspect of
the equine OARSI scoring scale. Within the HKJC group, distal metacarpal IlI
samples were assessed macroscopically and microscopically for OA related and
POD pathology using separate published scoring scales (21, 54). Marginal
remodelling and dorsal impact injury categories were excluded from the macroscopic
scoring scale as these could not be scored using the joint photographs which were
provided. Synovial membrane histological sections were also scored according to

synovitis severity (55).

Metabolomics

NMR Sample Preparation

SF was thawed over ice and centrifuged for 15 min at 13,000g and 4°C. 150 pl of
supernatant was then diluted to produce a final volume containing 50% (v/v) SF,
40% (v/v) dd 'H20, 100 mM PQO43 pH 7.4 buffer (NazHPO4, VWR International Ltd.,
Radnor, Pennsylvania, USA and NaH2POs, Sigma-Aldrich) in deuterium oxide (°Hz20,
Sigma-Aldrich) and 0.0025% (v/v) sodium azide (NaNs, Sigma-Aldrich). Prepared
samples were then vortexed for 1 min, centrifuged for 2 min at 13,000g and 4°C and,

using a glass pipette, 195 pl transferred into 3 mm outer diameter NMR tubes.

10
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NMR Acquisition

All SF samples were individually analysed. A 700 MHz NMR Bruker Avance Ill HD
spectrometer with associated TCl cryoprobe and chilled Sample-Jet autosampler
was used to acquire all spectra. 1D 'H NMR spectra, using a Carr-Purcell-Meiboom-
Gill (CPMG) filter to attenuate macromolecule (e.g. protein) signals, were acquired
using a standard cpmgpr1d vendor pulse sequence. Spectral acquisition was carried
out at 37°C with a 4 s interscan delay, 32 transients and a 15 ppm spectral width.
Software programmes Topsin 3.1 and IconNMR 4.6.7 were used for acquisition and
processing, carrying out automated phasing, baseline correction and a standard

vendor processing routine (exponential window function with 0.3 Hz line broadening).

Metabolite Annotation and Identification

All 1D 'H NMR spectra were scrutinised to make sure that the minimum reporting
standards were met, as outlined by the Metabolomics Society (56). These quality
control criteria included flat baseline correction, water suppression, and consistent
line widths. Spectra which did not meet these minimum requirements were removed
from all subsequent analyses. Spectra were aligned to a single formate peak at 8.46
ppm. Chenomx NMR Suite 8.2 (330-mammalian metabolite library) software was
used to carry out metabolite annotations and relative abundances. Metabolite
identifications were confirmed where possible using in-house 1D 'H NMR metabolite

spectral library standards.

11
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Proteomics

Synovial Fluid Processing and Protein Assay

SF was thawed on ice and centrifuged at 4°C at 14,0009 for 10 min. The supernatant
was treated with 1ug/ml of hyaluronidase (bovine origin, Sigma-Aldrich) at 37°C for 1
hr, centrifuged at 1,000g for 5 min, supernatant removed and 1 ml centrifuged
through a polypropylene microcentrifuge tube filter with 0.22 um pore cellulose
acetate membrane (Costar Spin-X, Corning, Tokyo, Japan) at 5,000g for 15 min to
remove remaining insoluble particulates (29). A Pierce® 660 nm protein assay
(Thermo Scientific, Waltham, Massachusetts, USA) was used to determine SF

protein concentrations.

ProteoMiner™ Column Processing

2 mg of protein was loaded onto ProteoMiner™ Small Capacity bead columns (Bio-
Rad Laboratories Ltd., Hemel Hempstead, UK) to achieve peptide-based depletion
of the most abundant proteins. SF samples were rotated for 2 hr at room
temperature and centrifuged at 1,000g for 60 s. ProteoMiner™ beads were then
washed in PBS, rotated for 5 min and centrifuged at 1,000g for 60 s. The wash step

was repeated two further times.

Protein Digestion

To assess both high and low abundance synovial proteins, both native and
ProteoMiner™ processed SF were analysed. For native SF, 100 ug of protein was
used for each protein trypsin digestion. 25 mM ammonium bicarbonate (Fluka

Chemicals Ltd., Gillingham, UK) containing 0.05% (w/v) RapiGest (Waters, Elstree,

12
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Hertfordshire, UK) was added to both native SF and peptide bound ProteoMiner™
beads to produce a final volume of 160 ul and heated at 80°C for 10 min. DL-
Dithiothreitol (Sigma-Aldrich) was added (3 mM final concentration) and incubated at
60°C for 10 min. lodoacetamide (Sigma-Aldrich) was added (9 mM final
concentration) and incubated at room temperature for 30 min in the dark.
ProteoMiner™ processed samples then underwent an additional step which entailed
the addition of 2 ug of Lys-C endopeptidase (FUJIFILM Wako Pure Chemical,
Osaka, Japan) and incubation at 37°C for 4 hr (51). 2 ug of proteomics grade trypsin
(Sigma-Aldrich) was added to all samples and rotated for 16 hr at 37°C, followed by
a second trypsin supplementation for 2 hr incubation. Digests were centrifuged at
1,000g for 1 min, supernatant removed, trifluoroacetic acid (TFA, Sigma-Aldrich)
added (0.5% (v/v) final concentration) and rotated for 30 min at 37°C. Digests were
then centrifuged at 13,000g for 15 min at 4°C and the supernatant removed and
stored at -80°C. To ensure complete protein digestion, 5 ul of each digest was
analysed by 1D SDS PAGE and stained with either Coomassie Blue (Bio-Rad) or

silver stain (Thermo Scientific) following manufacturer instructions (data not shown).

Sample Processing for Neopeptide Analysis

After 4 hr of the 16 hr tryptic digestion of ProteoMiner™ processed samples, 10 pl
was removed and supplemented with TFA and stored at -80°C using the same

protocol as mentioned above.

Label Free LC-MS/MS

All SF digest samples underwent randomisation and were individually analysed

using LC-MS/MS on an UltiMate 3000 Nano LC System (Dionex/Thermo Scientific)

13
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coupled to a Q Exactive™ Quadrupole-Orbitrap instrument (Thermo Scientific). Full
LC-MS/MS instrument methods are described in the supplemental data. Tryptic
peptides, which were equivalent to 200 ng of protein, were loaded onto the column
and run over 60 min, 90 min and 120 min LC gradients for 4 hr Lys-C + 4 hr tryptic
digest ProteoMiner™ samples, native SF and 4 hr Lys-C + 16 hr + 2 hr tryptic digest
ProteoMiner™ processed samples respectively. Representative ion chromatograms

are shown in Figure S3.

LC-MS/MS Spectra Processing and Protein Identification

Progenesis™ QI 2.0 (Nonlinear Dynamics, Waters) software was used to process
raw spectral files and undertake spectral alignment, peak picking, total protein
abundance normalisation and peptide/protein quantification. The top ten spectra for
each feature were then exported with peptide and protein identifications carried out
with PEAKS® Studio 8.0 (Bioinformatics Solutions Inc., Waterloo, Ontario, Canada)
using the reviewed Equus caballus database (downloaded 29" July 2016, 22,694
sequences). Search parameters included: precursor mass error tolerance, 10.0 ppm;
fragment mass error tolerance, 0.01 Da; precursor mass search type, monoisotopic;
enzyme, trypsin; maximum missed cleavages, 1; non-specific cleavage, none; fixed
modifications, carbamidomethylation; variable modifications, oxidation or
hydroxylation and oxidation (methionine). The false discovery rate (FDR) was set to

1% with only proteins identified with > 2 unique peptides used for quantitation.

Semi-Tryptic Peptide Identification

A ‘semi-tryptic’ search was undertaken to identify potential synovial neopeptides.

PEAKS® search parameters were kept the same as those used for protein

14
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identifications, apart from ‘Non-specific Cleavage’ which was changed from ‘none’ to
‘one’. The exported ‘peptide ion measurements’ file from Progenesis™ was then
analysed using an online neopeptide analyser software tool to identify only semi-

tryptic peptides and perform normalisation (57).

Batch Corrections

ProteoMiner™ processed samples for both the biobank and HKJC cohorts were run
in three separate batches on the Q Exactive™ for protein analysis. To eliminate
batch effects on the final analysis, a COMBAT batch correction was applied (Figure
S4) (58). Metabolomic spectra were also acquired over 3 batches for both biobank

and HKJC cohorts and data also underwent COMBAT batch correction.

ELISA Protein Validations

Differentially expressed proteins apolipoprotein A1 (ApoA1), gelsolin and
lipopolysaccharide binding protein (LBP) were selected for ELISA as commercially
available kits were compatible with equine samples. Equine ApoA1 (MBS034194,
MyBioSource Inc., San Diego, California, USA) and equine LBP (MBS062216,
MyBioSource) utilised sandwich ELISA technology using undiluted SF whilst equine
gelsolin (CSB-EL009965HO, Cusabio Technology LLC, Houston, Texas, USA) was
a competitive inhibition assay with SF diluted 1:1250. 3-6 dependent (and
independent where stated) SF samples were analysed per group. Aliquots of 100 pl
were analysed in duplicate for each sample with absorbance measured at 450 nm
and protein concentrations calculated from assay standard curves. Protein

concentrations were normalised to total protein.

15
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Separate Dataset Statistical Analysis

SF metabolite abundances underwent median normalisation and protein
abundances were normalised to the total ion current (TIC). Before multivariate
analysis, both metabolite and protein datasets underwent Pareto scaling (59). All
principal component analysis (PCA), ANOVA and t-tests of metabolite, protein and
neopeptide abundances were conducted using MetaboAnalyst 4.0
(http://www.metaboanalyst.ca). ELISA t-tests and ANOVAs were performed using
Minitab version 17. For protein analysis an additional filter of > 2 fold abundance was
implemented. A p value of < 0.05 was considered statistically significant following
correction for multiple testing using the Benjamini-Hochberg false discovery rate

method (60). All box plots were produced using SPSS 24.

NMR metabolomics and LC-MS/MS Proteomics Integration

Metabolomics and proteomics datasets were initially integrated and analysed
separately for the biobank and HKJC, then finally all datasets integrated to produce

an overall model.

Only datasets for horses which had both metabolite and protein abundance values
were used for integration. Proteomics datasets were again normalised to the TIC
whilst NMR datasets were normalised via probabilistic quotient normalisation (PQN)
(61). When combining ProteoMiner™ processed SF and native SF protein
abundances for the same SF sample, in which the same protein had been identified
in both datasets, the higher abundance was included for analysis. The Mahalanobis
distance on principal components was calculated and Chi-squared testing

undertaken to identify potential outliers. When combining metabolite and protein
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variables, categorisation was carried out in accordance to macroscopic OA scoring.
A linear regression, using Lasso penalisation to select the most important variables,
was applied to combined datasets for both the biobank and HKJC sample groups.
Additionally, correlations of all variables (proteins and metabolites) with macroscopic
OA score were calculated using the Spearman coefficient, with significant variables
after correcting for False Discovery Rate (Adjusted p value < 0.05) included for
further analysis. Significant variables across all analyses were then applied to a
collective dataset, combing both biobank and HKJC results. This dataset was
stratified into healthy, mild OA and severe OA and a DAPC model was created to
predict the disease severity. The number of parameters of the model were chosen
after a cross-validation process calculated using the function xvalDapc and splitting
the data into train/test subsets at a 80%/20% proportion respectively. All integration
analyses were undertaken using standard analytical routines within the software R

and packages adegenet, ggplot2 and reshape (62-65).

Uncharacterised Proteins

Within this study, proteins which were considered uncharacterised were also
analysed using BLAST (Basic local alignment search tool) to assess similarity of
their amino acid sequence to characterised proteins within the Equus caballus
database as well as other species (66). Search parameters included: Matrix,

blosum62; threshold, 0.1 E; filtering, none; gapped, true.

Pathway Analysis

Pathway analysis was conducted on proteins and metabolites which were

considered significant variables for DAPC when carrying out NMR metabolomic and
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LC-MS/MS proteomic dataset integration. Metabolite pathway analysis was
conducted using the online tool KEGG for Equus caballus with protein pathways also
analysed using KEGG, via the STRING database (67, 68). A filter of a minimum of

two metabolites or proteins was set for inclusion of the relevant biological pathway.

Results

Stratification Groups

Histological microscopic OA scores vs macroscopic scores for biobank and HKJC
samples both showed a weak positive correlation with R? coefficient values of 0.12
and 0.17 respectively (Figure S5). Joints were assigned into severity groups
according to microscopic OA pathology, macroscopic OA pathology and synovitis
scores (Table 1). Although scored using different scoring systems, overall the HKJC
samples exhibited a more severe OA phenotype. Macroscopically, scores were on
average 30% of the highest possible score, compared to 14% within the biobank and
microscopic scores 31% compared to 15% within the biobank. All scoring is shown in
Tables S6-S10. Overall, the HKJC dataset was a younger cohort than the biobank
cohort, with average ages of 6.6 + 1.9 years and 14.3 + 7.6 years respectively (Table

S1).

NMR Metabolomics

Overall, both the biobank and HKJC SF 1D 'H NMR spectra produced similar
profiles, although quantile plots revealed the biobank group exhibited more variation
between samples (Figure S6). In total, 40 metabolites were identified within equine
SF (Table 2). For the biobank cohort, unsupervised multivariate PCA did not identify

separation between OA grades based on microscopic or macroscopic scoring
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(Figure 1). However, when stratified according to macroscopic grade, glutamate
levels were found to be differentially abundant, with lower levels identified at grades
2 and 3 compared to 1. PCA also did not identify clear separation between severity
grades of OA or synovitis for HKJC SF samples (Figure 2). When stratified according
to macroscopic OA pathology, three metabolites were found to be differentially
abundant. 2-aminobutyrate levels were increased at grades 1 and 2 compared to 0

and alanine and creatine levels were increased with OA severity.

LC-MS/MS Proteomics

Within the biobank cohort, 74 native SF samples were analysed with 68 of these
additionally processed using ProteoMiner™ columns. For the HKJC group, 56 native
SF samples were analysed with 55 of these additionally having also undergone
ProteoMiner™ processing. In total, across all samples, 1,834 proteins were identified
(Figure 3). A combination of an increase in LC gradient length and ProteoMiner™
processing resulted in a 168% increase in the overall number of identified proteins

compared to native SF analysis.

Following PCA analyses, HKJC native SF samples 95 and 122 were identified as
outliers and removed from further analyses. For biobank and HKJC groups, when
categorised according to macroscopic OA severity, PCA identified that increased OA
severity resulted in less variation between samples (Figure 4). However, this was not
evident when categorised according to microscopic OA grading. For native SF
biobank samples categorised according to macroscopic grading, the abundance of
three uncharacterised proteins and immunoglobulin kappa constant decreased with
increasing OA severity. An uncharacterised protein (a member of the superfamily

containing a leucine-rich repeat) and ApoA1 abundances both increased initially with
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OA pathology but then returned towards baseline with greater OA severity.
Microscopic OA categorisation for native SF biobank as well as macroscopic and
microscopic OA categorisation of native SF HKJC samples did not identify any
differentially abundant proteins. The proteomes of native SF HKJC samples,
categorised according to synovitis grade, were not separated via PCA (Figure 5).
However, the abundance of afamin was identified as differentially abundant between
low and high grade synovitis, decreasing with synovitis severity. ProteoMiner™
processing of both biobank and HKJC SF did not identify any differentially abundant
proteins or distinct proteome clusters (PCA) for any OA or synovitis categorisations
(Figures S7 and S8). However, LC-MS/MS analysis of ProteoMiner™ processed
biobank SF identified trends in gelsolin and LBP abundance, decreasing with
increasing OA severity (Figure 6). ELISA analysis of gelsolin using the same SF
samples that were analysed by LC-MS/MS corroborated this finding and was
additionally supported by an independent clinical cohort, with gelsolin abundance
lower in clinical OA cases compared to controls. LBP ELISA analysis of both
dependent and independent SF samples also supported the trend identified via LC-
MS/MS, although statistical significance was not reached. For biobank native and
ProteoMiner™ processed SF we identified a trend that ApoA1 increased initially with
OA severity and subsequently decreased. This trend was supported by ApoA1
ELISA analysis using dependent SF samples; however statistical significance was

not reached.

Semi-Tryptic Peptide Profiles

No semi-tryptic peptides arising from ECM proteins were identified which were more

highly abundant at more severe OA levels and thus no potential neopeptide
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biomarkers were identified. Neither for the biobank or HKJC groups were distinct
profiles identified between severities of OA (Figure S9). For the HKJC group there
was less intra-group variation identified with increased levels of OA and synovitis
pathology. However, conversely for the biobank group, samples with no OA

pathology showed the least variation.

NMR metabolomics and LC-MS/MS Proteomics Integration

For the HKJC dataset, linear regression using Lasso penalisation modelling was
unable to select a suitable number of parameters without overfitting the model.
However, correlation analysis of all variables (proteins and metabolites) identified 58
significant variables, with a range in correlation from -0.48 to 0.42 (Table S2). Using
these selected variables, PCA identified less variation between samples with more
severe macroscopic OA scores, although their grouping could not clearly be

distinguished from lower scoring samples (Figure 7).

For the biobank dataset, Lasso penalisation produced a model incorporating 29
variables (Table S3). This produced a good model (R? = 0.82) with PC2 able to
discriminate more advanced stages of OA from the earlier stages (Figure 8). This
model was predominantly driven by two uncharacterised proteins (H9GZQ9 and
F6ZR63) and alanine. Correlation analysis of all variables (proteins and metabolites)
identified 32 significant variables, with a range in correlation from -0.44 to 0.49

(Table S4).

Combining both the biobank and HKJC datasets, including significant protein and
metabolite variables, DAPC analysis produced a model whereby OA severity
prediction was good for mild OA (90%) although this was reduced significantly for
healthy (57%) and severe OA (35%) classifications (Figure 9). Linear discriminant 1
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was driven predominantly by neural EGFL like 2, serum albumin and alanine whilst

linear discriminant 2 was driven by periostin, gelsolin and myaocilin.

Uncharacterised Proteins

BLAST analysis of amino acid sequences of 12 uncharacterised proteins included
within this study identified various related characterised proteins. The characterised
protein with the highest percentage amino acid sequence similarity for each

uncharacterised protein is shown in Table S5.
Pathway Analysis

Pathway analysis conducted on proteins and metabolites which were considered
significant variables during DAPC modelling, when carrying out NMR metabolomic
and LC-MS/MS proteomic dataset integration, identified the complement and
coagulation cascades pathway and ABC transporters pathway to be the most
represented (Tables 3 and 4). These pathways consisted of 7/96 proteins and 4/9

metabolites included within the pathway analysis respectively.

Discussion

Equine OA is currently predominantly diagnosed through radiography and clinical
examination, however, due to the slow onset of the condition this often leads to
substantial pathology of the joint and articular cartilage degradation prior to diagnosis
(9). Presently, no equine OA-specific biomarkers have been identified which are able
to accurately diagnose and stratify OA with none used to aid an earlier clinical

diagnosis (10). Within this study we have investigated equine SF of varying
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severities of associated OA pathology using both NMR-led metabolomics and MS-

based proteomics approaches.

Although both the biobank and HKJC datasets produced a degree of OA
stratification, markers of interest were generally distinct. This may be reflective of the
more severe OA phenotype demonstrated by the HKJC horses, whilst markers
identified within the biobank represent a less severe form of OA. Alternatively, the
differences in markers identified may be due to the varying OA aetiologies, with the
biobank representing a naturally occurring OA whilst the HKJC horses demonstrate
a POD model for subchondral bone mediated OA, which is associated with trauma
and overload (23). Additionally, the biobank cohort is on average an older donor
group than the HKJC cohort which may also account for differences between the
datasets. 'TH NMR SF spectra were more variable between biobank donors
compared to the HKJC donors. This is likely because the biobank is a more
heterogeneous population, including age, breed, work loads and diet. The HKJC
group is a much more controlled sample set, with all horses housed together, all
Thoroughbred racehorses, generally fed and trained similarly and all of a similar age
at euthanasia. These differentials may also reflect the different markers of interest

identified between the biobank and HKJC groups.

Proteomic analysis of biobank samples identified several proteins which were able to
discriminate a healthy phenotype from early OA changes. Although these proteins
were largely uncharacterised, BLAST analysis of the amino acid sequences of three
uncharacterised proteins, decreasing in abundance with OA severity, identified high
levels of similarity to immunoglobulin gamma 1 heavy chain constant region and
immunoglobulin kappa chain V-IIl region MOPC 63 proteins. However, abundances
of these uncharacterised proteins could not be validated using antibody
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methodologies. Recently, a study investigating the SF proteome of a surgery-
induced OA model in rabbits identified reduced levels of immunoglobulin heavy chain
protein compared to sham controls (69). Immunoglobulins have previously been
identified within superficial articular cartilage layers of a proportion of OA patients as
well as elevated levels found within the synovial membrane of dogs diagnosed with
cranial cruciate ligament rupture (70, 71). Thus, reduction of these immunoglobulins

within the SF may be reflective of their translocation to surrounding articular tissues.

Glutamate is an excitatory amino acid neurotransmitter within the central nervous
system, although evidence also suggests glutamate operates through intercellular
signally cascades, as an autocrine/paracrine factor, in non-neuronal tissues (72). A
self-sufficient glutamate signalling machinery has been identified within chondrocytes
with a peripheral NMDA receptor proposed to have a role within inflammation and
cartilage degradation (73). Within our study, the biobank group showed a reduction
in synovial glutamate levels at higher OA severities. Previously, elevated levels of
glutamate have been identified within OA SF of humans and within an OA rat models
(74-76). However, no increase in glutamate was identified with equine OA SF using
H NMR, although it is not clear whether glutamate was identified during this study
(32). The disparity between the lower glutamate levels identified within the biobank
group and elevated levels within the literature may be reflective of the subtler OA
phenotype exhibited by the biobank samples, and they may be indicative of
glutamate levels at an earlier OA severity. However, the HKJC dataset, reflective of
a higher grade OA, did not identify differential abundance. Therefore, at this stage
the relationship between synovial glutamate abundance and equine OA remains

inconclusive.

24


https://doi.org/10.1101/2020.05.04.077305
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.077305; this version posted May 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Stratification of Equine Osteoarthritis

Creatine is a nonessential amino acid involved in cellular energy metabolism,
maintaining cellular adenosine triphosphate (ATP) levels, in particular within the
muscle and brain (77). Creatine SF levels increased with OA severity, which is
supported by previous human and equine studies which also identified elevated SF
creatine in OA SF (32, 78). Approximately 95% of stored creatine is located within
skeletal muscle (79). Thus, given the association of muscle atrophy with OA, this
elevation in synovial creatine may be reflective of an associated muscle mass loss

(80).

Within this study, alanine levels were identified to be increasing in SF in accordance
with OA severity, which was also observed by Lacitignolia et al. (32). Previously,
depleted alanine abundance has been identified within human OA cartilage using
high resolution magic angle spinning NMR spectroscopy (81). As alanine is one of
the main amino acid residues which constitutes collagen, it may be that the reduction
in alanine abundance identified with OA cartilage is resultant of degradation of the
cartilage collagen framework, which are subsequently released into the SF resulting

in the elevated synovial abundance within this study (81, 82).

Gelsolin (82-84 kDa) is a multifunctional, calcium ion-regulated actin filament
severing, capping, and nucleating protein which is involved in the determination of
cell shape, secretion and chemotaxis (83, 84). Previous studies of gelsolin on
different biological systems have identified gelsolin as a potential predictor of both
inflammation and tissue injury (85-87). Within rheumatoid arthritis patients, reduced
circulating levels of plasma gelsolin have been identified (88). The authors propose
this may be due to gelsolin redistribution to the affected joint space, binding to a
plasma factor, reduced production or increased degradation. Within this study, SF
gelsolin abundance was identified as decreasing with OA severity. Gelsolin was also
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identified as having a significant correlation with OA severity and was found to be a
highly influential factor when a model combining both biobank and HKJC datasets
was developed. These results are supported by a mouse model whereby gelsolin
knockout mice resulted in arthritis exacerbation (89). Additionally, within a mouse
model of pain and acute inflammation, exogenous delivery of gelsolin was identified
to have effective analgesic and anti-inflammatory properties (90). Exogenous
gelsolin administration has also been shown to have chondroprotective properties,
nullifying the effect of interleukin-1B and OA SF on anabolic gene expression and
increased glycosaminoglycan deposition in chondrocytes and protection of the
integrity of murine cartilage following intra-articular injection (84). Therefore, gelsolin
has potential as a biomarker of equine OA as well as an OA therapeutic target, and

potential analgesic.

LBP is an endogenous protein which binds to lipopolysaccharides and catalytically
delivers monomeric liposaccharides to cluster of differentiation 14 (CD14) protein
(91, 92). Previously, serum and synovial levels of LBP were not identified to be
differentially expressed between human degenerative arthropathy patients and
control samples (93). However, increased plasma LBP levels have recently been
described to predict knee OA progression (94). Within this current study, the trends
identified suggest a decreasing SF abundance of LBP with increasing OA severity. It
has previously been identified that mononuclear cell activation, induced by
lipopolysaccharides, is enhanced by low LBP concentrations (95). Activation of
monocytes and macrophages by lipopolysaccharides leads to the secretion of
tumour necrosis factor alpha and interleukin-1 beta, two pro-inflammatory cytokines
which are central to OA pathogenesis (96, 97). Thus, decreasing synovial LBP levels

may have a role in OA development. With CD14 also identified as a key variable
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within the biobank and HKJC combined model, this provides further support that this

pathway is involved in equine OA pathogenesis.

Elevations in synovial ApoA1 were identified in mild and moderate OA within the
biobank group although abundance decreased for severe OA. Elevations in OA SF
have previously been identified in horses and dogs (39, 98). ApoA1 is the primary
protein component of high density lipoproteins (HDLs) and involved in HDL binding
to ATP-binding cassette (ABC) transporters as well as being a lecithin cholesterol
acyl transferase cofactor (99—102). ApoA1 has previously been found to induce the
expression of interleukin-6, MMP-1 and MMP-3 in chondrocytes and synoviocytes
through toll-like receptor 4 with the same study identifying a dissociation between the
relationship of ApoA1 and HDLs in OA SF (103). When combining datasets within
this study, apolipoprotein A-Il (ApoA2) was also found to be an important variable.
ApoA2 has previously been identified to be involved in the acute phase response
which is associated with reactive amyloid A amyloidosis, via lipoprotein
conformational changes, an associated complication of rheumatoid arthritis (104).
Thus, this study provides further evidence that OA is a metabolic syndrome with

disruption of lipid homeostasis due to alterations to apolipoprotein activity (103).

Synovitis has previously been identified as an important aspect of OA pathogenesis
(105-107). This study identified reduced synovial abundance of afamin in high grade
synovitis compared to low grade. Similarly, reduced afamin levels have been
recorded in equine OA SF compared to healthy joints (39). In a previous study
however, elevated levels of afamin were identified within human knee OA SF (108).
Afamin is a vitamin E binding glycoprotein and a member of the aloumin gene family
(109). Afamin forms a 1:1 complex with various hydrophobic Wnt proteins,
solubilising the proteins and producing a biologically active complex (110). A growing
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body of evidence has identified that the Wnt/B-catenin signalling cascade is likely to
have a central role within OA pathogenesis (111). Thus, a reduction in synovial
abundance of afamin may be reflective of a translocation following Wnt solubilisation
to surrounding articular tissues, i.e. the synovium. However, it should be noted that a
differential abundance of afamin was not identified when categorised according to

OA severity.

For the HKJC the semi-tryptic profile was most consistent between samples in the
groups with the most severe OA and synovitis pathology. This suggests, as
expected, the OA phenotype is driving the semi-tryptic peptide profile, most likely
due to an increase in enzymatic activity leading to ECM degradation fragments
(112). However, this was not evident within the biobank SF sample set. This may be
because the OA pathology identified within this group was far subtler than that
identified within the HKJC samples and thus the level of pathology present was not

severe enough to drive a global change within the semi-tryptic peptide profile.

Computational integration of separate ‘omics’ datasets can work synergistically,
greatly enhancing the information that can be obtained from separate analyses
(113). However, this poses the challenge of developing multi ‘omic’ integration
techniques. Previously, a study carried out MS proteomic analysis comparing early
and late stage human OA SF and combined this with transcriptomics of articular
tissues to identify the source of differentially abundant synovial proteins (114).
However, no previous studies have combined NMR metabolomics and MS proteomic

datasets.

Integrating the metabolomic and proteomic datasets separately for the biobank and

HKJC both identified groupings associated with OA severity. Although correlation
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values of variables to OA severity were generally low for the HKJC samples,
stratification was still evident. Modelling was most robust for the biobank dataset,
with the application of a Lasso model, with the model’s strength being the separation
of more severe OA grades. However, within this sample set there were relatively few
samples which were assigned to the higher OA severity grades compared to lower
and is therefore a limitation of the model. Combining all results from both the biobank
and HKJC datasets produced a model which was found to be highly accurate in
correctly assigning samples within the mild OA group based on their integrated
metabolomic and proteomic profiles. This is promising as mild OA recognition is the
current unmet clinical need, aiding in early diagnosis and allowing for timely OA
interventional management. However, the model is dominated by predominantly mild
OA graded samples, and thus this will inevitably introduce bias into the model and

make a correct reclassification of mild OA more likely.

Within the combined dataset DAPC model, periostin was the principal driver of linear
discriminant 2. Periostin is a 90 kDa matricellular protein which has regulatory
functions in cell differentiation, cell adhesion and ECM organisation (115, 116). In
human medicine, a positive correlation has been identified between both plasma and
SF periostin abundance and knee OA severity (117). In-vivo results have identified
that interleukin-13 may induce the production of periostin during OA, with periostin
subsequently stimulating the production of MMPs within synoviocytes (118). In
women, serum periostin levels were found to be associated with both prevalence
and the risk of development/progression of knee OA (119). Thus for equids, periostin

may also provide a potential therapeutic target and prognostic indicator.

Protein pathway analysis identified the ‘complement and coagulation cascades’
pathway to be altered during OA pathology. Additionally, the uncharacterised protein
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F6ZR63, the second most important variable of influence driving the biobank Lasso
model, was found to have a high level of amino acid sequence similarity to
complement factor H-like isoform X1. The complement system is an important
component of the innate immune response, encompassing various roles including
opsonisation initiation, pathogen phagocytosis, the inflammatory response and
terminating within cell lysis (120, 121). However, a growing body of evidence has
identified a role of complement activation within OA pathogenesis, which is further
supported by this study (120). Complement has been identified to have a role in the
degradation of cartilage ECM, synovitis and osteophyte formation, with complement
split fragment C3a found to upregulate gene expression of tumour necrosis factor-a
and Interleukin-1p, pro-inflammatory cytokines central to OA pathogenesis (97, 120).
Therefore, targeting the complement cascade may provide a novel therapeutic target

for OA treatment.

Within experimental arthritis models, coagulation and fibrinolysis pathways are
known to play a role within disease pathogenesis, with these cascades also found to
be activated within both the joint and circulation of degenerative and inflammatory
arthropathies (122). Within the synovium of patients diagnosed with OA, the
coagulation factor fibrinogen is present throughout the tissue with elevations in tissue
factor, a coagulation initiator, identified near endothelial cells (123). Previously,
fibrinogen has been identified as a potential target for arthritis therapy, with removal
of fibrinogen-leukocyte integrin receptor aMB2 interactions limiting inflammatory
processes whilst maintaining normal fibrinogen coagulation function (124). Thus

these pathways may also hold potential as a novel target for OA therapy.

Metabolite pathway analysis identified the ‘ABC transporters’ pathway to be altered
during OA pathology. ABC transporters utilise ATP hydrolysis to import or export
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molecules across cell membranes (125). ABC exporters have an important role in
the export of cholesterol, fatty acid and lipids from cells, with dysregulation of this
pathway underlying numerous diseases. The Wnt/3-catenin signalling cascade, with
a proposed central role within OA pathogenesis, has previously been identified as a
regulator of ABC transporters (126). Additionally, the ABC transporter MRP5 has
been found to be the principal exporter of hyaluronan from its site of synthesis within
the cell to the ECM (127). However, as only four key metabolites were identified
within this pathway, caution should be applied when analysing these results to avoid

over interpretation.

Further Work

Several proteins of interest identified within this study were uncharacterised. BLAST
amino acid sequence analysis of similar proteins provided further information on their
potential function, however this could be taken further by conducting 3D modelling of
these proteins to help confirm function and potential interactions with other
proteins/molecules. Additionally, developing monoclonal antibodies which are
specific to these uncharacterised proteins would allow this methodology to provide
an orthologous method to confirm protein abundances. Within the cohorts used in
this study, there was an over-representation of mild OA diagnoses opposed to more
severe phenotypes. Although this is advantageous in terms of identifying early OA
markers, in order to fully stratify OA, the addition of a greater number of donors with
higher grade OA would provide a more comprehensive synovial profile of the
metabolite and protein profiles at differing OA grades and provide more robust
models. As this study adopted a cross-sectional approach, further work of interest

would be to conduct repeated measures within a longitudinal study to discover
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whether the identified markers of interest validate this study’s findings. Also, given
the differential abundance of ApoA1 and LBP identified within this study, it would be
of interest to further interrogate SF, using both NMR and MS based approaches, to

investigate the lipid profile and identify changes during OA progression.

Conclusions

In conclusion, this study has stratified equine OA using both metabolomic and
proteomic SF profiles and identified a panel of markers of interest which may be
applicable to grading OA severity. This is also the first study to undertake
computational integration of NMR metabolomic and LC-MS/MS proteomic datasets

of any biological system.
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Due to the COVID-19 pandemic, we are unfortunately unable to upload mass

spectrometry proteomics data at present.
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Table 1. Stratification groups according to microscopic osteoarthritis, macroscopic osteoarthritis and synovitis pathology used for
synovial fluid LC-MS/MS proteomic and NMR metabolomic analysis.

Biobank
Metabolomics OARSI Microscopic OA Group OARSI Macroscopic OA Group

0 1 2 0 1 2 3
Number of Donors 8 34 28 14 27 21 14
Joint 8 x MCP 34 x MCP 28 x MCP 14 x MCP 27 x MCP 21 x MCP 14 x MCP
Mean Age (years) 8 15 17 fx: 15 16 19
Sex (M/F) 1F, 7 Unknown|6M, 10 F, 18 Unknown|12 M, 10 F, 6 Unknown| 2M,5F, 7Unknown| 7M, 12F, 8 Unknown| 9M,5F, 7Unknown| 6M, 3 F, 5 Unknown

Proteomics OARSI Microscopic OA Group OARSI Macroscopic OA Group

0 1 2 0 1 2 3
Number of Donors 8 34 28 11 25 18 12
Joint 8 x MCP 34 x MCP 28 x MCP 11 x MCP 25 x MCP 18 x MCP 12 x MCP
Mean Age (years) 8 15 17 9 15 16 20
Sex (M/F) 1F, 7Unknown|6 M, 10 F, 18 Unknown |12 M, 10F, 6 Unknown| 1M, 3F, 7Unknown| 6M, 11F, 8Unknown| 6M,5F, 7 Unknown| 5M, 2F,5 Unknown
Mean Protein Concentration (mg/ml) ) 3 4 5 4 5 6

Hong Kong Jockey Club
Metabolomics Microscopic OA Group Macroscopic OA Group Synovitis Group

0 1 2 0 1 2 0 1 2
Number of Donors 17 20 13 i3 25 12 1 38 17
Joint 10 x MCP, 7 x MTP 8% MCP, 12 x MTP 9 X MCP, 4 X MTP SKMCP, 8 x MTP 13 x MCP, 12 x MTP 11 x MCP, 11 X MTP 1x MTP 22 X MCP, 16 x MTP 10 % MCP, 7 x MTP
Mean Age (years) 6 7 7 5 7 7 & 7 7
Sex (M/F) UNKNOWN UNKNOWN UNKNOWN

Proteomics Microscopic OA Group Macroscopic OA Group Synovitis Group

0 1 2 0 1 2 0 1 2
Number of Donors 16 20 13 13 24 12 1 34 19
Joint 9 x MCP, 7 x MTP 8 x MCP, 12 x MTP 9 % MCP, 4 x MTP 5% MCP, 8 x MTP 12 x MCP, 12 x MTP 11 x MCP, 11 x MTP 1xMTP 18 x MCP; 16 x MTP 10 x MCP, 9 x MTP
Mean Age (years) 6 7 7 5 7 7 6 7 7
Sex (M/F) UNKNOWN UNKNOWN UNKNOWN
Mean Protein Congentration (mg/ml) 10] 3] 13 7] 9] 17 16] o] 12

Abbreviations: OA = Osteoatrthritis; Joints, MCP = Metacarpophalangeal joint, MTP = Metatarsophalangeal joint; Sex, M = male, F

= Female.
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Table 2. Synovial fluid metabolites identified using Chenomx software. Metabolites
which had also undergone identification using a 1D 'H NMR in-house spectral library
were assigned to Metabolomics Standards Initiative (MSI) level 1 (129).

Database Metabolite Reliability

Identifier Identification
HMDBO00650 | 2-Aminobutyrate MS Level 2
HMDBO00357 | 3-Hydroxybutyrate MS Level 2
HMDBO00754 | 3-Hydroxyisovalerate MS Level 2
HMDB01149 | 5-Aminolevulinate MS Level 2
HMDBO00042 | Acetate MS Level 1
HMDBO00194 | Anserine MS Level 2
HMDBO00043 | Betaine MS Level 1
HMDBO00097 | Choline MS Level 1
HMDBO00094 | Citrate MS Level 1
HMDBO00064 | Creatine MS Level 1
HMDBO01511 | Creatine phosphate MS Level 2
HMDBO00562 | Creatinine MS Level 1
HMDB00122 | D-Glucose MS Level 1
HMDBO04983 | Dimethyl sulfone MS Level 2
HMDB00142 | Formate MS Level 2
HMDBO00123 | Glycine MS Level 1
HMDB00128 | Guanidoacetate MS Level 2
HMDBO00172 | Isoleucine MS Level 1
HMDBO00190 | Lactate MS Level 1
HMDBO00161 | L-Alanine MS Level 1
HMDBO00062 | L-Carnitine MS Level 2
HMDBO00174 | L-Fucose MS Level 2
HMDB00148 | L-Glutamate MS Level 1
HMDBO00641 | L-Glutamine MS Level 1
HMDBO00177 | L-Histidine MS Level 1
HMDBO00687 | L-Leucine MS Level 1
HMDBO00159 | L-Phenylalanine MS Level 1
HMDBO00158 | L-Tyrosine MS Level 1
HMDBO00883 | L-Valine MS Level 1
HMDBO00691 | Malonate MS Level 2
HMDB01844 | Methylsuccinate MS Level 2
HMDB31419 | N-Nitrosodimethylamine | MS Level 2
HMDBO00895 | O-Acetylcholine MS Level 2
HMDBO00243 | Pyruvate MS Level 1
HMDBO00254 | Succinate MS Level 1
HMDBO00294 | Urea MS Level 1
HMDBO00296 | Uridine MS Level 1
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HMDBO00292 | Xanthine MS Level 2
HMDBO00001 | m-Methylhistidine MS Level 2
HMDBO00001 | t-Methylhistidine MS Level 2

Metabolomics Standards Initiative definitions: MS Level 1 = Identified metabolite
using two or more orthogonal properties of an authentic chemical standard analysed
in the researcher’s laboratory. MS Level 2 = Putatively annotated metabolite which
does not require matching to data for authentic chemical standards acquired within
the same laboratory.
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Table 3. Pathway analysis conducted on proteins which were considered significant
variables during DAPC modelling, when carrying out NMR metabolomic and LC-
MS/MS proteomic dataset integration.

Number of False
Pathway . . .
D Pathway Description Proteins in Discovery
Pathway Rate
4610 | Complement and coagulation cascades 7 | 0.00000573
4145 | Phagosome 6 0.00498
4390 | Hippo signalling pathway 5 0.0188

Table 4. Pathway analysis conducted on metabolites which were considered
significant variables during DAPC modelling, when carrying out NMR metabolomic
and LC-MS/MS proteomic dataset integration.

Number of
Pathway ID Pathway Description Metabolites in
Pathway

2010 | ABC transporters
4978 | Mineral absorption
10 | Glycolysis / Gluconeogenesis
4974 | Protein digestion and absorption
340 | Histidine metabolism
4066 | HIF-1 signalling pathway
4976 | Bile secretion
4922 | Glucagon signalling pathway
970 | Aminoacyl-tRNA biosynthesis
1230 | Biosynthesis of amino acids

NINININININDNININDN|IW|D>
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Figures and Figure Legends
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Figure 1. Principal component analysis (PCA) of metabolite profiles of equine
biobank synovial fluid grouped according to (A) OARSI microscopic (n=70) and (B)
OARSI macroscopic (n=76) grading. (C) Glutamate abundances according to
macroscopic osteoarthritis grading. ANOVA: ** = p < 0.01 and *** = p < 0.001.
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Figure 2. Principal component analysis (PCA) of metabolite profiles of equine Hong
Kong Jockey Club (HKJC) synovial fluid (SF) grouped according to (A) OARSI
microscopic (n=50), (B) OARSI macroscopic (n=50) and (C) synovitis (n=56)
grading. For OARSI macroscopic grading, (D) 2-aminobutyrate, (E) alanine and (F)
creatine were identified as being differentially abundant between osteoarthritis
severity grades. ANOVA: * =p < 0.05, " =p < 0.01 and *** = p < 0.001.
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NATIVE | PROTEOMINER™
No. Samples 130 124
LC gradient length (mins) 90 120
Total no. proteins identified 621 1,666
Mean no. proteins identified/sample 182 357
Median no. proteins identified/sample 165 294
Lowest no. proteins identified in a sample 115 124
Highest no. proteins identified in a sample 407 870

Proteominer™
(1,666 Proteins)

Native
(621 Proteins) 121
(66.1%)

90 min gradient 120 min gradient

Figure 3. Number of proteins identified within native and ProteoMiner™ processed
equine synovial fluid using liquid chromatography-tandem mass spectrometry. In
total, 1,834 different proteins were identified. Search criteria included > 2 unique
peptides with an FDR of 1%. LC = liquid chromatography.
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Figure 4. Principal component analysis (PCA) of the biobank native synovial fluid
proteome categorised by (A) macroscopic osteoarthritis (OA) grade and (B)
microscopic OA grade using LC-MS/MS. (C-H) Differentially expressed proteins
when categorised according to macroscopic OA grade. ANOVA: *=p <0.05, " =p
< 0.01, *** = p < 0.001. Macroscopic OA, n=66, Microscopic OA, n=70.
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Figure 5. Principal component analysis (PCA) of the Hong Kong Jockey Club
(HKJC) native synovial fluid proteome profile categorised by (A) macroscopic
osteoarthritis (OA) grade (n=49), (B) microscopic OA grade (n=49) and (C) synovitis
grade (n=53) using LC-MS/MS. (D) Differential expression of afamin identified
between synovitis grade 1 and 2. t-test: * = p < 0.05.
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Figure 6. Abundances of gelsolin, lipopolysaccharide binding protein (LBP) and
apolipoprotein A1 (ApoA1) within equine synovial fluid via LC-MS/MS (A, D & G) and
ELISA validation using dependent (B, E & H) and independent (C & F) synovial fluid
samples according to osteoarthritis (OA) grade. LC-MS/MS; HKJC, n=47; Biobank,
n=60; ELISA, n=3-6/group. ANOVA and t-tests: *=p < 0.05, * =p<0.01, "™ =p <
0.001. LC-MS/MS p values corrected for multiple testing within sample, but not for
entire dataset.
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Figure 7. Principal component analysis (PCA) using 58 selected variables (proteins
and metabolites) for the Hong Kong Jockey Club synovial fluid combined datasets
(n=43) following batch correction, grouped according to macroscopic osteoarthritis

score. OA = osteoarthritis.
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Figure 8. (A) Principal component analysis (PCA) following Lasso model selection
using the top 29 variables of influence for biobank synovial fluid, integrating
metabolite and protein abundances and grouped according to macroscopic
osteoarthritis scoring. (B) Top 14 variables of influence contributing to the model.

n=60.
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Figure 9. (A) Discriminant analysis of principal components (DAPC) of selected
variables (proteins and metabolites) for a combined biobank and Hong Kong Jockey
Club synovial fluid dataset (n=103), built using 20 principal components and two
linear discriminants. (B) Top 25% of variables for the DAPC model contributing to
linear discriminant 1 and (C) linear discriminant 2. Macroscopic osteoarthritis (OA)
scoring; Healthy = 0, Mild OA = 1-3, Severe OA = 4-8.
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