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ABSTRACT

The steady state expression of each gene is the result of a dynamic transcription and
degradation of that gene. While regular RNA-seq methods only measure steady state expression
levels, RNA-seq of metabolically labeled RNA identifies transcripts that were transcribed during
the window of metabolic labeling. Whereas short-read RNA sequencing can identify
metabolically labeled RNA at the gene level, long-read sequencing provides much better
resolution of isoform-level transcription. Here we combine thiouridine-to-cytosine conversion
(TUC) with PacBio long-read sequencing to study the dynamics of mRNA transcription in the
GM12878 cell line. We show that using long-TUC-seq, we can detect metabolically labeled
mRNA of distinct isoforms more reliably than using short reads. Long-TUC-seq holds the

promise of capturing isoform dynamics robustly and without the need for enrichment.

INTRODUCTION

Transcription is a dynamic process and different transcriptome profiles are indicative of
different cellular states. While each cellular state can be identified by a set of quasi-steady state
expression levels, all mRNA transcripts are transcribed and degraded at different rates 2. The
expression level of each gene isoform depends on its transcription rate, processing rate, and
degradation rate. Although regular RNA-seq studies inform us of the steady state levels of each
transcript, these lack any information on transcript stability or turnover rates. Transcription is
controlled by cis-regulatory elements such as promoter and enhancer regions which play a role in
determining the transcription rate of a transcript 3. The binding of transcription factors as well as
characterization of epigenetic marks from this category is primarily studied using ChIP-seq * and

the chromatin accessibility can be measured by assays such as ATAC-seq °. However, RNA
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degradation rates are just as important, and often times overlooked, when defining the steady
state levels of expression (Maekawa et al.; Ghosh and Jacobson). Post-transcriptional regulatory
factors such as miRNA and RNA binding proteins are the main players in regulating RNA
stability and decay. Assays such as CLIP-seq and miRNA-seq have been developed to study the
effects of each of these elements on gene expression 3. Overall, transcription is a complex
process and using the expression profiles to understand the role of each of these regulators can be
ambiguous and challenging.

Several new methods have been developed for genome-wide study of transcription
dynamics. One category of these methods focuses on the study of nascent transcriptomes by
profiling the RNA molecules instantaneously as they are being transcribed or processed. For
instance, global run-on sequencing (GRO-seq) and precision nuclear run-on sequencing (PRO-
seq) sequence the positions that the polymerase is residing at, providing information regarding
active genes and the polymerase pausing dynamics '%!!. Another set of methods, such as native
elongating transcript sequencing (NET-seq), report polymerase positions at the 3’ ends of
nascent transcripts %13, While GRO-seq, PRO-seq, and NET-seq investigate nascent transcripts,
other methods focus on metabolic labeling of nascent RNA molecules that have been made over
a window of time in order to study transcription and degradation rates. These methods use
different nucleotide analogs to label the newly made RNA over a pulsing window followed by
high throughput sequencing to detect the RNA molecules that incorporated the analog. A group
of these methods such as bromouridine sequencing (Bru-seq), 4-thiouridine sequencing (4SU-
seq) and transient transcriptome sequencing (TT-seq) rely on enrichment methods to recover

signal from labeled transcripts 4716, Many of these methods suffer from enrichment biases and
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elution issues that lead to low yield and biases due to modified nucleotide identity used for
enrichment.

More recently, additional methods have been developed that can still characterize
modified nucleoside incorporation, but do not rely on enrichment. TimeLapse-seq, thiol(SH)-
linked alkylation for the metabolic sequencing (SLAM seq), and thiouridine to cytidine
conversion sequencing (TUC-seq) rely on chemical conversion of the metabolically incorporated
analog. Modified positions are then identified in mutated cDNA in order to distinguish the
metabolically labeled reads from pre-existing none-labeled reads '7-!°. One of the challenges of
this group of methods is the low incorporation rate of 4SU that results in under-estimation of
recently transcribed genes 2°, especially when using short-read sequencing, which is still a long-
standing challenge in transcriptomics, especially when interrogating more complex
transcriptomes with large dynamic range.

All of these techniques rely on short-read [llumina sequencing, which even with higher
sequencing depth cannot overcome these limitations. In addition, reconstructing different
transcript models and quantifying the expression at the level of isoforms using short reads
remains challenging and limited 2!. Long-read sequencing can improve the sensitivity of the
assay by sequencing over the whole transcript, which would have a higher number of 4SU
incorporated and makes it easier to detect over sequencing and biological noise. The two main
long-read sequencing platforms are Pacific Biosciences (PacBio) and Oxford Nanopore
Technology (ONT). Despite the higher error rates in long-read technologies, the circular
consensus technique implemented by PacBio has reduced the final error rate down to 1% 22

Furthermore, long-read sequencing can unambiguously identify transcript isoforms using
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packages such as TALON (Wyman and Balderrama-Gutierrez et al., 2019), SQANTI 2* or
FLAIR 2°,

In this work, we combine TUC metabolic labeling with long-read sequencing on the
PacBio Sequel II platform to develop long-TUC-seq. We pulsed the GM12878 cells with 4 thio-
Uridine (4SU) for 8 hours and then converted the incorporated 4SUs into cytidines using osmium
tetroxide. We then built cDNA and libraries for sequencing on both Illumina NextSeq and
PacBio platforms. We quantified the expression levels of each gene that correspond to the
recently made RNA during the 8 hours pulsing window by quantifying the number of T>C
substitutions identified in every read. We explored different thresholds to count the read with
different levels of certainty as newly synthesized. We demonstrate that long-TUC-seq has higher
sensitivity and lower FDR compared to the corresponding short-read version of TUC-seq.
Finally, we count the reads in each category for all the isoforms to identify differences in
transcription rates between isoforms of the same gene. Overall, long-TUC-seq is a robust
protocol that would be widely applicable to a variety of settings were the metabolic labeling can

be used to study transcriptome dynamics.

METHODS
Sample collection and RNA extraction

GM12878 cells were obtained from Corriell Institute and were cultured in accordance
with ENCODE protocols (www.encodeproject.org). The cells were passed every two to three
days at 200k-500k cells/mL density and were harvested for the experiments at 500k-1M

cells/mL. The RNA was extracted using QIAGEN RNeasy Plus kit (Cat. No. 74134).
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TUC-seq sample preparation

4-thiouridine was obtained from Sigma Aldrich (T4609) and used fresh at a working
concentration of 200 mM. For each TUC-seq experiment, 10-15M cells were spun down and
resuspended in 10-15 mL of fresh media with added 4SU at a final concentration of 1mM (no
4SU was added for the osmium controls). The cells were incubated with 4SU for 8 hours and
harvested for RNA extraction. The RNA was then treated with OsOj solution for 3 hours at room
temperature in dark. The osmium solution was prepared fresh every time by mixing 20 pl of
ImM OsOg4 (Sigma Aldrich, 201030) with 4ul of 2M NH4Cl at pH 8.8 and 1l of RNasin Plus
RNase inhibitor (Promega, N2615) for every 10ug of RNA. The RNA was then purified using
Zymo RNA cleanup kit (R1015). Finally, the RNA was treated with 1U of exonuclease from
epicenter (Terminator™ 5’-Phosphate-Dependent Exonuclease, TER51020) for 1 hour at 30°C
and neutralized by 1ul 100mM EDTA. Then, the RNA was once more purified with Zymo RNA

cleanup kit.

PacBio library preparation and sequencing

The set III of SIRV controls were spiked into the RNA samples at a level of 0.03% of the
total RNA. The cDNA was generated using a modified version of SMART-seq2 protocol. We
then followed SMRTbell Template Prep Kit 2.0 to build PacBio libraries using 1-2ug of input
RNA. We checked the quality of the libraries using the Bioanalyzer 2000 and Qubit to get the
final concentrations. Finally, the libraries were delivered for sequencing on a Sequel II platform

at UCI sequencing core facility, using 1 SMRT cell per library.

[llumina library preparation and sequencing
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Starting from 30-50ng of the same cDNA, we followed the Illumina tagmentation
protocol using Nextera DNA Flex Library Prep Kit to generate [llumina short-read libraries. We
checked the concentration of the libraries with Qubit and got the average length of the library
using the Bioanalyzer. We then performed a 2x43 paired-end sequencing on our NextSeq 500

instrument.

PacBio data processing

Raw reads from Sequel II machine were processed by PacBio circular consensus package (CCS
v4.0.0) to filter any reads with less than 3 passes (parameters: --noPolish --minLength=10 --
minPasses=3 —min-rq=0.9 —min-snr=2.5). Then reads with misconfigured adapters were filtered
using PacBio lima package (v1.10.0; parameters: --isoseq --num-threads 12 --min-score 0 --min-
end-score 0 --min-signal-increase 10 --min-score-lead 0). Finally, full-length non-chimeric
(FLNC) reads were extracted using the PacBio Refine package (v3.2.2; parameters: --min-polya-
length 20 --require-polya). The bam files processed by Refine were then converted to fastq files
and they were all deposited to GEO

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149551) with the exception of

PacBio GM12878 control sample which has been previously deposited onto ENCODE portal

(https://www.encodeproject.org/experiments/ ENCSRE3EWEFC/).

The FLNC reads were then aligned to a modified version of human genome reference (GRCh38
with added SIRV and ERCC references) using minimap2 (v2.17; parameters: -ax splice:hq -t 16
--cs -uf). We then used TransciptClean (v2.0.2; parameters: -m False --primaryOnly) for
reference-based error correction of the reads. We provided TranscriptClean with splice junctions

reference derived from the GENCODE annotations using TranscriptClean accessory script
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get SJs from_gtf.py. We also provided it with VCF-formatted NA12878 truth-set small variants
from Illumina Platinum Genomes. We first initialized the TALON database with GENCODE
v29 + SIRVs/ ERCC annotations using talon_initialize database and finally annotated the reads
by running TALON V4.4.2 module on all the datasets. We obtained the table of annotated reads
from all the datasets by running the talon summarize module. All the scripts used for analysis of
long-TUC-seq Pacbio data can be accessed on the mortazabilab github.

(https://github.com/mortazavilab/long-TUC-seq)

PacBio labeling of the reads

We used a custom python script (mismatch_analysis PB.py) to annotate the reads with
their corresponding substitutions. The script uses the CS tag option from minimap2 to count
different types of substitutions and to generate a text file containing each read name and its
corresponding substitution tally. The script also breaks down the alignment file into subfiles,
each containing one of one category of reads (>0, > 6, > 20 and > 30 T->C) for visualization
on the UCSC genome browser. The information on different substitutions was added to the
annotations obtained from TALON. We then calculate the TPM and counts for each of the

categories for each gene and transcript.

lllumina data processing

The reads from illumina runs were mapped to human transcriptome reference (GRCh38.p12,
gencode.v29.primary assembly.annotation) using STAR aligner (v2.6.0c; parameters: --
outFilterMismatchNmax 15 --outFilterMismatchNoverReadLmax 0.07 --

outFilterMultimapNmax 10 --outSAMunmapped None --outSAMattributes MD NM --
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alignIntronMax 10 --alignIntronMin 20 --outSAMtype BAM SortedByCoordinate). The raw
fastq files for each sample is available on GEO database under GSE149551 accession.

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149551).

[llumina calling of the labeled reads

We ran a custom python script (mismatch_analysis_ill.py) to annotate each of the mapped reads
with the number different substitution events. The script uses the MD tag to tally the number of
substitutions for each read. The script also breaks down the alignment file into sub-files of reads
with > 0, > 2, >4 and > 6 T->C substitutions. Finally, we count the reads in each category using
eXpress (v1.5.1; parameters: --no-bias-correct). The quantification can be accessed under
GSE149551 accession in GEO database.

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149551). All the scripts used to

process illumina TUC-seq data can be accessed on the Mortazavilab github.

(https://github.com/mortazavilab/TUC-seq)

Degradation rate and half-life calculations:
Assuming steady-state and doubling rate of zero during the pulsing time, we can calculate

the degradation rate (i) and consequently the half-life (hl;) of gene i:

L;
“In (1- 3

Here R refers to the steady state expression of the specific mRNA, L stands for the expression of

labeled RNA, and tt. is the labeling time.
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Isoform specificity analysis
In order to help us understand the isoform specificity of each gene and its dynamics, we

introduce an index for isoform specificity of a gene (ISI) as follows:

e — Xij)
N —1

ISI; =
Here, index i corresponds to each gene and index j represents each corresponding isoform
for gene i. X is the expression level of the isoform normalized to the expression level of the
highest expressed isoform of the gene i. Finally, N; is the number of isoforms corresponding to
gene i. We calculated the isoform specificity indices for each of the genes using the total and
labeled RNA. Then we filter for the genes with more than 2 isoforms that has an ISl < 0.35

and ISliabeled > 0.85. We then plot the expression of each isoform of a representative set of these

genes and color the portion of the expression that corresponds to the labeled reads.

RESULTS
Identifying metabolically labeled RNA using long-TUC-seq

Our long-TUC-seq method relies on the incorporation of 4SU into the RNA and its
further conversion to a regular cytidine (Fig. 1A.) We initially tested 4SU incorporation into
recently synthesized transcripts by incubating GM 12878 cells with 0.1mM and 1mM 4SU for a
period of time between 2 to 24 hours and compared the amount of incorporation by dot blots. We
then checked the RNA integrity after the treatment of the RNA samples with osmium tetroxide
under different conditions (mainly time and temperature of the incubation). We compared the
RNA Integrity Numbers (RINs) of the RNA samples after the treatment using a Bioanalyzer.

Even with milder temperature (room temperature) we observed substantial degradation at 3 hours
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(RIN = 5.6). However, the integrity of the samples is improved with the addition of RNase
inhibitor to the OsO4 mix at this condition. Finally, we tested the conversion of incorporated 4SU
by OsOs at this condition by checking the amount of 4SU remaining in the RNA sample before
and after osmium treatment, using a dot blot assay. The dot blot shows complete conversion of
4SU with 3 hours of OsO4 at room temperature.

We pulsed biological replicates of GM12878 cells with 1mM of 4SU for 8 hours and
extracted the RNA, which were treated with osmium tetroxide. We also generated matching
libraries of osmium treated samples without any 4SU pulsing. We built I[llumina and PacBio
libraries from these samples and sequenced them on their respective platforms and analyzed the
data (Fig. 1B). Each of the PacBio libraries yielded between 3.4M - 6.2M raw sequencing reads
(Table S1). After all the filtering, we are left with a minimum of 1.2M of reads for each sample
that were mapped to human genome using minimap2 with an average of 99.65% mapping rate.
In order to identify the reads that were synthesized during the 4SU pulse window, we counted
the number of T->C substitutions for each read. We inspected the reads that mapped onto the
MYC locus, which is known to be a fast turnover transcript (Fig. 1C). We observe that a high
percentage (94%) of TUC-seq reads mapping to the MY C locus have at least 6 T->C events. By
contrast, none of the reads mapping to MYC in the osmium control (sample without 4SU pulse
and treated with OsOa) or in publicly available PacBio ENCODE datasets are marked as labeled.

We can therefore detect 4SU labeled reads based on the number of substitutions in a long read.
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Distinct substitution profiles of long-TUC-seq at the level of base calls and reads

The nucleotide composition of the human genome is equally distributed between all the
four nucleotides. There are some biological variations from multitude of SNPs that will introduce
specific substitution events across the genome and some technical variation that is introduced via
PCR or SBS. However, all of these substitutions should be distributed evenly between the 12
different possible substitution types globally. While this equal distribution is observed in the
control PacBio RNA-seq from ENCODE and the osmium control, there is a very distinct profile
in our long-TUC-seq samples with a much higher T->C counts as expected (Fig. 3A). In order to
asses our ability to call a read as labeled, we analyze the distribution of reads based on the
number of T->C observed. We detect 34% of all the reads being labeled with more than 6 T>C
in the TUC-seq samples compared to 0.4% in the osmium control and in the RNA-seq control
(Fig. 3B). In addition, we detect 27% and 21% of the reads from the TUC-seq samples are
labeled with a minimum of 20 and 30 T->C.

To ensure that the reads labeled by long-TUC-seq are not heavily biased by longer
transcripts, we determined the correlation of the number of T->C with the length of each
transcript. Although the number of observed T=> C in a read does correlate weakly with length
of the transcript (Pearson correlation coefficient of 0.25), its distribution in the controls indicates
that the transcript length is not a big driver of noise, which will therefore not hinder an accurate
count of labeled transcripts (Fig. 3C). Finally, we counted the number of Ts in each transcript
that has been converted to C in order to obtain an estimate of 4SU incorporation rate. Our 8-hour
long-TUC-seq results indicate an average of 11.33% for 4SU incorporation in the transcription

process, assuming a 100% conversion to C (Fig. 3D).
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Robust detection of recently synthesized genes by long-TUC-seq

We used TranscriptClean 26 to correct the indels in our reads before running TALON
V4.4.2 (Wyman and Balderrama-Gutierrez et al., 2019) to annotate the reads as known and novel
transcripts, as well as to obtain accurate counts for each gene and transcript for each of our 4
datasets (1 RNA-seq control, 1 osmium controls and 2 TUC-seq samples). For the purpose of
this study, we focused on known isoforms. We detect 21,496 known genes across the
experiments and 32,250 (TPM > 0) known transcripts. We added the labeling information for
each read to the TALON annotations and calculated the expression levels for each gene and
transcript for the following 4 categories: all reads, permissive threshold (>6 T—>C), intermediate
threshold (>20 T->C) and conservative threshold (>30 T->C.) We detect an average of 9,270
genes labeled at permissive threshold with more than 2 TPM expression of labeled reads, in the
TUC-seq samples compared to 35 genes out of 10,584 genes detected in the controls (FDR =
0.33%). This number drops to 8,169 in the conservative category of labeled reads in the TUC-seq
samples (Fig. 3A). The detection of recently synthesized genes is very robust across the
replicates, with 80% of detected labeled genes (> 2 TPM at permissive threshold) being
confirmed by both replicates (Fig. 3B). There is also a high concordance amongst the expression
levels of these recently synthesized genes across the replicates with 0.93 Pearson correlation
(Fig. 3C). This correlation is still high for genes detected in the higher categories with Pearson

correlation of 0.93 for intermediate labeled reads and 0. 92 for conservative reads.

Comparison of long-TUC-seq with Illumina short-TUC-seq
Current methods using metabolic labeling for studying the dynamics of transcription rely

on short read illumina sequencing. In order to benchmark our long-TUC-seq results we
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compared it with the short-read TUC-seq of the same samples. We built the [llumina Nextera
libraries using the same cDNA materials that were used for PacBio libraries. We then sequenced
these libraries on the Illumina NextSeq platform and mapped the reads to the human
transcriptome reference using STAR with an average of 45M single end reads mapped per
sample. We annotated each read with the number of observed substitutions and annotated the
aligned reads with it. Here we also detect higher T->C substitution profile for TUC-seq samples
compared to the controls. The TUC-seq samples contain more reads with higher T->C compared
to the controls; based on the substitution profiles and the read distributions, we decided to used 2,
4 and 6 T->C as permissive, intermediate and conservative thresholds for calling the labeled
reads. We detect 27% of total reads labeled with > 2 T->C in TUC-seq samples compared to 1.5
% in control samples. Although raising the threshold to 4 T->C reduces the percentage of false
positive labeled reads in controls to 0.14%, it also reduces the percentage of labeled reads in the
TUC-seq samples to 15%. Finally, we calculated the 4SU incorporation rate from Illumina short-
read TUC-seq samples to be 17.22% which is 6% higher than what we have obtained using
Pacbio long-TUC-seq data.

Using the permissive threshold of 2 T->C, we detect 57% of reads mapping to MYC in
labeled samples, which is 37% lower than what was detected by PacBio. We then quantify the
expression levels in each category using eXpress 27 as described in the methods. In order to
compare the detection of labeled genes by each platform, we use the intermediate threshold for
[llumina (4 T->C) which resulted in similar FDR (0.5%) to that of PacBio data with permissive
threshold (FDR = 0.3%). Although Illumina TUC-seq detects twice as many genes across all the
samples compared to PacBio (> 0 TPM), the number of detected genes at intermediate threshold

is 5,511, which is much less than labeled genes in PacBio. When comparing genes (expressed >
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2 TPM) detected as labeled in either platforms, we find that 47% are shared and the majority of
the remainder (41% of all labeled genes) is detected only in PacBio (Fig. 3D). In general, the
expression levels of the genes detected at 2 TPM or higher by only one of the platforms is lower
than the expression of the commonly shared detected genes (Fig. 3E). Thus long-TUC-seq is

more sensitive than its short-read equivalent at similar FDR thresholds.

Calculating degradation rates with long-TUC-seq

After annotating the detected genes with the different degrees of labeling, we focused on
the dynamics of transcription for each gene and analyzed the rate at which each gene is
transcribed. On average, 50% of the total expression of genes at the end of our 8-hour labeling
window comes from newly synthesized RNA. MYC is one of the genes with faster turnover rate
that is expressed at 111 TPM with 95% of its expression being labeled whereas GAPDH with a
high expression of 11,378 TPM has only 5.6% labeled RNA (Fig. 4A; Table S2).

Under a steady-state assumption that the overall expression level of a gene stays the same
through the 8-hour pulsing window, the rates at which a gene is being transcribed and the rate at
which it is degraded are constant. We calculated the degradation rates and the half-life of each
gene using the total expression of the gene and its newly synthesized RNA. We obtained a
degradation rate of 45 TPM/hour and a half-life of 1.7 hours for the MYC gene. The ranking of
genes based on their half-life time is similar to what has been observed previously (Spearman
correlation of 0.74 with timeLapse-seq ranking in K562 cells) !7. Although we used a long
labeling time of 8 hours, the method could work with substantially shorter labeling time. Long-

TUC-seq can be used to calculate degradation rates from 4SU labeling of transcripts and genes.
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Analysis of isoform-specific expression and transcription rates

One of the advantages of long-read sequencing is that it inherently measures the
expression levels of the isoforms of each gene. In our study, more than 58% of genes are
expressed as multiple isoforms with an average of 2.5 isoforms per gene. GAPDH, which is one
of the higher expressed genes, has 4 distinct isoforms. MYC, which is one of the higher turnover
genes, has 2 isoforms detected. The highest number of isoforms belong to MSL3, with 15
isoforms detected. We can also take a step further and analyze the expression levels of each
isoform to see if the gene is expressed through one isoform more than the other, or if it is
expressed uniformly across different isoforms by calculating the isoform specificity index (ISI)
for all genes as described in the methods. In the case of a gene that expresses all its isoforms
equally, the ISI will be closer to zero and in the case of a gene that expresses primarily one of its
multiple isoforms, the ISI will be closer to one. MYC and GAPDH each have an ISI of 0.67 and
0.99, respectively, which for MYC translates to the fact that its isoforms are expressed in a 3:1
ratio, and for GAPDH it means that its isoforms are expressed in approximately a 800:20:4:1
ratio.

We can similarly define the isoform specificity index based on the expression levels of
newly synthesized transcripts (ISlew) and inspect the isoform specificity of the transcription
machinery for a specific gene at a given time. The distribution of ISl and ISlyew for all the
genes of GM 12878 shows that majority of multi-isoform genes are expressed and being
transcribed in a highly isoform-specific manner, and there is a Pearson correlation coefficient of
0.63 between total and labeled isoform specificity (Fig. 4B; Table S3). Furthermore, we are
interested in genes with ubiquitous isoform expression that are being transcribed in an isoform-

specific manner. In order to obtain a list of such genes, we filter the genes with lower STl (<
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0.35) and higher ISIew (>0.85). There are 9 genes in this category, all with two isoforms detected
in our dataset, the expression of which are less than two-fold apart. However, the expression of
recently synthesized isoforms is in some cases more than 70-fold different (Fig. 4C). One such
gene is LRR1 that encodes for Leucine-rich repeat protein 1, which plays a role in protein
ubiquitination and modification. This gene has five isoforms, two of which have been detected in
our dataset with similar expression levels of about 5 TPM (201 and 202). These isoforms are
protein coding and they differ only in one exon; however, the LRR1-202 isoform which has an
extra exon compared to the 201 isoform has a much higher turnover, and about 73% of its

expression has been made within the 8-hour pulse window.

DISCUSSION

Here, we introduce a method for detecting and quantifying metabolically labeled RNA at
a single isoform resolution using PacBio long-read sequencing. To do so, we relied on the
conversion of incorporated 4SU to C by TUC-seq chemistry. We demonstrated that even though
short-read Illumina sequencing provides much higher depth in comparison to PacBio sequencing,
we are able to recover higher number of labeled genes with PacBio. We also show that not only
can PacBio detect the labeled RNA reproducibly, the quantification of these labeled RNAs is
also highly concordant between the biological replicates. Furthermore, we took advantage of
having T to C substitution data for full transcripts in order to calculate an accurate estimation of
4SU incorporation rate within each transcript. This estimation using illumina short-read
technique would be in accurate and over-estimated due to the fact that many of the reads aligning

to the T depleted regions are dis-missed as unlabeled.
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We use long-TUC-seq data to obtain estimations of degradation rates of genes and
consequently their half-lives. The caveats with these estimations are the two assumptions used in
their calculations. First is the steady state assumption that the expression level, synthesis rate,
and degradation rate of each gene is constant during the pulsing time, which can be closer to
reality when the pulsing time is much shorter than 8 hours. The other assumption used in these
calculations is that there is no doubling of cells during the 8-hour pulsing window. Although that
might be the case with some of the cells, many of the cells would have inevitably doubled and
the observed total and labeled RNA could be coming from different number of cells from
beginning of the pulsing to the end point. However, all these limitations apply to the estimations
obtained by short-read TUC-seq and similar labeling techniques. While in this study we focus on
labeling newly synthesized RNA using pulse labeling with 4SU, we could have instead
performed a chase experiment to obtain degradation rates in situations where the main
assumption would not hold.

Finally, the main advantage of using long-read sequencing for detection and
quantification of recently transcribed genes is that it allows us to annotate the recently
synthesized transcripts at isoform levels. Using this feature of long-read sequencing, we were
able to identify a representative set of genes that, despite having rather ubiquitous expression
across their isoforms, have substantially different transcription dynamics across isoforms. This
could reflect the fact that some isoforms are required for a faster dynamic of a response whereas
other isoforms are required to be more stable in order to confer robustness to some pathways.
Having such resolution, one can infer the degradation rate, synthesis rate and the half-life of each
of the isoforms and study the regulatory mechanism that affect these rates by integrating this data

with other genomic assays such as miRNA-seq and ChIP-seq, and assays that focus on poly-A
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tails and 3°/5°-UTRs. In summary, Long-TUC-seq can robustly identify and quantify recently
transcribed genes at the level of individual isoforms to shed light on differential isoform

transcription and degradation rates.

DISCUSSION
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Figure 1. Identification of recently synthesized transcripts in GM12878 by long-TUC-seq.
Osmium tetroxide converts an incorporated 4SU into a regular cytidine. b) Experimental layout
of TUC-seq sample preparation, starting with the incorporation of 4SU into the GM12878 cells
following by its conversion to C using OsOs and finally library building from cDNAs. ¢)
Genome browser screenshot of PacBio data of GM12878 control from ENCODE, Osmium
treated GM 12878 without 4SU incorporation and two biological replicates of long-TUC-seq
samples. The shot shows reads aligned to MYC, with increasing levels of labeled reads colored
with darkening shades of red. The tracks are shown on a scale of 0 to 200 reads.
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Figure 4. Dynamics of expression at the level of individual isoforms. a) Expression levels of
recently transcribed genes (labeled at permissive threshold) with respect to the total expression
level of that gene (for genes >2 TPM). The equation corresponds to the regression line drawn in
red. Two example genes (MYC and GAPDH) are highlighted in red. b) The distribution of
isoform specificity indices for all of the genes calculated from total expression (in grey) and
from recently made transcripts (in red). The dotted lines indicate the thresholds used to find
genes with lower ISl ( < 0.35) and higher [Sliapeled (> 0.85). ¢) Expression levels of the
isoforms corresponding to representative genes from the set defined in b. The grey portion of the
bars corresponds to the expression level of pre-existing RNA and the red portion corresponds to
the recently synthesized transcripts. Finally, the percentages on top of the bars are representing
the percentage of total expression of the isoform that is transcribed recently.
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