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ABSTRACT

Enterococcus faecalis is a Gram-positive commensal bacterium native to the gastrointestinal tract and an
opportunistic pathogen of increasing clinical concern. E. faecalis also colonizes the female reproductive
tract and reports suggest vaginal colonization increases following antibiotic treatment or in patients with
aerobic vaginitis. Currently, little is known about specific factors that promote E. faecalis vaginal
colonization and subsequent infection. We modified an established mouse vaginal colonization model to
explore E. faecalis vaginal carriage and demonstrate that both vancomycin resistant and sensitive strains
colonize the murine vaginal tract. Following vaginal colonization, we observed E. faecalis in vaginal,
cervical and uterine tissue. A mutant lacking endocarditis- and biofilm-associated pili (Ebp) exhibited a
decreased ability to associate with human vaginal and cervical cells in vitro, but did not contribute to
colonization in vivo. Thus, we screened a low-complexity transposon (Tn) mutant library to identify
novel genes important for E. faecalis colonization and persistence in the vaginal tract. This screen
revealed 383 mutants that were underrepresented during vaginal colonization at 1, 5 and 8 days post-
inoculation compared to growth in culture medium. We confirmed that mutants deficient in
ethanolamine catabolism or in the type VII secretion system were attenuated in persisting during vaginal
colonization. These results reveal the complex nature of vaginal colonization and suggest that multiple

factors contribute to E. faecalis persistence in the reproductive tract.

IMPORTANCE

Despite increasing prevalence and association of E. faecalis with aerobic vaginitis, essentially nothing is
known about the bacterial factors that influence E. faecalis vaginal colonization. We have adapted an
animal model of vaginal colonization that supports colonization of multiple E. faecalis strains.

Additionally, we determined that ethanolamine utilization and type VII secretion system genes


https://doi.org/10.1101/2020.04.30.069468
http://creativecommons.org/licenses/by-nc-nd/4.0/

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.069468; this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

contribute to vaginal colonization and persistence. Identification of factors important for vaginal
colonization and persistence provides potential targets for the development of therapeutics. This study is
the first to identify key determinants that promote vaginal colonization by E. faecalis, which may

represent an important reservoir for antibiotic resistant enterococci.

INTRODUCTION

Enterococcus faecalis is an opportunistic pathogen that resides in the human gastrointestinal and
urogenital tracts (1, 2). While E. faecalis colonization is normally asymptomatic, certain populations are
at risk for severe disease including urinary tract infections (3), wound infections, pelvic inflammatory
disease (PID), infective endocarditis, and adverse birth effects during pregnancy (reviewed in 4,
5). Enterococcal infections are often associated with the production of biofilms, assemblages of
microbes enclosed in an extracellular polymeric matrix that exhibit cell-to-cell interactions (reviewed in
6). These biofilms have been observed on catheters, diabetic ulcers, and wounds resulting in severe
infection. Treatment of enterococcal infections is becoming increasingly problematic due to their
augmented ability to acquire mobile genetic elements, resulting in increased resistance to antibiotics,
including “last-line-of-defense” antibiotics such as vancomycin (reviewed in 7, 8). Recently, there has
been an increase in the emergence of vancomycin resistant enterococci (9), putting
immunocompromised individuals at risk for developing severe chronic enterococcal infections. The
emergence of vancomycin resistant enterococci (10) and its prevalence in both community and
nosocomial settings is concerning and necessitates the development of alternative therapeutics to treat

enterococcal infections.

E. faecalis encodes a multitude of virulence factors that allow the bacterium to colonize and persist in

different sites of the human body. Surface proteins such as the adhesin to collagen (Ace), enterococcal
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fibronectin binding protein A (EfbA), aggregation substance (AS), and the endocarditis-and biofilm-
associated pilin (Ebp) have been previously shown to play important roles in infective endocarditis and
UTIs (reviewed in 11). Secreted factors such as gelatinase (12), autolysin A (13), and serine protease
(SprE) are biofilm-associated factors that are involved in the degradation of host substrates, including
collagen, fibrin and certain complement components (14). Many of these virulence factors are regulated
via quorum sensing, which may be responsible for the switch from a commensal to pathogenic state (15-

17).

Certain risk factors are associated with the transition of E. faecalis from commensalism to pathogenicity
such as immune  status, prolonged hospital stay,and the use of antibiotics (18). E.
faecalis colonization and infection is often polymicrobial and these interactions have been observed in
the intestine, bloodstream, and wounds (reviewed in 19). Furthermore, E. faecalis is frequently found in
the vaginal tract of healthy women (20, 21) and its prevalence is increased in women diagnosed
with aerobic  vaginitis (AV), an inflammatory response accompanied by depletion of
commensal Lactobacillus sp. and increased presence of opportunistic pathogens such as E. faecalis,
Group B Streptococcus (GBS), Staphylococcus aureus, and Escherichia coli (22, 23). Symptoms of
AV include malodor and discomfort, but AV can transition to more serious complications such as PID,
severe UTIs, and complications during pregnancy. While it is evident that E. faecalis colonizes the
human vaginal tract, the molecular determinants that allow enterococci to colonize and persist in the

vaginal tract remain to be identified.

In this study, we modified our previously established GBS vaginal colonization model to analyze E.
faecalis vaginal colonization and persistence. We determined that E. faecalis OGIRF (a rifampicin and

fusidic acid derivative of strain OG1l) and vancomycin resistant E. faecalis V583 can colonize and
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persist in the vaginal tract of CD1 and C57BL/6 mouse strains. We detected fluorescent E. faecalis in
the vaginal lumen as well as the cervical and uterine tissues of colonized mice. Further, we demonstrated
that an E. faecalis strain lacking Ebp pili is less adherent to vaginal cervical epithelium in vitro, but not
attenuated in vivo. Thus, we screened an E. faecalis OG1RF transposon (Tn) mutant library for mutants
that are underrepresented in the vaginal tract compared to the culture input, revealing multiple factors
for E. faecalis persistence within the vagina. These factors include sortase-dependent proteins (SDPs),
ethanolamine utilization genes, and genes involved in type VII secretion system (T7SS) machinery. We
confirmed that a mutant strain in ethanolamine catabolism was significantly attenuated in the ability to
colonize the vaginal epithelium, and T7SS was required to ascend in the female reproductive tract. This
work is an important first step in identifying factors required for enterococcal vaginal colonization and
will provide insight into potential therapeutic targets aimed at mitigating E. faecalis vaginal colonization

in at-risk individuals.

RESULTS

E. faecalis colonization of the female reproductive tract.

To characterize the ability of E. faecalis to interact with the epithelial cells of the lower female
reproductive tract, we performed in vitro quantitative adherence assays using E. faecalis strains V583
(24) and OGIRF (25). An inoculum of 10° CFU/well (multiplicity of infection [MOI] = 1) was added to
a confluent monolayer of immortalized human vaginal and endocervical epithelial cells. Following 30
minutes of incubation, the cells were washed to remove non-adherent bacteria, the epithelial cells were
detached from the plates, and adherent bacteria were plated on agar. Both strains exhibited substantial
adherence to both cell lines (Fig. 1A). Next, we assessed the ability of E. faecalis to establish

colonization of the murine vaginal tract. The vaginal lumen of C57BL/6 were swabbed and swabs were
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plated on CHROM™ agar to determine the presence of native enterococci. While native enterococci are
detected on CHROM™ agar, no mice were colonized with strains that resemble E. faecalis V583 or
OGIREF, as no colonies appeared on agar supplemented with antibiotics that select for V583 and
OGIRF. Next, C57BL/6 mice were treated with B-estradiol 1 day prior to inoculation with 10’ CFU
of E. faecalis V583 or OGIRF. After 1 day post-inoculation, the vaginal lumen was swabbed and
bacteria were plated to enumerate E. faecalis V583 and OGIRF vaginal colonization levels (Fig. 1B).
Swabs were plated on selective agar to ensure quantification of only the enterococcal strains of interest,
restricting growth of native enterococcus. To determine whether E. faecalis ascends into reproductive
tissues during colonization, murine vaginal, cervical, and uterine tissues were collected and
homogenized to enumerate E. faecalis V583 abundance. E. faecalis was recovered from all mice 1 day
post-inoculation in all tissues tested (Fig. 1C) and the CFU recovered from the vaginal swabs were
similar to the total CFU counts from the vaginal tissue homogenates (Fig. 1B, C). This level and range
of recovered E. faecalis CFU is similar to what we have observed using this mouse model for GBS and
S. aureus vaginal colonization (26, 27). To visualize E. faecalis within the murine reproductive tract,
mice were inoculated with either WT E. faecalis V583 or a V583 strain expressing green fluorescent
protein (GFP) (28). These strains both colonize the vaginal tract (Fig. STIA). We harvested the female
reproductive tract 1 day post-inoculation to avoid the loss of the GFP plasmid and made serial sections
of these tissues, and performed fluorescent microscopy to visualize E. faecalis. We observed numerous
fluorescent bacteria in the vaginal and uterine lumen (Fig. 1D, F) and embedded in the cervical
lamina propria (Fig. 1E). We did not observe background green fluorescence in naive mice (Fig. S1B, C,
D), which coincides with previous experiments performed with GBS and S. aureus (26, 27). The
presence of fluorescent E. faecalis in the cervix and uterus shows that E. faecalis can move from the

vaginal lumen to the superior organs of the female reproductive tract.
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E. faecalis persists in the vaginal tract.

To assess vaginal persistence, C57BL/6 mice were colonized with E. faecalis V583 or OGIRF and
swabbed to determine bacterial load over time. Mice were swabbed daily until no colonies appeared on
agar selective for V583 or OG1REF, indicating bacterial clearance from the vaginal lumen. While V583
persisted longer in the mouse vaginal tract, the mean CFU recovered for both V583 and OGIRF
remained constant for the first week and then declined as mice eventually cleared both strains by 11-13
days (Fig. 2A, B). To determine if enterococcal vaginal persistence differs across mouse strains,
C57BL/6 and CD1 mice were inoculated with V583 and swabbed over time. Both mouse strains were
initially colonized with V583, but bacteria in C57BL/6 mice persisted longer (Fig. 2C, D). By day six
only 20% of CD1 mice remained colonized compared to 85% of C57BL/6 mice. Differences in vaginal
persistence may be due to differences in the native vaginal microbiota or immune status between mouse
strains. It is also possible that bacteria occupy different niches within the reproductive tract of different
mouse strains, which warrants further investigation. Overall, these results show that mouse strain
background influences E. faecalis vaginal colonization and that C57BL/6 mice are a sufficient model to

assess prolonged E. faecalis vaginal colonization and persistence.

Enterococcal pili contribute to interaction with reproductive tract tissues.

The endocarditis- and biofilm-associated pilin (Ebp) of E. faecalis mediates infective endocarditis and
UTIs(29-32), thus we hypothesized that Ebp may similarly contribute to vaginal colonization. To
determine whether Ebp is important for facilitating interaction with the vaginal epithelium, we used a
deletion mutant of E. faecalis OGIRF lacking all pilin structural components (AebpABC) (33). We
observed that the pilus mutant exhibited significantly reduced adherence to human vaginal and

endocervical cells in vitro (Fig. 3A, B). To determine if Ebp is important for in vivo vaginal colonization
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and persistence, mice were inoculated with either WT OGIRF or OG1RF AebpABC and colonization
was quantified over the course of 12 days. We observed no differences in the CFU recovered from the
vaginal lumen between WT OGI1RF and OGI1RF AebpABC strains (Fig. 3C). Taken together these data
suggest that Ebp contributes to E. faecalis attachment to reproductive tract tissues, but additional factors

are likely required for persistence in the vaginal lumen in vivo.

Identification of additional vaginal colonization factors by transposon mutagenesis analysis.

To identify genetic determinants that confer enterococccal vaginal persistence, we used sequence-
defined mariner technology transposon sequencing (SMarT TnSeq) to screen an E. faecalis OG1RF Tn
library consisting of 6,829 unique mutants (34). The library was grown to mid-log phase in triplicate and
10’ CFU of each replicate was vaginally inoculated into a group of 5 C57BL/6 mice (Fig. 4A). Vaginal
swabs were plated on selective media daily for 8 days and CFU were quantified to assess colonization of
the OGIRF Tn library compared to WT OGIRF (Fig. 4A and B). Genomic DNA was isolated from
pooled Tn libraries recovered on days 1, 5, and 8 post-inoculation and Tn insertion junctions in E.
faecalis genomic DNA were sequenced as described by Dale et al. (34). Sequenced reads were mapped
to the E. faecalis OGIRF genome to identify genes that are necessary for E. faecalis vaginal

colonization.

We observed that the in vivo vaginal environment altered the abundance of select mutants from the Tn
library pool compared to the original culture input (Fig. 4C, D, E) (Tables S1 - S5). At day 1, a total of
667 depleted mutants were identified (Table S1), along with 544 (Table S2) and 507 (Table S3) at days
5 and 8 respectively; 383 of these mutants were identified at all three time points (Fig. SA, Table S4A).

Classification by clusters of orthologous groups of proteins (COGs) could be identified in 196 mutants
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from all 3 time points, the majority of which are involved in carbohydrate, amino acid, lipid and
nucleotide transport/metabolism, as well as those involved in transcription and defense mechanisms
(Fig. 5B). Of the remaining 187 mutants, 85 had insertions in intergenic regions and 102 were not
assigned a COG domain. Interestingly the ebpC transposon mutant (OGIRF_10871, which encodes the
shaft component of Ebp) was underrepresented at all time points (Fig. 4C, D, E, Table S4A). Additional
mutants of interest included those involved in ethanolamine catabolism and T7SS components, in which
various components of these systems were underrepresented at all three time points (Tables 1 and S4A).
Furthermore, mutants for multiple sortase-dependent proteins (SDPs), including ebpC, were
underrepresented at all time points (Tables 1 and S4A), suggesting that these factors may play important

roles vaginal colonization and persistence.

Potential gain-of-function mutations have also been discovered during genome-wide library screens of
fitness determinants in other bacteria (35-39). In addition to mutations that adversely impact vaginal
colonization, our data shows that Tn insertions in 11 protein coding genes and 11 intergenic regions
potentially enhance bacterial fitness in vivo. Nineteen of the 22 enriched mutants were common between
days 1 and 5 whereas the other 3 were unique to day 8 (Table S5A and S5B). Since the majority of the
mutants with increased fitness encode hypothetical proteins, the relationship between these genes and

vaginal colonization is currently unclear and requires further investigation.

Ethanolamine utilization and T7SS genes contribute to E. faecalis persistence in the reproductive
tract.
Our TnSeq analysis revealed many potential mutants that exhibited decreased colonization in the murine

vaginal tract. We sought to confirm these results by analyzing mutants from systems with multiple


https://doi.org/10.1101/2020.04.30.069468
http://creativecommons.org/licenses/by-nc-nd/4.0/

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.069468; this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

affected genes. One significantly affected operon was ethanolamine (EA) utilization (euf) which consists
of 19 genes in E. faecalis (40). Mutants in 4 eut genes were significantly underrepresented in vivo
compared to the culture input at all time points. These included transposon mutants of the genes
encoding both subunits for ethanolamine ammonia lyase, eutB (OGIRF_11344)and eutC
(OGIRF_11343) (41), a carboxysome structural protein, eutL (OGIRF_11342)(42), and the response
regulator, eutV (OGIRF_11347), of the two-component system involved in the regulation of EA
utilization (43) (Table S4A). To assess the importance of EA utilization on E. faecalis vaginal
colonization, we co-colonized mice with E. faecalis OG1SSp (a derivative of OG1 that is resistant to
streptomycin and spectinomycin) and an OGIRF AeutBC mutant (44). We note that both WT strains,
OGIRF and OG1SSp, were able to colonize the vaginal tract at similar levels (Fig. S2). Further
chromosomal DNA sequence comparison of OGIRF and OGI1SSp revealed multiple nucleotide
polymorphisms (SNPs) in OG1SSp, but no SNPs in genes in the eut locus (Table S6). Compared to the
WT OGI1SSp strain, the AeutBC mutant was cleared significantly faster from the mouse vagina as seen
by CFU from individual mouse swabs, the mean CFU recovered and competitive index (CI) over time
(Fig. 6A, B, C). These results suggest that the utilization of ethanolamine is important for enterococcal

persistence in the vaginal tract.

We also observed that Tn insertion mutants in the T7SS locus were significantly underrepresented at all
time points in vivo compared to the culture input. The T7SS has been shown to play an important role in
virulence in multiple bacterial species such as Staphylococcus, Listeria and Bacillus (45). In E. faecalis,
genes in the T7SS locus have been shown to be induced during phage infection (46). We observed that
transposon mutants for esaB (OGIRF_11103), a putative cytoplasmic accessory protein; OGIRF_11109

and OGIRF_11111, putative toxin effector proteins; OGIRF_11113, a putative toxin, OGIRF_11114, a

10
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transmembrane protein; and OGIRF_11122, a potential antitoxin protein were all significantly
underrepresented (Table S4A). To confirm the role of the T7SS in vaginal colonization, we utilized an
esaB (esaB::tn) mutant, in which esaB is disrupted by a transposon and thus Tn-mediated polar effects
may exist for this strain. Following co-colonization with E. faecalis OG1RF and the OGIRF esaB::tn
mutant strain, we observed that while there were no differences in initial colonization, fewer esaB.:tn
mutant bacteria were recovered from the vaginal lumen at later time points (Fig. 6D). Since we only
observed differences in colonization between WT OGI1RF and OGI1RF esaB::tn at later time points, we
performed subsequent experiments to determine whether there were differences in ascension between
the two strains. Mice were co-colonized with the two strains and we harvested tissues at day 11, before
there were any colonization differences observed between the two strains. Here, we observed that WT
OGIRF outcompeted the esaB::tn mutant strain and was better able to access reproductive tract tissues
(Fig. 6E, F), indicating that the T7SS may be involved in vaginal persistence and ascension in the female

reproductive tract.

DISCUSSION

E. faecalis 1s associated with a wide spectrum of infections, particularly under immunocompromised
states and during compositional shifts in the host microbiota (47, 48). Although an increasing body of
evidence links enterococci with bacterial vaginosis (BV) and aerobic vaginitis (AV) (22, 23, 49-51), the
molecular determinants that facilitate E. faecalis colonization and persistence in the vaginal tract are
largely unknown. Here, we employed in vitro and in vivo systems to acquire genome-scale interactions
that confer E. faecalis fitness within the female reproductive tract. We show that both vancomycin
sensitive enterococci (VSE) and VRE adhere to cell types of vaginal and cervical origin, a signature of

bacterial colonization that precedes tissue invasion and systemic spread. Further, genetic features

11
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involved in biofilm formation, ethanolamine utilization and polymicrobial interactions influence E.

faecalis vaginal carriage.

Previous studies have demonstrated the importance of Ebp pili in enterococcal virulence and biofilm
formation (19). We found that deletion of ebpABC attenuated binding to human vaginal and
endocervical cells but did not influence bacterial burden in the vaginal lumen, similar to the observed
function of Ebp pili in the intestine (52). Enhanced E. faecalis adherence in tissue culture compared to in
vivo colonization may reflect the lack of liquid and mucus flow that bacteria encounter within the
vaginal tract, emphasizing the significance of our animal model for investigating E. faecalis-vaginal
interactions. Consistent with this observation, an in vivo Tn library screen revealed only two
underrepresented biofilm-associated mutants, ebpC-Tn and OGIRF_10506-Tn, encoding a putative
polysaccharide deacetylase homolog implicated in low biofilm formation in vitro (53, 54). Together,
these results show that individual mutations in ebp or other well characterized biofilm genes are not
sufficient to impair vaginal niche establishment and/or persistence of enterococci, which likely depends
on the concerted effort of multiple factors. Furthermore, similar to ebpC-Tn, we observed that genes for
multiple sortase-dependent proteins (SDPs) were underrepresented at all time points during vaginal
colonization. The genome of OG1RF contains 21 sortase-dependent proteins, including Ebp (52). Other
than ebpC (OGIRF_10871), we observed that 4 other SDPs are underrepresented during vaginal
colonization, including OGIRF_10811, OGIRF_11531, OGIRF_11764 and OGIRF_12054 (Table 1).
Previous reports indicate the importance of SDPs during gastrointestinal colonization by enterococci

(52), implicating the possibility that multiple SDPs also play a role during vaginal colonization.
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Transition from nutrient rich laboratory media to the vaginal tract likely imparts dramatic alterations in
E. faecalis metabolism. In support of this hypothesis, our high-throughput Tn mutant screen showed that
mutations in carbohydrate, amino acid and nucleotide metabolic pathways were indispensable in the
vaginal tract. Specifically, we showed that WT bacteria outcompete a eut locus mutant during vaginal
colonization. In contrast, Kaval and colleagues demonstrated that mutations in eut genes leads to a slight
increase in fitness within the intestine (55). This observation likely reflects varying metabolic
requirements of enterococci in different host environments. While a number of reports exist on the
contributions of EA catabolism in host-bacteria interactions within the intestine (56), studies are lacking
for the relevance of this EA metabolism in other host-associated environments. Our results raise
important questions regarding EA utilization in the female reproductive tract. Although commensal
microbes and the epithelium are rich sources of EA, the composition and source of EA in the vaginal
tract remains unknown. A recent report showed that E. faecalis EA utilization attenuates intestinal colitis
in IL10 knockout mice in the presence of a defined microbiota (57). Whether EA utilization promotes
virulence or commensalism for enterococci in the context of vaginal tissue remains to be determined.
Considering that the by-product of EA metabolism, acetate, is anti-inflammatory and promotes IgA
production in the intestine (58, 59), it is intriguing to consider that enterococcal EA catabolism might

modulate immune responses within the female reproductive tract.

T7SSs have been implicated in the maintenance of bacterial membrane integrity, virulence, and inter-
bacterial antagonism (45, 60-66). In S. aureus, T7SS encoded proteins confer protection from membrane
damage caused by host fatty acids (65, 66). Although E. faecalis T7SS genes were shown to be induced
in response to phage driven membrane damage, direct contributions of these genes in cell envelop

barrier function and/or virulence in the context of animal models are poorly defined. Our TnSeq analysis
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revealed that insertional mutations in six T7SS genes diminished early and late vaginal colonization by
E. faecalis OGIREF. In vaginal co-colonization competition experiments, an esaB::tn strain reached WT
colonization levels early and showed a defect in long term persistence. The incongruence in the
colonization kinetics of T7SS mutant strains compared to T7SS-Tn library mutants which were observed
early after inoculation, presumably stem from the inherent differences in the vaginal milieu in these two
experiments. The TnSeq library employed in this screen is a complex population of approximately 7,000
unique mutants, and it is very likely that direct or indirect interactions between mutants influences
fitness. LXG—domain toxins, which are part of the T7SS, have been shown to antagonize neighboring
non-kin bacteria (63). The fact that two mutants with LXG—domain encoding gene mutations,
OGIRF_11109 and OGIRF_11111, were underrepresented across all time points during vaginal
colonization suggests that these putative antibacterial proteins may influence enterococcal interactions

with the resident microbes of the vaginal tract.

In addition to genes encoding SDPs, ethanolamine utilization and T7SS, other Tn mutants that were
underrepresented in all time points are worth discussing. For example, OGI/RF_12241, a homolog of the
oxidative stress regulator ZypR, was underrepresented at all time points (Table S4A). We have recently
shown that this gene is involved in phage VPE2S5 infection of E. faecalis OGIRF (46). Furthermore,
enterococcal mutants in the CRISPR/cas9 locus (OGIRF_10404 and OGIRF _10407) were
underrepresented at all three time points (Table S4A). While the role of CRISPR-Cas systems in
providing prokaryotic immunity to mobile genetic elements has been extensively investigated, there is
also evidence suggesting that this system may be involved in other prokaryotic processes besides
adaptive immunity. Cas9 has been shown to have various functions in regulation of virulence in a

number of bacteria including Francisella novicida, Campylobacter jejuni, and Streptococcus agalactiae
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(67-69). In E. faecalis, CRISPR-Cas-harboring strains are associated with increased capacity to form
biofilms and increased mortality in a mouse urinary tract model (70). Our Tn-seq analysis further reveals

the potential importance for Cas9 during vaginal colonization, which warrants follow up studies.

While a majority of underrepresented mutants were common to all time points, we identified certain
mutants unique to either early or late colonization. For example, the ethanolamine utilization protein
EutQ (OGIRF_11333), a classified acetate kinase in Salmonella enterica (71), was significantly
underrepresented at day 1, but not the later time points. We also observed that Tn mutants for the
transmembrane signaling protein kinase IreK (OGIRF_12384) were underrepresented only at day 1. In
E. faecalis, IreK is involved in regulation of cell wall homeostasis (72), long-term persistence in the gut
and has also been shown to be essential for enterococcal T7SS expression and subsequent activity (73).
These proteins may therefore be important contributors to enterococcal vaginal colonization, though
further investigation is required. Our Tn-seq analysis also identified Tn mutants that were unique to day
8 post-inoculation, indicating that these factors may be important for later stage colonization and
persistence. One observed mutant was the fsrB gene (OGIRF_11528) of the Fsr quorum-sensing system,
which directly regulates virulence factors such as serine protease and gelatinase, while also indirectly
regulating other virulence factors involved in surface adhesion and biofilm development (74-76).
Although it is not well understood whether biofilms are being formed during vaginal colonization,
certain hits in our Tn-seq (i.e. ebpC and fsrB) analysis suggests that biofilm-associated factors play a
role in enterococcal persistence in the vaginal tract. Bacterial mutants for the response regulator croR
(OGIRF_12535) were also underrepresented only at the later time point. CroR has shown to be involved
in virulence regulation, cell wall homeostasis and stress response, and antibiotic resistance (77-79).

Finally, underrepresentation of the sortase-associated gene (OGIRF_10872) was also unique to late
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colonization. The underrepresentation of enterococcal mutants late in vaginal colonization suggests
these factors may be important for long-term persistence of E. faecalis in the vaginal tract. While the
majority of underrepresented mutants were common to all time points, mutants unique to certain time
points indicate that some factors may be important for either initial colonization or enterococcal survival

in the vaginal tract.

Here, we report the utilization of a mouse model for investigating host-enterococcal interactions in the
vaginal tract. This will be a useful model for analyzing the bacterial and host factors that govern
enterococcal vaginal colonization, as well as characterizing the polymicrobial interactions that may
contribute to E. faecalis niche establishment and persistence. Transposon library screening of E.
faecalis recovered from the mouse vagina has revealed new insights into our understanding of
enterococcal vaginal carriage. Our results emphasize the importance of ethanolamine utilization and
T7SS components for successtul E. faecalis colonization of the female reproductive tract, highlighting

the complex nature of this niche.

METHODS

Bacterial strains and culture conditions.

A detailed list of bacterial strains can be found in Table S7. E. faecalis strains V583 (80) and OG1- (RF
and SSp) (70, 81) were used for these experiments. E. faecalis was grown in brain heart infusion (BHI
(82)) broth at 37°C with aeration and growth was monitored by measuring the optical density at 600nm
(ODgo). For selection of E. faecalis V583, BHI agar was supplemented with gentamicin (100 pg/ml).
For selection of E. faecalis OG1RF, OGIRF AebpABC (33) and OGIRF AeutBC (44), BHI agar was

supplemented with rifampicin (50 ug/ml) and fusidic acid (25 pg/ml). For selection of E. faecalis
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OGI1SSp, BHI agar was supplemented with streptomycin (150 pg/ml) and spectinomycin (100 pg/ml).
E. faecalis OGIRF esaB::tn (34) was grown on BHI agar supplemented with rifampicin (50 pg/ml),

fusidic acid (25 pg/L), and chloramphenicol (15 pg/ml).

In vitro adherence assays

Immortalized VK2 human vaginal epithelial cells and Endl human endocervical epithelial cells were
obtained from the American Type Culture Collection (VK2.E6E7, ATCC CRL-2616 and End1/E6E7,
ATCC CRL-2615) and were maintained in keratinocyte serum-free medium (KSFM; Gibco) with 0.1
ng/mL human recombinant epidermal growth factor (EGF; Gibco) and 0.05 mg/ml bovine pituitary
extract (Gibco) at 37°C with 5% CO>. Assays to determine cell surface-adherent E. faecalis were
performed as described previously when quantifying GBS adherence (83). Briefly, bacteria were grown
to mid-log phase (ODgp = 0.4 - 0.6) and added to cell monolayers (multiplicity of infection [MOI] = 1).
After a 30 minute incubation, cells were washed with phosphate-buffered saline (PBS) three times
following detachment with 0.1 mL of 0.25% trypsin-EDTA solution and lysed with addition of 0.4 mL
of 0.025% TritonX-100 in PBS by vigorous pipetting. The lysates were then serially diluted and plated
on Todd Hewitt agar (THA) to enumerate the bacterial CFU. Experiments were performed at least three

times with each condition in triplicate, and results from a representative experiment are shown.

Murine vaginal colonization model.

Animal experiments were approved by the Institutional Animal Care and Use Committee at University
of Colorado-Anschutz Medical Campus protocols #00316 and #00253 and performed using accepted
veterinary standards. A mouse vaginal colonization model for GBS was adapted for our studies (26).
Eight-week old female CD1 (Charles River) or C57BL/6 (Jackson) mice were injected intraperitoneally

with 0.5 mg 17B-estradiol (Sigma) 1 day prior to colonization with E. faecalis. Mice were vaginally
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inoculated by gently pipetting 10’ CFU of E. faecalis in 10uL PBS into the vaginal tract, avoiding
contact with the cervix. On subsequent days the vaginal lumen was swabbed with a sterile ultrafine swab
(Puritan). For co-colonization, mice were inoculated with two of the following E. faecalis strains:
OG1SSp, OGIRF or deletion mutants in the OG1RF background. To assess tissue CFU, mice were
euthanized according to approved veterinary protocols and the female reproductive tract tissues were
dissected and placed into 500uL PBS and bead beat for 2 min to homogenize the tissues. The resulting
homogenate was serially diluted and E. faecalis CFU enumerated on BHI agar supplemented with

antibiotics to select for the strain of interest.

Histology.

Mice were inoculated with E. faecalis V583 containing a plasmid that expresses gfp (pMV158GFP) and
contains resistance to tetracycline (15 pg/mL) [23]. After 1 day post-inoculation, the murine female
reproductive tract was harvested, embedded into Optimal Cutting Temperature (OCT) compound
(Sakura), and sectioned at 7um with a CM1950 freezing cryostat (Leica). For fluorescence microscopy,
coverslips were mounted with VECTASHIELD mounting medium containing 4’,6-diamidino-2-

phenylindole (DAPI, Vector Labs). Images were taken with a BZ-X710 microscope (Keyence) [22].

Transposon mutant library growth and vaginal colonization.

The E. faecalis OGIRF transposon mutant library was generated previously (34). The E. faecalis
OGIRF pooled transposon library was inoculated into 5 ml of BHI at a total of 10* CFU and grown with
aeration to an ODgg of 0.5. The library was inoculated into the vaginal tracts of C57BL/6 mice at
10" CFU. The library was plated on BHI agar to confirm the inoculum for all groups of mice. Mice were
swabbed daily and swabs were plated on BHI supplemented with rifampicin (50 pg/ml), fusidic acid

(25 pg/ml) and chloramphenicol (20 pg/ml) to quantify CFU. On days 1, 5, and 8, undiluted swabs were

18


https://doi.org/10.1101/2020.04.30.069468
http://creativecommons.org/licenses/by-nc-nd/4.0/

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.069468; this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

plated on BHI agar with antibiotics and grown to a bacterial lawn. Bacteria were scraped and re-
suspended in PBS and pelleted. DNA from days 1, 5, 8, and the input culture was extracted from pellets

using a ZymoBIOMICS™ DNA MiniPrep kit (Zymo Research).

Transposon library sequencing and data analysis.

Transposon-junction DNA library preparation and Illumina NovaSeq 6000 DNA sequencing (150 base
paired end mode) was performed by the Microarray and Genomics Core at the University of Colorado
Anschutz Medical Campus as previously described (46). For downstream analysis of transposon-
junctions, we used only the R1 reads generated by paired end sequencing. Illumina adapter trimmed raw
reads were mapped to the E. faecalis OGIRF reference sequence (NC_017316.1) and differentially
abundant transposon mutants were identified using statistical analysis scripts established by Dale et
al.(34). The abundance of Tn mutants in culture was compared to input library used for culture
inoculation and mutants that are not significantly different (p > 0.05) between these two samples were
considered for the next steps of the analysis. For comparisons between in vivo and in vitro samples,
mutants were considered significantly different if the adjusted P value was < 0.05 and a log, (fold

change) > 1.

Genomic DNA sequencing and comparative analysis

E. faecalis genomic DNA was purified using a ZymoBIOMICS™ DNA Miniprep Kit (Zymo Research)
and 150 bp paired end sequencing was performed on Illumina NextSeq 550 by the Microbial Genome
Sequencing Center, University of Pittsburgh. E. faecalis OG1SSp genome DNA was purified using a
Qiagen DNeasy kit and was sequenced on the MiSeq platform (2 X 75 bp) at the University of

Minnesota Genomics Center. All reads were mapped to E. faecalis OGIRF reference sequence
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(NC_017316.1) using CLC Workbench (Qiagen). The basic variant caller tool in CLC Genomics
Workbench was used to identify single nucleotide polymorphisms using default settings (similarity

fraction = 0.5 and length fraction = 0.8).

Data availability.
The Tn-Seq and genomic DNA reads have been deposited at the European Nucleotide Archive under

accession numbers PRJEB37929 and PRJEB39171, respectively.

Statistical analysis.
GraphPad Prism version 7.0 was used for statistical analysis and statistical significance was accepted at

P values of < 0.05 (* P < 0.05; *% P < 0.005; *+x P < 0.0005; ****x P < 0.00005). Specific tests are

indicated in figure legends.
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Figure 1: E. faecalis colonizes the murine female reproductive tract. (A) Adherence of E. faecalis
V583 and OGI1RF to human vaginal and endocervical cells. Data are expressed as percent recovered
cell-associated E. faecalis relative to the initial inoculum. Experiments were performed in triplicate and
error bars represent standard deviations (SDs); the results of a representative experiment are shown. (B)
CFU counts of V583 and OG1RF recovered from vaginal swabs 1 day post-inoculation. (C) CFU counts
of V583 from vaginal, cervical and uterine tissue 1 day post-inoculation. (D, E, F) Mice were inoculated
with V583 expressing gfp and 7um sections of vaginal (D), cervical (E) and uterine (F) tissue were
collected 1 day post-inoculation and stained with DAPI for fluorescence microscopy. White arrows
indicate green fluorescent bacteria present in tissue sections. Images were all taken at 40x magnification.

LP = lamina propria, EP = epithelial layer, Lu = lumen.

Figure 2: E. faecalis persists in the murine vaginal tract. (A and B) E. faecalis V583 and OGIRF in
the murine vaginal tract. C57BL/6 mice (n = 10) were inoculated with 107 V583 or OG1RF CFU and the
vaginal lumen of each mouse was swabbed daily and swabs were serially diluted and plated on selective
media to quantify CFU. Data are presented as recovered CFU per mouse (A) and mean recovered CFU
(B). Data was analyzed using a Two-way ANOVA; ** P < 0.001. (C and D) CD1 (n = 10) and C57BL/6
(n = 7) mice were inoculated with V583 and the vaginal lumen of each mouse was swabbed daily,
serially diluted, and plated on selective media to quantify CFU. Data are presented as recovered CFU

per mouse (C) and mean recovered CFU (D). Black lines indicate the median of CFU values.

Figure 3: The role of enterococcal pili during vaginal colonization. (A and B) E. faecalis OGIRF
WT and OGIRF AebpABC adherence to human vaginal (A) and endocervical (B) cells. Data are

expressed as percent recovered cell-associated E. faecalis relative to the initial inoculum. Experiments
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were performed with four technical replicates and error bars represent SDs; the results of three

combined biological replicates are shown and analyzed using an unpaired t-test; *¥* P < 0.0001; #*¥* P

< 0.00001. (C) C57BL/6 mice were inoculated with either OGIRF WT or OGIRF AebpABC and the
vaginal lumen was swabbed daily. Data was analyzed using a Two-way ANOVA with Sidak’s multiple

comparisons (P>0.05). Black lines indicate the median of CFU values.

Figure 4: Identification of additional factors required for vaginal colonization and persistence by
transposon mutant library screen. (A) Schematic representing experimental approach. C57BL/6 mice
were treated with 17B-estradiol prior to inoculation with the OGIRF Tn library in triplicate groups or
WT OGIRF. The vaginal lumen was swabbed and CFU was enumerated daily. DNA from recovered
OGIRF Tn mutants was sequenced on days 1, 5 and 8. (B) CFU recovered from vaginal swabs of
triplicate groups of mice colonized with OG1RF Tn mutagenesis library (T1, T2, T3) and OG1RF WT
(n=5 mice per group). (C, D and E) Volcano plots depicting underrepresented and overrepresented
mutants in vivo compared to culture on day 1 (C), day 5 (D) and day 8 (E) post-inoculation. (C) 667
underrepresented genes and 21 overrepresented genes in vivo compared to culture. (D) 404
underrepresented genes and 6 overrepresented genes in vivo compared to culture. (E) 507
underrepresented genes and 3 overrepresented genes in vivo compared to culture. Colored dots
represent mutants of interest. Pink = ebpC Tn mutant, Orange = eut Tn mutants, Green = T7SS gene Tn

mutants. Black solid line represents cut-off for statistical significance.

Figure 5: Classification of transposon insertion mutants by Cluster of Orthologous Groups

(COGsS). (A) Euler plot representing number of underrepresented mutants at all time points. (B) Cluster

of Orthologous Groups (COGs) from underrepresented mutants common to all three time points
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categorized into functional categories. Total = 196 represents all common mutants that were assigned a

COG domain.

Figure 6: Ethanolamine utilization and type VII secretion system genes contribute to enterococcal
persistence in the vaginal tract. (A, B and C) C57BL/6 mice were co-inoculated with OG1SSp WT
and OGIRF AeutBC and vaginal lumen was swabbed to quantify CFU. Data are presented as recovered
CFU per swab (A), mean recovered CFU (B) and CI between WT and mutant strains (C). Data was
analyzed using a Two-way ANOVA with Sidak’s multiple comparisons; *P < 0.05, #*P < 0.005, #*#*¥
P < 0.00005. (D) C57BL/6 mice were co-inoculated with OGIRF WT and OGI1RF esaB::tn and vaginal
lumen was swabbed to quantify CFU. Data was analyzed using a Two-way ANOVA with Sidak’s
multiple comparisons; *#P < 0.005, #*¥*P < 0.0005 (E and F) C57BL/6 mice were co-inoculated with
OGIRF WT and OGIRF esaB::tn and reproductive tissue was collected at 11 days post-inoculation.
Data are presented as recovered Log;o CFU/gram (E) and CI between WT and Tn-mutant strain (F). CI
is enumerated by calculating the ratio of WT to mutant E. faecalis recovered from the mouse
reproductive tract. A CI >1 indicates an advantage to WT E. faecalis. Values below the limit of

detection were enumerated as one-half the limit of detection. Data was analyzed using a paired t-test; *P

< 0.05, ##P < 0.005. Black lines indicate the median of CFU values.

Table 1: Selected list of differentially abundant transposon mutants during vaginal colonization

compared to in vitro cultures.
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Adherence to Endocervical Cells
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Table 1: Selected list of differentially abundant transposon mutants during vaginal
colonization compared to in vitro cultures

old_locus_tag NCBI_description Difference Difference Difference

(D1 - Cul) (D5 - Cul) (D8 - Cul)

Sortase-dependent proteins (SDPs)

OG1RF_10811 collagen adhesion -4.33 -4.14 -5.72
protein

OG1RF_10871 cell wall surface anchor -2.54 -2.37 -4.44
family protein, ebpC

OG1RF_11531 glycosyl hydrolase -3.04 -3.15 -4.25

OG1RF_11764 cell wall surface anchor -2.80 -3.48 -5.24
family protein

OG1RF_12054 cell wall surface anchor -2.62 -1.50 -6.01

family protein

Ethanolamine utilization

OG1RF _11342 ethanolamine utilization -3.92 -3.25 -6.10
protein EutL

OG1RF_11343 ethanolamine ammonia- -4.09 -4.60 -5.85
lyase small subunit

OG1RF 11344 ethanolamine ammonia- -4.27 -4.28 -6.94

lyase large subunit

Type VIl secretion system

OG1RF_11103 YukD superfamily -3.19 -5.02 -6.95
protein, esaB

OG1RF_11109 putative LXG-containing -3.93 -3.47 -4.87
toxin

OG1RF_11111 putative T7SS toxin -3.76 -4.15 -4.80

OG1RF_11113 putative T7SS toxin -3.19 -2.87 -3.70

OG1RF_11114 putative immunity protein -3.96 -3.88 -5.62

OG1RF_11122 immunity protein -1.31 -1.43 -2.14
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