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Abstract

Background: Mosses compose one of the three lineages thattf@msister group to extant
vascular plants. Having emerged from an early gplite diversification of embryophytes,
mosses may offer complementary insights into tledudon of traits following the transition to
and colonization of land. Here, we report the dnaftlear genome dfontinalis antipyretica
(Fontinalaceae, Hypnalgsa charismatic aquatic moss widespread in tengeegions of the
Northern Hemisphere. We sequenced dadovo assembled its genome using the 10 x
genomics method. The genome comprises 486.3 Mh,anscaffold N50 of 38.8 kb. The
assembly captured 89.4% of the 303 genes in thedBU&ukaryote datasdihe newly
generatedF. antipyretica genome is the third genome of mosses, and thedemmome for a

seedless aquatic plant.

I ntroduction

With ~13,000 extant species, mosses representpmetha second most speciose lineage of land
plants [1]. Mosses diverged from their common atoeesith liverworts (One Thousand Plant
Transcriptomes Initiative, 2019) no later than 85¢a [2-4]. The early diversification of land
plants is marked by various morphological innovagicsuch as branching of the sporophyte or
stomata [5], as well as metabolic innovations, mosably perhaps biopolymers, essential for
composing the cuticle [6] that enables plants attaptliving environment featured by water-
deficiency and UV-exposure. To date, two nucleaiogees have been sequenced for mosses,
namely the model taxon and acrocarpous rRtgscomitrium patens [7], andPleurozium

schreberi [8], a representative of the diverse pleurocargogysalean mosses.

Fontinalis antipyretica (NCBI: txid67435) is an aquatic moss species (E)grom the
most diverse moss order, i.e., the Hypnales [9ju8ecing the genome Bf antipyretica should
provide the first opportunity for a comparative geric study in this lineage that may have
diversified after the rise of the angiosperms. lremmnore, this is the second genome for a
seedless aquatic plant, it will also allow for Hesessment of independent genomic
transformations linked to a reversed shift to amedig habitat. Thus the genome of this species
would contribute to the framework necessary toystgghome evolution in mosses, and to

explore the adaptive transformations underlyingsiiéts between terrestrial and aquatic habitats.
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Methods

Fresh gametophyte tissuekntinalis antipyretica was collected in Connecticut, USA, and the
voucher specimen (Collection number: Goffinet 141€¥s been deposited in the George Safford
Torrey Herbarium at the University of ConnecticDONN). The genomic DNA was extracted at
the Fairy Lake Botanical Garden, and has been dedosith the DNA extraction number of

332.

The plant tissue was cleaned under a dissectingpatiope to enhance the quality of the
material. Approximately 0.4 g fresh plant shootsenground in liquid nitrogen, and used for
DNA extraction using the NucleoSpin Plant midi DE®traction kit following the
manufacture’s protocol (Macherey-Nagel, Duren, Gerym. The genomic DNA was quality
controlled using a Qubit® 3.0 Fluorometer (ThernghEr Scientific, USA). The high molecular
weight genomic DNA was used to construct the 10rda@cs libraries [10] with insert sizes of
350-500 bp following the manufacturer’s protocah{@nium Genome Chip Kit v1, PN -
120229, 10x Genomics, Pleasanton, USA) [11]. Tiraties were sequenced on a BGISEQ-500
sequencer (RRID:SCR_017979) to generate the 1%@ippd-end reads [12]. The raw reads
were directly used for genome assembly using 10ro@®écs Supernova v2.1.1
(RRID:SCR_016756) with auto filtering of the re4l8].

For the genome assembly, we first calculated thgiblution frequency of the barcodes in
the raw data, and removed those reads containnegdbes with extremely low or high
frequencies. The remaining reads were subsequimtipvo assembled using 10x Genomics
Supernova. Then, we used GapCloser v1.12-r6 (RBRER_015026) to close the gaps of the
preliminary assembly [13]. All these softwares wesed with default parameters.

The genome size éfontinalis antipyretica was estimated using flow cytometry. Mature leaf
tissue ofRaphanus sativus L. cv. Saxa was used for internal and externaldzgtedizationR.

sativus has an established 2C genome size of 1.11 pagfidijvas cultivated from seeds
obtained from the Institute of Experimental Botg@®omouc, Czech Republic). Two assays
were externally standardized and one assay wasallestandardized. For each, 0.2 g of fresh
tissue from the sample or the standard were usedhfissue was combined with 750 pl of
Cystain PI Absolute P nuclei extraction Buffer (8gx, Kobe, Japan) in a glass petri dish

maintained on ice and chopped with a clean razatebfor 60 seconds. The internally
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standardized sample was co-chopped with tissueeadtandardR. sativus. The resulting nuclear
suspension was transferred to a 30 um CellTrits {iBysmex, Kobe, Japan). The flow through
was combined with 500 pl of Cystain Pl Absolutddsng solution (Sysmex, Kobe, Japan),
150ug/mL of propidium iodide, and 58y/mL of RNAse. Samples were incubated on ice for
30-60 minutes. Flow cytometry was run on a BD Biersces LSRFortessa X-20 Cell Analyzer.

The cytometry data were visualized using FlowJo™.&2 software (FlowJo, LLC,
Ashland, OR, USA). For each assay, to estimatergersize, the 1C nuclei &f antipyretica
were compared to the 2C nucleiRdphanus sativus. The ratio of the mean fluorescence of the
1C F. antipyretica peak and tResativus 2C peak was multiplied by the genome siz&of
sativus. The genome size estimate produced here is the af¢he estimates produced by the
two externally standardized assays as well asribardernally standardized assay.

For genome annotation, we used Piler v1.0 (RRID:STIR333) [15], Repeatscout
v1.0.5 (RRID:SCR_014653) [16], LTR Finder v1.0.6RIR:SCR_015247) [17] and
RepeatMasker v4.0.6 (RRID:SCR_012954) [18] to cahdenovo repeat element prediction.
RepeatMasker v4.0.6 was also implemented for ifiestion of repeats based on known
repetitive sequences. Gene structure annotatiorperdsrmed by the MAKER v2.31.8
(RRID:SCR_005309) [19] pipeline, integrating resdtom ab initio gene predictors, EST
evidence, and protein homologs. Augustus v3.2. 1IRFCR_015981) [20], GeneMark v4.32
(RRID:SCR_011930) [21] and SNAP v2006-07-28 (RRIxBO1) [22] were used fab initio
gene prediction. Transcriptome assembli£.@ntipyretica was obtained from the one-kp project
[23] and used as EST evidence. Protein sequermasciosely-related green plants were
selected as homolog-based evidence.

To reconstruct the phylogenetic tree, we used Gitluerv2.3.7 (RRID:SCR_017118)
[24] to search for single-copy orthologs amonggbromes oF. antipyretica and eight other
green plants, includiniglebsormidium nitens, Chara braunii, Anthoceros angustus, Marchantia
polymorpha, Sohagnum fallax, Physcomitrium patens, Pleurozium schreberi, andSelaginella
moellendorffii. The genomes were downloaded from Phytozome ds¢aba
(https://phytozome.jgi.doe.gov/). A total of 47R2ge-copy loci were selected, and each locus
was aligned by MAFFT v7.3.10 (RRID:SCR_011811) [2B]d concatenated into one super-
matrix. Finally, RAXML v8.2.4 (RRID:SCR_006086) wesplemented to construct the
maximum likelihood tree, using the PROTCATGTR sitbsbn model [26]. The result tree was
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uploaded to iTOL (https://itol.embl.de/) for visiztion.

Results and Discussion

Genome assembly and annotation

Atotal of 133 Gb PE150 raw data were generateth®¥BGISEQ-500 sequencer. The genome
of F. antipyretica totaled 486.3 Mb spanning 154,086 contigs, witloatig N50 of 24.6 kb. The
final scaffold assembly included 130,576 scaffaldth a N50 length of 38.8 kb. Our assembly
captured 89.4% of the 303 genes in the BUSCO eoladataset [27].

The GC content df. antipyretica is 43.91%, which is higher than thatRifyscomitrium
patens (i.e., 33% [7]), oPleurozium schreberi (26.4% [8]). The size of the genomeFof
antipyretica is estimated at 486.3 Mb, which is comparabld&osize oP. patens genome (i.e.,
462.3 Mb), but larger than that Bfschreberi (i.e., 318.3 Mb). Repeats make up 42.7% ofRthe
antipyretica genome, compared to 57.0 ¥Hrpatens and 28.4% irP. schreberi. With 26,398
genes the gene space of chantipyretica genome is intermediary betweBrpatens with
32,926 genes arfél schreberi with 15,992 genes.

Data validation and quality control
To determine the genome size, we carried out figiernetry experiment arkimer analysis for
F. antipyretica. For flow cytometry, the nuclear peaks from whgglnome size was estimated
comprised, on average, 242 events (see Fig. 3rigprasentative histogram). The mean
coefficient of variance was 7.62. The mean estithgenome size is 0.484 pico-grams. khe
mer analysis was performed using the program J&lyf2.3.0 (RRID:SCR_005491) with
default parameters [28]. The genome size was esdrigy dividing the totak-mer number by
the peak coverage in tlkemer distribution curve (Fig. 2). Thus, the genasize was estimated
to be ca. 579 Mb, which is slightly larger than tlogv cytometry result and genome assembly.
To evaluate the completeness of the assembly, neucted BUSCO v3.1.0
(RRID:SCR_015008) assessment on the assemblyTB&]assembly captured 89.4% complete
BUSCOs of the 303 genes in the BUSCO eukaryote ddbéset.
With the streptophyte alg&. nitens rooted as the outgroup, bryophytes were confirmed
as a monophyletic group, and sister to the vasqigentS. moellendorffii. Within bryophytes,

hornwort is sister to liverworts and mosses, whsctonsistent with previous studies [29]. The
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four mosses formed a clade, the newly sequeRcatipyretica and another Hypnales speckies
schreberi clustered as one clade (Fig. 4).

Re-use potential
The transition of green plants from freshwater tebito land catalyzed a major biotic
diversification, which lead to major climatic chasgon earth. The colonization of land is
characterized by the acquisition of many key intioves by plants, such as the development of
an embryo, a cuticle, gravitropic detection, anthpgen defense, which were likely crucial for
plants to survive in terrestrial environments [30je accumulation of genomic data, including
the assembly of this moss genome, may contributecianstructing the evolution of the
developmental networks underlying these innovations

Reconstructions of the relationships of extant lplaght lineages are converging on a
scenario wherein bryophytes compose a sister lmeativing vascular plants, with mosses and
liverworts sharing a unique common ancestor thagdeafrom a split from the ancestor giving rise
to hornworts [31]. Following the recent releasehaf hornwort genomes [29, 32], gene and gene
family evolution among bryophytes can be assessihva robust phylogenetic framework.
With the resolution of the relationships among reeq483], the accumulation of moss genomes
will enable more critical estimates of trends imgéamily diversity during the diversification of
this lineage of land plants. Furthermdfentinalis is the first aquatic plant with a gametophyte
dominated life cycle, to have its genome assemdntetdannotated, providing a unique
opportunity to evaluate similarities in parallebathtions in mosses, ferns [34] and angiosperms
[35] following shifts to freshwater habitats.
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Figures

Figure 1. Photogr aphs of the aquatic moss Fontinalis antipyretica. Upper: a wild populatic;

lower: shoots with a scale (in cm).
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Figure 2. The k-mer distribution curve of the Fontinalis antipyretica genome data. The curve
shows a clear one-peak mode, indicating low heygasity and repetitive content across the

genome.
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Figure 3. Representative sample of flow cytometry results. The 1C peak of Fontinalis
antipyretica and the 2C peakRdphanus sativus cv. Saxa are overlaid to show fluorescent

intensity differences on the x-axis indicated by/RE
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Figure 4. Phylogenetic tree reconstructed using nuclear genome single-copy genes showing
phylogenetic relationship of F. antipyretica and eight other green plants. Numbers below

branches are bootstrap support values. The neglyeseed- antipyretica is in bold.
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