

1 **Genome-wide mutagenesis identifies factors involved in *Enterococcus faecalis* vaginal adherence**
2 **and persistence.**

3
4 Norhan Alhajjar^{1, #}, Anushila Chatterjee^{1, #}, Brady L. Spencer¹, Lindsey R. Burcham¹, Julia L. E.
5 Willett², Gary M. Dunny², Breck A. Duerkop^{1*}, and Kelly S. Doran^{1*}.

6
7 ¹Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz
8 Medical Campus, Aurora, CO, USA.

9 ²Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis,
10 MN, USA.

11
12
13 [#]Designates equal contribution - author order chosen alphabetically
14 *Corresponding authors: Breck A. Duerkop and Kelly S. Doran, Department of Immunology and
15 Microbiology, University of Colorado School of Medicine, 12800 East 19th Avenue Aurora, CO, USA.

16 Phone: (303) 724-3539, Fax: (303) 724-4226, E-mail: breck.duerkop@cuanschutz.edu,
17 kelly.doran@cuanschutz.edu

18
19
20 RUNNING TITLE: *Enterococcus faecalis* Vaginal Colonization

21 **ABSTRACT**

22 *Enterococcus faecalis* is a Gram-positive commensal bacterium native to the gastrointestinal tract and an
23 opportunistic pathogen of increasing clinical concern. *E. faecalis* also colonizes the female reproductive
24 tract and reports suggest vaginal colonization increases following antibiotic treatment or in patients with
25 aerobic vaginitis. Currently, little is known about specific factors that promote *E. faecalis* vaginal
26 colonization and subsequent infection. We modified an established mouse vaginal colonization model to
27 explore *E. faecalis* vaginal carriage and demonstrate that both vancomycin resistant and sensitive strains
28 colonize the murine vaginal tract. Following vaginal colonization, we observed *E. faecalis* in vaginal,
29 cervical and uterine tissue. A mutant lacking endocarditis- and biofilm-associated pili (Ebp) exhibited a
30 decreased ability to associate with human vaginal and cervical cells *in vitro*, but did not contribute to
31 colonization *in vivo*. Thus, we screened a low-complexity transposon (Tn) mutant library to identify
32 novel genes important for *E. faecalis* colonization and persistence in the vaginal tract. This screen
33 revealed 383 mutants that were underrepresented during vaginal colonization at 1, 5 and 8 days post-
34 inoculation compared to growth in culture medium. We confirmed that mutants deficient in
35 ethanolamine catabolism or in the type VII secretion system were attenuated in persisting during vaginal
36 colonization. These results reveal the complex nature of vaginal colonization and suggest that multiple
37 factors contribute to *E. faecalis* persistence in the reproductive tract.

38

39 **IMPORTANCE**

40 Despite increasing prevalence and association of *E. faecalis* with aerobic vaginitis, essentially nothing is
41 known about the bacterial factors that influence *E. faecalis* vaginal colonization. We have adapted an
42 animal model of vaginal colonization that supports colonization of multiple *E. faecalis* strains.
43 Additionally, we determined that ethanolamine utilization and type VII secretion system genes

44 contribute to vaginal colonization and persistence. Identification of factors important for vaginal
45 colonization and persistence provides potential targets for the development of therapeutics. This study is
46 the first to identify key determinants that promote vaginal colonization by *E. faecalis*, which may
47 represent an important reservoir for antibiotic resistant enterococci.

48

49 **INTRODUCTION**

50 *Enterococcus faecalis* is an opportunistic pathogen that resides in the human gastrointestinal and
51 urogenital tracts (1, 2). While *E. faecalis* colonization is normally asymptomatic, certain populations are
52 at risk for severe disease including urinary tract infections (3), wound infections, pelvic inflammatory
53 disease (PID), infective endocarditis, and adverse birth effects during pregnancy (reviewed in 4,
54 5). Enterococcal infections are often associated with the production of biofilms, assemblages of
55 microbes enclosed in an extracellular polymeric matrix that exhibit cell-to-cell interactions (reviewed in
56 6). These biofilms have been observed on catheters, diabetic ulcers, and wounds resulting in severe
57 infection. Treatment of enterococcal infections is becoming increasingly problematic due to their
58 augmented ability to acquire mobile genetic elements, resulting in increased resistance to antibiotics,
59 including “last-line-of-defense” antibiotics such as vancomycin (reviewed in 7, 8). Recently, there has
60 been an increase in the emergence of vancomycin resistant enterococci (9), putting
61 immunocompromised individuals at risk for developing severe chronic enterococcal infections. The
62 emergence of vancomycin resistant enterococci (10) and its prevalence in both community and
63 nosocomial settings is concerning and necessitates the development of alternative therapeutics to treat
64 enterococcal infections.

65

66 *E. faecalis* encodes a multitude of virulence factors that allow the bacterium to colonize and persist in
67 different sites of the human body. Surface proteins such as the adhesin to collagen (Ace), enterococcal

68 fibronectin binding protein A (EfbA), aggregation substance (AS), and the endocarditis-and biofilm-
69 associated pilin (Ebp) have been previously shown to play important roles in infective endocarditis and
70 UTIs (reviewed in 11). Secreted factors such as gelatinase (12), autolysin A (13), and serine protease
71 (SprE) are biofilm-associated factors that are involved in the degradation of host substrates, including
72 collagen, fibrin and certain complement components (14). Many of these virulence factors are regulated
73 via quorum sensing, which may be responsible for the switch from a commensal to pathogenic state (15-
74 17).

75

76 Certain risk factors are associated with the transition of *E. faecalis* from commensalism to pathogenicity
77 such as immune status, prolonged hospital stay, and the use of antibiotics (18). *E.*
78 *faecalis* colonization and infection is often polymicrobial and these interactions have been observed in
79 the intestine, bloodstream, and wounds (reviewed in 19). Furthermore, *E. faecalis* is frequently found in
80 the vaginal tract of healthy women (20, 21) and its prevalence is increased in women diagnosed
81 with aerobic vaginitis (AV), an inflammatory response accompanied by depletion of
82 commensal *Lactobacillus* sp. and increased presence of opportunistic pathogens such as *E. faecalis*,
83 Group B *Streptococcus* (GBS), *Staphylococcus aureus*, and *Escherichia coli* (22, 23). Symptoms of
84 AV include malodor and discomfort, but AV can transition to more serious complications such as PID,
85 severe UTIs, and complications during pregnancy. While it is evident that *E. faecalis* colonizes the
86 human vaginal tract, the molecular determinants that allow enterococci to colonize and persist in the
87 vaginal tract remain to be identified.

88

89 In this study, we modified our previously established GBS vaginal colonization model to analyze *E.*
90 *faecalis* vaginal colonization and persistence. We determined that *E. faecalis* OG1RF (a rifampicin and
91 fusidic acid derivative of strain OG1) and vancomycin resistant *E. faecalis* V583 can colonize and

92 persist in the vaginal tract of CD1 and C57BL/6 mouse strains. We detected fluorescent *E. faecalis* in
93 the vaginal lumen as well as the cervical and uterine tissues of colonized mice. Further, we demonstrated
94 that an *E. faecalis* strain lacking Ebp pili is less adherent to vaginal cervical epithelium *in vitro*, but not
95 attenuated *in vivo*. Thus, we screened an *E. faecalis* OG1RF transposon (Tn) mutant library for mutants
96 that are underrepresented in the vaginal tract compared to the culture input, revealing multiple factors
97 for *E. faecalis* persistence within the vagina. These factors include sortase-dependent proteins (SDPs),
98 ethanolamine utilization genes, and genes involved in type VII secretion system (T7SS) machinery. We
99 confirmed that a mutant strain in ethanolamine catabolism was significantly attenuated in the ability to
100 colonize the vaginal epithelium, and T7SS was required to ascend in the female reproductive tract. This
101 work is an important first step in identifying factors required for enterococcal vaginal colonization and
102 will provide insight into potential therapeutic targets aimed at mitigating *E. faecalis* vaginal colonization
103 in at-risk individuals.

104

105 **RESULTS**

106 ***E. faecalis* colonization of the female reproductive tract.**

107 To characterize the ability of *E. faecalis* to interact with the epithelial cells of the lower female
108 reproductive tract, we performed *in vitro* quantitative adherence assays using *E. faecalis* strains V583
109 (24) and OG1RF (25). An inoculum of 10^5 CFU/well (multiplicity of infection [MOI] = 1) was added to
110 a confluent monolayer of immortalized human vaginal and endocervical epithelial cells. Following 30
111 minutes of incubation, the cells were washed to remove non-adherent bacteria, the epithelial cells were
112 detached from the plates, and adherent bacteria were plated on agar. Both strains exhibited substantial
113 adherence to both cell lines (Fig. 1A). Next, we assessed the ability of *E. faecalis* to establish
114 colonization of the murine vaginal tract. The vaginal lumen of C57BL/6 were swabbed and swabs were

115 plated on CHROM™ agar to determine the presence of native enterococci. While native enterococci are
116 detected on CHROM™ agar, no mice were colonized with strains that resemble *E. faecalis* V583 or
117 OG1RF, as no colonies appeared on agar supplemented with antibiotics that select for V583 and
118 OG1RF. Next, C57BL/6 mice were treated with β-estradiol 1 day prior to inoculation with 10^7 CFU
119 of *E. faecalis* V583 or OG1RF. After 1 day post-inoculation, the vaginal lumen was swabbed and
120 bacteria were plated to enumerate *E. faecalis* V583 and OG1RF vaginal colonization levels (Fig. 1B).
121 Swabs were plated on selective agar to ensure quantification of only the enterococcal strains of interest,
122 restricting growth of native enterococcus. To determine whether *E. faecalis* ascends into reproductive
123 tissues during colonization, murine vaginal, cervical, and uterine tissues were collected and
124 homogenized to enumerate *E. faecalis* V583 abundance. *E. faecalis* was recovered from all mice 1 day
125 post-inoculation in all tissues tested (Fig. 1C) and the CFU recovered from the vaginal swabs were
126 similar to the total CFU counts from the vaginal tissue homogenates (Fig. 1B, C). This level and range
127 of recovered *E. faecalis* CFU is similar to what we have observed using this mouse model for GBS and
128 *S. aureus* vaginal colonization (26, 27). To visualize *E. faecalis* within the murine reproductive tract,
129 mice were inoculated with either WT *E. faecalis* V583 or a V583 strain expressing green fluorescent
130 protein (GFP) (28). These strains both colonize the vaginal tract (Fig. S1A). We harvested the female
131 reproductive tract 1 day post-inoculation to avoid the loss of the GFP plasmid and made serial sections
132 of these tissues, and performed fluorescent microscopy to visualize *E. faecalis*. We observed numerous
133 fluorescent bacteria in the vaginal and uterine lumen (Fig. 1D, F) and embedded in the cervical
134 lamina propria (Fig. 1E). We did not observe background green fluorescence in naïve mice (Fig. S1B, C,
135 D), which coincides with previous experiments performed with GBS and *S. aureus* (26, 27). The
136 presence of fluorescent *E. faecalis* in the cervix and uterus shows that *E. faecalis* can move from the
137 vaginal lumen to the superior organs of the female reproductive tract.

138

139 ***E. faecalis* persists in the vaginal tract.**

140 To assess vaginal persistence, C57BL/6 mice were colonized with *E. faecalis* V583 or OG1RF and
141 swabbed to determine bacterial load over time. Mice were swabbed daily until no colonies appeared on
142 agar selective for V583 or OG1RF, indicating bacterial clearance from the vaginal lumen. While V583
143 persisted longer in the mouse vaginal tract, the mean CFU recovered for both V583 and OG1RF
144 remained constant for the first week and then declined as mice eventually cleared both strains by 11-13
145 days (Fig. 2A, B). To determine if enterococcal vaginal persistence differs across mouse strains,
146 C57BL/6 and CD1 mice were inoculated with V583 and swabbed over time. Both mouse strains were
147 initially colonized with V583, but bacteria in C57BL/6 mice persisted longer (Fig. 2C, D). By day six
148 only 20% of CD1 mice remained colonized compared to 85% of C57BL/6 mice. Differences in vaginal
149 persistence may be due to differences in the native vaginal microbiota or immune status between mouse
150 strains. It is also possible that bacteria occupy different niches within the reproductive tract of different
151 mouse strains, which warrants further investigation. Overall, these results show that mouse strain
152 background influences *E. faecalis* vaginal colonization and that C57BL/6 mice are a sufficient model to
153 assess prolonged *E. faecalis* vaginal colonization and persistence.

154

155 **Enterococcal pili contribute to interaction with reproductive tract tissues.**

156 The endocarditis- and biofilm-associated pilin (Ebp) of *E. faecalis* mediates infective endocarditis and
157 UTIs(29-32), thus we hypothesized that Ebp may similarly contribute to vaginal colonization. To
158 determine whether Ebp is important for facilitating interaction with the vaginal epithelium, we used a
159 deletion mutant of *E. faecalis* OG1RF lacking all pilin structural components (Δ ebpABC) (33). We
160 observed that the pilus mutant exhibited significantly reduced adherence to human vaginal and
161 endocervical cells *in vitro* (Fig. 3A, B). To determine if Ebp is important for *in vivo* vaginal colonization

162 and persistence, mice were inoculated with either WT OG1RF or OG1RF Δ ebpABC and colonization
163 was quantified over the course of 12 days. We observed no differences in the CFU recovered from the
164 vaginal lumen between WT OG1RF and OG1RF Δ ebpABC strains (Fig. 3C). Taken together these data
165 suggest that Ebp contributes to *E. faecalis* attachment to reproductive tract tissues, but additional factors
166 are likely required for persistence in the vaginal lumen *in vivo*.

167

168 **Identification of additional vaginal colonization factors by transposon mutagenesis analysis.**

169 To identify genetic determinants that confer enterococcal vaginal persistence, we used sequence-
170 defined *mariner* technology transposon sequencing (SMarT TnSeq) to screen an *E. faecalis* OG1RF Tn
171 library consisting of 6,829 unique mutants (34). The library was grown to mid-log phase in triplicate and
172 10^7 CFU of each replicate was vaginally inoculated into a group of 5 C57BL/6 mice (Fig. 4A). Vaginal
173 swabs were plated on selective media daily for 8 days and CFU were quantified to assess colonization of
174 the OG1RF Tn library compared to WT OG1RF (Fig. 4A and B). Genomic DNA was isolated from
175 pooled Tn libraries recovered on days 1, 5, and 8 post-inoculation and Tn insertion junctions in *E.*
176 *faecalis* genomic DNA were sequenced as described by Dale *et al.* (34). Sequenced reads were mapped
177 to the *E. faecalis* OG1RF genome to identify genes that are necessary for *E. faecalis* vaginal
178 colonization.

179

180 We observed that the *in vivo* vaginal environment altered the abundance of select mutants from the Tn
181 library pool compared to the original culture input (Fig. 4C, D, E) (Tables S1 - S5). At day 1, a total of
182 667 depleted mutants were identified (Table S1), along with 544 (Table S2) and 507 (Table S3) at days
183 5 and 8 respectively; 383 of these mutants were identified at all three time points (Fig. 5A, Table S4A).
184 Classification by clusters of orthologous groups of proteins (COGs) could be identified in 196 mutants

185 from all 3 time points, the majority of which are involved in carbohydrate, amino acid, lipid and
186 nucleotide transport/metabolism, as well as those involved in transcription and defense mechanisms
187 (Fig. 5B). Of the remaining 187 mutants, 85 had insertions in intergenic regions and 102 were not
188 assigned a COG domain. Interestingly the *ebpC* transposon mutant (*OG1RF_10871*, which encodes the
189 shaft component of Ebp) was underrepresented at all time points (Fig. 4C, D, E, Table S4A). Additional
190 mutants of interest included those involved in ethanolamine catabolism and T7SS components, in which
191 various components of these systems were underrepresented at all three time points (Tables 1 and S4A).
192 Furthermore, mutants for multiple sortase-dependent proteins (SDPs), including *ebpC*, were
193 underrepresented at all time points (Tables 1 and S4A), suggesting that these factors may play important
194 roles vaginal colonization and persistence.

195
196 Potential gain-of-function mutations have also been discovered during genome-wide library screens of
197 fitness determinants in other bacteria (35-39). In addition to mutations that adversely impact vaginal
198 colonization, our data shows that Tn insertions in 11 protein coding genes and 11 intergenic regions
199 potentially enhance bacterial fitness *in vivo*. Nineteen of the 22 enriched mutants were common between
200 days 1 and 5 whereas the other 3 were unique to day 8 (Table S5A and S5B). Since the majority of the
201 mutants with increased fitness encode hypothetical proteins, the relationship between these genes and
202 vaginal colonization is currently unclear and requires further investigation.

203
204 **Ethanolamine utilization and T7SS genes contribute to *E. faecalis* persistence in the reproductive**
205 **tract.**

206 Our TnSeq analysis revealed many potential mutants that exhibited decreased colonization in the murine
207 vaginal tract. We sought to confirm these results by analyzing mutants from systems with multiple

208 affected genes. One significantly affected operon was ethanolamine (EA) utilization (*eut*) which consists
209 of 19 genes in *E. faecalis* (40). Mutants in 4 *eut* genes were significantly underrepresented *in vivo*
210 compared to the culture input at all time points. These included transposon mutants of the genes
211 encoding both subunits for ethanolamine ammonia lyase, *eutB* (*OG1RF_11344*) and *eutC*
212 (*OG1RF_11343*) (41), a carboxysome structural protein, *eutL* (*OG1RF_11342*) (42), and the response
213 regulator, *eutV* (*OG1RF_11347*), of the two-component system involved in the regulation of EA
214 utilization (43) (Table S4A). To assess the importance of EA utilization on *E. faecalis* vaginal
215 colonization, we co-colonized mice with *E. faecalis* OG1SSp (a derivative of OG1 that is resistant to
216 streptomycin and spectinomycin) and an OG1RF Δ *eutBC* mutant (44). We note that both WT strains,
217 OG1RF and OG1SSp, were able to colonize the vaginal tract at similar levels (Fig. S2). Further
218 chromosomal DNA sequence comparison of OG1RF and OG1SSp revealed multiple nucleotide
219 polymorphisms (SNPs) in OG1SSp, but no SNPs in genes in the *eut* locus (Table S6). Compared to the
220 WT OG1SSp strain, the Δ *eutBC* mutant was cleared significantly faster from the mouse vagina as seen
221 by CFU from individual mouse swabs, the mean CFU recovered and competitive index (CI) over time
222 (Fig. 6A, B, C). These results suggest that the utilization of ethanolamine is important for enterococcal
223 persistence in the vaginal tract.

224

225 We also observed that Tn insertion mutants in the T7SS locus were significantly underrepresented at all
226 time points *in vivo* compared to the culture input. The T7SS has been shown to play an important role in
227 virulence in multiple bacterial species such as *Staphylococcus*, *Listeria* and *Bacillus* (45). In *E. faecalis*,
228 genes in the T7SS locus have been shown to be induced during phage infection (46). We observed that
229 transposon mutants for *esaB* (*OG1RF_11103*), a putative cytoplasmic accessory protein; *OG1RF_11109*
230 and *OG1RF_11111*, putative toxin effector proteins; *OG1RF_11113*, a putative toxin, *OG1RF_11114*, a

231 transmembrane protein; and *OG1RF_11122*, a potential antitoxin protein were all significantly
232 underrepresented (Table S4A). To confirm the role of the T7SS in vaginal colonization, we utilized an
233 *esaB* (*esaB::tn*) mutant, in which *esaB* is disrupted by a transposon and thus Tn-mediated polar effects
234 may exist for this strain. Following co-colonization with *E. faecalis* OG1RF and the OG1RF *esaB::tn*
235 mutant strain, we observed that while there were no differences in initial colonization, fewer *esaB::tn*
236 mutant bacteria were recovered from the vaginal lumen at later time points (Fig. 6D). Since we only
237 observed differences in colonization between WT OG1RF and OG1RF *esaB::tn* at later time points, we
238 performed subsequent experiments to determine whether there were differences in ascension between
239 the two strains. Mice were co-colonized with the two strains and we harvested tissues at day 11, before
240 there were any colonization differences observed between the two strains. Here, we observed that WT
241 OG1RF outcompeted the *esaB::tn* mutant strain and was better able to access reproductive tract tissues
242 (Fig. 6E, F), indicating that the T7SS may be involved in vaginal persistence and ascension in the female
243 reproductive tract.

244

245 **DISCUSSION**

246 *E. faecalis* is associated with a wide spectrum of infections, particularly under immunocompromised
247 states and during compositional shifts in the host microbiota (47, 48). Although an increasing body of
248 evidence links enterococci with bacterial vaginosis (BV) and aerobic vaginitis (AV) (22, 23, 49-51), the
249 molecular determinants that facilitate *E. faecalis* colonization and persistence in the vaginal tract are
250 largely unknown. Here, we employed *in vitro* and *in vivo* systems to acquire genome-scale interactions
251 that confer *E. faecalis* fitness within the female reproductive tract. We show that both vancomycin
252 sensitive enterococci (VSE) and VRE adhere to cell types of vaginal and cervical origin, a signature of
253 bacterial colonization that precedes tissue invasion and systemic spread. Further, genetic features

254 involved in biofilm formation, ethanolamine utilization and polymicrobial interactions influence *E.*
255 *faecalis* vaginal carriage.

256

257 Previous studies have demonstrated the importance of Ebp pili in enterococcal virulence and biofilm
258 formation (19). We found that deletion of *ebpABC* attenuated binding to human vaginal and
259 endocervical cells but did not influence bacterial burden in the vaginal lumen, similar to the observed
260 function of Ebp pili in the intestine (52). Enhanced *E. faecalis* adherence in tissue culture compared to *in*
261 *vivo* colonization may reflect the lack of liquid and mucus flow that bacteria encounter within the
262 vaginal tract, emphasizing the significance of our animal model for investigating *E. faecalis*-vaginal
263 interactions. Consistent with this observation, an *in vivo* Tn library screen revealed only two
264 underrepresented biofilm-associated mutants, *ebpC-Tn* and *OG1RF_10506-Tn*, encoding a putative
265 polysaccharide deacetylase homolog implicated in low biofilm formation *in vitro* (53, 54). Together,
266 these results show that individual mutations in *ebp* or other well characterized biofilm genes are not
267 sufficient to impair vaginal niche establishment and/or persistence of enterococci, which likely depends
268 on the concerted effort of multiple factors. Furthermore, similar to *ebpC-Tn*, we observed that genes for
269 multiple sortase-dependent proteins (SDPs) were underrepresented at all time points during vaginal
270 colonization. The genome of OG1RF contains 21 sortase-dependent proteins, including Ebp (52). Other
271 than *ebpC* (*OG1RF_10871*), we observed that 4 other SDPs are underrepresented during vaginal
272 colonization, including *OG1RF_10811*, *OG1RF_11531*, *OG1RF_11764* and *OG1RF_12054* (Table 1).
273 Previous reports indicate the importance of SDPs during gastrointestinal colonization by enterococci
274 (52), implicating the possibility that multiple SDPs also play a role during vaginal colonization.

275

276 Transition from nutrient rich laboratory media to the vaginal tract likely imparts dramatic alterations in
277 *E. faecalis* metabolism. In support of this hypothesis, our high-throughput Tn mutant screen showed that
278 mutations in carbohydrate, amino acid and nucleotide metabolic pathways were indispensable in the
279 vaginal tract. Specifically, we showed that WT bacteria outcompete a *eut* locus mutant during vaginal
280 colonization. In contrast, Kaval and colleagues demonstrated that mutations in *eut* genes leads to a slight
281 increase in fitness within the intestine (55). This observation likely reflects varying metabolic
282 requirements of enterococci in different host environments. While a number of reports exist on the
283 contributions of EA catabolism in host-bacteria interactions within the intestine (56), studies are lacking
284 for the relevance of this EA metabolism in other host-associated environments. Our results raise
285 important questions regarding EA utilization in the female reproductive tract. Although commensal
286 microbes and the epithelium are rich sources of EA, the composition and source of EA in the vaginal
287 tract remains unknown. A recent report showed that *E. faecalis* EA utilization attenuates intestinal colitis
288 in IL10 knockout mice in the presence of a defined microbiota (57). Whether EA utilization promotes
289 virulence or commensalism for enterococci in the context of vaginal tissue remains to be determined.
290 Considering that the by-product of EA metabolism, acetate, is anti-inflammatory and promotes IgA
291 production in the intestine (58, 59), it is intriguing to consider that enterococcal EA catabolism might
292 modulate immune responses within the female reproductive tract.

293

294 T7SSs have been implicated in the maintenance of bacterial membrane integrity, virulence, and inter-
295 bacterial antagonism (45, 60-66). In *S. aureus*, T7SS encoded proteins confer protection from membrane
296 damage caused by host fatty acids (65, 66). Although *E. faecalis* T7SS genes were shown to be induced
297 in response to phage driven membrane damage, direct contributions of these genes in cell envelop
298 barrier function and/or virulence in the context of animal models are poorly defined. Our TnSeq analysis

299 revealed that insertional mutations in six T7SS genes diminished early and late vaginal colonization by
300 *E. faecalis* OG1RF. In vaginal co-colonization competition experiments, an *esaB::tn* strain reached WT
301 colonization levels early and showed a defect in long term persistence. The incongruence in the
302 colonization kinetics of T7SS mutant strains compared to T7SS-Tn library mutants which were observed
303 early after inoculation, presumably stem from the inherent differences in the vaginal milieu in these two
304 experiments. The TnSeq library employed in this screen is a complex population of approximately 7,000
305 unique mutants, and it is very likely that direct or indirect interactions between mutants influences
306 fitness. LXG-domain toxins, which are part of the T7SS, have been shown to antagonize neighboring
307 non-kin bacteria (63). The fact that two mutants with LXG-domain encoding gene mutations,
308 *OG1RF_11109* and *OG1RF_11111*, were underrepresented across all time points during vaginal
309 colonization suggests that these putative antibacterial proteins may influence enterococcal interactions
310 with the resident microbes of the vaginal tract.

311
312 In addition to genes encoding SDPs, ethanolamine utilization and T7SS, other Tn mutants that were
313 underrepresented in all time points are worth discussing. For example, *OG1RF_12241*, a homolog of the
314 oxidative stress regulator *hypR*, was underrepresented at all time points (Table S4A). We have recently
315 shown that this gene is involved in phage VPE25 infection of *E. faecalis* OG1RF (46). Furthermore,
316 enterococcal mutants in the CRISPR/cas9 locus (*OG1RF_10404* and *OG1RF_10407*) were
317 underrepresented at all three time points (Table S4A). While the role of CRISPR-Cas systems in
318 providing prokaryotic immunity to mobile genetic elements has been extensively investigated, there is
319 also evidence suggesting that this system may be involved in other prokaryotic processes besides
320 adaptive immunity. Cas9 has been shown to have various functions in regulation of virulence in a
321 number of bacteria including *Francisella novicida*, *Campylobacter jejuni*, and *Streptococcus agalactiae*

322 (67-69). In *E. faecalis*, CRISPR-Cas-harboring strains are associated with increased capacity to form
323 biofilms and increased mortality in a mouse urinary tract model (70). Our Tn-seq analysis further reveals
324 the potential importance for Cas9 during vaginal colonization, which warrants follow up studies.

325

326 While a majority of underrepresented mutants were common to all time points, we identified certain
327 mutants unique to either early or late colonization. For example, the ethanolamine utilization protein
328 EutQ (*OG1RF_11333*), a classified acetate kinase in *Salmonella enterica* (71), was significantly
329 underrepresented at day 1, but not the later time points. We also observed that Tn mutants for the
330 transmembrane signaling protein kinase IreK (*OG1RF_12384*) were underrepresented only at day 1. In
331 *E. faecalis*, IreK is involved in regulation of cell wall homeostasis (72), long-term persistence in the gut
332 and has also been shown to be essential for enterococcal T7SS expression and subsequent activity (73).
333 These proteins may therefore be important contributors to enterococcal vaginal colonization, though
334 further investigation is required. Our Tn-seq analysis also identified Tn mutants that were unique to day
335 8 post-inoculation, indicating that these factors may be important for later stage colonization and
336 persistence. One observed mutant was the *fsrB* gene (*OG1RF_11528*) of the Fsr quorum-sensing system,
337 which directly regulates virulence factors such as serine protease and gelatinase, while also indirectly
338 regulating other virulence factors involved in surface adhesion and biofilm development (74-76).
339 Although it is not well understood whether biofilms are being formed during vaginal colonization,
340 certain hits in our Tn-seq (i.e. *ebpC* and *fsrB*) analysis suggests that biofilm-associated factors play a
341 role in enterococcal persistence in the vaginal tract. Bacterial mutants for the response regulator *croR*
342 (*OG1RF_12535*) were also underrepresented only at the later time point. CroR has shown to be involved
343 in virulence regulation, cell wall homeostasis and stress response, and antibiotic resistance (77-79).
344 Finally, underrepresentation of the sortase-associated gene (*OG1RF_10872*) was also unique to late

345 colonization. The underrepresentation of enterococcal mutants late in vaginal colonization suggests
346 these factors may be important for long-term persistence of *E. faecalis* in the vaginal tract. While the
347 majority of underrepresented mutants were common to all time points, mutants unique to certain time
348 points indicate that some factors may be important for either initial colonization or enterococcal survival
349 in the vaginal tract.

350

351 Here, we report the utilization of a mouse model for investigating host-enterococcal interactions in the
352 vaginal tract. This will be a useful model for analyzing the bacterial and host factors that govern
353 enterococcal vaginal colonization, as well as characterizing the polymicrobial interactions that may
354 contribute to *E. faecalis* niche establishment and persistence. Transposon library screening of *E.*
355 *faecalis* recovered from the mouse vagina has revealed new insights into our understanding of
356 enterococcal vaginal carriage. Our results emphasize the importance of ethanolamine utilization and
357 T7SS components for successful *E. faecalis* colonization of the female reproductive tract, highlighting
358 the complex nature of this niche.

359

360 METHODS

361 **Bacterial strains and culture conditions.**

362 A detailed list of bacterial strains can be found in Table S7. *E. faecalis* strains V583 (80) and OG1- (RF
363 and SSp) (70, 81) were used for these experiments. *E. faecalis* was grown in brain heart infusion (BHI
364 (82)) broth at 37°C with aeration and growth was monitored by measuring the optical density at 600nm
365 (OD₆₀₀). For selection of *E. faecalis* V583, BHI agar was supplemented with gentamicin (100 µg/ml).
366 For selection of *E. faecalis* OG1RF, OG1RF Δ ebpABC (33) and OG1RF Δ eutBC (44), BHI agar was
367 supplemented with rifampicin (50 µg/ml) and fusidic acid (25 µg/ml). For selection of *E. faecalis*

368 OG1SSp, BHI agar was supplemented with streptomycin (150 µg/ml) and spectinomycin (100 µg/ml).
369 *E. faecalis* OG1RF *esaB::tn* (34) was grown on BHI agar supplemented with rifampicin (50 µg/ml),
370 fusidic acid (25 µg/L), and chloramphenicol (15 µg/ml).

371

372 ***In vitro* adherence assays**

373 Immortalized VK2 human vaginal epithelial cells and End1 human endocervical epithelial cells were
374 obtained from the American Type Culture Collection (VK2.E6E7, ATCC CRL-2616 and End1/E6E7,
375 ATCC CRL-2615) and were maintained in keratinocyte serum-free medium (KSFM; Gibco) with 0.1
376 ng/mL human recombinant epidermal growth factor (EGF; Gibco) and 0.05 mg/ml bovine pituitary
377 extract (Gibco) at 37°C with 5% CO². Assays to determine cell surface-adherent *E. faecalis* were
378 performed as described previously when quantifying GBS adherence (83). Briefly, bacteria were grown
379 to mid-log phase (OD₆₀₀ = 0.4 - 0.6) and added to cell monolayers (multiplicity of infection [MOI] = 1).
380 After a 30 minute incubation, cells were washed with phosphate-buffered saline (PBS) three times
381 following detachment with 0.1 mL of 0.25% trypsin-EDTA solution and lysed with addition of 0.4 mL
382 of 0.025% TritonX-100 in PBS by vigorous pipetting. The lysates were then serially diluted and plated
383 on Todd Hewitt agar (THA) to enumerate the bacterial CFU. Experiments were performed at least three
384 times with each condition in triplicate, and results from a representative experiment are shown.

385

386 **Murine vaginal colonization model.**

387 Animal experiments were approved by the Institutional Animal Care and Use Committee at University
388 of Colorado-Anschutz Medical Campus protocols #00316 and #00253 and performed using accepted
389 veterinary standards. A mouse vaginal colonization model for GBS was adapted for our studies (26).
390 Eight-week old female CD1 (Charles River) or C57BL/6 (Jackson) mice were injected intraperitoneally
391 with 0.5 mg 17 β -estradiol (Sigma) 1 day prior to colonization with *E. faecalis*. Mice were vaginally

392 inoculated by gently pipetting 10^7 CFU of *E. faecalis* in 10 μ L PBS into the vaginal tract, avoiding
393 contact with the cervix. On subsequent days the vaginal lumen was swabbed with a sterile ultrafine swab
394 (Puritan). For co-colonization, mice were inoculated with two of the following *E. faecalis* strains:
395 OG1SSp, OG1RF or deletion mutants in the OG1RF background. To assess tissue CFU, mice were
396 euthanized according to approved veterinary protocols and the female reproductive tract tissues were
397 dissected and placed into 500 μ L PBS and bead beat for 2 min to homogenize the tissues. The resulting
398 homogenate was serially diluted and *E. faecalis* CFU enumerated on BHI agar supplemented with
399 antibiotics to select for the strain of interest.

400

401 **Histology.**

402 Mice were inoculated with *E. faecalis* V583 containing a plasmid that expresses *gfp* (pMV158GFP) and
403 contains resistance to tetracycline (15 μ g/mL) [23]. After 1 day post-inoculation, the murine female
404 reproductive tract was harvested, embedded into Optimal Cutting Temperature (OCT) compound
405 (Sakura), and sectioned at 7 μ m with a CM1950 freezing cryostat (Leica). For fluorescence microscopy,
406 coverslips were mounted with VECTASHIELD mounting medium containing 4',6-diamidino-2-
407 phenylindole (DAPI, Vector Labs). Images were taken with a BZ-X710 microscope (Keyence) [22].

408

409 **Transposon mutant library growth and vaginal colonization.**

410 The *E. faecalis* OG1RF transposon mutant library was generated previously (34). The *E. faecalis*
411 OG1RF pooled transposon library was inoculated into 5 ml of BHI at a total of 10^8 CFU and grown with
412 aeration to an OD₆₀₀ of 0.5. The library was inoculated into the vaginal tracts of C57BL/6 mice at
413 10^7 CFU. The library was plated on BHI agar to confirm the inoculum for all groups of mice. Mice were
414 swabbed daily and swabs were plated on BHI supplemented with rifampicin (50 μ g/ml), fusidic acid
415 (25 μ g/ml) and chloramphenicol (20 μ g/ml) to quantify CFU. On days 1, 5, and 8, undiluted swabs were

416 plated on BHI agar with antibiotics and grown to a bacterial lawn. Bacteria were scraped and re-
417 suspended in PBS and pelleted. DNA from days 1, 5, 8, and the input culture was extracted from pellets
418 using a ZymoBIOMICS™ DNA MiniPrep kit (Zymo Research).

419

420 **Transposon library sequencing and data analysis.**

421 Transposon-junction DNA library preparation and Illumina NovaSeq 6000 DNA sequencing (150 base
422 paired end mode) was performed by the Microarray and Genomics Core at the University of Colorado
423 Anschutz Medical Campus as previously described (46). For downstream analysis of transposon-
424 junctions, we used only the R1 reads generated by paired end sequencing. Illumina adapter trimmed raw
425 reads were mapped to the *E. faecalis* OG1RF reference sequence (NC_017316.1) and differentially
426 abundant transposon mutants were identified using statistical analysis scripts established by Dale *et*
427 *al.*(34). The abundance of Tn mutants in culture was compared to input library used for culture
428 inoculation and mutants that are not significantly different ($p > 0.05$) between these two samples were
429 considered for the next steps of the analysis. For comparisons between *in vivo* and *in vitro* samples,
430 mutants were considered significantly different if the adjusted P value was < 0.05 and a \log_2 (fold
431 change) > 1 .

432

433 **Genomic DNA sequencing and comparative analysis**

434 *E. faecalis* genomic DNA was purified using a ZymoBIOMICS™ DNA Miniprep Kit (Zymo Research)
435 and 150 bp paired end sequencing was performed on Illumina NextSeq 550 by the Microbial Genome
436 Sequencing Center, University of Pittsburgh. *E. faecalis* OG1SSp genome DNA was purified using a
437 Qiagen DNeasy kit and was sequenced on the MiSeq platform (2 X 75 bp) at the University of
438 Minnesota Genomics Center. All reads were mapped to *E. faecalis* OG1RF reference sequence

439 (NC_017316.1) using CLC Workbench (Qiagen). The basic variant caller tool in CLC Genomics
440 Workbench was used to identify single nucleotide polymorphisms using default settings (similarity
441 fraction = 0.5 and length fraction = 0.8).

442

443 **Data availability.**

444 The Tn-Seq and genomic DNA reads have been deposited at the European Nucleotide Archive under
445 accession numbers PRJEB37929 and PRJEB39171, respectively.

446

447 **Statistical analysis.**

448 GraphPad Prism version 7.0 was used for statistical analysis and statistical significance was accepted at
449 P values of < 0.05 (* P < 0.05; ** P < 0.005; *** P < 0.0005; **** P < 0.00005). Specific tests are
450 indicated in figure legends.

451

452 **ACKNOWLEDGMENTS**

453 We thank Kimberly Kline for providing *E. faecalis* OG1RF Δ ebpABC, Danielle Garsin for providing *E.*
454 *faecalis* OG1RF Δ eutBC, Katrina Diener and Monica Ransom for custom TnSeq library preparation and
455 the Microarray and Genomics Core at the University of Colorado Anschutz Medical Campus for DNA
456 sequencing. This study was supported by the NIH 5T32AI007405-28 to B.L.S., the NIH/NIAID R21
457 AI130857 to K.S.D, the NIH/NIAID R01 AI141479 to B.A.D, and a University of Colorado School of
458 Medicine IMPA to K.S.D and B.A.D.

459

460 **FIGURE LEGENDS**

461

462 **Figure 1: *E. faecalis* colonizes the murine female reproductive tract.** (A) Adherence of *E. faecalis*
463 V583 and OG1RF to human vaginal and endocervical cells. Data are expressed as percent recovered
464 cell-associated *E. faecalis* relative to the initial inoculum. Experiments were performed in triplicate and
465 error bars represent standard deviations (SDs); the results of a representative experiment are shown. (B)
466 CFU counts of V583 and OG1RF recovered from vaginal swabs 1 day post-inoculation. (C) CFU counts
467 of V583 from vaginal, cervical and uterine tissue 1 day post-inoculation. (D, E, F) Mice were inoculated
468 with V583 expressing *gfp* and 7 μ m sections of vaginal (D), cervical (E) and uterine (F) tissue were
469 collected 1 day post-inoculation and stained with DAPI for fluorescence microscopy. White arrows
470 indicate green fluorescent bacteria present in tissue sections. Images were all taken at 40x magnification.
471 LP = lamina propria, EP = epithelial layer, Lu = lumen.

472

473 **Figure 2: *E. faecalis* persists in the murine vaginal tract.** (A and B) *E. faecalis* V583 and OG1RF in
474 the murine vaginal tract. C57BL/6 mice (n = 10) were inoculated with 10^7 V583 or OG1RF CFU and the
475 vaginal lumen of each mouse was swabbed daily and swabs were serially diluted and plated on selective
476 media to quantify CFU. Data are presented as recovered CFU per mouse (A) and mean recovered CFU
477 (B). Data was analyzed using a Two-way ANOVA; **P < 0.001. (C and D) CD1 (n = 10) and C57BL/6
478 (n = 7) mice were inoculated with V583 and the vaginal lumen of each mouse was swabbed daily,
479 serially diluted, and plated on selective media to quantify CFU. Data are presented as recovered CFU
480 per mouse (C) and mean recovered CFU (D). Black lines indicate the median of CFU values.

481

482 **Figure 3: The role of enterococcal pili during vaginal colonization.** (A and B) *E. faecalis* OG1RF
483 WT and OG1RF Δ ebpABC adherence to human vaginal (A) and endocervical (B) cells. Data are
484 expressed as percent recovered cell-associated *E. faecalis* relative to the initial inoculum. Experiments

485 were performed with four technical replicates and error bars represent SDs; the results of three
486 combined biological replicates are shown and analyzed using an unpaired t-test; *** P < 0.0001; **** P
487 < 0.00001. (C) C57BL/6 mice were inoculated with either OG1RF WT or OG1RF Δ ebpABC and the
488 vaginal lumen was swabbed daily. Data was analyzed using a Two-way ANOVA with Sidak's multiple
489 comparisons (P>0.05). Black lines indicate the median of CFU values.

490

491 **Figure 4: Identification of additional factors required for vaginal colonization and persistence by**
492 **transposon mutant library screen.** (A) Schematic representing experimental approach. C57BL/6 mice
493 were treated with 17 β -estradiol prior to inoculation with the OG1RF Tn library in triplicate groups or
494 WT OG1RF. The vaginal lumen was swabbed and CFU was enumerated daily. DNA from recovered
495 OG1RF Tn mutants was sequenced on days 1, 5 and 8. (B) CFU recovered from vaginal swabs of
496 triplicate groups of mice colonized with OG1RF Tn mutagenesis library (T1, T2, T3) and OG1RF WT
497 (n=5 mice per group). (C, D and E) Volcano plots depicting underrepresented and overrepresented
498 mutants *in vivo* compared to culture on day 1 (C), day 5 (D) and day 8 (E) post-inoculation. (C) 667
499 underrepresented genes and 21 overrepresented genes *in vivo* compared to culture. (D) 404
500 underrepresented genes and 6 overrepresented genes *in vivo* compared to culture. (E) 507
501 underrepresented genes and 3 overrepresented genes *in vivo* compared to culture. Colored dots
502 represent mutants of interest. Pink = *ebpC* Tn mutant, Orange = *eut* Tn mutants, Green = T7SS gene Tn
503 mutants. Black solid line represents cut-off for statistical significance.

504

505 **Figure 5: Classification of transposon insertion mutants by Cluster of Orthologous Groups**
506 **(COGs).** (A) Euler plot representing number of underrepresented mutants at all time points. (B) Cluster
507 of Orthologous Groups (COGs) from underrepresented mutants common to all three time points

508 categorized into functional categories. Total = 196 represents all common mutants that were assigned a
509 COG domain.

510

511 **Figure 6: Ethanolamine utilization and type VII secretion system genes contribute to enterococcal**
512 **persistence in the vaginal tract.** (A, B and C) C57BL/6 mice were co-inoculated with OG1SSp WT
513 and OG1RF *ΔeutBC* and vaginal lumen was swabbed to quantify CFU. Data are presented as recovered
514 CFU per swab (A), mean recovered CFU (B) and CI between WT and mutant strains (C). Data was
515 analyzed using a Two-way ANOVA with Sidak's multiple comparisons; *P < 0.05, **P < 0.005, ***
516 P < 0.00005. (D) C57BL/6 mice were co-inoculated with OG1RF WT and OG1RF *esaB::tn* and vaginal
517 lumen was swabbed to quantify CFU. Data was analyzed using a Two-way ANOVA with Sidak's
518 multiple comparisons; **P < 0.005, ***P < 0.0005 (E and F) C57BL/6 mice were co-inoculated with
519 OG1RF WT and OG1RF *esaB::tn* and reproductive tissue was collected at 11 days post-inoculation.
520 Data are presented as recovered Log₁₀ CFU/gram (E) and CI between WT and Tn-mutant strain (F). CI
521 is enumerated by calculating the ratio of WT to mutant *E. faecalis* recovered from the mouse
522 reproductive tract. A CI >1 indicates an advantage to WT *E. faecalis*. Values below the limit of
523 detection were enumerated as one-half the limit of detection. Data was analyzed using a paired t-test; *P
524 < 0.05, **P < 0.005. Black lines indicate the median of CFU values.

525

526 **Table 1:** Selected list of differentially abundant transposon mutants during vaginal colonization
527 compared to *in vitro* cultures.

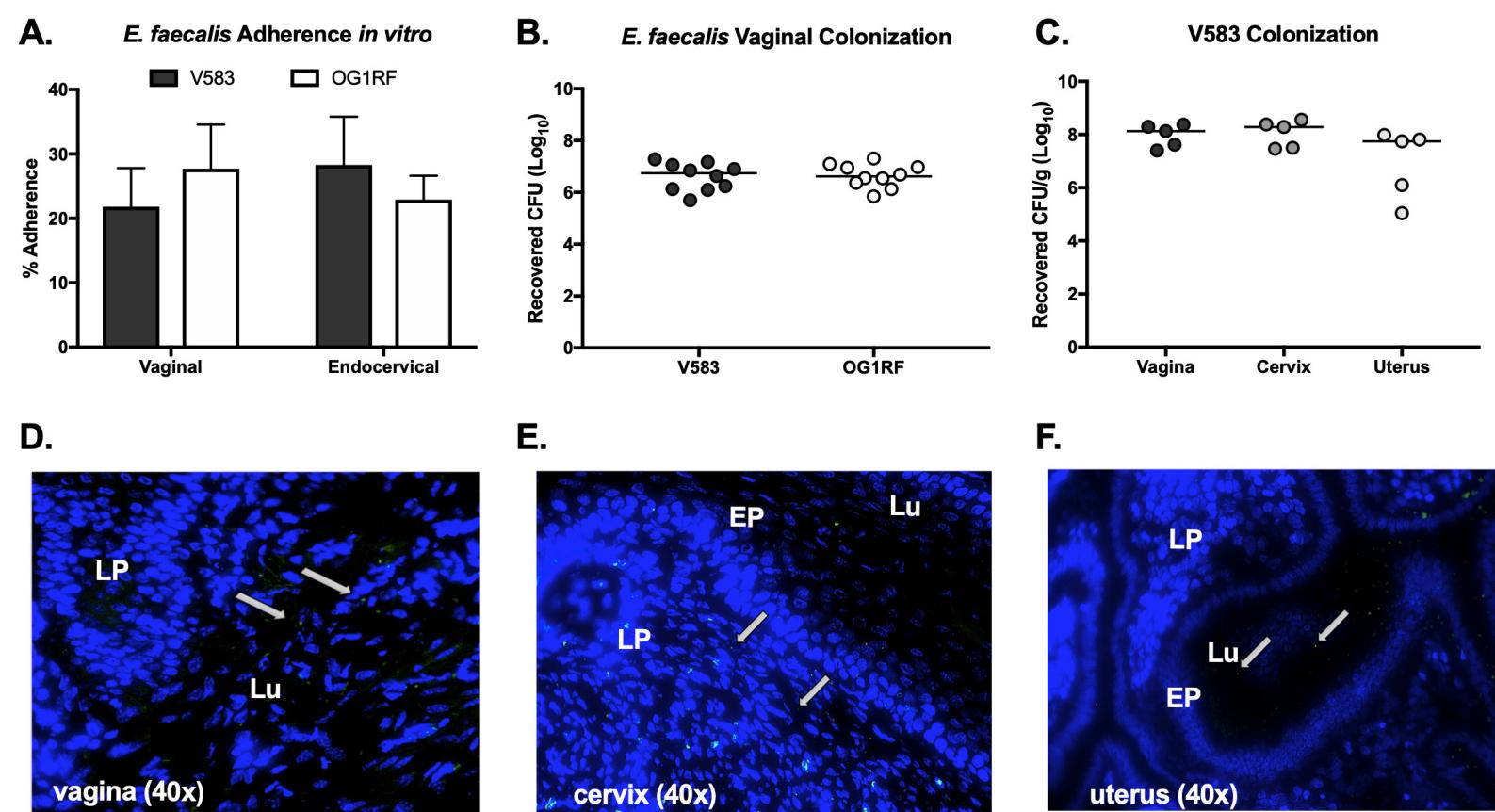
528

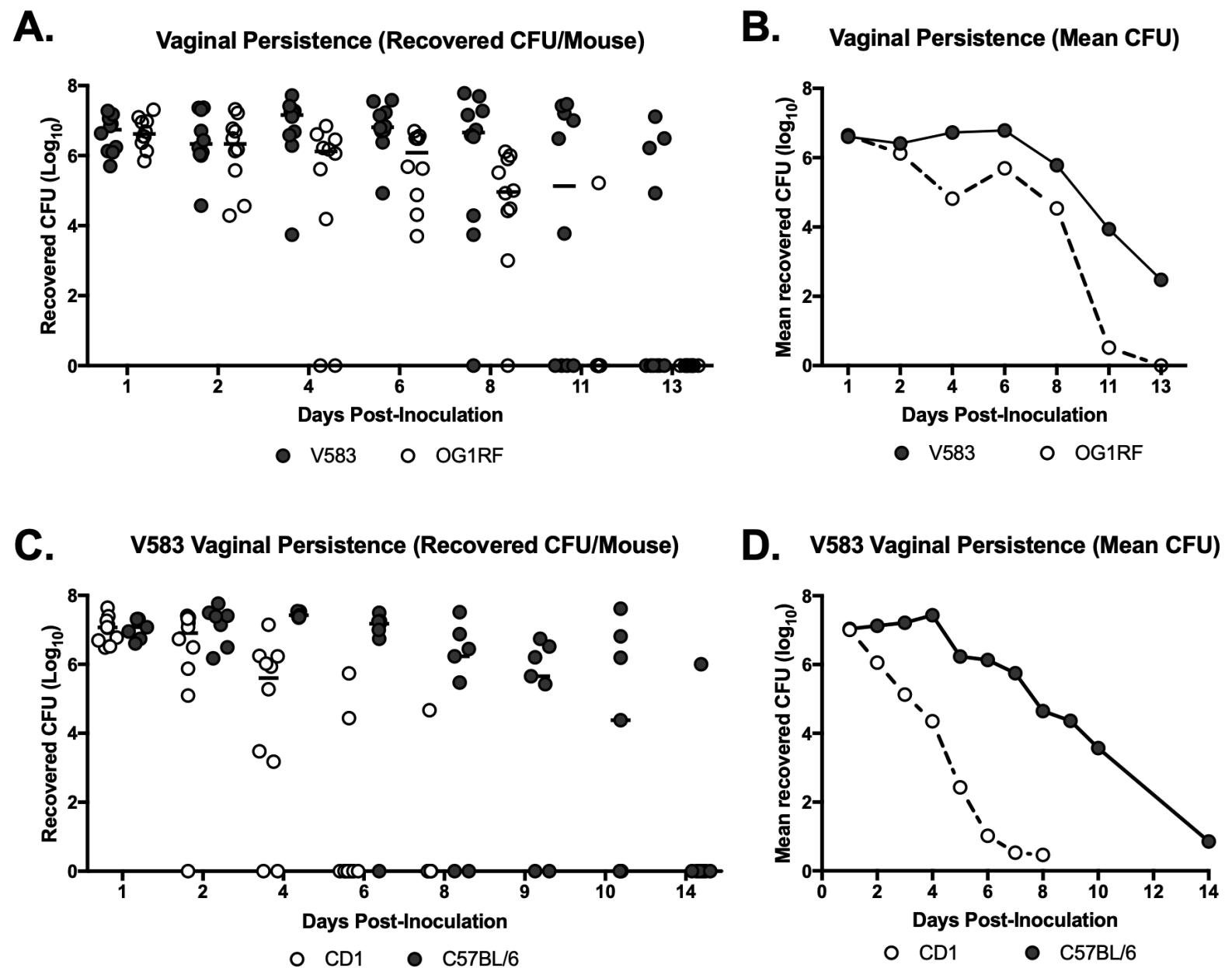
529

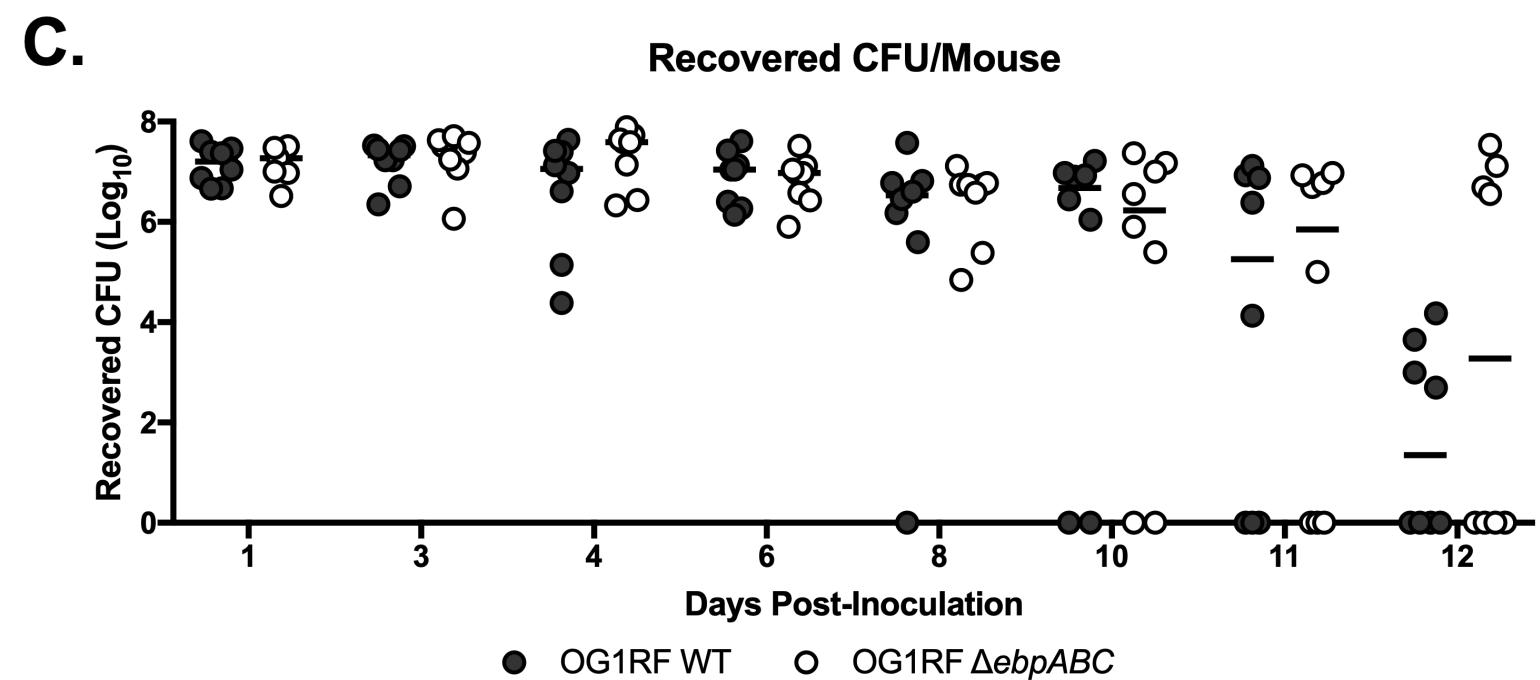
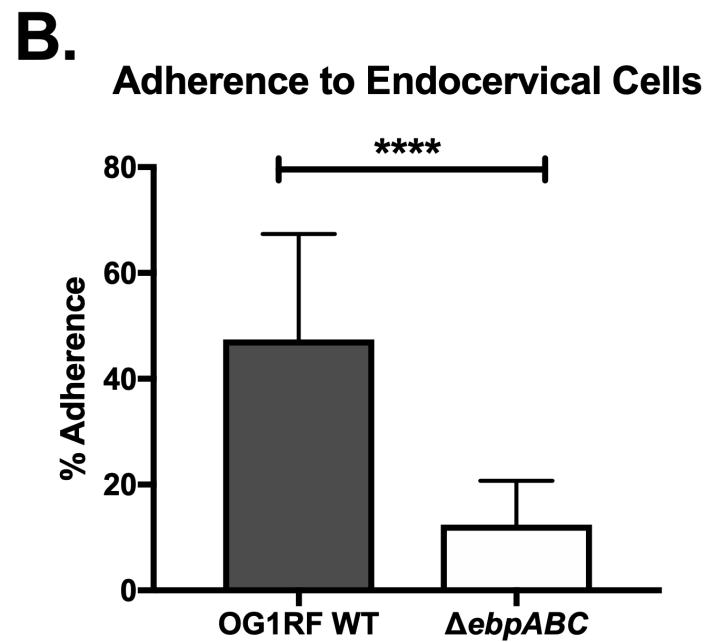
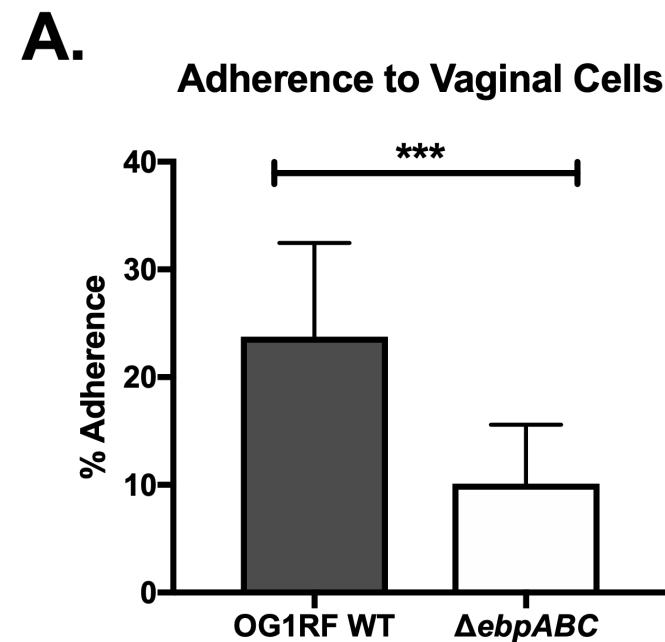
530 **REFERENCES:**

- 531 1. Lebreton F, Willems RJL, Gilmore MS. 2014. Enterococcus Diversity, Origins in Nature, and
532 Gut Colonization. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: From
533 Commensals to Leading Causes of Drug Resistant Infection, Boston.
- 534 2. Coolen MJ, Post E, Davis CC, Forney LJ. 2005. Characterization of microbial communities
535 found in the human vagina by analysis of terminal restriction fragment length polymorphisms of
536 16S rRNA genes. *Appl Environ Microbiol* 71:8729-37.
- 537 3. Chaturvedi SK, Manche Gowda S, Ahmed HU, Alosaimi FD, Andreone N, Bobrov A, Bulgari
538 V, Carra G, Castelnuovo G, de Girolamo G, Gondek T, Jovanovic N, Kamala T, Kiejna A, Lalic
539 N, Lecic-Tosevski D, Minhas F, Mutiso V, Ndetei D, Rabbani G, Somruk S, Srikanta S, Taj R,
540 Valentini U, Vukovic O, Wolwer W, Cimino L, Nouwen A, Lloyd C, Sartorius N. 2019. More
541 anxious than depressed: prevalence and correlates in a 15-nation study of anxiety disorders in
542 people with type 2 diabetes mellitus. *Gen Psychiatr* 32:e100076.
- 543 4. Huycke MM, Sahm DF, Gilmore MS. 1998. Multiple-drug resistant enterococci: the nature of
544 the problem and an agenda for the future. *Emerg Infect Dis* 4:239-49.
- 545 5. Schindlbeck C, Dziura D, Mylonas I. 2014. Diagnosis of pelvic inflammatory disease (PID):
546 intra-operative findings and comparison of vaginal and intra-abdominal cultures. *Arch Gynecol
547 Obstet* 289:1263-9.
- 548 6. Mohamed JA, Huang DB. 2007. Biofilm formation by enterococci. *J Med Microbiol* 56:1581-
549 1588.
- 550 7. Arias CA, Murray BE. 2008. Emergence and management of drug-resistant enterococcal
551 infections. *Expert Rev Anti Infect Ther* 6:637-55.
- 552 8. Uttley AH, Collins CH, Naidoo J, George RC. 1988. Vancomycin-resistant enterococci. *Lancet*
553 1:57-8.
- 554 9. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C,
555 Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavalieri M, Cox EM,
556 Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Group
557 WHOPPLW. 2018. Discovery, research, and development of new antibiotics: the WHO priority
558 list of antibiotic-resistant bacteria and tuberculosis. *Lancet Infect Dis* 18:318-327.
- 559 10. Martin HL, Richardson BA, Nyange PM, Lavreys L, Hillier SL, Chohan B, Mandaliya K,
560 Ndinya-Achola JO, Bwayo J, Kreiss J. 1999. Vaginal lactobacilli, microbial flora, and risk of
561 human immunodeficiency virus type 1 and sexually transmitted disease acquisition. *J Infect Dis*
562 180:1863-8.
- 563 11. Madsen KT, Skov MN, Gill S, Kemp M. 2017. Virulence Factors Associated with *Enterococcus*
564 *Faecalis* Infective Endocarditis: A Mini Review. *Open Microbiol J* 11:1-11.
- 565 12. Minhas A, Dewey M, Vavere AL, Tanami Y, Ostovaneh MR, Laule M, Rochitte CE, Niinuma
566 H, Kofoed KF, Geleijns J, Hoe J, Chen MY, Kitagawa K, Nomura C, Clouse ME, Rybicki FJ,
567 Tan SY, Paul N, Matheson M, Cox C, Rief M, Maier P, Feger S, Plotkin M, Schonenberger E.
568 2019. Patient Preferences for Coronary CT Angiography with Stress Perfusion, SPECT, or
569 Invasive Coronary Angiography. *Radiology* 291:340-348.
- 570 13. Kumar N, Vishnubhatla S, Wadhawan AN, Minhas S, Gupta P. 2020. A randomized, double
571 blind, sham-controlled trial of repetitive transcranial magnetic stimulation (rTMS) in the
572 treatment of negative symptoms in schizophrenia. *Brain Stimul* 13:840-849.
- 573 14. Thurlow LR, Thomas VC, Narayanan S, Olson S, Fleming SD, Hancock LE. 2010. Gelatinase
574 contributes to the pathogenesis of endocarditis caused by *Enterococcus faecalis*. *Infect Immun*
575 78:4936-43.

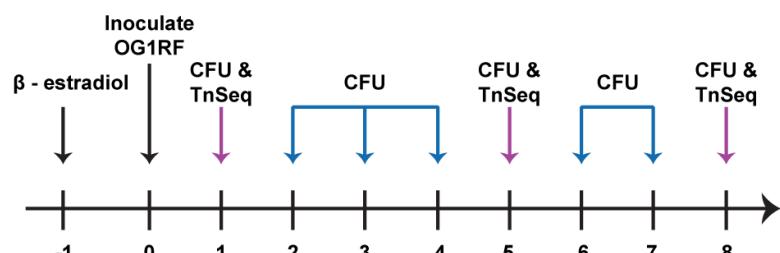
- 576 15. Ali L, Goraya MU, Arafat Y, Ajmal M, Chen JL, Yu D. 2017. Molecular Mechanism of
577 Quorum-Sensing in *Enterococcus faecalis*: Its Role in Virulence and Therapeutic Approaches.
578 *Int J Mol Sci* 18.
- 579 16. Waters CM, Antiporta MH, Murray BE, Dunny GM. 2003. Role of the *Enterococcus faecalis*
580 GelE protease in determination of cellular chain length, supernatant pheromone levels, and
581 degradation of fibrin and misfolded surface proteins. *J Bacteriol* 185:3613-23.
- 582 17. Qin X, Singh KV, Xu Y, Weinstock GM, Murray BE. 1998. Effect of disruption of a gene
583 encoding an autolysin of *Enterococcus faecalis* OG1RF. *Antimicrob Agents Chemother* 42:2883-
584 8.
- 585 18. Tacconelli E, Cataldo MA. 2008. Vancomycin-resistant enterococci (VRE): transmission and
586 control. *Int J Antimicrob Agents* 31:99-106.
- 587 19. Ch'ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA. 2019. Biofilm-associated infection by
588 enterococci. *Nat Rev Microbiol* 17:82-94.
- 589 20. Leyva-Gomez G, Prado-Audelo MLD, Ortega-Pena S, Mendoza-Munoz N, Urban-Morlan Z,
590 Gonzalez-Torres M, Gonzalez-Del Carmen M, Figueiroa-Gonzalez G, Reyes-Hernandez OD,
591 Cortes H. 2019. Modifications in Vaginal Microbiota and Their Influence on Drug Release:
592 Challenges and Opportunities. *Pharmaceutics* 11.
- 593 21. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R,
594 Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ. 2011. Vaginal
595 microbiome of reproductive-age women. *Proc Natl Acad Sci U S A* 108 Suppl 1:4680-7.
- 596 22. Donders GGG, Bellen G, Grinceviciene S, Ruban K, Vieira-Baptista P. 2017. Aerobic vaginitis:
597 no longer a stranger. *Res Microbiol* 168:845-858.
- 598 23. Kaambo E, Africa C, Chambuso R, Passmore JS. 2018. Vaginal Microbiomes Associated With
599 Aerobic Vaginitis and Bacterial Vaginosis. *Front Public Health* 6:78.
- 600 24. Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, Clarke B. 1989. In vitro
601 susceptibility studies of vancomycin-resistant *Enterococcus faecalis*. *Antimicrob Agents
602 Chemother* 33:1588-91.
- 603 25. Gold OG, Jordan HV, van Houte J. 1975. The prevalence of enterococci in the human mouth and
604 their pathogenicity in animal models. *Arch Oral Biol* 20:473-7.
- 605 26. Patras KA, Doran KS. 2016. A Murine Model of Group B Streptococcus Vaginal Colonization. *J
606 Vis Exp* doi:10.3791/54708.
- 607 27. Deng L, Schilcher K, Burcham LR, Kwiecinski JM, Johnson PM, Head SR, Heinrichs DE,
608 Horswill AR, Doran KS. 2019. Identification of Key Determinants of *Staphylococcus aureus*
609 Vaginal Colonization. *mBio* 10.
- 610 28. Nieto C, Espinosa M. 2003. Construction of the mobilizable plasmid pMV158GFP, a derivative
611 of pMV158 that carries the gene encoding the green fluorescent protein. *Plasmid* 49:281-5.
- 612 29. Nallapareddy SR, Singh KV, Sillanpaa J, Garsin DA, Hook M, Erlandsen SL, Murray BE. 2006.
613 Endocarditis and biofilm-associated pili of *Enterococcus faecalis*. *J Clin Invest* 116:2799-807.
- 614 30. Nallapareddy SR, Sillanpaa J, Mitchell J, Singh KV, Chowdhury SA, Weinstock GM, Sullam
615 PM, Murray BE. 2011. Conservation of Ebp-type pilus genes among Enterococci and
616 demonstration of their role in adherence of *Enterococcus faecalis* to human platelets. *Infect
617 Immun* 79:2911-20.
- 618 31. Nielsen HV, Guiton PS, Kline KA, Port GC, Pinkner JS, Neiers F, Normark S, Henriques-
619 Normark B, Caparon MG, Hultgren SJ. 2012. The metal ion-dependent adhesion site motif of the
620 *Enterococcus faecalis* EbpA pilin mediates pilus function in catheter-associated urinary tract
621 infection. *mBio* 3:e00177-12.

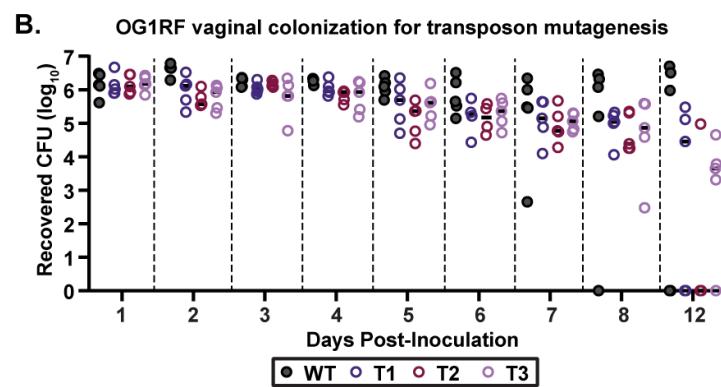

- 622 32. Nallapareddy SR, Singh KV, Sillanpaa J, Zhao M, Murray BE. 2011. Relative contributions of
623 Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and
624 experimental urinary tract infection by *Enterococcus faecalis* OG1RF. *Infect Immun* 79:2901-10.
- 625 33. Afonina I, Lim XN, Tan R, Kline KA. 2018. Planktonic Interference and Biofilm Alliance
626 between Aggregation Substance and Endocarditis- and Biofilm-Associated Pili in *Enterococcus*
627 *faecalis*. *J Bacteriol* 200.
- 628 34. Dale JL, Beckman KB, Willett JLE, Nilson JL, Palani NP, Baller JA, Hauge A, Gohl DM,
629 Erickson R, Manias DA, Sadowsky MJ, Dunny GM. 2018. Comprehensive functional analysis of
630 the *Enterococcus faecalis* core genome using an ordered, sequence-defined collection of
631 insertional mutations in strain OG1RF. *mSystems* 3.
- 632 35. Bachman MA, Breen P, Deornellas V, Mu Q, Zhao L, Wu W, Cavalcoli JD, Mobley HL. 2015.
633 Genome-Wide Identification of *Klebsiella pneumoniae* Fitness Genes during Lung Infection.
634 *mBio* 6:e00775.
- 635 36. Jung HJ, Littmann ER, Seok R, Leiner IM, Taur Y, Peled J, van den Brink M, Ling L, Chen L,
636 Kreiswirth BN, Goodman AL, Pamer EG. 2019. Genome-Wide Screening for Enteric
637 Colonization Factors in Carbapenem-Resistant ST258 *Klebsiella pneumoniae*. *mBio* 10.
- 638 37. Shames SR, Liu L, Havey JC, Schofield WB, Goodman AL, Roy CR. 2017. Multiple *Legionella*
639 *pneumophila* effector virulence phenotypes revealed through high-throughput analysis of
640 targeted mutant libraries. *Proc Natl Acad Sci U S A* 114:E10446-E10454.
- 641 38. Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, Pier GB. 2013. A
642 comprehensive analysis of in vitro and in vivo genetic fitness of *Pseudomonas aeruginosa* using
643 high-throughput sequencing of transposon libraries. *PLoS Pathog* 9:e1003582.
- 644 39. Wiles TJ, Norton JP, Russell CW, Dalley BK, Fischer KF, Mulvey MA. 2013. Combining
645 quantitative genetic footprinting and trait enrichment analysis to identify fitness determinants of
646 a bacterial pathogen. *PLoS Genet* 9:e1003716.
- 647 40. Del Papa MF, Perego M. 2008. Ethanolamine activates a sensor histidine kinase regulating its
648 utilization in *Enterococcus faecalis*. *J Bacteriol* 190:7147-56.
- 649 41. Roof DM, Roth JR. 1988. Ethanolamine utilization in *Salmonella typhimurium*. *J Bacteriol*
650 170:3855-63.
- 651 42. Thompson MC, Crowley CS, Kopstein J, Bobik TA, Yeates TO. 2014. Structure of a bacterial
652 microcompartment shell protein bound to a cobalamin cofactor. *Acta Crystallogr F Struct Biol*
653 *Commun* 70:1584-90.
- 654 43. Fox KA, Ramesh A, Stearns JE, Bourgogne A, Reyes-Jara A, Winkler WC, Garsin DA. 2009.
655 Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in
656 *Enterococcus faecalis*. *Proc Natl Acad Sci U S A* 106:4435-40.
- 657 44. Kaval KG, Gebbie M, Goodson JR, Cruz MR, Winkler WC, Garsin DA. 2019. Ethanolamine
658 Utilization and Bacterial Microcompartment Formation Are Subject to Carbon Catabolite
659 Repression. *J Bacteriol* 201.
- 660 45. Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. 2016. The type VII secretion system
661 of *Staphylococcus aureus* secretes a nuclease toxin that targets competitor bacteria. *Nat*
662 *Microbiol* 2:16183.
- 663 46. Chatterjee A, Willett JLE, Nguyen UT, Monogue B, Palmer KL, Dunny GM, Duerkop BA.
664 2020. Parallel genomics uncover novel enterococcal-bacteriophage interactions. *mBio* 11.
- 665 47. Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, Schnabl B, DeMatteo RP, Pamer EG.
666 2008. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits.
667 *Nature* 455:804-7.

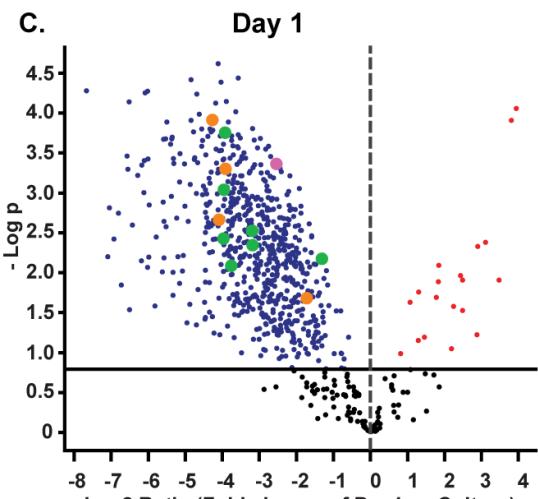

- 668 48. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, Viale A, Socci ND, van den Brink
669 MR, Kamboj M, Pamer EG. 2010. Vancomycin-resistant Enterococcus domination of intestinal
670 microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in
671 humans. *J Clin Invest* 120:4332-41.
- 672 49. Dezwaan DC, Mequio MJ, Littell JS, Allen JP, Rossbach S, Pybus V. 2007. Purification and
673 characterization of enterocin 62-6, a two-peptide bacteriocin produced by a vaginal strain of
674 *Enterococcus faecium*: Potential significance in bacterial vaginosis. *Microb Ecol Health Dis*
675 19:241-250.
- 676 50. Kelly MC, Mequio MJ, Pybus V. 2003. Inhibition of vaginal lactobacilli by a bacteriocin-like
677 inhibitor produced by *Enterococcus faecium* 62-6: potential significance for bacterial vaginosis.
678 *Infect Dis Obstet Gynecol* 11:147-56.
- 679 51. Tempera G, Abbadessa G, Bonfiglio G, Cammarata E, Cianci A, Corsello S, Raimondi A, Ettore
680 G, Nicolosi D, Furneri PM. 2006. Topical kanamycin: an effective therapeutic option in aerobic
681 vaginitis. *J Chemother* 18:409-14.
- 682 52. Banla LI, Pickrum AM, Hayward M, Kristich CJ, Salzman NH. 2019. Sortase-Dependent
683 Proteins Promote Gastrointestinal Colonization by Enterococci. *Infect Immun* 87.
- 684 53. Willett JLE, Ji MM, Dunny GM. 2019. Exploiting biofilm phenotypes for functional
685 characterization of hypothetical genes in *Enterococcus faecalis*. *NPJ Biofilms Microbiomes* 5:23.
- 686 54. Balomenou S, Fouet A, Tzanodaskalaki M, Couture-Tosi E, Bouriotis V, Boneca IG. 2013.
687 Distinct functions of polysaccharide deacetylases in cell shape, neutral polysaccharide synthesis
688 and virulence of *Bacillus anthracis*. *Mol Microbiol* 87:867-83.
- 689 55. Kaval KG, Singh KV, Cruz MR, DebRoy S, Winkler WC, Murray BE, Garsin DA. 2018. Loss of
690 Ethanolamine Utilization in *Enterococcus faecalis* Increases Gastrointestinal Tract Colonization.
691 *mBio* 9.
- 692 56. Kaval KG, Garsin DA. 2018. Ethanolamine Utilization in Bacteria. *mBio* 9.
- 693 57. Lengfelder I, Sava IG, Hansen JJ, Kleigrewe K, Herzog J, Neuhaus K, Hofmann T, Sartor RB,
694 Haller D. 2019. Complex Bacterial Consortia Reprogram the Colitogenic Activity of
695 *Enterococcus faecalis* in a Gnotobiotic Mouse Model of Chronic, Immune-Mediated Colitis.
696 *Front Immunol* 10:1420.
- 697 58. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F,
698 Artis D, Xavier RJ, Teixeira MM, Mackay CR. 2009. Regulation of inflammatory responses by
699 gut microbiota and chemoattractant receptor GPR43. *Nature* 461:1282-6.
- 700 59. Wu W, Sun M, Chen F, Cao AT, Liu H, Zhao Y, Huang X, Xiao Y, Yao S, Zhao Q, Liu Z, Cong
701 Y. 2017. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to
702 microbiota which is mediated by GPR43. *Mucosal Immunol* 10:946-956.
- 703 60. Burts ML, Williams WA, DeBord K, Missiakas DM. 2005. EsxA and EsxB are secreted by an
704 ESAT-6-like system that is required for the pathogenesis of *Staphylococcus aureus* infections.
705 *Proc Natl Acad Sci U S A* 102:1169-74.
- 706 61. Kneuper H, Cao ZP, Twomey KB, Zoltner M, Jager F, Cargill JS, Chalmers J, van der Kooi-Pol
707 MM, van Dijl JM, Ryan RP, Hunter WN, Palmer T. 2014. Heterogeneity in ess transcriptional
708 organization and variable contribution of the Ess/Type VII protein secretion system to virulence
709 across closely related *Staphylococcus aureus* strains. *Mol Microbiol* 93:928-43.
- 710 62. Ohr RJ, Anderson M, Shi M, Schneewind O, Missiakas D. 2017. EssD, a nuclease effector of the
711 *Staphylococcus aureus* ESS Pathway. *J Bacteriol* 199.
- 712 63. Whitney JC, Peterson SB, Kim J, Pazos M, Verster AJ, Radey MC, Kulasekara HD, Ching MQ,
713 Bullen NP, Bryant D, Goo YA, Surette MG, Borenstein E, Vollmer W, Mougous JD. 2017. A

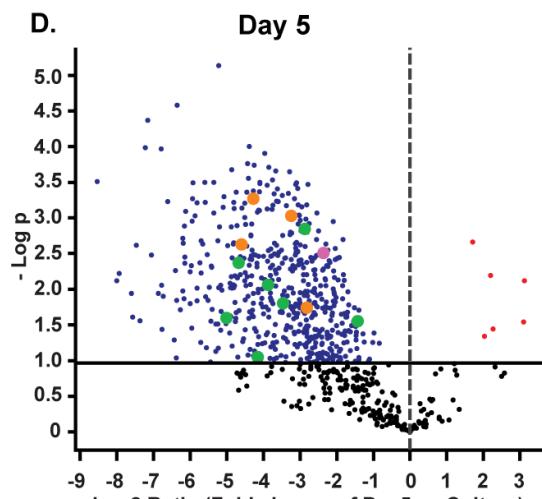



- 714 broadly distributed toxin family mediates contact-dependent antagonism between Gram-positive
715 bacteria. *Elife* 6.
- 716 64. Ishii K, Adachi T, Yasukawa J, Suzuki Y, Hamamoto H, Sekimizu K. 2014. Induction of
717 virulence gene expression in *Staphylococcus aureus* by pulmonary surfactant. *Infect Immun*
718 82:1500-10.
- 719 65. Lopez MS, Tan IS, Yan D, Kang J, McCreary M, Modrusan Z, Austin CD, Xu M, Brown EJ.
720 2017. Host-derived fatty acids activate type VII secretion in *Staphylococcus aureus*. *Proc Natl
721 Acad Sci U S A* 114:11223-11228.
- 722 66. Tchoupa AK, Watkins KE, Jones RA, Kuroki A, Alam MT, Perrier S, Chen Y, Unnikrishnan M.
723 2020. The type VII secretion system protects *Staphylococcus aureus* against antimicrobial host
724 fatty acids. *bioRxiv* doi:10.1101/572172:572172.
- 725 67. Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS. 2013. A CRISPR/Cas system
726 mediates bacterial innate immune evasion and virulence. *Nature* 497:254-7.
- 727 68. Shabbir MAB, Tang Y, Xu Z, Lin M, Cheng G, Dai M, Wang X, Liu Z, Yuan Z, Hao H. 2018.
728 The Involvement of the Cas9 Gene in Virulence of *Campylobacter jejuni*. *Front Cell Infect
729 Microbiol* 8:285.
- 730 69. Spencer BL, Deng L, Patras KA, Burcham ZM, Sanches GF, Nagao PE, Doran KS. 2019. Cas9
731 Contributes to Group B Streptococcal Colonization and Disease. *Front Microbiol* 10:1930.
- 732 70. Bourgogne A, Garsin DA, Qin X, Singh KV, Sillanpaa J, Yerrapragada S, Ding Y, Dugan-Rocha
733 S, Buhay C, Shen H, Chen G, Williams G, Muzny D, Maadani A, Fox KA, Gioia J, Chen L,
734 Shang Y, Arias CA, Nallapareddy SR, Zhao M, Prakash VP, Chowdhury S, Jiang H, Gibbs RA,
735 Murray BE, Highlander SK, Weinstock GM. 2008. Large scale variation in *Enterococcus
736 faecalis* illustrated by the genome analysis of strain OG1RF. *Genome Biol* 9:R110.
- 737 71. Moore TC, Escalante-Semerena JC. 2016. The EutQ and EutP proteins are novel acetate kinases
738 involved in ethanolamine catabolism: physiological implications for the function of the
739 ethanolamine metabolosome in *Salmonella enterica*. *Mol Microbiol* 99:497-511.
- 740 72. Banla IL, Kommineni S, Hayward M, Rodrigues M, Palmer KL, Salzman NH, Kristich CJ. 2018.
741 Modulators of *Enterococcus faecalis* Cell Envelope Integrity and Antimicrobial Resistance
742 Influence Stable Colonization of the Mammalian Gastrointestinal Tract. *Infect Immun* 86.
- 743 73. Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. 2020. Phage infection mediates inhibition
744 of bystander bacteria. *bioRxiv* doi: 10.1101/2020.05.11.077669
- 745 74. Qin X, Singh KV, Weinstock GM, Murray BE. 2000. Effects of *Enterococcus faecalis* fsr genes
746 on production of gelatinase and a serine protease and virulence. *Infect Immun* 68:2579-86.
- 747 75. Bourgogne A, Hilsenbeck SG, Dunny GM, Murray BE. 2006. Comparison of OG1RF and an
748 isogenic fsrB deletion mutant by transcriptional analysis: the Fsr system of *Enterococcus faecalis*
749 is more than the activator of gelatinase and serine protease. *J Bacteriol* 188:2875-84.
- 750 76. Teixeira N, Varahan S, Gorman MJ, Palmer KL, Zaidman-Remy A, Yokohata R, Nakayama J,
751 Hancock LE, Jacinto A, Gilmore MS, de Fatima Silva Lopes M. 2013. *Drosophila* host model
752 reveals new *enterococcus faecalis* quorum-sensing associated virulence factors. *PLoS One*
753 8:e64740.
- 754 77. Kellogg SL, Kristich CJ. 2016. Functional Dissection of the CroRS Two-Component System
755 Required for Resistance to Cell Wall Stressors in *Enterococcus faecalis*. *J Bacteriol* 198:1326-36.
- 756 78. Muller C, Le Breton Y, Morin T, Benachour A, Auffray Y, Rince A. 2006. The response
757 regulator CroR modulates expression of the secreted stress-induced SalB protein in *Enterococcus
758 faecalis*. *J Bacteriol* 188:2636-45.

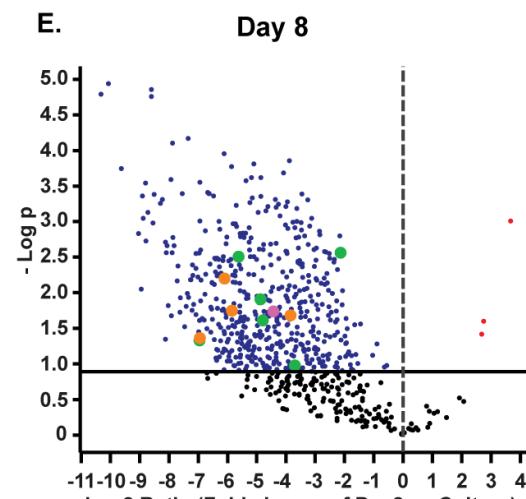
- 759 79. Comenge Y, Quintiliani R, Jr., Li L, Dubost L, Brouard JP, Hugonnet JE, Arthur M. 2003. The
760 CroRS two-component regulatory system is required for intrinsic beta-lactam resistance in
761 *Enterococcus faecalis*. *J Bacteriol* 185:7184-92.
- 762 80. Paulsen IT, Banerjee L, Myers GS, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill
763 SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S,
764 DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen
765 T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM. 2003.
766 Role of mobile DNA in the evolution of vancomycin-resistant *Enterococcus faecalis*. *Science*
767 299:2071-4.
- 768 81. Dunny GM, Brown BL, Clewell DB. 1978. Induced cell aggregation and mating in
769 *Streptococcus faecalis*: evidence for a bacterial sex pheromone. *Proc Natl Acad Sci U S A*
770 75:3479-83.
- 771 82. Morgan DJ, Aboud CJ, McCaffrey IM, Bhide SA, Lamont RF, Taylor-Robinson D. 1996.
772 Comparison of Gram-stained smears prepared from blind vaginal swabs with those obtained at
773 speculum examination for the assessment of vaginal flora. *Br J Obstet Gynaecol* 103:1105-8.
- 774 83. Deng L, Mu R, Weston TA, Spencer BL, Liles RP, Doran KS. 2018. Characterization of a Two-
775 Component System Transcriptional Regulator, LtdR, That Impacts Group B Streptococcal
776 Colonization and Disease. *Infect Immun* 86.
- 777

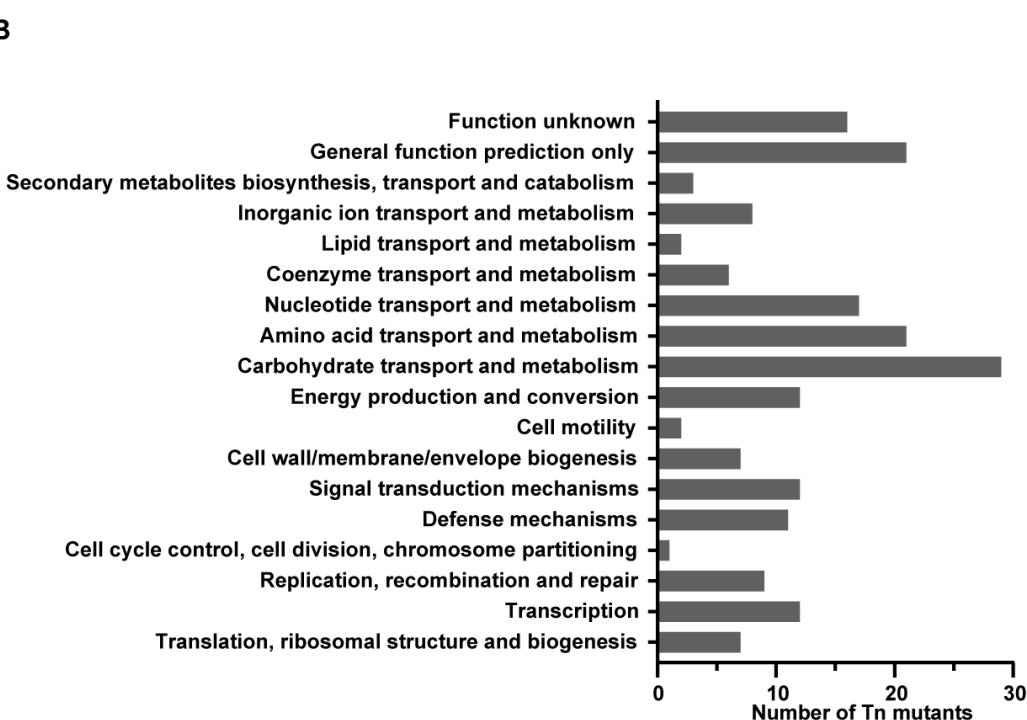
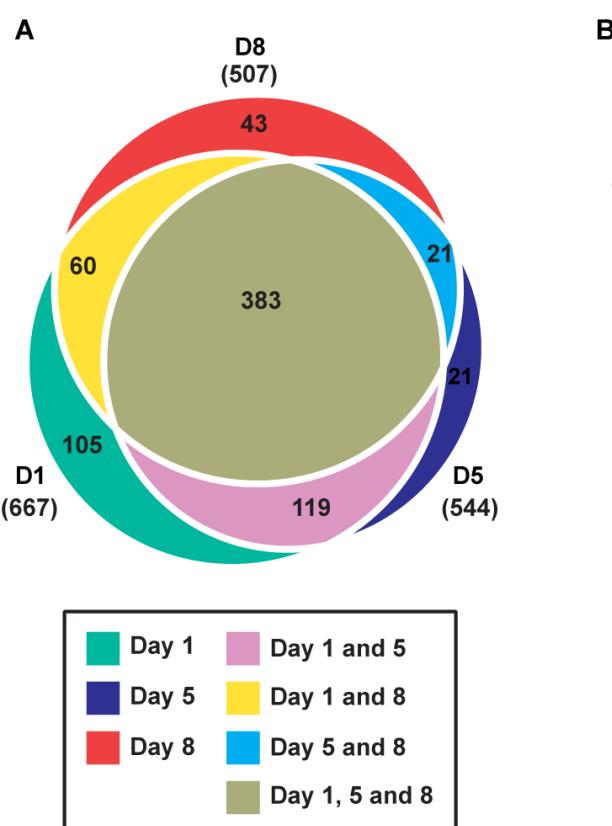

778
779



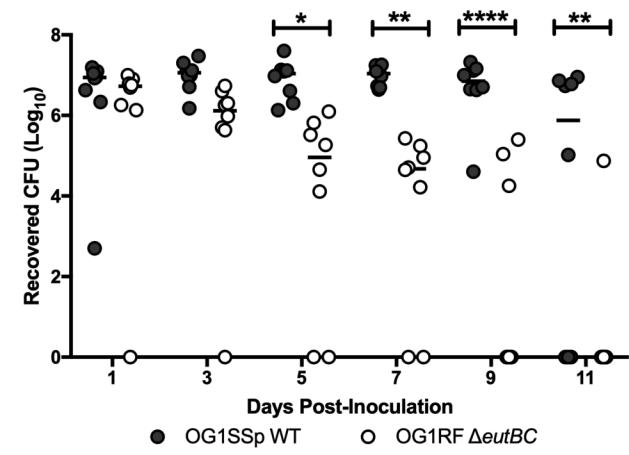

A.


B.

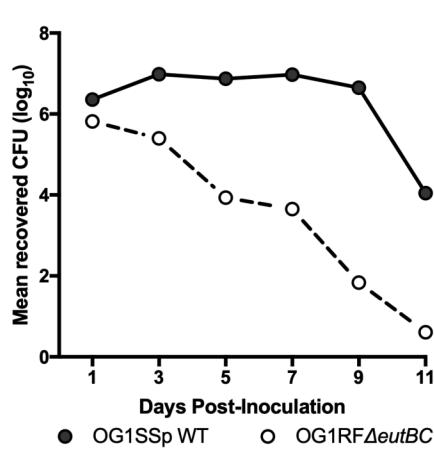

C.

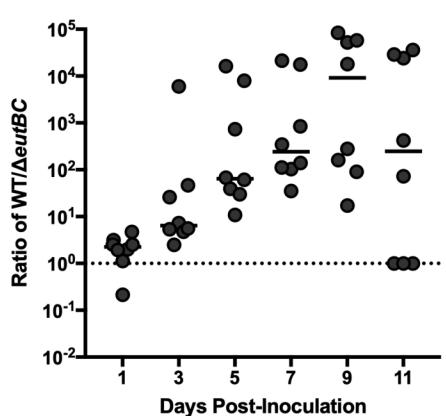



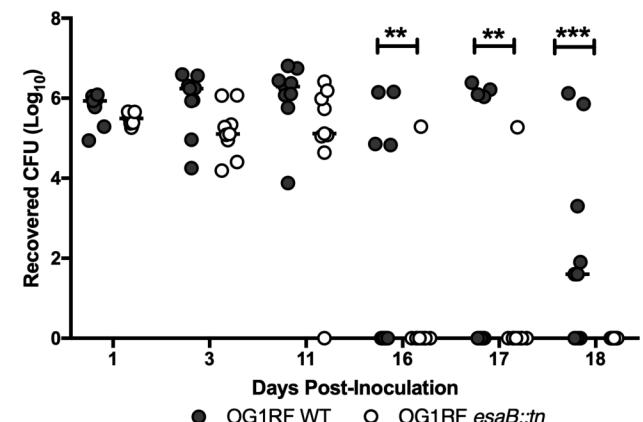
D.

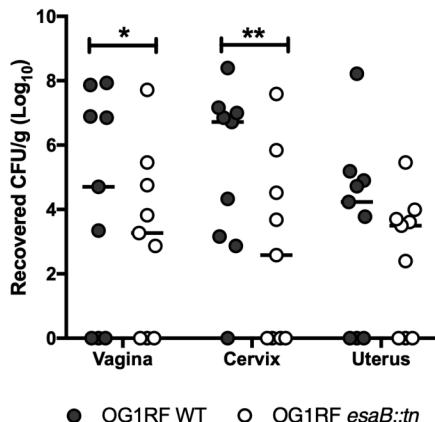


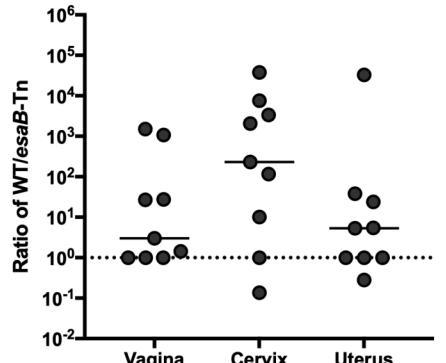
E.




A. Vaginal Persistence (Recovered CFU/Mouse)


B. Vaginal Persistence (Mean CFU)


C. Competitive Index


D. Vaginal Persistence (Recovered CFU/Mouse)

E. Competition (Recovered CFU/Mouse)

F. Competitive Index

Table 1: Selected list of differentially abundant transposon mutants during vaginal colonization compared to *in vitro* cultures

old_locus_tag	NCBI_description	Difference	Difference	Difference
		(D1 - Cul)	(D5 - Cul)	(D8 - Cul)
Sortase-dependent proteins (SDPs)				
OG1RF_10811	collagen adhesion protein	-4.33	-4.14	-5.72
OG1RF_10871	cell wall surface anchor family protein, <i>ebpC</i>	-2.54	-2.37	-4.44
OG1RF_11531	glycosyl hydrolase	-3.04	-3.15	-4.25
OG1RF_11764	cell wall surface anchor family protein	-2.80	-3.48	-5.24
OG1RF_12054	cell wall surface anchor family protein	-2.62	-1.50	-6.01
Ethanolamine utilization				
OG1RF_11342	ethanolamine utilization protein EutL	-3.92	-3.25	-6.10
OG1RF_11343	ethanolamine ammonia-lyase small subunit	-4.09	-4.60	-5.85
OG1RF_11344	ethanolamine ammonia-lyase large subunit	-4.27	-4.28	-6.94
Type VII secretion system				
OG1RF_11103	YukD superfamily protein, <i>esaB</i>	-3.19	-5.02	-6.95
OG1RF_11109	putative LXG-containing toxin	-3.93	-3.47	-4.87
OG1RF_11111	putative T7SS toxin	-3.76	-4.15	-4.80
OG1RF_11113	putative T7SS toxin	-3.19	-2.87	-3.70
OG1RF_11114	putative immunity protein	-3.96	-3.88	-5.62
OG1RF_11122	immunity protein	-1.31	-1.43	-2.14