

Gliding motility of *Plasmodium* merozoites

2

3 Kazuhide Yahata^{1,2,5,*}, Melissa N. Hart^{3,5}, Heledd Davies², Masahito Asada^{1,4},

4 Thomas J. Templeton¹, Moritz Treeck², Robert W. Moon^{3,*}, Osamu Kaneko¹

5

6 ¹Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki
7 University, Nagasaki, Japan

8 ²Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute,
9 London, UK

10 ³Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical
11 Medicine, London, UK

12 ⁴National Research Center for Protozoan Diseases, Obihiro University of Agriculture
13 and Veterinary Medicine, Obihiro, Hokkaido, Japan

14 ⁵These authors contributed equally

15 *Correspondence: kyahata@nagasaki-u.ac.jp or rob.moon@lshtm.ac.uk

16

17 Summary

18 *Plasmodium* malaria parasites use a unique form of locomotion termed gliding
19 motility to move through host tissues and invade cells. The process is substrate-
20 dependent and powered by an actomyosin motor that drives the posterior
21 translocation of extracellular adhesins, which in turn propel the parasite forward.
22 Gliding motility is essential for tissue translocation in the sporozoite and ookinete
23 stages, however, the short-lived erythrocyte-invading merozoite stage has never
24 been observed to undergo gliding movement. Here for the first time we reveal that
25 blood stage *Plasmodium* merozoites use gliding motility for translocation in addition
26

27 to host cell invasion. We demonstrate that two human infective species, *P.*
28 *falciparum* and *P. knowlesi*, have distinct merozoite motility profiles reflective of
29 divergent invasion strategies. The process is powered by a conserved actomyosin
30 motor and glideosome complex and is regulated by a complex signaling pathway.
31 This significantly enhances our understanding of merozoite-host interactions in
32 malaria parasites.

33

34 **Keywords**

35 Malaria, Merozoite, Erythrocyte invasion, Gliding motility

36

37 **Introduction**

38 Apicomplexan parasites traverse tissues and invade cells via a mechanism known
39 as gliding motility, a unique process that uses neither propulsive structures such as
40 flagella or cilia, nor cellular shape changes as for peristaltic and amoeboid motility
41 (Russell et al., 1981; Dobrowolski et al., 1996). The system instead relies on the
42 apical presentation of parasite transmembrane adhesins which bind to host
43 substrates and then are drawn towards the parasite posterior by a conserved
44 actomyosin motor running under the surface of the plasma membrane, resulting in
45 the forward propulsion of the parasite (Tardieu et al., 2016; Frenal et al., 2017).
46 Motility of invasive forms of malarial parasites (termed "zoites") was first described
47 for the ookinete stage in avian blood (Danilewsky et al., 1889), and then for the
48 sporozoite stage in the mosquito (Grassi et al., 1900). Unlike ookinetes and
49 sporozoites, which must traverse through tissues, no gliding motility has been
50 described for the merozoite, which invades erythrocytes in the bloodstream. Instead,
51 only limited reorientation movement and cellular deformation has been observed
52 across several malarial parasite species, including *Plasmodium knowlesi*, *P.*
53 *falciparum*, and *P. yoelii* (Dvorak et al., 1975; Gilson et al., 2009; Yahata et al., 2012).
54 Due to the short-lived nature and diminished size of merozoites (1–2 μm) relative to
55 other zoites, it was presumed that merozoites do not require motility to encounter
56 erythrocytes in the bloodstream, leading to the consensus that the molecular motor
57 is principally required for penetration of the erythrocyte during invasion (Tardieu et
58 al., 2016).

59 Here we show that both *P. falciparum* and *P. knowlesi* are capable of gliding
60 motility across both erythrocyte surfaces and polymer coverslips, with distinctive
61 dynamics between the two species. We have additionally developed a scalable

62 assay to evaluate the effect of genetic and pharmacological perturbations on both
63 the molecular motor and complex signaling cascade that regulates motility in
64 merozoites.

65

66 **Results**

67 **Gliding motility of *Plasmodium* merozoites**

68 Here we sought to address the long-standing question of whether malarial
69 merozoites undergo conventional gliding motility. Whilst motility of sporozoites is
70 normally observed on bovine serum albumin-coated glass slides, merozoites do not
71 glide on this substrate. However, when using polymer coverslips with a hydrophilic
72 coating (ibiTreat), we observed motile merozoites. When imaged immediately after
73 erythrocyte egress, merozoites show directional movement on the coverslip surface
74 which displaces them from the hemozoin containing residual body (Figure 1A, 1B
75 and Movie S1, S2). *P. falciparum* merozoite gliding speed was 0.59 $\mu\text{m}/\text{second}$ ($n =$
76 10), considerably slower than that of *Toxoplasma gondii* tachyzoites (helical gliding
77 2.60 $\mu\text{m}/\text{second}$, $n = 13$; circular gliding 1.84 $\mu\text{m}/\text{second}$, $n = 13$) and *Babesia bovis*
78 merozoites (6.02 $\mu\text{m}/\text{second}$, $n = 5$). The longest gliding time of *P. falciparum*
79 merozoites was 43 s, shorter than those of *T. gondii* tachyzoites (> 600 seconds)
80 and *B. bovis* merozoites (125 seconds). The short-lived motility of *P. falciparum*
81 merozoites correlates with the decline in erythrocyte invasion efficiency within a few
82 minutes after egress (Boyle et al., 2010). The actin polymerization inhibitor
83 cytochalasin D (10 μM) inhibited the directed movement of merozoites after egress
84 from the erythrocyte, indicating the involvement of an actomyosin motor (Figure 1C
85 and Movie S3).

86 The zoonotic malaria parasite, *P. knowlesi*, has much larger and longer-lived
87 merozoites (Dennis et al., 1975), and thus we hypothesized that this may result in
88 different gliding behavior. Advantageously, *P. knowlesi* merozoites are also less
89 sensitive to light intensity than *P. falciparum*. We observed that freshly egressed *P.*
90 *knowlesi* merozoites can glide across several human erythrocyte membranes prior to

91 invasion (Movie S4). *P. knowlesi* merozoites also exhibit some motility on ibiTreat
92 coverslips, but the number of motile merozoites increases using poly-L-lysine-coated
93 polymer coverslip surfaces (Movie S5), with on average 62% of merozoites within a
94 given schizont exhibiting motility (Figure 2A). To confirm whether gliding is surface
95 dependent, *P. knowlesi* merozoites were also monitored on uncoated polymer and
96 glass coverslips. A much lower percentage of motile parasites was observed for the
97 uncoated polymer (38%) and glass coverslips (25%) (Figure S1A). This suggests
98 that both the coating and the use of polymer rather than glass coverslips is critical for
99 optimal gliding to occur, and accounts for why merozoite motility has not been
100 observed previously.

101 *P. knowlesi* was faster (1.06 $\mu\text{m}/\text{second}$, $n = 57$) than *P. falciparum* (Figure
102 S1B) and was capable of gliding for up to 316 seconds (Figure 2B) on poly-L-lysine
103 surfaces. Gliding was critical for post egress dispersal, as evidenced by the lack of
104 dispersal of cytochalasin D-treated parasites (Figure 2A and Movie S6). Even
105 without inhibitors merozoite movement was sometimes impaired by attachment to
106 other parasites or the residual body. Merozoites often completed several glides, with
107 a median cumulative distance of 14 μm , and some travelling as far as 200 μm within
108 the 10-minute imaging window (Figure S1C). The majority of gliding occurred within
109 5 minutes of egress (Figure S1D), with peak gliding occurring during the initial 1-2
110 minute window. This time frame also correlates with invasion efficiency suggesting
111 that, like for *P. falciparum*, motility could be used as a surrogate for invasive capacity.
112 Gliding speed appeared to decline over subsequent glides (Figure S1E), indicative of
113 declining motor function over time, which potentially contributes to the window of
114 viability.

115 Like other *Plasmodium* zoites (Hakansson et al., 1999; Kudryashev et al.,
116 2012; Asada et al., 2012), *P. knowlesi* merozoites appear to undergo corkscrew-like
117 rotation (Movie S7), with a correlation between the number of turns and forward
118 translocation, indicating a link between the two motions (Figure 2C and Figure 2D).
119 On average, each body length the merozoite moved forward it rotated 0.8 times -
120 equivalent to a tangential velocity of 61 $\mu\text{m}/\text{min}$, ($n = 10$). This is consistent with a
121 linear motor running at a 42-degree angle down the longitudinal axis of the merozoite.
122 Nine out of ten merozoites rotated counter-clockwise, demonstrating the same
123 chirality seen for *Plasmodium* ookinetes (Kan et al., 2014). Rotation could not be
124 discerned for *P. falciparum* merozoites, likely due to the round morphology and small
125 size.

126 Interestingly, for both *Plasmodium* species, gliding and invasion proceeded
127 with the wider end of the merozoite leading (Figure 2D) and not the narrower pointed
128 end of the merozoite. The narrower pointed end has widely been suggested to
129 contain the apical complex of the parasite, and indeed is consistent with early TEM
130 images of invading parasites (Miller et al., 1979). To confirm that the apical complex
131 is instead located within the wider end of the parasite we used live microscopy of
132 AMA1-mNeonGreen tagged *P. knowlesi* parasites. This clearly shows that the apical
133 end is located at the wider end of the zoite (Figure 2E and Movie S8), and that host
134 cell entry proceeds in the same orientation as surface gliding, as has also been
135 observed for *B. bovis* merozoites (Asada et al., 2012). Imaging of the AMA1-
136 mNeonGreen parasite during invasion also shows, for the first time using live
137 microscopy, the formation of a ring structure of the tight junction as the parasite
138 invades the host erythrocyte (Figure 2E and Movie S8). A small protrusion likely
139 corresponding to the apical complex is visible slightly offset from apex of the wider

140 front-end (Figure 2F, left hand image). It is the accentuation of this during the
141 constriction of invasion depicted within classic electron microscopy images, which
142 has likely led to the general assumption that merozoites uniformly narrow towards
143 the apical end (Figure 2F). Whilst this is most clearly seen in the elongated forms of
144 the *P. knowlesi* merozoites, it is also clear from videos of gliding in *P. falciparum* that
145 the same holds true (Movie S2).

146

147

148 **Gliding motility is powered by an actomyosin motor and glideosome complex**

149 To determine the characteristics of the *P. falciparum* merozoite glideosome we
150 evaluated the effect of chemical compounds and parasite genetic modifications on
151 merozoite gliding motility. To overcome the light sensitivity of *P. falciparum*
152 merozoites we developed an assay in which schizonts were seeded on coverslips in
153 the dark at 37°C and incubated for 1 hour until the completion of merozoite egress.
154 Motility could then be quantified by measuring the distance between a DAPI-stained
155 merozoite nucleus and the hemozoin containing residual body (Figure 3A). The
156 average merozoite-hemozoin distance measured for DMSO-treated merozoites
157 (median 9.1 μ m) was approximately equidistant to that observed for the time-lapse
158 experiment (11.8 μ m) and, as expected, the distance was significantly reduced by
159 0.1, 1 and 10 μ M cytochalasin D treatment (7.1, 5.4 and 4.8 μ m, respectively).
160 Treatment with jasplakinolide, an actin filament stabilizer reported to increase the
161 gliding speed of *T. gondii* tachyzoites, slightly but not significantly increased the
162 distance, although it was not statistically significant (Figure 3B and S2).

163 We next examined conditional deletions of two essential glideosome
164 components, actin-1 (ACT1) (Das et al., 2017) and glideosome-associated protein 45

165 (GAP45) (Perrin et al., 2018). Transgenic lines were able to egress after both the
166 control DMSO treatment and upon rapamycin induced gene excision, but the
167 merozoite–hemozoin distance was significantly reduced in the latter case (Figure
168 3C). When apical membrane antigen 1 (AMA1), a microneme protein important for
169 erythrocyte attachment during invasion but unlikely to be involved in merozoite
170 motility (Treeck, et al., 2009; Yang et al., 2017), was conditionally deleted, parasites
171 were able to efficiently egress and motility assayed by the merozoite–hemozoin
172 distance was not affected (Figure S3). These results confirm the involvement of the
173 glideosome in *Plasmodium* merozoite gliding motility. During invasion, merozoite
174 contact causes immediate erythrocyte membrane deformation before merozoite
175 internalization (Gilson et al, 2009), however, the molecular basis of this phenomenon
176 has not been elucidated. We found that rapamycin-treated ACT1- or GAP45-deleted
177 parasites were not able to deform the erythrocyte (Figure 3D and 3E), in contrast to
178 control DMSO-treated parasites or rapamycin-treated AMA1-deleted parasites
179 (Figure S3). These results indicate that merozoite motility is required for erythrocyte
180 deformation.

181

182 **Gliding motility is regulated by a complex signaling pathway**

183 Microorganelle discharge plays an essential role in the egress, gliding motility, and
184 cell invasion of apicomplexan parasites and is regulated by a set of intracellular
185 signaling enzymes, including calcium dependent protein kinases (Billker et al., 2009;
186 Baker, 2017) phosphoinositide-phospholipase C (PI-PLC) (Singh et al., 2010), and
187 diacylglycerol (DAG) kinase (Bullen et al, 2016). We evaluated whether these
188 enzymes are also involved in the gliding motility of *P. falciparum* merozoites.
189 Although the calcium ionophore A23187 (up to 100 μ M) did not show a significant

190 effect, the calcium chelator BAPTA-AM (10 μ M) significantly reduced merozoite–
191 hemozoin distance ($p < 0.0001$; Figure 4A and S2). The PLC inhibitor U73122 (1
192 μ M), but not the inactive analog U73343 (up to 10 μ M), significantly reduced
193 merozoite–hemozoin distance ($p < 0.0001$). The DAG kinase inhibitor R59022 (3
194 μ M), which inhibits the conversion of DAG to phosphatidic acid (PA) also significantly
195 reduced movement ($p < 0.001$), while the merozoite-hemozoin distance was not
196 changed with propranolol, an inhibitor of phosphatidate phosphohydrolase (the
197 converter of PA to DAG). Collectively, these results are consistent with reports on
198 *Toxoplasma* tachyzoites (Bullen et al, 2016) and indicate that complex signaling
199 pathways are involved in gliding motility of *P. falciparum* merozoites (Figure 4B).

200

201 **Discussion**

202 We show for the first time that *Plasmodium* merozoites possess gliding motility. We
203 demonstrate merozoite gliding in two human infective species, *P. falciparum* and *P.*
204 *knowlesi*. Motility could support a mechanism of cell sampling in the bloodstream,
205 whereby the parasite moves across the surface of single or multiple erythrocytes
206 until it is able to engage invasion receptors mediating successful invasion (McGhee,
207 1953). It is also plausible that the motility supports translocation and invasion in
208 tissues such as the bone marrow, which is known to be a significant parasite
209 reservoir for *P. vivax* (Obaldia et al., 2019). *P. knowlesi* merozoites glide nearly twice
210 as fast and more than 7 times longer than *P. falciparum*; this difference likely
211 underlies distinct invasion strategies. The potential for greater cellular sampling and
212 prolonged interactions may therefore play a critical role in supporting invasion in less
213 favorable conditions – potentially contributing to the relatively broad host range
214 exhibited by this parasite. This may also prevent sub optimal receptor interactions by
215 having gliding dominate until invasion competence is triggered by a threshold of
216 erythrocyte receptors. In contrast, egress of *P. falciparum* merozoites occurs in the
217 microvasculature of deep tissues where parasite-infected erythrocytes sequester
218 with uninfected erythrocytes enabling merozoites to quickly encounter and invade
219 new cells (Wahlgren et al., 2017). Cell sampling is therefore likely to be less
220 important, and instead gliding may simply enhance erythrocyte receptor interactions.

221 Interestingly, this work has also enabled us to reverse our perception of the
222 morphology of merozoites, with clear evidence from both gliding and fluorescently
223 tagged parasites demonstrating that the apical complex actually resides in a small
224 protrusion in the wider end of the zoite, rather than the pointy end of a tear shape as
225 it is often depicted (Dasgupta et al., 2014). Whilst conceptually challenging, this is

226 exactly the same as is seen for *Plasmodium* ookinete, which also lead with their
227 wider end (Moon et al., 2009) and has important consequences for how we view and
228 interpret images of invasion and understand the biophysical processes involved
229 (Dasgupta et al., 2014).

230 Apicomplexan zoites utilize type 1 transmembrane proteins belonging to the
231 TRAP family to adhere to environmental substrates for gliding. Two such proteins,
232 merozoite thrombospondin-related anonymous protein (MTRAP) and
233 thrombospondin-related apical membrane protein (TRAMP or PTRAMP), have been
234 shown to be expressed at the merozoite stage (Boucher et al., 2015). MTRAP is
235 dispensable for *P. falciparum* merozoites (Bargieri et al., 2016); however,
236 transposon-based saturation mutagenesis analysis of *P. falciparum* suggested that
237 TRAMP is essential for the blood stage parasite (Zhang et al., 2018), making it a
238 prime candidate for future work to identify a merozoite gliding adhesin.

239 In conclusion, *Plasmodium* merozoites have the capacity for gliding motility,
240 powered by a conserved actomyosin motor and glideosome complex, and controlled
241 by a complex signaling cascade. The distinct gliding profiles of two different human
242 infective species suggest divergent invasion strategies which provide new
243 mechanisms to address questions of host selectivity and tissue reservoirs of the
244 erythrocytic stages.

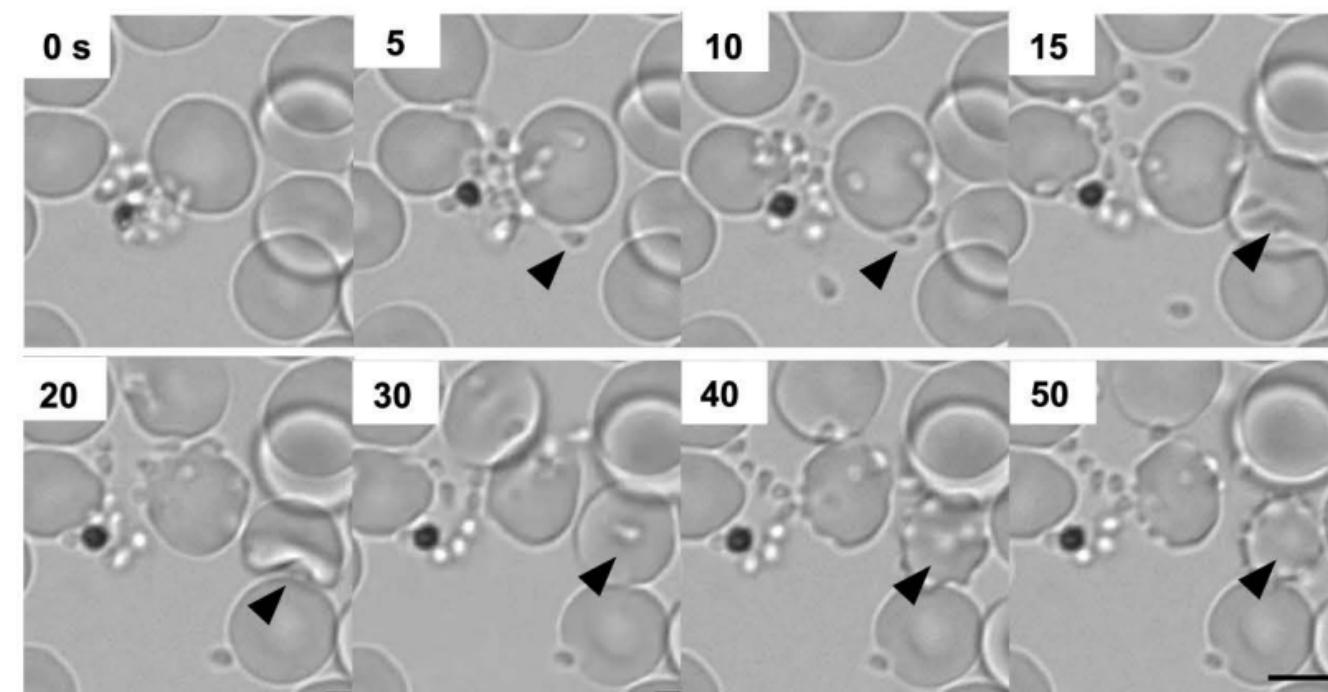
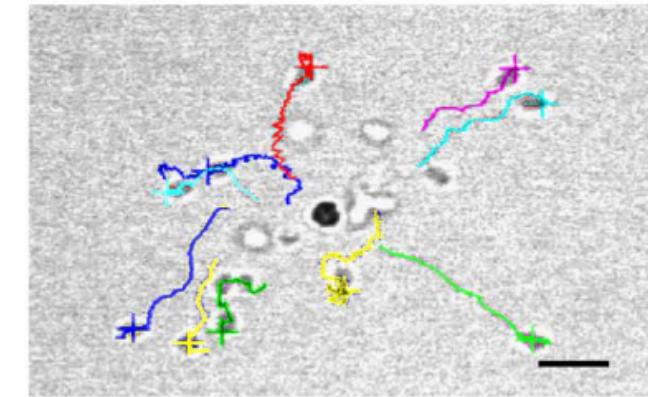
245 **Acknowledgements**

246 The authors thank Sujaan Das and Markus Meissner (supplying *P. falciparum* ACT1),
247 Abigail Perrin and Michael Blackman (supplying *P. falciparum* GAP45:loxP), Alex
248 Hunt (maintaining *T. gondii*). We also thank Reiko Tanaka, Nana Matsumoto, and
249 Momoko Sakura for technical assistance. We are grateful to Japanese Red Cross
250 Blood Society and UK NHS Blood and Transfusion Service for providing human
251 erythrocyte and plasma. This study was conducted at the Joint Usage/Research
252 Center on Tropical Disease, Institute of Tropical Medicine, Nagasaki University,
253 Japan and London School of Hygiene and Tropical Medicine, UK. This work was
254 supported by Fund for the Promotion of Joint International Research, Fostering Joint
255 International Research, 16KK0183 (KY), 19KK0201 (KY), MEXT, Japan. This work
256 was also supported in part by the Grants-in-Aids for Scientific Research, 15K08448
257 (KY), 19K07525 (KY), 16H05184 (OK), and 19H03461 (OK), MEXT, Japan. RWM
258 was supported by a UK Medical Research Council Career Development Award
259 (MR/M021157/1) and MNH was supported by a Bloomsbury Colleges Studentship.
260 HD and MT receive funding from The Francis Crick Institute, which receives its core
261 funding from Cancer Research UK (FC001189), the UK Medical Research Council
262 (FC001189) and the Wellcome Trust (FC001189). The funders had no role in study
263 design, data collection and analysis, decision to publish, or preparation of the
264 manuscript.

265

266 **Author Contributions**

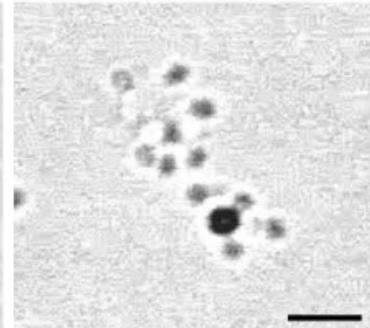
267 KY, MNH, RWM, MA, MT, and OK conceived and designed the experiments. KY and
268 MNH performed experiments. HD helped with the generation of transgenic parasite



269 lines. KY, MNH, TT, MT, RWM and OK wrote the paper, and all authors contributed
270 to the manuscript and analyzed the data.

271

272 **Declaration of Interests**

273 The authors declare no competing interests.


Figure 1

A**B****C**

DMSO

CyD

274

275 **Figure 1. Gliding motility of *P. falciparum* merozoites. A,** Time-lapse imaging for
276 *P. falciparum* merozoite gliding motility and erythrocyte invasion. Still images from
277 Movie S1. Arrowhead indicates a merozoite gliding on the coverslip (5 and 10
278 seconds), followed by erythrocyte deformation (15 and 20 seconds) and merozoite
279 internalization (30–50 seconds). **B,** Each merozoite was traced in different colors
280 and gliding speed was evaluated from Movie S2. **C,** Merozoite gliding motility was
281 inhibited with 10 μ M cytochalasin D (CyD, $IC_{50} = 0.089 \mu$ M).

282

283

284

285

286

287

288

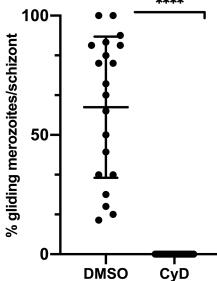
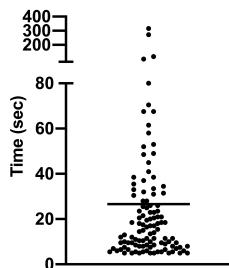
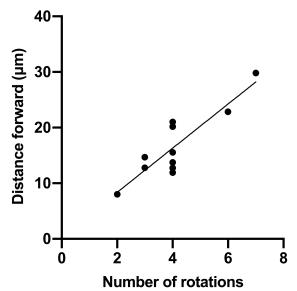
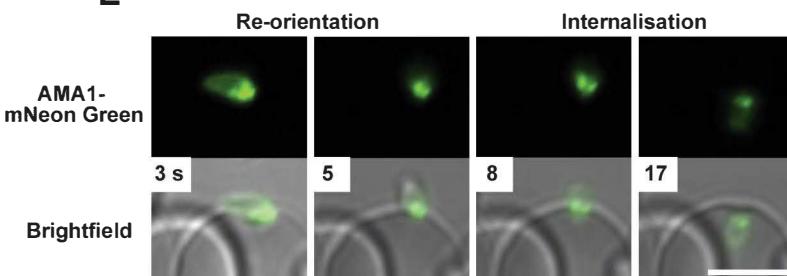
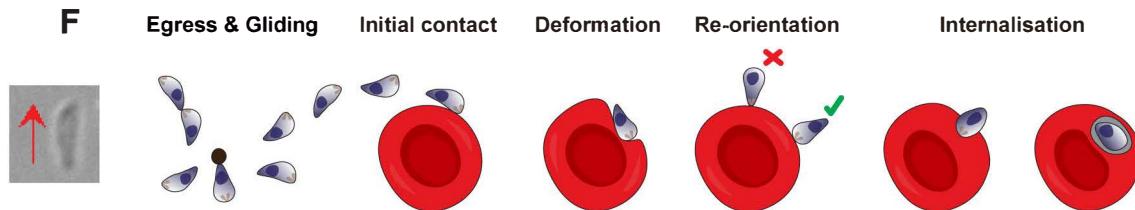
289

290

291

292

293






294

295

296

297

Figure 2

A**B****D****C****E****F**

298 **Figure 2. Gliding motility of *P. knowlesi* merozoites.** **A**, The percentage of
299 merozoites within a *P. knowlesi* schizont, which exhibit motility, both for DMSO-
300 treated parasites (mean = 62.5%) and CytoD-treated parasites (no gliding observed).
301 A ‘motile’ merozoite was defined as having demonstrated directional forward motion
302 along the surface of the coverslip for at least 5 continuous seconds. Each dot is
303 representative of one schizont (n = 20). Error bars denote +/- 1 s.d. **B**, The total time
304 each motile *P. knowlesi* merozoite (n= 109; median = 15 seconds) spent gliding
305 during the 10 minute imaging window post-egress. Error bars indicate interquartile
306 range. **C**, Number of rotations that merozoites completed plotted against the
307 distance travelled for each glide (n = 10). As the number of rotations increased, so
308 did the distance travelled forward, indicating rotation drives forward motion (Pearson
309 correlation coefficient, R = 0.88). **D**, Time lapse imaging demonstrating a *P. knowlesi*
310 merozoite rotating as it glides. Red arrows indicate a dark spot located to one side of
311 the wider end of the merozoite, which shifts to the opposite side (shown in
312 subsequent frames), as it turns, and then back to the original position to complete a
313 full rotation (see Movie S7). **E**, Time lapse imaging depicting an AMA1-mNeonGreen
314 tagged *P. knowlesi* merozoite invading an erythrocyte. Panels 1 and 2 demonstrate
315 re-orientation of the wide end of the merozoite to align with the erythrocyte
316 membrane. This is followed by the formation of the moving junction, depicted as two
317 green dots at the merozoite-erythrocyte interface (panel 3), and finally entry into the
318 host cell (panel 4). **F**, Schematic illustrating gliding and erythrocyte invasion. Gliding
319 proceeds with the wider, apical end of the merozoite leading. During gliding,
320 merozoites stretch, and a pointed protrusion can be seen at the wide end of the zoite
321 (left hand brightfield image), which engages with the erythrocyte membrane upon re-
322 orientation and internalisation. Re-orientation of the wider end (green tick), and not

323 the thinner, end of the zoite as previously hypothesized (red cross), occurs prior to
324 entry. During internalisation, constriction of the apical end of the zoite causes the
325 basal end to expand, causing static EM images to appear as if the wide end of the
326 zoite is facing away from the erythrocyte. Finally, after entry is complete, the parasite
327 resides in a parasitophorous vacuole where its development continues.

328

329

330

331

332

333

334

335

336

337

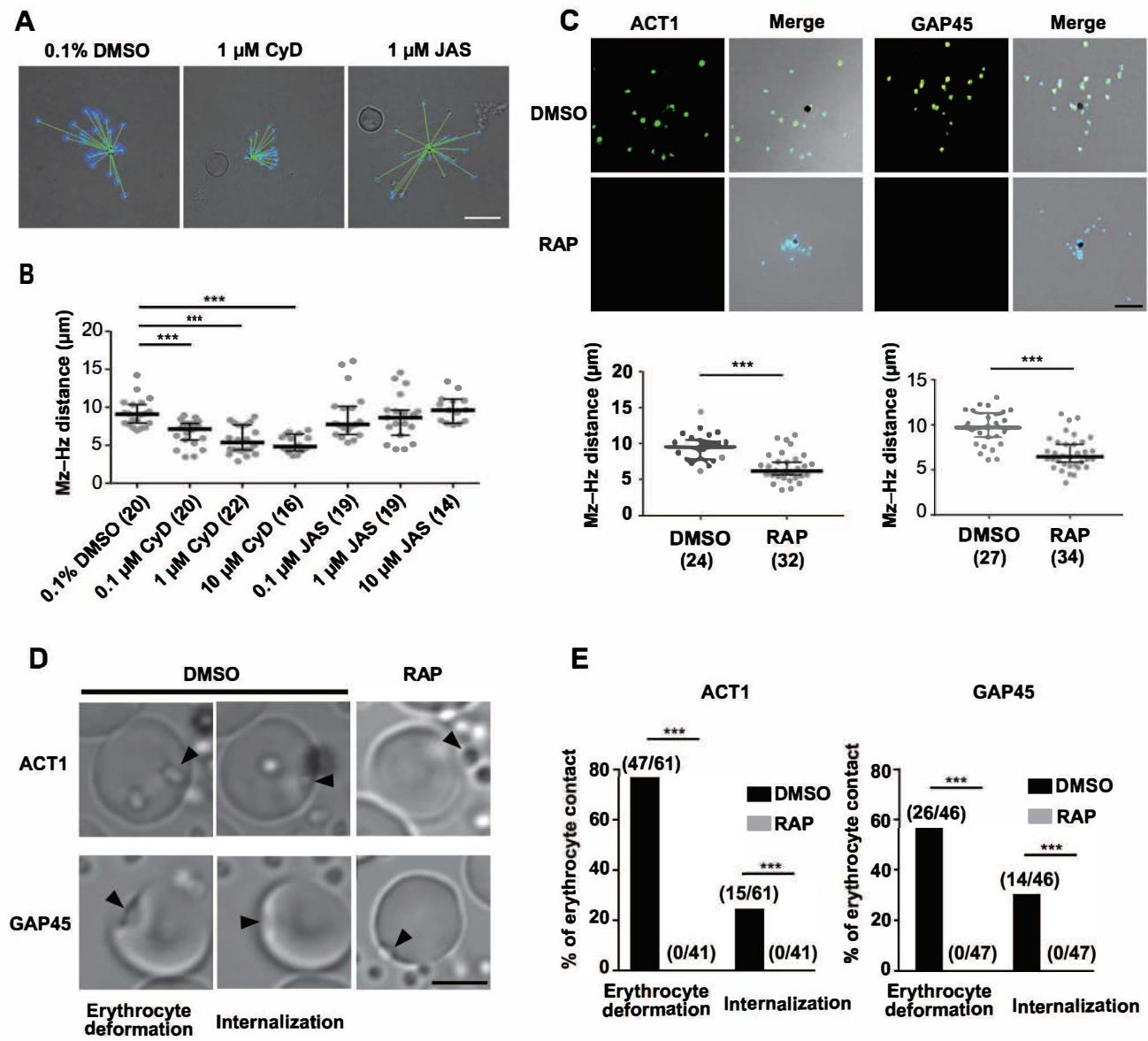
338

339

340

341

342


343

344

345

346

Figure 3

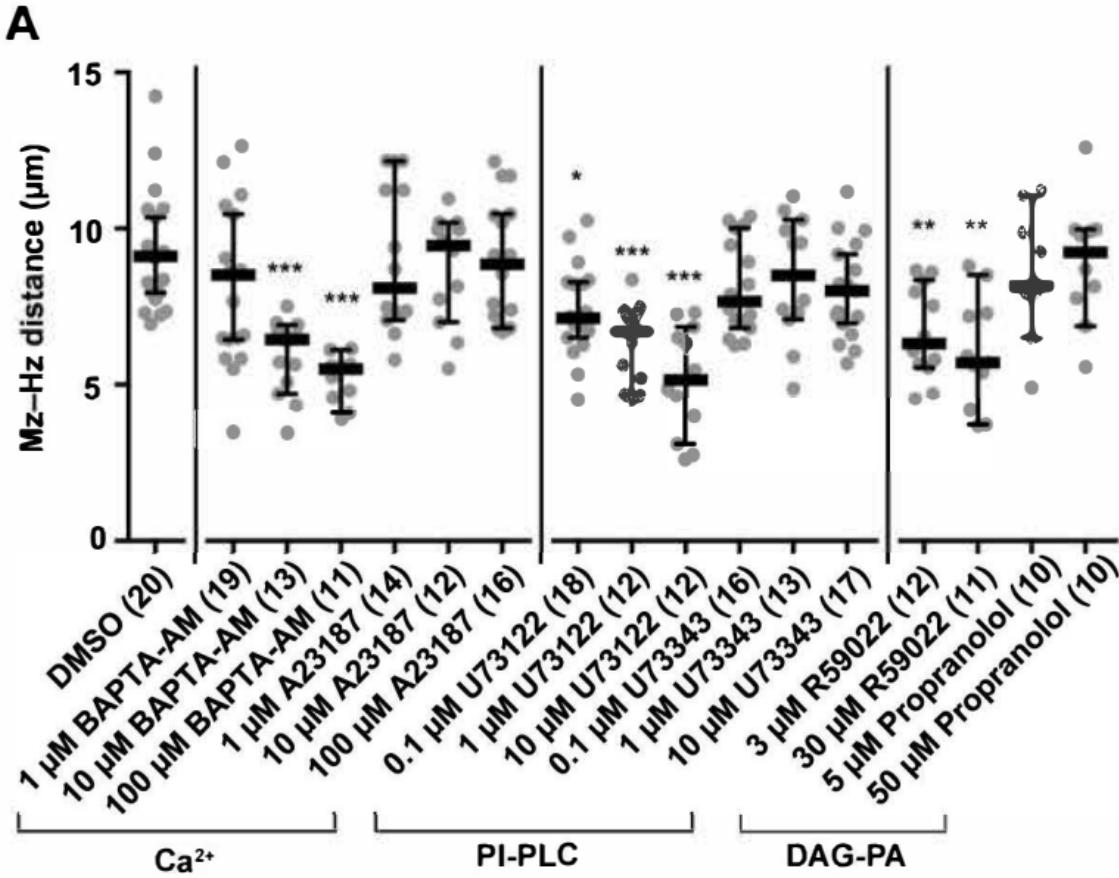
347 **Figure 3. The effect of chemical compounds and parasite genetic**
348 **modifications on *P. falciparum* merozoite gliding motility.** Purified *P. falciparum*
349 schizonts were seeded on the coverslip and merozoite egress was allowed. **A**, The
350 distance of the merozoite nucleus (DAPI, Mz) from hemozoin (black pigment, Hz)
351 was measured (green line, Mz–Hz distance). Where indicated in the y-axes (panels
352 **B, C, E**) the Mz–Hz distance obtained from each schizont with their median and
353 interquartile range are shown. The number of analyzed schizonts from two biological
354 replicates are indicated in the parentheses. **B**, Effect of 0.1% DMSO, 0.1, 1, or 10
355 μ M cytochalasin D (CyD), or jasplakinolide (JAS, $IC_{50} = 0.085 \mu$ M) were evaluated
356 for merozoite gliding motility. *** indicates $p < 0.0001$. **C**, Inhibition of gliding motility
357 in rapamycin (RAP)-treated ACT1- or GAP45-deleted *P. falciparum* parasites. IFA
358 with specific antibodies indicated ACT1 or GAP45 were not detected in RAP-treated
359 transgenic parasites. *** indicates $p < 0.0001$ by the Mann-Whitney test. **D, E**,
360 Erythrocyte deformation and merozoite internalization events were seen for DMSO-
361 treated parasites, but not detected after RAP-treatment ($p < 0.001$ for all by two-
362 tailed Fisher's exact test). Scale bar represents 5 μ m.

363

364

365

366



367

368

369

370

Figure 4

371 **Figure 4. Signaling pathways involved in gliding motility of *P. falciparum***
372 **merozoite. A,** Purified *P. falciparum* schizonts were treated with BAPTA-AM ($IC_{50} =$
373 $1.54 \mu M$), A23187 ($IC_{50} = 0.89 \mu M$), U73122 ($IC_{50} = 0.33 \mu M$), U73343 ($IC_{50} = 2.39$
374 μM), R59022 ($IC_{50} = 4.77 \mu M$), or propranolol ($IC_{50} = 3.75 \mu M$) and merozoite gliding
375 assays were performed. *, **, ***, and **** indicate $p < 0.05$, < 0.01 , 0.001 , and $<$
376 0.0001 , respectively. **B,** Overview of molecular mechanisms for gliding motility of *P.*
377 *falciparum* merozoite. After merozoite egress from the erythrocyte, merozoite
378 adhesin(s) are secreted from micronemes (green) via a signaling pathway involving
379 phosphoinositide-phospholipase (PI-PLC) and diacylglycerol (DAG) kinase (DGK)
380 and bind to environmental substrates including the erythrocyte membrane. A
381 pathway involving PI-PLC and Ca^{2+} activates calcium dependent protein kinases
382 (CDPKs) and phosphorylates the components of the glideosome machinery (Billker
383 et al, 2009; Singh et al, 2010; Bullen et al., 2016; Baker, 2017; Fang et al., 2018).
384 Grey, nucleus and blue, rhoptries. Gliding motility is powered by an actomyosin
385 motor of the glideosome machinery and the merozoite movement is transferred to
386 the erythrocyte membrane causing erythrocyte deformation upon merozoite
387 attachment. ACT1, actin-1; IMC, inner membrane complex; PKG, cyclic GMP-
388 dependent protein kinase; PA, phosphatidic acid; GAP45, glideosome-associated
389 protein 45; MyoA, myosin-A; and GAC, glideosome-associated connector.

390

391 **Methods**

392 **Parasite culture and transfection**

393 *P. falciparum* Dd2 parasites were maintained with O⁺ human erythrocytes in
394 RPMI1640 medium (Invitrogen) supplemented with 25 mM HEPES (Sigma), 0.225%
395 sodium bicarbonate (Invitrogen), 0.1 mM hypoxanthine (Sigma), 25 $\mu g/mL$

396 gentamicin (Invitrogen), 0.5% AlbuMax I (Invitrogen), essentially as described²⁸. The
397 ACT1 (Das et al., 2017), GAP45:loxP (Perrin et al., 2018), and AMA1:loxP *P.*
398 *falciparum* lines (Tibúrcio et al., 2019) were cultured with A⁺ human erythrocytes.
399 WR99210 and G418 were used to generate ACT1 and AMA1:loxP parasite lines,
400 respectively. The *T. gondii* RH strain was cultured in a confluent monolayer of
401 human foreskin fibroblasts (HFFs) maintained in Dulbecco's Modified Eagle Medium
402 (DMEM), GlutaMAX supplemented with 10% fetal bovine serum, at 37°C and 5%
403 CO₂. The *B. bovis* Texas strain was maintained in purified bovine erythrocytes with
404 GIT medium (WAKO, Osaka, Japan) at 37°C with a microaerophilic stationary-phase
405 culture system. A1-H.1 *P. knowlesi* parasites were maintained in human erythrocytes
406 (UK National Blood Transfusion Service) with custom made RPMI-1640 medium,
407 supplemented with 10% Horse Serum (v/v) and 2 mM L-glutamine according to
408 previously described methods (Moon et al., 2013). Mature schizonts were purified by
409 gradient centrifugation on a 55% Nycodenz layer (Progen, Heidelberg, Germany), as
410 described (Moon et al., 2013). Tightly synchronized schizonts were transfected using
411 the Amaxa 4-D electroporator and P3 Primary Cell 4D Nucleofector X Kit L (Lonza)
412 according to the protocol described by Moon et al. (2013).

413

414

415 **Generation of *P. knowlesi* AMA-1 mNeonGreen tagged parasites**

416 *P. knowlesi* AMA-1 mNeonGreen tagged parasites were generated by insertion of an
417 mNeonGreen (mNG) sequence immediately before the *AMA1* stop codon (Figure
418 S2A) using the CRISPR Cas9 system described by Mohring et al., 2019 (sgRNA

419 sequence: GAGAAGCCTTACTACTGAGT). Donor DNA was synthesized by
420 overlapping PCR, as previously described for PkAMA-1-HA tagged parasites
421 (Mohring et al., 2019) and included the mNeonGreen sequence flanked by 500 bp
422 sequences homologous to the c-terminal (HR1) and 3'UTR (HR2) regions of the
423 AMA-1 locus (Figure S2A). Primers for PCR listed in Table S1. In brief, HR1 and
424 HR2 were both PCR amplified from *P. knowlesi* A1 H1 gDNA (with primers P6/P7
425 and P8/P9 respectively), while the mNeonGreen sequence was amplified from
426 Plasmid Pk_mNeonGreen with primers P10/P11. All three fragments were
427 subsequently assembled together in two successive steps: firstly by fusing fragments
428 HR1 and mNeonGreen (primers P12/P13), and secondly by fusing fragments
429 HR1/mNeonGreen and HR2 (primers P12/P15) to create the final product,
430 HR1/mNeonGreen/HR2. Post transfection, integration of donor DNA was confirmed
431 by diagnostic PCR, using primers P1 and P3 (Figure S2B). Expression of the AMA-
432 1-mNG fusion protein was also confirmed by indirect immunofluorescence assay
433 (Figure S2C). Air-dried smears of late stage schizonts were fixed in 4% PFA for half
434 an hour and permeabilised with 0.1% Triton-X100 for 10 mins. Slides were
435 subsequently blocked in 3% BSA overnight, before labelling with mouse anti-
436 mNeonGreen [32F6] (1:300, Chromotek) followed by goat Alexa Fluor 488 anti-
437 mouse (1:1000, Invitrogen). Nuclei were stained with ProLong Gold Antifade
438 Mountant (Invitrogen). Images were collected using an inverted microscope (Ti-E;
439 Nikon, Japan) with a 60x oil objective lens (N.A. 1.4).

440

441

442

443 **Inducible gene-knockout *P. falciparum* parasites**

444 The *GAP45*, *Act1*, and *AMA1* genes were excised by rapamycin treatment from
445 *GAP45*:*loxP*, *ACT1*, and *AMA1*:*loxP* *P. falciparum* parasites, respectively (Jones et
446 al., 2016). Briefly, ring stage parasites synchronized by 5% sorbitol method were
447 treated with 100 nM rapamycin (Sigma, St. Louis, USA) or 0.1% DMSO for 12 hours.
448 Schizonts were purified with a 5D magnet separation column (MACS, Miltenyi
449 Biotech, Germany) and used for gliding or erythrocyte invasion assays.

450

451 **Time lapse imaging for the gliding motility of *P. falciparum* merozoites, *P.*
452 *knowlesi* merozoites, *T. gondii* tachyzoites, and *B. bovis* merozoites**

453 Time lapse imaging assays for *P. falciparum* merozoites were performed at 37°C
454 using an inverted microscope (Ti-E; Nikon, Japan) with a 60x oil objective lens (N.A.
455 1.4 or 1.47). *P. falciparum* synchronized schizonts in incomplete medium without
456 AlbuMAX I were transferred to the ibiTreat μ-Slide I^{0.4} Luer channel slide (Ibidi,
457 Germany) and incubated for 10 minutes at 37°C to allow the parasite-infected
458 erythrocytes to attach to the bottom. Incomplete medium was removed and replaced
459 with complete RPMI medium prewarmed to 37°C, then parasites were observed by
460 microscopy. Likewise, synchronized *P. knowlesi* schizonts were transferred using the
461 same technique to either ibiTreat, poly-L-lysine-coated, uncoated, or glass μ-Slide
462 I^{0.4/0.5} Luer channel slides (Ibidi) in incomplete RPMI medium and incubated at 37°C
463 for 10 minutes to allow cell attachment. Subsequently, incomplete medium was
464 replaced with complete RPMI medium with 10% horse serum, as per normal
465 culturing conditions. For the actin inhibitor treatments, *P. falciparum* and *P. knowlesi*
466 schizonts were allowed to attach to coverslips while suspended in incomplete RPMI

467 medium, which was then replaced with their respective complete RPMI medium
468 additionally containing 0.1–10 μ M cytochalasin D (Sigma) or 0.1% DMSO (Sigma). *T.*
469 *gondii* tachyzoites growing in HFFs were collected by scraping after the culture
470 medium was replaced with ENDO buffer (Endo et al., 1987). Intracellular parasites
471 were isolated from HFFs by lysing host cells via passaging 20 times through a
472 syringe and tachyzoites were transferred to an ibiTreat μ -Slide I^{0.4} Luer channel slide
473 and incubated for 15 minutes at 37°C. The slide was placed on the microscope stage,
474 and the medium was replaced with DMEM before observation. *B. bovis* parasites
475 were isolated in RPMI medium then transferred to the ibiTreat μ -Slide I^{0.4} Luer
476 channel slide. All parasites were observed by differential interference contrast or
477 bright field at 1.5V/100W of halogen lamp or LED light (pT-100; CoolLED, UK) to
478 minimize cell damage. Time-lapse images were captured at 1–100 frames per
479 second using a digital camera (ORCA-R2 or ORCA-Flash4.0; Hamamatsu photonics,
480 Shizuoka, Japan) and imaged using the NIS-Element Advanced Research imaging
481 software (Nikon). Gliding speed was calculated either manually using distance
482 measurement tools or by the tracking module within the NIS-Element software
483 (Nikon). The tangential speed of *P. knowlesi* merozoites was determined by
484 calculating the number of rotations/minute and multiplying this value by the average
485 circumference of a merozoite. The angle of the motor was subsequently calculated
486 using the formula $\text{Tan}(x) = R/L$, where x = the angle of the motor, R = the average
487 distance each merozoite rotated/per body length travelled forward, and L = the body
488 length of the merozoite.

489

490

491

492 ***P. falciparum* merozoite gliding assay**

493 *P. falciparum* schizonts were purified with a 5D magnet separation column, then
494 adjusted to 1×10^5 cell/ml with incomplete RPMI medium and loaded onto an ibiTreat
495 μ -Slide VI^{0.4} chamber slide (ibidi). The chamber slides were incubated for 10 min at
496 17°C to allow schizont attachment to the bottom followed by replacing the medium
497 with complete RPMI medium containing chemical compounds or DMSO control.
498 Slides were incubated at 17°C for 1 hour then the temperature was increased to
499 37°C for 1 hour to allow parasite egress. Parasites were fixed with 1%
500 paraformaldehyde fixation solution, which was then replaced with PBS containing
501 3% BSA (Sigma) and 100 ng/ml DAPI (Invitrogen). For the indirect
502 immunofluorescence assay, parasites were fixed in 4% paraformaldehyde containing
503 0.0075% glutaraldehyde (Nacalai Tesque, Japan) and permeabilized with PBS
504 containing 0.1% Triton-X100 (Calbiochem, CA, USA), then blocked with PBS
505 containing 3% BSA. Next, samples were immunostained with mouse anti-*P.*
506 *falciparum* ACT1 (final dilution 1:500; a kind gift from Jake Baum) or rat anti-HA
507 (1:1000, Roche) for HA-tagged GAP45 and AMA1. This was followed by 3 \times washes
508 with PBS then incubation with Alexa Fluor 488 goat anti-mouse or Alexa Fluor 594
509 goat anti-rat antibodies (1:1000; Invitrogen) in PBS containing 3% BSA with DAPI
510 (Invitrogen). Stained parasites were mounted with Prolong Gold antifade reagent
511 (Invitrogen). Microscopy images (Ti-E, Nikon) of egressed merozoites were cropped
512 to 47 \times 47 μm^2 to measure the distance of merozoite nuclei (stained with DAPI) from
513 hemozoin in the residual body (malaria pigment, with bright field image) using NIS-
514 Elements software (Nikon). Statistical analysis was performed by the Kruskal-Wallis

515 test followed by Dunn's multiple comparison test using PRISM 6 software (GraphPad
516 Software, Inc., CA, USA).

517

518 **Chemical Compounds**

519 Complete RPMI medium was supplemented with cytochalasin D, jasplakinolide
520 (Sigma), 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
521 tetraacetoxymethyl ester (BAPTA-AM, Invitrogen, CA, USA), calcium ionophore
522 A23187 (Sigma), U73122 (Calbiochem), U73343 (Calbiochem), R59022 (Tocris
523 bioscience, UK), propranolol (Sigma), or DMSO. Compound concentrations were as
524 described (Singh et al, 2010; Bullen et al., 2016). IC₅₀ values for *P. falciparum* were
525 determined using a protocol available at WorldWide Antimalarial Resistance Network
526 (WWARN-
527 http://www.wwarn.org/sites/default/files/INV08_PFalciparumDrugSensitivity.pdf).

528

529 **Reference**

530 Asada, M., Goto, Y., Yahata, K., Yokoyama, N., Kawai, S., Inoue, N., Kaneko, O.,
531 and Kawazu, S. (2012). Gliding motility of *Babesia bovis* merozoites visualized by
532 time-lapse video microscopy. PLoS One 7, e35227.

533 Baker, D.A., Drought, L.G., Flueck, C., Nofal, S.D., Patel, A., Penzo, M., and Walker,
534 E.M. (2017). Cyclic nucleotide signalling in malaria parasites. Open Biol. 7(12).

535 Bargieri, D.Y., Thibierge, S., Tay, C.L., Carey, A.F., Rantz, A., Hischen, F., Lorthiois,
536 A., Straschil, U., Singh, P., Singh, S. et al. (2016) Plasmodium merozoite TRAP
537 family protein is essential for vacuole membrane disruption and gamete egress from
538 erythrocytes. Cell Host Microbe 20, 618-630.

539 Billker, O., Lourido, S. and Sibley, L. D. (2009). Calcium-dependent signaling and
540 kinases in apicomplexan parasites. Cell Host Microbe 5, 612–622.

541 Boucher, L. E. and Bosch, J. (2015) The apicomplexan glideosome and adhesins —
542 structures and function. J. Struct. Biol. 190, 93–114.

543 Boyle, M. J., Wilson, D.W., Richards, J.S., Riglar, D.T., Tetteh, K.K., Conway, D.J.,
544 Ralph, S.A., Baum, J., and Beeson, J.G. (2010). Isolation of viable *Plasmodium*
545 *falciparum* merozoites to define erythrocyte invasion events and advance vaccine
546 and drug development. Proc. Natl. Acad. Sci. U. S. A. 107, 14378–14383.

547 Bullen, H. E., Jia, Y., Yamaryo-Botté, Y., Bisio, H., Zhang, O., Jemelin, N. K., Marq, J.
548 B., Carruthers, V., Botté, C. Y., & Soldati-Favre, D. (2016). Phosphatidic Acid-
549 mediated signaling regulates microneme secretion in *Toxoplasma*. Cell Host Microbe
550 19, 349–360.

551 Danilewsky, B. (1889). La Parasitologie Comparée du Sang. Kharkoff.

552 Das, S., Lemgruber, L., Tay, C. L., Baum, J. & Meissner, M. (2017). Multiple
553 essential functions of *Plasmodium falciparum* actin-1 during malaria blood-stage
554 development. *BMC Biol.* *15*, 70.

555 Dasgupta, S., Auth, T., Gov, N.S., Satchwell, T.J., Hanssen, E., Zuccala, E.S., Riglar,
556 D.T., Toye, A.M., Betz, T., Baum, J., et al. (2014). Membrane-wrapping contributions
557 to malaria parasite invasion of the human erythrocyte. *Biophys. J.* *107*, 43-54.

558 Dennis, E.D., Mitchell, G.H., Butcher, G.A., and Cohen, S. (1975). In vitro isolation of
559 *Plasmodium knowlesi* merozoites using polycarbonate sieves. *Parasitology* *71*, 475–
560 481.

561 Dobrowolski, J.M., and Sibley, L.D. (1996). Toxoplasma invasion of mammalian cells
562 is powered by the actin cytoskeleton of the parasite. *Cell* *84*, 933-939.

563 Dvorak, J.A., Miller, L.H., Whitehouse, W.C., and Shiroishi, T. (1975). Invasion of
564 erythrocytes by malaria merozoites. *Science* *187*, 748–750.

565 Endo, T., Tokuda, H., Yagita, K., and Koyama, T. (1987). Effects of extracellular
566 potassium on acid release and motility initiation in *Toxoplasma gondii*. *J. Protozool.*
567 *34*, 291–295.

568 Fang, H., Klages, N., Pino, P., Maco, B., Brochet, M., Gomes, A.R., Zenenos, Z.A.,
569 Walker, E.M., Baker, D.A., Angrisano, F., et al. (2018). Epistasis studies reveal
570 redundancy among calcium-dependent protein kinases in motility and invasion of
571 malaria parasites. *Nat. Commun.* *9*, 4248

572 Frenal, K., Dubremetz, J. F., Lebrun, M. and Soldati-Favre, D. (2017). Gliding motility
573 powers invasion and egress in Apicomplexa. *Nature Rev.* *15*, 645–660.

574 Gilson, P. R. and Crabb, B. S. (2009). Morphology and kinetics of the three distinct
575 phases of red blood cell invasion by *Plasmodium falciparum* merozoites. *Int. J.*
576 *Parasitol.* *39*, 91–6.

577 Grassi, B. Studi di uno zoologo sulla malaria. (1900). R. Accademia dei Lincei.

578 Hakansson, S., Morisaki, H., Heuser, J. and Sibley, L. D. (1999). Time-lapse video

579 microscopy of gliding motility in *Toxoplasma gondii* reveals a novel, biphasic

580 mechanism of cell locomotion. Mol. Biol. Cell. 10, 3539–47.

581 Jones, M.L., Das, S., Belda, H., Collins, C.R., Blackman, M.J., and Treeck, M. (2016).

582 A versatile strategy for rapid conditional genome engineering using loxP sites in a

583 small synthetic intron in *Plasmodium falciparum*. Sci. Rep. 6, 2180.

584 Kan, A., Tan, Y.H., Angrisano, F., Hanssen, E., Rogers, K.L., Whitehead, L., Mollard,

585 V.P., Cozijnsen, A., Delves, M.J., Crawford, S., et al. (2014). Quantitative analysis of

586 *Plasmodium* ookinete motion in three dimensions suggests a critical role for cell

587 shape in the biomechanics of malaria parasite gliding motility. Cell. Microbiol. 5,

588 734–50.

589 Kudryashev, M., Münter, S., Lemgruber, L., Montagna, G., Stahlberg, H.,

590 Matuschewski, K., Meissner, M., Cyrklaff, M., and Frischknecht, F. (2012). Structural

591 basis for chirality and directional motility of *Plasmodium* sporozoites. Cell. Microbiol.

592 14, 1757–68.

593 McGhee, R. B. (1953). The infection by *Plasmodium lophurae* of duck erythrocytes in

594 the chicken embryo. J. Exp. Med. 97, 773–82.

595 Miller, L.H., Aikawa, M., Johnson, J.G., and Shiroishi, T. (1979). Interaction between

596 cytochalasin B-treated malarial parasites and erythrocytes: Attachment and junction

597 formation. J. Exp. Med. 149, 172-84.

598 Mohring, F., Hart, M.N., Rawlinson, T.A., Henrici, R., Charleston, J.A., Diez

599 Benavente, E., Patel, A., Hall, J., Almond, N., Campino, S., et al. (2019). Rapid and

600 iterative genome editing in the malaria parasite *Plasmodium knowlesi* provides new

601 tools for *P. vivax* research. Elife. 8, e45829.

602 Moon, R.W., Taylor, C.J., Bex, C., Schepers, R., Goulding, D., Janse, C.J., Waters,
603 A.P., Baker, D.A., and Billker, O. (2009). A cyclic GMP signalling module that
604 regulates gliding motility in a malaria parasite. *PLoS Pathog.* 9, e1000599.

605 Moon, R.W., Hall, J., Rangkuti, F., Ho, Y.S., Almond, N., Mitchell, G.H., Pain, A.,
606 Holder, A.A., and Blackman, M.J. (2013). Adaptation of the genetically tractable
607 malaria pathogen *Plasmodium knowlesi* to continuous culture in human erythrocytes.
608 *Proc. Natl. Acad. Sci. U. S. A.* 110, 531–536.

609 Obaldia, N., Meibalan, E., Sa, J.M., Ma, S., Clark, M.A., Mejia, P., Moraes Barros,
610 R.R., Otero, W., Ferreira, M.U., Mitchell, J.R., et al. (2018). Bone marrow is a major
611 parasite reservoir in *Plasmodium vivax* infection. *MBio* 9, e00625-18.

612 Perrin, A.J., Collins, C.R., Russell, M.R.G., Collinson, L.M., Baker, D.A., and
613 Blackman, M.J. (2018). The actinomyosin motor drives malaria parasite red blood
614 cell invasion but not egress. *MBio* 9, e00905-18.

615 Russell D. G. and Sinden R. E. (1981). The role of the cytoskeleton in the motility of
616 coccidian sporozoites. *J. Cell. Sci.* 50: 345-59.

617 Singh, S., Alam, M. M., Pal-Bhowmick, I., Brzostowski, J. A. and Chitnis, C. E.
618 (2010). Distinct external signals trigger sequential release of apical organelles during
619 erythrocyte invasion by malaria parasites. *PLoS Pathog.* 6, e1000746.

620 Tardieu, I., and Baum, J. (2016). Reassessing the mechanics of parasite motility
621 and host-cell invasion. *J. Cell. Biol.* 214, 507–515.

622 Tibúrcio, M., Yang, A.S.P., Yahata, K., Suárez-Cortés, P., Belda, H., Baumgarten, S.,
623 van de Vegte-Bolmer, M., van Gemert, G.-J., van Waardenburg, Y., Levashina, E.A.,
624 et al. (2019). A novel tool for the generation of conditional knockouts to study gene
625 function across the *Plasmodium falciparum* life cycle. *MBio* 10, e01170-19.

626 Trager, W. and Jensen, J. B. (1976). Human malaria parasites in continuous culture.

627 Science 193, 673–675.

628 Treeck, M., Zacherl, S., Herrmann, S., Cabrera, A., Kono, M., Struck, N.S.,

629 Engelberg, K., Haase, S., Frischknecht, F., Miura, K., et al. (2009). Functional

630 analysis of the leading malaria vaccine candidate AMA-1 reveals an essential role for

631 the cytoplasmic domain in the invasion process. PLoS Pathog. 5, e1000322.

632 Wahlgren, M., Goel, S. and Akhouri, R. R. (2017). Variant surface antigens of

633 *Plasmodium falciparum* and their roles in severe malaria. Nat. Rev. Microbiol. 15,

634 479–491.

635 Yahata, K., Treeck, M., Culleton, R., Gilberger, T. W. and Kaneko, O. (2012). Time-

636 lapse imaging of red blood cell invasion by the rodent malaria parasite *Plasmodium*

637 *yoelii*. PLOS ONE 7, e50780.

638 Yang, A.S.P., and Boddey, J.A. (2017). Molecular mechanisms of host cell traversal

639 by malaria sporozoites. Int. J. Parasitol. 47, 129-136.

640 Zhang, M., Wang, C., Otto, T.D., Oberstaller, J., Liao, X., Adapa, S.R., Udenze, K.,

641 Bronner, I.F., Casandra, D., Mayho, M., et al. (2018). Uncovering the essential

642 genes of the human malaria parasite *Plasmodium falciparum* by saturation

643 mutagenesis. Science 360, eaap7847.

644

1 **Supplemental Information**

2

3 **Gliding motility of *Plasmodium* merozoites**

4

5 Kazuhide Yahata^{1,2,5,*}, Melissa N. Hart^{3,5}, Heledd Davies², Masahito Asada^{1,4},
6 Thomas J. Templeton¹, Moritz Treeck², Robert W. Moon^{3,*}, Osamu Kaneko¹

7

8

9 **Supplementary Figures**

10 **Figure S1.** *P. knowlesi* merozoite gliding speed and duration.

11

12 **Figure S2.** Generation of *P. knowlesi* AMA-1 mNeonGreen tagged parasites.

13

14 **Figure S3.** *P. falciparum* merozoite gliding assay with a panel of chemical
15 compounds.

16

17 **Figure S4.** Effect of AMA1-deletion for merozoite gliding motility, erythrocyte
18 deformation, and merozoite internalization.

19

20

21 **Supplementary Movies**

22 **Movie S1:** *P. falciparum* merozoite gliding motility and erythrocyte invasion.

23 Parasites were imaged on an ibiTreat coverslip at a rate of 100 frames/second.

24

25 **Movie S2:** Gliding motility of *P. falciparum* merozoites with DMSO. Parasites treated
26 with 0.1% DMSO were imaged on an ibiTreat coverslip at a rate of 100
27 frames/second.

28

29 **Movie S3:** Gliding motility of *P. falciparum* merozoites with cytochalasin D (CyD).
30 Parasites treated with 10 μ M CyD were imaged on an ibiTreat coverslip at a rate of
31 10 frames/second.

32

33 **Movie S4:** Live microscopy of *P. knowlesi* merozoites completing several short
34 glides on the surface of erythrocytes. Parasites were imaged on a poly-L-lysine-
35 coated coverslip at a rate of 1 frame/second. A red arrow appears at the beginning of
36 each glide.

37

38 **Movie S5:** *P. knowlesi* merozoites treated with 0.005% DMSO gliding on the surface
39 of a poly-L-lysine-coated coverslip. Parasites were filmed immediately post egress at
40 a rate of 1 frame/second.

41

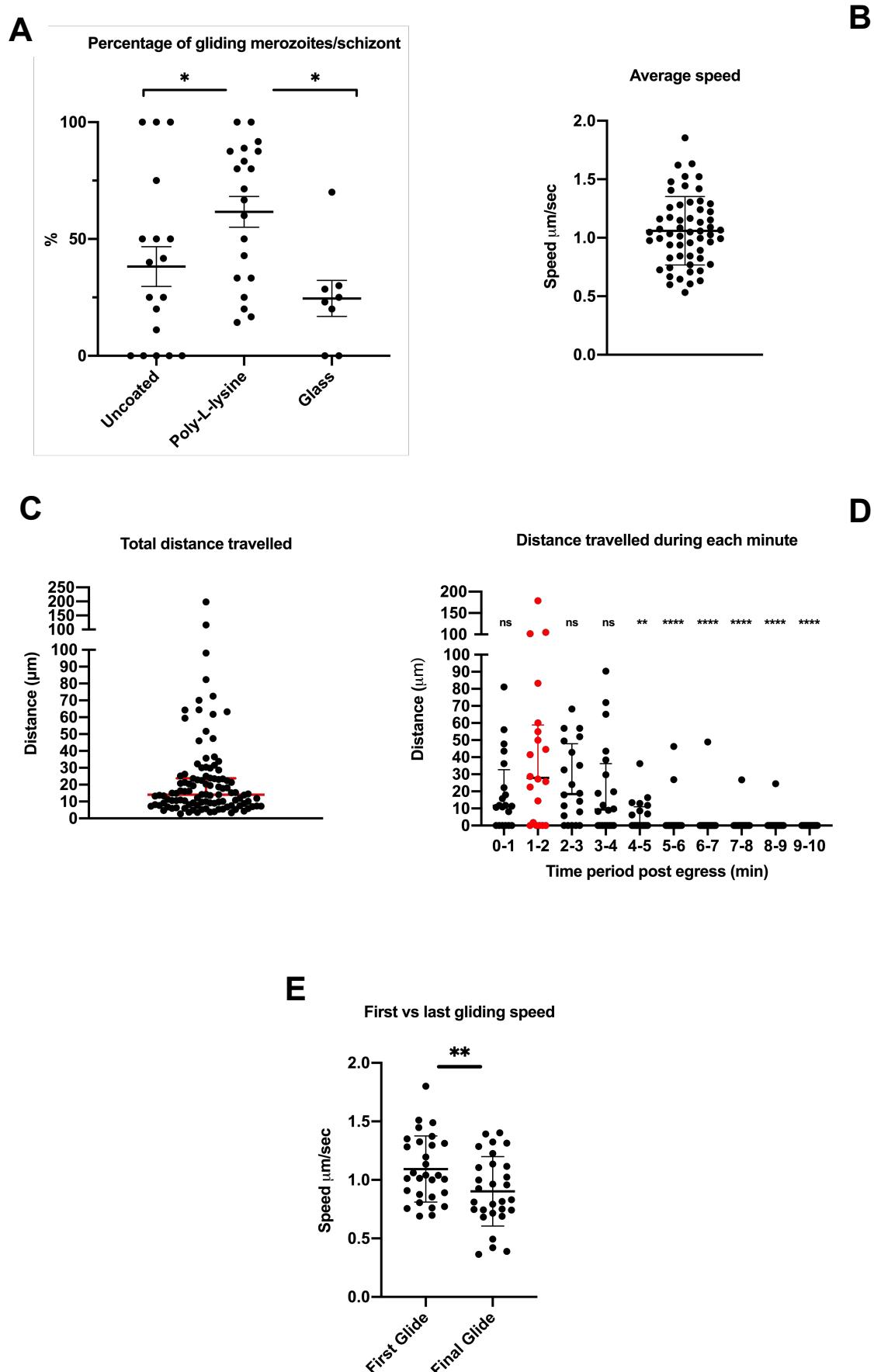
42 **Movie S6:** Egress of *P. knowlesi* merozoites treated with 100 nM CyD on the surface
43 of a poly-L-lysine-coated coverslip. Parasites were filmed at a rate of 1 frame/second.

44

45 **Movie S7:** *P. knowlesi* merozoite, designated by a red cross, demonstrating
46 corkscrew-like rotation, while travelling across a poly-L-lysine-coated coverslip.
47 Parasites were filmed at a rate of 10 frames/second.

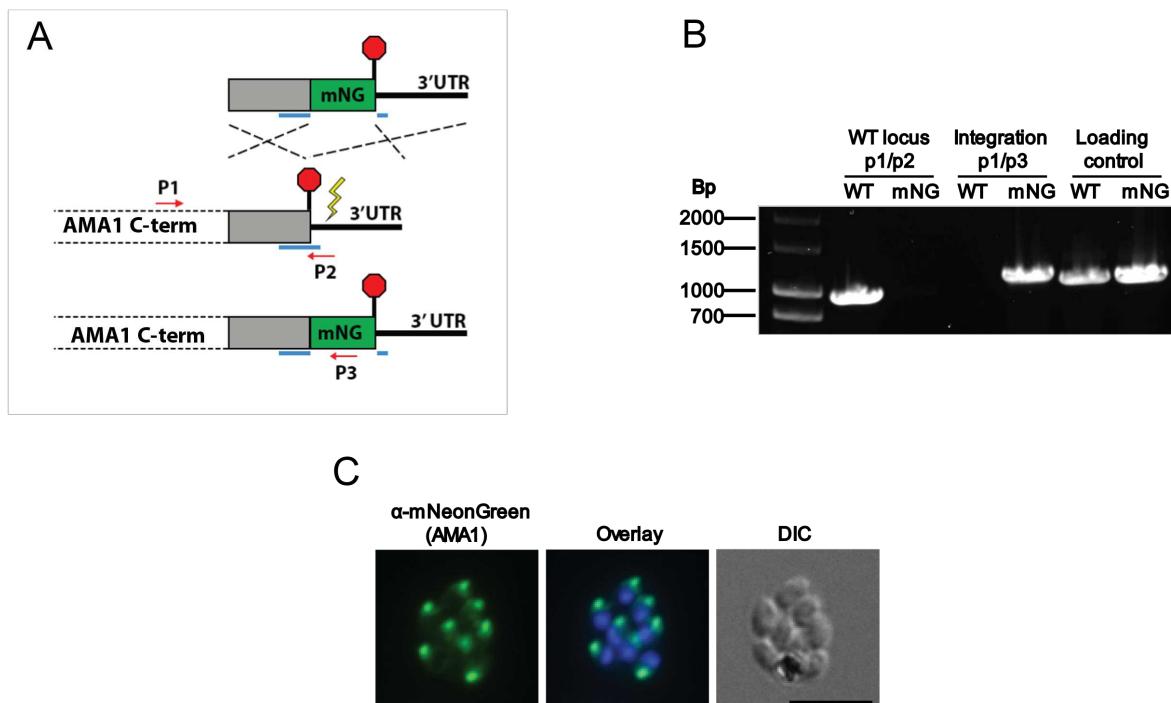
48

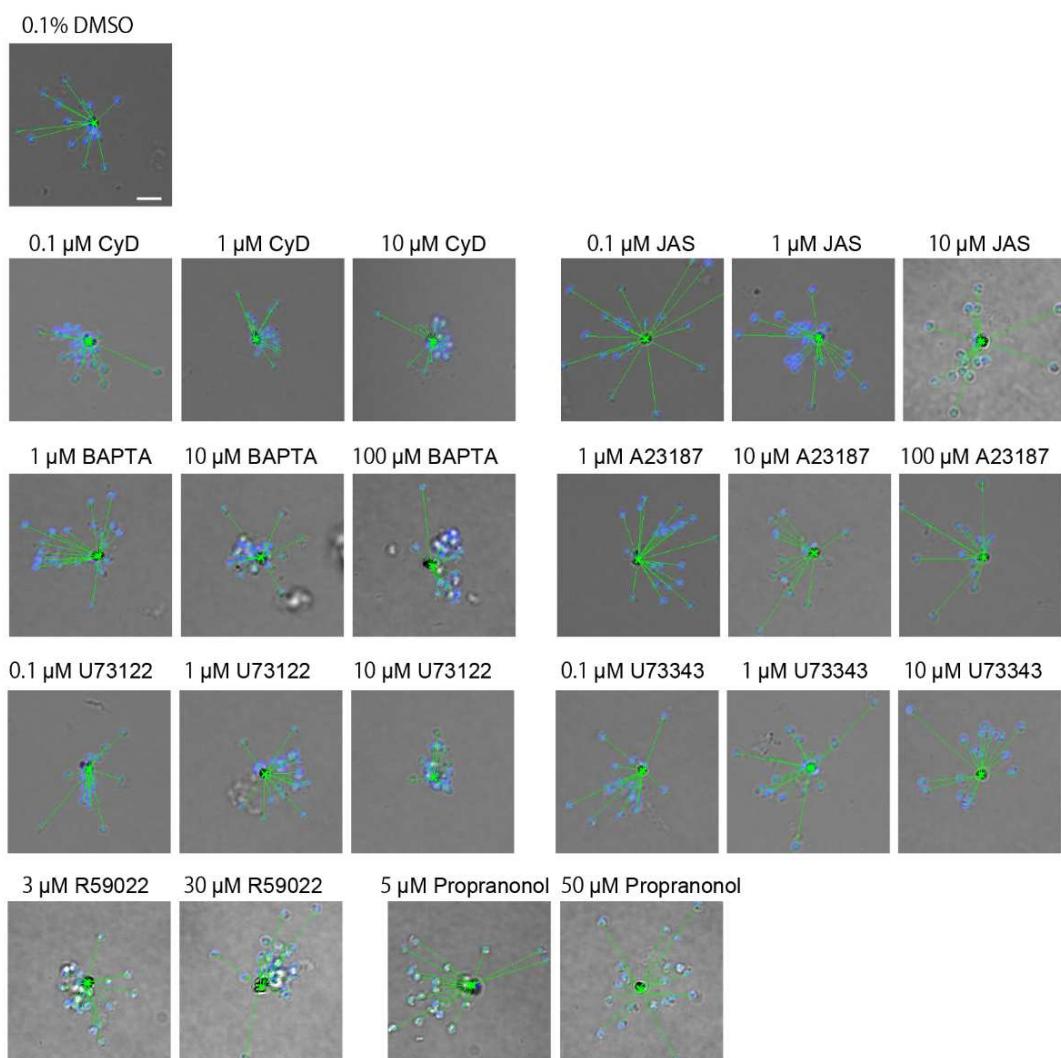
49 **Movie S8:** AMA1-mNeonGreen tagged *P. knowlesi* merozoite invading an
50 erythrocyte via its ‘wide’ apical end. Parasites were filmed at a rate of 1
51 frame/second.


52

53

54 **Supplementary Table**


55 **Table S1:** Primers for PCR listed for generation of *P. knowlesi* AMA-1 mNeonGreen
56 tagged parasites.

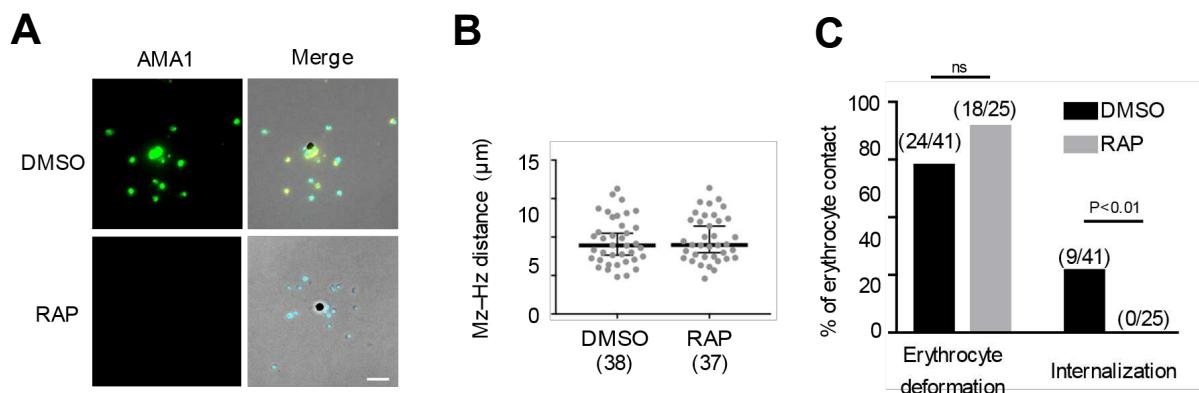

57 **Supplementary Figures**

59 **Figure S1: *P. knowlesi* merozoite gliding speed and duration.** **A**, merozoite
60 motility on different surfaces. The percentage of merozoites exhibiting motility
61 decreases from 62% on poly-L-lysine surfaces ($n = 20$ schizonts) to 38% on
62 uncoated surfaces ($n = 18$ schizonts; * $p < 0.05$) and 25% on glass surfaces ($n = 8$; *
63 $p < 0.02$). Means compared using one-way ANOVA and Dunnett's multiple
64 comparison test. Error bars denote +/- 1 s.d. **B**, Speeds of individual merozoites
65 (average = 1.06 $\mu\text{m}/\text{second}$; $n = 57$ merozoites). Error bars denote +/- 1 s.d. **C**, Total
66 distance travelled by each merozoite. Merozoites travelled a median distance of 14
67 μm during the 10-minute window of imaging (minimum = 2.8 μm , maximum = 198.6
68 μm ; $n = 109$ merozoites). **D**, Distances travelled by schizonts (a total of distances
69 travelled by each merozoite) during each minute post egress ($n = 20$ schizonts). The
70 majority of gliding occurred within 5 minutes post egress, with peak gliding (median
71 of 28 μm travelled) occurring 1-2 minutes post egress (** $p < 0.01$, **** $p < 0.0001$,
72 as determined by a Kruskal-Wallis test). This delay is likely due to a small 'settling
73 period' during the first 60 seconds, while merozoites disperse and begin to connect
74 to the slide coverslip. Error bars denote interquartile range. **E**, First vs last gliding
75 speeds. Comparison by two-tailed paired t-test between the speed of the first and
76 final glides of merozoites (* $p < 0.005$; $n = 29$) shows that gliding speed decreases
77 from 1.09 $\mu\text{m}/\text{second}$ (average first glide) to 0.90 $\mu\text{m}/\text{second}$ (average last glide),
78 indicative of decreasing gliding efficiency over time. Error bars denote +/- 1 s.d.

79
80
81

102

103 **Figure S3: *P. falciparum* merozoite gliding assay with a panel of chemical**
104 **compounds.** Compound-treated merozoites were allowed to egress and fixed. The


105 distance between merozoite DNA stained with Hoechst33342 (Blue) and hemozoin

106 were measured (green line). Cytochalasin D (CyD), jasplakinolide (JAS), BAPTA-AM

107 (BAPTA), A23187, U73122, U73343, R59022, and propranolol were used in this

108 assay. Scale bar represents 5 μ m.

109

