

1 **Social isolation stress in adolescence, but not adulthood, produces hypersocial behavior in**
2 **adult male and female C57BL/6J mice**

4 Jean K. Rivera-Irizarry¹⁺, Mary Jane Skelly²⁺, Kristen E. Pleil^{1,2,3*}

6 ¹ Graduate Program in Neuroscience, Weill Cornell Medicine, Cornell University, New York,
7 NY, USA

8 ² Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY,
9 USA

10 ³ Graduate Program in Pharmacology, Weill Cornell Medicine, Cornell University, New York,
11 NY, USA

13 ⁺ These authors contributed equally to this work

15 *** Correspondence:**

16 Kristen Pleil

17 krp2013@med.cornell.edu

19 **Keywords: chronic developmental stress; anxiety; alcohol use disorder; binge alcohol**
20 **drinking; reward seeking; aversion resistance; sucrose preference; sex differences**

23 **Abstract**

25 Chronic stress during the developmental period of adolescence increases susceptibility to many
26 neuropsychiatric diseases in adulthood, including anxiety, affective, and alcohol/substance use
27 disorders. Preclinical rodent models of adolescent stress have produced varying results that are
28 species, strain, sex, and laboratory-dependent. However, adolescent social isolation is a potent
29 stressor in humans that has been reliably modeled in male rats, increasing adult anxiety-like and
30 alcohol drinking behaviors, among others. In this study, we examined the generalizability and
31 sex-dependence of this model in C57BL/6J mice, the most commonly used rodent strain in
32 neuroscience research. We also performed a parallel study using social isolation in adulthood to
33 understand the impact of adult social isolation on basal behavioral phenotypes. We found that six
34 weeks of social isolation in adolescence beginning at postnatal day (PD) 28 produced a
35 hypersocial phenotype in both male and female adults in multiple assays and a female-specific
36 anxiolytic phenotype in the elevated plus maze, but it had no effects in other assays for
37 avoidance behavior, fear conditioning, alcohol drinking, reward or aversion sensitivity, novel
38 object exploration, or forced swim behavior in either sex. In contrast, social isolation in
39 adulthood beginning at PD77 produced an anxiogenic phenotype in the light/dark box but had no
40 effects on any other assays. Altogether, our results suggest that 1) adolescence is a critical period
41 for social stress in C57BL/6J mice, producing aberrant social behavior in a sex-independent
42 manner and 2) chronic individual housing in adulthood does not alter basal behavioral
43 phenotypes that may confound interpretation of behavior following other laboratory
44 manipulations.

Adolescent stress and hypersociability

1 Introduction

2 Adolescence is a critical developmental period marked by increased reward seeking and
3 impulsivity and the establishment of apposite social behaviors (Spear, 2004, Steinberg, 2004,
4 Romer, 2010, Steinberg, 2010, Leshem, 2016). In humans, adolescence is associated with
5 increased peer affiliation and separation from family (Noom et al., 1999, Keijsers et al., 2009,
6 Eichelsheim et al., 2010). In rodents and other mammals, it is marked by heightened incidence of
7 play behavior, altered social interactions, and increased exploration (Spear, 2004, Hawk et al.,
8 2009, Trentacosta and Shaw, 2009, Walker et al., 2019). The quality and quantity of social
9 interactions during adolescence have been linked to later-life behavioral outcomes in humans,
10 including rates of drug and alcohol use and the formation of healthy social relationships (Bray et
11 al., 2001, Kochenderfer-Ladd and Wardrop, 2001, Trentacosta and Shaw, 2009, Masten et al.,
12 2012, Deutsch et al., 2015, Jager et al., 2015).

13 Adolescence is also marked by increased stress sensitivity, and chronic stress exposure during
14 this period has been shown to alter brain structure and function (Paus, 2007, Eiland and Romeo,
15 2013). As peer interactions are especially important during adolescence (Steinberg, 2004, Jager
16 et al., 2015), exposure to social stress may have particularly deleterious consequences on brain
17 development and behavior (Casey et al., 2010, Platt et al., 2013, Burke et al., 2017). This
18 increased stress sensitivity may partly explain why substance use disorders and many other
19 psychiatric conditions frequently emerge during adolescence (Turner and Lloyd, 2004, Kessler et
20 al., 2005, Kessler et al., 2007, Ernst and Fudge, 2009, Casey and Jones, 2010, Blakemore and
21 Robbins, 2012). Understanding how adolescent social stress alters neurophysiology and behavior
22 may prove crucial to treating stress-related disorders in adolescence and throughout later life.

23 Adolescent social isolation in rats has emerged as preclinical model that recapitulates many of
24 the deleterious behavioral outcomes linked to chronic adolescent stress in humans (Lukkes et al.,
25 2009b, Butler et al., 2016, Walker et al., 2019). In male rats, this paradigm has been shown to
26 increase anxiety-like behavior and drug and ethanol intake and decrease fear memory extinction
27 (McCool and Chappell, 2009, Whitaker et al., 2013, Butler et al., 2014a, Karkhanis et al., 2015,
28 Skelly et al., 2015, Butler et al., 2016, Yorgason et al., 2016, Karkhanis et al., 2019), although
29 these effects were not recapitulated in female rats (Butler et al., 2014b). Isolation during
30 adolescence has also been linked to decreased social interaction in rats (Ferdman et al., 2007).
31 Less is known about the effects of protracted adolescent isolation on these behaviors in mice,
32 even though they are commonly used on neuroscience research, including studies that model
33 human psychiatric conditions such as drug self-administration that requires individual housing
34 (Becker and Ron, 2014). While some evidence suggests that isolation in adulthood is not
35 stressful for mice (Hunt and Hambly, 2006), other work presents evidence to the contrary
36 (Arakawa, 2018, Mumtaz et al., 2018, Manouze et al., 2019). The effects of isolation in
37 adolescence are even less clear. Like humans, adolescent mice demonstrate a potentiated
38 response to stress (Romeo et al., 2006). Although there are some reports that chronic social stress
39 during adolescence increases depressive- and anxiety-like behaviors and drug self-administration
40 in mice (Conrad and Winder, 2011, Lopez et al., 2011, Amiri et al., 2015), these results are
41 variable and may be strain and sex-dependent (Arakawa, 2018, Mumtaz et al., 2018, Walker et

Adolescent stress and hypersociability

1 al., 2019). C57BL/6J mice are commonly used in studies of alcohol self-administration (Rhodes
2 et al., 2005, Melendez et al., 2006, Lyons et al., 2008, Yoneyama et al., 2008, Hwa et al., 2011,
3 Mulligan et al., 2011) and as such are regularly singly housed for long periods of time. However,
4 the lasting behavioral effects of social isolation (either in adolescence or adulthood) on escalated
5 alcohol self-administration and anxiety-like behaviors in this strain have been variable (Lopez et
6 al., 2011, Lopez and Laber, 2015, Huang et al., 2017, Caruso et al., 2018).

7 Here we evaluated the behavioral consequences of prolonged social isolation on behavior in
8 male and female C57BL/6J mice and determined whether adolescence was a specific period of
9 stress sensitivity. Following six weeks of social isolation in adolescence or adulthood, we
10 measured anxiety, anhedonia, alcohol intake, reward and aversion sensitivity, fear memory
11 formation and social behavior in adulthood. We found that social isolation produced few
12 behavioral deficits overall, however this manipulation in adolescence led to aberrant social
13 behavior in adulthood, marked by hyper-sociability and reduced avoidance behavior. Overall,
14 these results suggest that single housing in adulthood does not robustly impact the basal
15 behavioral state of C57BL/6J mice and that adolescence is a sensitive period for the effects of
16 chronic social stress in this strain.

17 Methods

18 Animals

19 Male and female C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, ME)
20 at postnatal day (PD) 21 (for adolescent isolation experiment) or 63 (for adult isolation
21 experiment) and housed on a 12 hr:12 hour light:dark cycle with lights off at 7:30 am and *ad*
22 *libitum* access to food and water. One week after arrival, mice were randomly assigned to
23 socially isolated (SI, one mouse per cage) or maintained in group housed (GH, five mice per
24 cage) conditions for six weeks prior to behavioral testing. In the adolescent SI cohort, mice that
25 were GH through adolescence were singly housed at PD77 for the duration of the study. In the
26 adult SI cohort, GH mice remained in group-housed conditions. All experimental protocols were
27 approved by the Institutional Animal Care and Use Committee at Weill Cornell Medicine in
28 accordance with the guidelines of the NIH Guide for the Care and Use of Laboratory Animals.
29

30 Behavioral Assays

31 Assays were conducted under 250 lux lighting conditions as previously described (Pleil et al.,
32 2015, Crowley et al., 2016, Marcinkiewcz et al., 2016) and Panlab SMART 3.0 video tracking
33 software was used to track and analyze behavior, unless otherwise described. Each behavioral
34 apparatus was thoroughly cleaned with 70% ethanol prior to each trial. Timeline graphs
35 illustrating the sequence of experiments conducted in the adolescent and adult isolation cohorts
36 can be found in **Figures 1A** and **2A**, respectively.

37

38 Elevated Plus Maze

39 The elevated plus maze (EPM) test was conducted in a plexiglass maze with two open and two
40 closed arms (35 cm 1 × 5.5 cm w, with 15 cm h walls for closed arms) extending from a central
41 platform (5.5 cm × 5.5 cm) elevated 50 cm above the floor. At the beginning of each trial, the
42 mouse was placed in the center of the maze facing an open arm and movement was tracked

Adolescent stress and hypersociability

1 continuously for five minutes. The total time spent on the open and closed arms of the assay and
2 total number of open and closed arm entries (defined as placement of all four paws into the arm)
3 were quantified. Percent time spent in the open arms of the assay was calculated to measure
4 anxiety-like behavior, and closed arm entries were used as a measure of locomotion.

5 Open Field Test

6 The open field test was conducted in a plexiglass arena (50×50×34.5 cm) with a gray floor. The
7 mouse was placed in one corner of the arena and allowed to explore freely for 30 minutes. Total
8 time spent in the center of the maze (defined as having all four paws in the 25 cm x 25 cm area in
9 the center of the arena) and periphery were quantified to calculate percent center time. The total
10 distance traveled in the maze (cm) was used to measure locomotion, and percent time in the
11 center of the maze was used to assess anxiety-like behavior.

12 Light/Dark Box

13 The light/dark box assay was conducted in a rectangular box divided into two equal
14 compartments (20 cm 1 × 40 cm w × 34.5 cm h), one dark with a closed lid and the other with an
15 open top and illuminated by two 60 W bulbs placed 30 cm above the box. The two compartments
16 were separated by a divider with a 6 cm x 6 cm cut out passageway at floor level. At the
17 beginning of each trial, the mouse was placed in a corner of the light compartment and allowed
18 to move freely between the two compartments for 10 minutes. The number of light box entries
19 and total time spent in the light compartment as compared to the dark compartment were used to
20 assess anxiety-like behavior.

21 Social Interaction Test

22 The social interaction test was conducted in three 10-minute phases in an open plexiglass
23 arena (50 cm × 50 cm × 34.5 cm), and mice could explore freely during each phase. Between
24 each testing phase, the experimental mouse was briefly placed in a holding cage while the
25 experimenter altered the arena settings as follows: phase 1: empty arena; phase 2: two empty
26 wire mesh cups (diameter 4", height 4") located at opposite corners of the arena 10 cm from each
27 wall; phase 3: a novel age- and sex-matched mouse of the same strain was placed inside one of
28 the two cups, while the other cup remained empty. The placement of the cups and social partner
29 were pseudorandom and counterbalanced. Interaction zones for each cup were defined as
30 encompassing a 5 cm radius around the center of the cup, and the ratio of interaction time with
31 the social partner versus the empty cup during phase 3 was used to determine a social preference
32 score.

33 Novel Object Interaction

34 The novel object interaction assay was conducted under the same conditions and using the
35 same analyses as the social interaction test (see above) but using objects, in order to assess
36 whether effects observed in novel social partner preference could be generalized to a non-
37 social novel object. The objects used in this experiment included plastic cuboids with orange
38 color (3 cm × 3 cm × 6 cm) and half-sphered plastic cylinders with a blue color of the same
39 dimensions, as described in previous publications (Lueptow, 2017, Tian et al., 2019); these
40 objects were determined to be of equal interest to C57BL/6J mice in pilot testing. The objects
41 were affixed to the floor of the arena during behavioral testing, which proceeded as follows:
42 phase 1: empty arena; phase 2: two versions of the same object located at opposite corners of the

Adolescent stress and hypersociability

1 arena 10 cm from each wall; phase 3: a novel object replaced one of the two familiar objects in
2 the arena. The ratio of interaction time with the novel versus familiar object during phase 3 was
3 used as a novel object preference score.

4 Fear Conditioning

5 Fear conditioning was performed in an operant box with a stainless-steel grid floor within a
6 sound-attenuating chamber (Colbourn Instruments, Allentown, PA). The mouse was placed in
7 the chamber at the beginning of the test, and following a five min habituation period received six
8 pairings of a 30 second, 80 dB tone (conditioned stimulus, CS) co-terminating with a 2 second,
9 0.5 mA foot shock (unconditioned stimulus, US) separated by pseudorandom intra-interval times
10 (from 31-119 seconds, with an average ITI of 75.5 seconds). Video tracking and FreezeFrame
11 software (Colbourn Instruments, Allentown, PA) were used to assess freezing behavior during
12 the 28 second period preceding the shock across tone/shock presentations.

13 Home Cage Ethanol Drinking

14 We used a modified version of the standard Drinking in the Dark (DID) binge ethanol drinking
15 paradigm (mDID) to assess binge ethanol intake under limited-access conditions as well as 24-
16 hour preference for ethanol over water. Mice were singly housed for several days prior to the
17 first ethanol presentation. For each mDID cycle, the home cage water bottle was replaced with a
18 bottle containing 20% (cycles 1-4) or 30% (cycles 5-6) ethanol for two hours beginning three
19 hours into the dark cycle for three days. On day 4, two bottles (one containing ethanol solution,
20 one containing water) were placed in the cage for 24 hours (bottles were weighted after 2 hours,
21 4 hours, and 24 hours of access). Bottle weights were used to calculate ethanol and water
22 consumption daily (normalized to bodyweight) and 24 hr ethanol preference on day 4, calculated
23 as the ratio of the volume of liquid consumed from the ethanol bottle to the water bottle.

24 Aversion-Resistant Ethanol Drinking

25 Consumption and preference of quinine-adulterated ethanol over water in a two-bottle choice
26 home cage assay was measured to evaluate aversion-resistant ethanol drinking behavior. Mice
27 received 4 hours of access to two bottles, one containing 20% ethanol adulterated with 100 μ M
28 (Days 1 and 2) or 250 μ M (Day 3) quinine hemisulfate (Sigma-Aldrich, St. Louis, MO) and the
29 other containing water. Bottle placement was pseudorandom and switched daily, and
30 consumption and preference were measured as described for mDID.

31 Sucrose Preference Test

32 A similar procedure to that described above was used to evaluate consumption and preference for
33 1% (w/v) sucrose solution versus water, except that mice were given access to the sucrose and
34 water bottles for 24 hours per day. Intake and preference were measured every 24 hours for four
35 consecutive days. For all drinking experiments, empty “dummy” cages on the same rack as
36 housed behavior mice received the same ethanol, sucrose or water bottle replacement, and
37 consumption was adjusted for leak from dummy bottles and normalized to bodyweight.

38 Home Cage Social Interaction

Adolescent stress and hypersociability

1 Home cage social interaction with a novel same-sex conspecific mouse was conducted in the
2 experimental mouse's home cage (28 cm x 18 cm x 12.5 cm). The novel mouse was placed
3 into the cage and overhead video was used to record behavior for five minutes. An experimenter
4 blind to condition hand-scored discrete behaviors performed by the experimental mouse,
5 including the number and duration of total, head-to-head, and head-to-tail social interactions, as
6 well as digging and climbing bouts.

7 *Statistical Analysis*

8 Statistical analyses were conducted using GraphPad Prism 8 software. Distributions of data
9 within group were analyzed for normality, and outliers were identified using Q-Q plots and
10 confirmed by the Rout method ($Q = 0.5\%$); when an individual mouse's behavior was identified
11 as an outlier for at least half of the reported dependent measures for an assay, it was excluded
12 from analysis for that assay. Two-way analysis of variance (ANOVA) was used to assess the
13 effects of housing condition and sex on behavior in the elevated plus maze, open field test (adult
14 cohort), novel object test, light/dark box, and social interaction assays. Two-way repeated
15 measures ANOVA (RM ANOVA) was used to assess the effects of housing condition on home-
16 cage drinking behaviors within sex. Three-way RM ANOVA was used to assess the freezing
17 across consecutive tone/shock pairings in the fear conditioning assay and behavior in the open
18 field test across time (adolescent cohort). Equal variance across time was not assumed in RM-
19 ANOVAs with three or more repeated measures, and a Greenhouse-Geisser correction of degrees
20 of freedom was used. Significant effects in all ANOVAs were followed up with post-hoc two-
21 tailed t-tests corrected for multiple comparisons using the Holm-Sidak method, and adjusted p
22 values are presented. Alpha values of 0.05 were used throughout all analyses, and data are
23 presented as mean + SEM.

24 **Results**

25 *Elevated Plus Maze*

26 Following six weeks of adolescent SI or GH conditions, mice underwent testing in the EPM to
27 assess differences in anxiety-like behavior (**Figure 1B**; GH females $n = 9$, GH males $n = 10$, SI
28 females $n = 10$, SI males $n = 9$). A two-way RM ANOVA comparing the percent time spent on
29 the open arms revealed a main effect of housing condition ($F_{(1,34)} = 12.78, p = 0.001$) but no
30 main effect of sex ($F_{(1,34)} = 0.53, p = 0.472$) and a significant interaction between sex and
31 housing condition ($F_{(1,34)} = 0.41, p = 0.026$). Post-hoc analysis showed that this effect was driven
32 by females, as SI females spent significantly more time on the open arms than their GH
33 counterparts ($t_{(34)} = 4.17$, adjusted $p = 0.0004$), while SI males did not (adjusted $p > 0.05$). A
34 two-way RM ANOVA on the number of closed arm entries revealed no effects of housing ($F_{(1,34)} = 0.08, p = 0.776$) or sex ($F_{(1,34)} = 1.41, p = 0.776$), nor a sex by housing condition interaction
35 ($F_{(1,34)} = 1.10, p = 0.301$), suggesting that the increased open arm exploration in SI females was
36 not due to a general increase in locomotion.

37 In contrast, social isolation during adulthood did not alter anxiety-like behavior on the EPM
38 (**Figure 2B**). A two-way RM ANOVA revealed a main effect of sex ($F_{(1,34)} = 6.66, p = 0.014$)
39 but no main effect of housing condition ($F_{(1,34)} = 0.01, p = 0.928$) nor a sex by housing condition
40 interaction ($F_{(1,34)} = 0.10, p = 0.753$). Despite this significant main effect of sex in the omnibus

Adolescent stress and hypersociability

1 test, post-hoc analysis did not reveal any significant differences between males and females
2 (adjusted $p > 0.05$). A two-way RM ANOVA on the number of closed arm entries revealed no
3 effects of sex ($F_{(1, 34)} = 3.17, p = 0.084$) or housing condition ($F_{(1, 34)} = 0.33, p = 0.569$), nor was
4 there a significant interaction between these factors ($F_{(1, 34)} = 1.95, p = 0.171$).

5 *Open Field Test*

6 To further investigate the impact of adolescent social isolation on anxiety-like and locomotor
7 behavior in early adulthood, we next compared open field exploration in GH and SI female and
8 male mice (**Figure 1C**; $n = 10$ per group). A three-way RM ANOVA comparing the impact of
9 sex and adolescent housing condition on the percent time spent in the center of an open field
10 across time (30 minutes total, broken into 5 minute intervals) revealed a significant main effect
11 of time ($F_{(5, 180)} = 18.63, p < 0.0001$) but no effects of sex ($F_{(1, 36)} = 3.20, p = 0.082$) or housing
12 condition ($F_{(1, 36)} = 0.001, p = 0.971$). No significant interactions were identified between time
13 and sex ($F_{(5, 180)} = 0.31, p = 0.906$), time and housing condition ($F_{(5, 180)} = 0.31, p = 0.904$), or sex
14 and housing condition ($F_{(1, 36)} = 3.35, p = 0.075$). While there was a significant three-way time by
15 sex by housing condition interaction ($F_{(5, 180)} = 2.94, p = 0.014$), post-hoc analysis did not reveal
16 any significant comparisons (adjusted $ps > 0.05$). A three-way RM ANOVA comparing the total
17 distance traveled in the open field across these time points revealed a significant main effect of
18 time ($F_{(5, 180)} = 57.65, p < 0.0001$) but no main effects of sex ($F_{(1, 36)} = 0.53, p = 0.473$) or housing
19 condition ($F_{(1, 36)} = 1.66, p = 0.205$). There was an interaction between time and sex ($F_{(5, 180)} =$
20 $2.41, p = 0.038$) but no significant interaction between time and housing condition ($F_{(5, 180)} =$
21 $0.85, p = 0.516$) or sex and housing condition ($F_{(1, 36)} = 4.01, p = 0.052$), and no three-way
22 interaction between time, sex, and housing condition ($F_{(5, 180)} = 1.57, p = 0.171$). Post-hoc
23 analysis did not reveal any significant differences between sexes at any time point, however
24 (adjusted $p > 0.05$).

25 In the adult SI cohort, we used a 10 min open field test (**Figure 2C**; GH females $n = 8$, GH males
26 $n = 10$, SI females $n = 10$, SI males $n = 10$). A two-way RM ANOVA comparing the percent
27 time in the center of this assay did not reveal a main effect of sex ($F_{(1, 34)} = 2.29, p = 0.139$) or
28 housing condition ($F_{(1, 34)} = 4.07, p = 0.051$), and the interaction between these variables also
29 failed to achieve significance ($F_{(1, 34)} = 0.01, p = 0.931$). Interestingly, a two-way RM ANOVA
30 comparing the total distance traveled during this five minute assay did not reveal main effects of
31 sex ($F_{(1, 34)} = 1.38, p = 0.248$) or housing condition ($F_{(1, 34)} = 0.41, p = 0.526$) but did reveal a
32 significant interaction between these factors ($F_{(1, 34)} = 18.72, p = 0.001$). Post-hoc comparisons
33 revealed that GH females traveled a greater distance than their SI counterparts ($t_{(34)} = 3.41$,
34 adjusted $p = 0.005$) while GH males traveled significantly less distance in this assay than SI
35 males ($t_{(34)} = 2.69$, adjusted $p = 0.021$). Furthermore, the total distance traveled was higher in GH
36 females than GH males ($t_{(34)} = 2.17$, adjusted $p = 0.037$), and higher in SI males than SI females
37 ($t_{(34)} = 4.01$, adjusted $p = 0.001$).

38 *Social Interaction Test*

39 To determine whether chronic social isolation during adolescence effects adult social behavior,
40 mice in the adolescent SI cohort underwent a social interaction test (**Figure 1D**; GH females $n =$

Adolescent stress and hypersociability

1 10, GH males n = 10, SI females n = 9, SI males n = 10). Male and female mice reared in
2 isolation, as well as GH males, demonstrated a significant preference for a social partner as
3 compared to an empty cup (one-sample *t*-tests; GH males, $t_{(9)} = 2.15, p = 0.004$; SI females, $t_{(8)} =$
4 2.69, $p = 0.027$; SI males, $t_{(9)} = 4.40, p = 0.001$); however adolescent GH females did not
5 demonstrate this social preference ($t_{(9)} = 2.15, p = 0.060$). Interestingly, a two-way RM ANOVA
6 analyzing preference for a social partner over a non-social object revealed a significant main
7 effect of housing condition ($F_{(1, 35)} = 5.98, p = 0.019$) but no main effect of sex ($F_{(1, 35)} = 2.49, p$
8 = 0.123) or interaction between these factors ($F_{(1, 35)} = 0.07, p = 0.787$). However, post-hoc
9 analysis did not reveal any significant differences in social preference between GH and SI
10 animals of either sex (adjusted $p > 0.05$). A two-way RM ANOVA assessing general activity in
11 this assay, as measured by combining the total time spent exploring both a social partner and a
12 non-social empty cup, revealed no significant differences between groups (main effect of sex:
13 $F_{(1, 35)} = 0.50, p = 0.484$; main effect of housing condition: $F_{(1, 35)} = 2.69, p = 0.110$; sex by
14 housing condition interaction: $F_{(1, 35)} = 0.55, p = 0.462$).

15 In the adult SI cohort (**Figure 2D**; GH females n = 8, GH males n = 10, SI females n = 10, SI
16 males n = 10), no group demonstrated a reliable preference for a social partner over an empty
17 cup (one-sample *t*-tests; GH females: $t_{(7)} = 2.23, p = 0.060$; GH males: $t_{(9)} = 1.87, p = 0.094$; SI
18 females: $t_{(9)} = 2.10, p = 0.065$; SI males: $t_{(9)} = 2.05, p = 0.070$). A two-way RM ANOVA did not
19 reveal significant differences in social preference between groups (main effect of sex: $F_{(1, 29)} =$
20 3.15, $p = 0.086$; main effect of housing condition: $F_{(1, 29)} = 0.02, p = 0.896$; sex by housing
21 condition interaction: $F_{(1, 29)} = 0.59, p = 0.448$). A two-way RM ANOVA comparing the total
22 combined time spent exploring both the non-social object (empty cup) and social partner
23 revealed significant main effects of sex ($F_{(1, 34)} = 10.04, p = 0.003$) and housing condition ($F_{(1, 34)} =$
24 4.32, $p = 0.045$), but there was no interaction between these factors ($F_{(1, 34)} = 2.51, p = 0.122$).
25 Follow-up post-hoc analyses revealed that GH males spent more combined time exploring a
26 social partner and empty cup than GH females ($t_{(34)} = 3.27$, adjusted $p = 0.010$) and SI males ($t_{(34)}$
27 = 2.67, adjusted $p = 0.034$).

28 *Light/Dark Box*

29 A two-way RM ANOVA did not reveal any effects of adolescent social isolation or sex (**Figure**
30 **1E**; n = 10 per group) on the percent time spent in the light side of a light/dark box (main effect
31 of sex: $F_{(1, 35)} = 0.21, p = 0.646$; main effect of housing condition: $F_{(1, 35)} = 1.21, p = 0.279$; sex
32 by housing condition interaction: $F_{(1, 35)} = 0.023, p = 0.879$). A two-way RM ANOVA
33 comparing the effects of six weeks of adult social isolation versus group housing conditions on
34 behavior in the light/dark box in males and females (**Figure 2E**; GH females n = 8, GH males n
35 = 10, SI females n = 10, SI males n = 10) revealed a significant main effect of housing condition
36 ($F_{(1, 34)} = 21.78, p < 0.0001$), but no main effect of sex ($F_{(1, 34)} = 0.020, p = 0.886$) or significant
37 interaction between these variables ($F_{(1, 34)} = 0.550, p = 0.463$). Post-hoc analysis revealed that
38 GH animals spent significantly more time in the light compartment of the light/dark box than
39 their SI counterparts (GH males versus SI males: $t_{(34)} = 3.94$, adjusted $p = 0.0008$; GH females vs
40 SI females: $t_{(34)} = 2.70$, adjusted $p = 0.011$).

41 *Novel Object Interaction*

Adolescent stress and hypersociability

1 To determine whether the increased social exploration observed following adolescent social
2 isolation could be generalized to non-social contexts, we performed a novel object interaction
3 task designed similarly to the social interaction task described above (**Figure 1F**). GH females (n
4 = 9) demonstrated a preference for a novel object over a familiar object (one-sample t -test, $t_{(8)} =$
5 2.71, $p = 0.026$), as did GH males (n = 10; $t_{(9)} = 4.83$, $p = 0.0009$), SI females (n = 9; $t_{(8)} = 6.02$,
6 $p = 0.0003$), and SI males (n = 9; $t_{(8)} = 3.29$, $p = 0.011$). A two-way ANOVA comparing novel
7 object preference across groups revealed a significant main effect of sex ($F_{(1, 33)} = 5.20$, $p =$
8 0.029) but no main effect of housing condition ($F_{(1, 33)} = 0.766$, $p = 0.387$) or significant
9 interaction between these factors ($F_{(1, 33)} = 1.31$, $p = 0.261$). Post-hoc analysis revealed that GH
10 males exhibited a significantly increased novel object preference as compared to GH females
11 ($t_{(33)} = 2.45$, adjusted $p = 0.039$). To assess general exploratory behavior in this assay, we
12 compared the total time that animals in each group spent exploring both the novel plus familiar
13 objects in this assay. A two-way ANOVA revealed a significant main effect of sex ($F_{(1, 33)} =$
14 17.91, $p = 0.0002$), but no main effect of housing condition ($F_{(1, 33)} = 0.54$, $p = 0.469$) or
15 interaction between these factors ($F_{(1, 33)} = 0.36$, $p = 0.553$). Post-hoc analysis revealed that GH
16 females spent significantly less time exploring the novel and familiar objects than GH males ($t_{(33)} =$
17 3.46, adjusted $p = 0.002$). Consistent with this, SI females also spent less time exploring these
18 objects than SI males ($t_{(33)} = 2.54$, adjusted $p = 0.016$). Altogether, these results suggest that while
19 there are sex differences in the preference for and exploration of novel objects over familiar,
20 adolescent social isolation had no effect on this task. In contrast, adolescent social isolation
21 increased preference for a social partner, suggesting that its effects were specific to a social
22 context.

23 In the adult SI cohort (**Figure 2F**), GH females displayed a significant preference for the novel
24 object (n = 7; $t_{(6)} = 3.13$, $p = 0.026$), as did SI females (n = 8; $t_{(7)} = 3.07$, $p = 0.017$) and SI males
25 (n = 9; $t_{(8)} = 2.84$, $p = 0.022$), but not GH males (n = 9; $t_{(8)} = 1.99$, $p = 0.082$). A two-way
26 ANOVA comparing novel object preference across groups revealed no significant differences
27 between groups (main effect of sex: $F_{(1, 29)} = 3.15$, $p = 0.896$; main effect of housing condition:
28 $F_{(1, 29)} = 0.017$, $p = 0.896$; sex by housing condition interaction: $F_{(1, 29)} = 0.59$, $p = 0.448$). A two-
29 way ANOVA comparing the total combined time spent exploring the novel and familiar objects
30 revealed a significant main effect of sex ($F_{(1, 29)} = 10.64$, $p = 0.002$), but no main effect of
31 housing condition ($F_{(1, 29)} = 0.019$, $p = 0.890$) or sex by housing interaction ($F_{(1, 29)} = 4.13$, $p =$
32 0.051). Post-hoc tests revealed that GH males spent significantly more combined time exploring
33 a social partner and novel object than GH females ($t_{(29)} = 3.68$, adjusted $p = 0.002$)

34 *Fear Conditioning*

35 We next assessed whether adolescent social isolation impacts fear learning by measuring
36 acquisition of freezing behavior in response to a foot shock-paired tone (assessed by freezing
37 during tone presentation across six consecutive tone/shock pairings; **Figure 1G**). A three-way
38 RM ANOVA was used to measure the effects of sex and adolescent housing condition on
39 freezing behavior across time (GH females n = 5, SI females n = 4, GH males n = 5, SI males n =
40 5). This test revealed a significant main effect of time, as expected ($F_{(3, 045, 45)} = 34.28$, $p <$
41 0.0001). A main effect of sex also emerged ($F_{(1, 15)} = 5.36$, $p = 0.035$) as well as a significant time

Adolescent stress and hypersociability

1 by sex interaction ($F_{(5, 75)} = 2.68, p = 0.027$). There was no significant main effect of housing
2 condition ($F_{(1, 15)} = 0.23, p = 0.638$), time by housing condition interaction ($F_{(5, 75)} = 0.80, p =$
3 0.550), sex by housing condition interaction ($F_{(1, 15)} = 0.010, p = 0.919$), or time by sex by
4 housing condition interaction ($F_{(5, 75)} = 0.63, p = 0.680$). Post-hoc comparisons did not reveal any
5 significant sex-dependent differences at any time point, however (adjusted $p > 0.05$).

6 We also assessed fear conditioning in the adult SI cohort (**Figure 2G**; GH female n = 8, GH
7 male n = 10, SI female n = 10, SI male n = 10). A three-way RM ANOVA revealed a main effect
8 of time ($F_{(3.851, 130.9)} = 78.78, p < 0.0001$), as well as a main effect of housing condition ($F_{(1, 34)} =$
9 4.17, $p = 0.048$) but no main effect of sex ($F_{(1, 34)} = 0.069, p = 0.793$). There was no interaction
10 between time and sex ($F_{(5, 170)} = 1.15, p = 0.336$), time and housing condition ($F_{(5, 170)} = 1.26, p =$
11 0.285), or sex and housing condition ($F_{(1, 34)} = 0.153, p = 0.697$), nor was there a significant
12 three-way interaction between these variables ($F_{(5, 170)} = 0.669, p = 0.646$). Post-hoc analysis did
13 not reveal any significant differences in freezing behavior across groups at any time point
14 (adjusted $p > 0.05$).

15 *Home Cage Ethanol Drinking*

16 As previous studies in rodents have demonstrated that adolescent social isolation increases home
17 cage ethanol self-administration (McCool and Chappell, 2009, Butler et al., 2014a, Skelly et al.,
18 2015, Butler et al., 2016), we next assessed whether adolescent social isolation affects binge
19 ethanol drinking in male and female C57BL/6J mice across time using a modified version of the
20 standard DID paradigm that allowed us to assess ethanol preference on day 4 of each DID cycle
21 (**Figure 3A,D**; n = 10 per group). A mixed-effects analysis was used to evaluate consumption of
22 20% ethanol across four cycles in GH and SI females (**Figure 3A**, left), revealing a main effect
23 of cycle ($F_{(6.372, 112.6)} = 4.32, p < 0.0001$) but no main effect of housing condition ($F_{(1, 18)} = 1.24, p$
24 = 0.280) or interaction between these variables ($F_{(15, 265)} = 1.43, p = 0.132$). To ensure that a
25 group difference was not being obscured by a ceiling effect, we next increased the concentration
26 of ethanol to 30% for two cycles, and a mixed-effects analysis revealed no effects or interactions
27 at this concentration either (main effect of cycle: $F_{(3.621, 60.52)} = 1.77, p = 0.153$; main effect of
28 housing condition: $F_{(1, 17)} = 0.219, p = 0.645$; time by housing condition interaction: $F_{(7, 117)} =$
29 1.72, $p = 0.111$). We also found no effect of social isolation on ethanol preference at either
30 concentration in females (**Figure 3A**, right). A mixed-effects analysis of 20% ethanol preference
31 revealed no effects (main effect of cycle: $F_{(3, 49)} = 0.097, p = 0.961$; main effect of housing
32 condition: $F_{(1, 18)} = 1.71, p = 0.207$; cycle by housing condition interaction: $F_{(3, 49)} = 2.19, p =$
33 0.101). Similarly, a two-way RM ANOVA assessing 30% ethanol preference revealed no effects
34 (main effect of time: $F_{(1, 17)} = 1.07, p = 0.316$; main effect of housing condition: $F_{(1, 17)} = 3.83, p$
35 = 0.252; time by housing condition interaction: $F_{(1, 17)} = 1.83, p = 0.194$).

36 Similar to females, social isolation did not affect ethanol consumption or preference in males
37 (**Figure 3D**, left). A mixed-effects analysis of 20% ethanol consumption (**Figure 3D**; n = 10 per
38 group) revealed a significant main effect of cycle ($F_{(7.450, 132.6)} = 4.10, p < 0.001$), but no main
39 effect of housing condition ($F_{(1, 18)} = 0.004, p = 0.947$) or interaction between these factors ($F_{(15,}$
40 267)} = 0.527, $p = 0.924$). A mixed-effects analysis of 30% ethanol intake also revealed a main
41 effect of cycle ($F_{(7, 121)} = 7.36, p < 0.001$), but no main effect of housing condition ($F_{(1, 18)} = 1.29$,

Adolescent stress and hypersociability

1 $p = 0.270$) or significant cycle by housing condition interaction ($F_{(7, 121)} = 1.63, p = 0.132$). A
2 mixed-effects analysis of 20% ethanol preference (**Figure 3D**, right) compared to water revealed
3 no effects (main effect of cycle: $F_{(2, 357, 38.49)} = 0.325, p = 0.758$; main effect of housing condition:
4 $F_{(1, 18)} = 0.213, p = 0.649$; cycle by housing condition interaction: $F_{(3, 49)} = 2.06, p = 0.117$).
5 Similarly, a mixed effects analysis assessing 30% ethanol preference did not reveal significant
6 group differences (main effect of cycle: $F_{(1, 35)} = 1.88, p = 0.179$; main effect of housing
7 condition: $F_{(1, 35)} = 0.151, p = 0.699$; cycle by housing condition interaction: $F_{(1, 35)} = 0.536, p =$
8 0.468).

9 *Aversion-Resistant Ethanol Drinking*

10 To assess whether adolescent social isolation alter aversion-resistant ethanol consumption, we
11 measured home cage DID intake using 20% ethanol adulterated with quinine (**Figure 3B,E**).
12 Mice were given 4 hr access to 20% ethanol containing either 100 μ M quinine (days 1 and 2,
13 average used for analysis) or 250 μ M quinine (day 3). Among female mice (ns = 9), a two-way
14 RM ANOVA for quinine-adulterated ethanol intake did not reveal any significant differences
15 (**Figure 3B**; main effect of quinine concentration: $F_{(1, 16)} = 4.21, p = 0.056$; main effect of
16 housing condition: $F_{(1, 16)} = 0.175, p = 0.681$; concentration by housing condition interaction: $F_{(1, 16)} = 0.001, p = 0.977$). Similarly, a two-way RM ANOVA assessing quinine-adulterated ethanol
17 preference revealed no main effects of housing condition ($F_{(1, 16)} = 3.62, p = 0.074$) or quinine
18 concentration ($F_{(1, 16)} = 1.67, p = 0.214$), nor any significant interaction between these variables
19 ($F_{(1, 16)} = 0.049, p = 0.826$). In male mice (GH n = 10, SI n = 9), there was a significant main
20 effect of quinine concentration on ethanol intake (**Figure 3E**; $F_{(1, 17)} = 2.93, p = 0.105$), with the
21 higher dose of quinine suppressing ethanol consumption. However, there was no significant main
22 effect of housing condition ($F_{(1, 17)} = 2.93, p = 0.105$), nor a significant interaction between these
23 factors ($F_{(1, 17)} = 0.128, p = 0.724$). A two-way RM ANOVA comparing ethanol preference
24 across quinine concentrations did not reveal any significant differences between GH and SI male
25 mice (main effect of quinine concentration: $F_{(1, 17)} = 1.29, p = 0.271$; main effect of housing
26 condition: $F_{(1, 17)} = 0.108, p = 0.746$; concentration by housing condition interaction: $F_{(1, 17)} = 0.001, p = 0.981$).

29 *Sucrose Preference Test*

30 To determine whether social isolation during adolescence impacts general reward sensitivity, we
31 measured 1% (w/v) sucrose preference versus water across three days (**Figure 3C,F**). A two-way
32 RM ANOVA comparing adolescent GH (n = 10) and SI (n = 9) female mice revealed a
33 significant main effect of time (**Figure 3C**; $F_{(1.687, 28.68)} = 4.32, p = 0.028$) but no main effect of
34 housing condition ($F_{(1, 17)} = 0.342, p = 0.566$) or interaction between these variables ($F_{(2, 34)} = 0.255, p = 0.775$). In male mice, no differences in sucrose preference emerged (**Figure 3F**; main
35 effect of time: $F_{(1.418, 25.53)} = 2.57, p = 0.110$; main effect of housing condition: $F_{(1, 18)} = 0.025, p = 0.874$; time by housing condition interaction: $F_{(2, 36)} = 0.331, p = 0.720$). Altogether, results
36 from our drinking experiments suggest that binge ethanol consumption, aversion-resistant
37 ethanol intake, and general reward sensitivity were unaltered by adolescent social isolation.
38

40 *Home Cage Social Interaction*

Adolescent stress and hypersociability

1 We found a robust effect of adolescent, but not adult, social isolation on increased social
2 behavior in adulthood using a social interaction paradigm in a novel environment. We further
3 probed the stability and generalizability of this phenotype using a home cage social interaction
4 test in which the experimental mouse remained in its home cage and a novel intruder conspecific
5 was placed in the cage for five min (**Figure 4**; GH females n = 9, SI females n = 9, GH males n =
6 10, SI males n = 9). Adolescent SI males and females again showed greater social interaction in
7 this paradigm. A two-way ANOVA on the total number of social interaction bouts (**Figure 4A**)
8 showed a main effect of housing condition ($F_{(1, 33)} = 19.08, p = 0.0001$) and no effect of sex ($F_{(1, 33)} = 3.99, p = 0.054$) or sex by housing interaction ($F_{(1, 33)} = 1.06, p = 0.310$). Post-hoc t-tests
9 confirmed this effect occurred in both females ($t_{(33)} = 2.33$, adjusted $p = 0.026$) and males ($t_{(33)} = 3.87$,
10 adjusted $p = 0.001$). This increased interaction was true for both head-to-head and head-to-
11 tail interactions. Head-to-head (**Figure 4B**): main effect of housing ($F_{(1, 33)} = 9.78, p = 0.004$), no
12 effect of sex ($F_{(1, 33)} = 4.13, p = 0.050$), and no interaction ($F_{(1, 33)} = 0.002, p = 0.961$); post-hoc t-
13 tests: $ps > 0.05$. Head-to-tail (**Figure 4C**): main effect of housing ($F_{(1, 33)} = 16.26, p = 0.0003$),
14 no effect of sex ($F_{(1, 33)} = 1.72, p = 0.198$), and no interaction ($F_{(1, 33)} = 2.43, p = 0.128$); post-hoc
15 t-tests showed the effect was driven by males: females ($t_{(33)} = 1.73$, adjusted $p = 0.094$), males
16 ($t_{(33)} = 4.01$, adjusted $p = 0.0007$). In contrast to social interactions, there was no effect of
17 adolescent SI on digging or climbing behaviors (**Figure 4D,E**). Two-way ANOVAs on the
18 number of digging bouts and the number of climbing bouts showed no effects of housing
19 condition, sex, or an interaction ($ps > 0.05$).

21 Given this distribution of behaviors during the home cage assay, adolescent SI mice spent a
22 greater proportion of time engaged in social interaction than their GH counterparts (**Figure 4F**).
23 A two-way ANOVA on the percent time spent exploring a novel social partner revealed a
24 significant main effect of housing ($F_{(1, 33)} = 7.59, p = 0.010$) but no main effect of sex ($F_{(1, 33)} = 0.055, p = 0.815$) or interaction between these variables ($F_{(1, 33)} = 2.44, p = 0.127$). Post-hoc
25 analysis showed that the effect of social isolation was driven by males ($t_{(33)} = 3.09$, adjusted $p = 0.008$) but did not occur in females. However, the duration of the first interaction bout was
26 longer in adolescent SI mice of both sexes (**Figure 4G**). A two-way ANOVA assessing the
27 duration of the first bout of social interaction revealed a significant main effect of housing
28 condition ($F_{(1, 33)} = 11.23, p = 0.002$), but no main effect of sex ($F_{(1, 33)} = 0.109, p = 0.742$) or
29 significant sex by housing condition interaction ($F_{(1, 33)} = 0.143, p = 0.707$). Post-hoc analysis
30 confirmed that both SI females and males spent more time interacting with a novel social partner
31 during this first bout than their GH counterparts (females: $t_{(33)} = 2.61$, adjusted $p = 0.027$; males:
32 $t_{(33)} = 2.13$, adjusted $p = 0.040$). Interestingly, however, SI mice had a longer latency to first
33 approach the stranger mouse, suggesting some initial inhibition of this hypersocial behavior (data
34 not shown). A two-way ANOVA revealed a main effect of housing condition ($F_{(1, 33)} = 19.00, p < 0.001$), but no main effect of sex ($F_{(1, 33)} = 2.06, p = 0.160$) or sex by housing interaction ($F_{(1, 33)} = 1.35, p = 0.254$). Post-hoc analysis revealed that SI males and females took significantly
35 more time to approach the novel social partner than their GH counterparts (GH females vs SI
36 females: $t_{(33)} = 2.23$, adjusted $p = 0.039$; GH males vs SI males: $t_{(33)} = 3.95$, adjusted $p = 0.001$).
37 In spite of this initial delay in interaction, the overall results support our initial findings that
38 adolescent social isolation produces an aberrant hyper-social phenotype in adulthood in
39 C57BL/6J mice.

Adolescent stress and hypersociability

1 Discussion

2 These studies were designed to assess whether the harmful and translationally-relevant
3 behavioral consequences of adolescent SI well-characterized in rats can be reliably recapitulated
4 in C57BL/6J mice, the most common laboratory mouse background strain. We further sought to
5 determine whether adolescence is a critical period for behavioral plasticity or whether a similar
6 long-term social isolation in adulthood impacts these pathology-related behaviors. Surprisingly,
7 we did not see any consistent phenotypes following adult SI, as mice displayed an anxiogenic
8 phenotype in the light/dark box assay (**Figure 2E**) but not on any other measures of anxiety-like
9 behavior. These findings indicate that singly housing mice in adulthood, as is done routinely in
10 alcohol and drug self-administration studies, among others, does not alter basal behavioral states
11 in C57BL/6J mice; thus, adult isolation is not a major confounding variable for most behavioral
12 assays including those measured herein. Similarly, we found few effects of adolescent social
13 isolation on performance in a battery of behaviors, which was surprising given the literature
14 showing the deleterious effects of stress during the adolescent period on adult behaviors.
15 However, the most robust effect of adolescent social isolation we observed was that it promoted
16 social behavior in adulthood in both sexes (**Figure 1D**; **Figure 4**), and effect remarkably similar
17 in nature to the stress imposed upon the mice.

18 Contrary to our predictions, we did not find that adolescent social isolation increases anxiety-like
19 behavior in male or female C57BL/6J mice (**Figure 1**). In fact, following adolescent isolation,
20 adult female mice spent more time in the open arms of the elevated plus maze on average, a
21 behavior which is classically interpreted as a sign of anxiolysis (**Figure 1B**). This anxiolytic
22 effect of adolescent isolation in mice has been reported elsewhere (Voikar et al., 2005, Lopez
23 and Laber, 2015). Previous studies have also found some evidence that adolescent social
24 isolation induces an anxiogenic phenotype in the light/dark box and hyperlocomotion in the open
25 field test in mice (Voikar et al., 2005, Gan et al., 2014, Amiri et al., 2015, Medendorp et al.,
26 2018), but these results have not always been reported (Koike et al., 2009). In contrast to, we
27 found no effect of adult social isolation on anxiety-like behavior in the EPM (**Figure 2B**),
28 suggesting some adolescent time period specificity for this effect. Intriguingly, we found that
29 adult social isolation increased anxiety-like behavior in the light/dark box, suggesting that if
30 anything, adult isolation produces the opposite effect of adolescent isolation. However, in both
31 cohorts, other measures of anxiety-like behavior did not recapitulate these effects, suggesting
32 there are no reliable effects of social isolation at either time point on adult anxiety-related
33 behavior in C57BL/6J mice.

34 Perhaps our most striking finding is that isolation rearing during adolescence increased social
35 exploration and interaction in adulthood. Specifically, we found that preference for a novel social
36 partner increased in both males and females following protracted adolescent isolation (**Figure**
37 **1D**). We extended this finding in a home cage social interaction test with a novel intruding
38 conspecific (**Figure 4**), demonstrating that this hypersocial behavior occurs in both familiar and
39 novel environments. Aberrantly high social exploration may be maladaptive in settings in which
40 social caution or defensive behavior is more appropriate, such as during exposure to an
41 unfamiliar intruder. This phenotype is similar to that observed in some developmental disorders

Adolescent stress and hypersociability

such as Williams' Syndrome, in which individuals inappropriately approach and engage with strangers. However, as this behavior occurred following a longer delay before approaching the stranger mouse, the social phenotype of the adolescent SI mice could be a compensatory mechanism that actually promotes an adaptive social phenotype beneficial in certain contexts that require social affiliation for survival. This pro-social interpretation has previously been reported to occur in female mice following exposure to a developmental stressor (Koike et al., 2009, Bondar et al., 2018). Interestingly, many groups have reported the exact opposite effect of adolescent isolation on social behavior in mice, finding that this developmental stressor decreases social interest in adulthood (Balemans et al., 2010, Medendorp et al., 2018). Nonetheless, reduced social learning (Kercmar et al., 2011) and aberrant social behavior when placed back into group housing in adulthood (Endo et al., 2018) have also been reported following post-weaning isolation in C57BL/6J male and female mice, further supporting a specific role for peri-adolescent social isolation in abnormal adult social behavior. This is unsurprising given that this is a crucial developmental period for the development of prosocial behaviors (Spear, 2004, Panksepp et al., 2007, Panksepp and Lahvis, 2007).

Interestingly, we did not identify a robust effect of isolation in adulthood on measures of social interaction (**Figure 2D**), further suggesting that adolescence is a critical period for the development of sensitivity to social reward. We also tested interest in a non-social novel object following adolescent social isolation and found no significant effect of rearing condition on novel object preference (**Figure 1F**). Again, no differences in novel object preference emerged following social isolation in adulthood, although GH males spent more total time exploring the social partner and novel object combined than SI males or GH females (**Figure 2F**).

Prolonged social isolation during adolescence or adulthood has also been reported to impact aspects of fear memory formation in rats and mice (Pibiri et al., 2008, Pinna et al., 2008, Lukkes et al., 2009a, Okada et al., 2015, Pinna, 2019). Here we tested the effect of sex and housing condition on fear learning across six tone/footshock pairings. We did not identify any effect of housing condition on fear memory formation following adolescent isolation (**Figure 1G**) but did observe delayed acquisition following adult isolation, however final acquisition was similar across all groups (**Figure 2G**). Together, these results suggest that singly housing C57BL/6J mice during adolescence or adulthood does not reliably impact fear memory formation.

Adolescent isolation has been demonstrated to increase alcohol self-administration in male rats and both male and female mice (Lopez et al., 2011, Butler et al., 2014b, Lopez and Laber, 2015, Skelly et al., 2015, Butler et al., 2016). Here, we evaluated adolescent social isolation on binge alcohol drinking using a modified DID paradigm and found no effects on 20%, 30%, and quinine-adulterated 20% ethanol consumption or preference, nor on a rewarding 1% sucrose solution, in either sex (**Figure 3**). Our results are inconsistent with the findings of Lopez and colleagues (Lopez and Laber, 2015), who found that adolescent social isolation in C57 mice produced a small but significant increase in alcohol consumption at one time point. However, that study did not exam chronic home cage ethanol self-administration. Regardless, our data indicate that perhaps the effects of chronic social stress in adolescence on ethanol drinking are less robust than the effects reported in rats. Interestingly, adolescent social isolation has been

Adolescent stress and hypersociability

1 reported to produce a protracted increase in ethanol intake and preference in male C57BL/6J
2 mice given intermittent access to ethanol in their home cage, but only at a relatively low ethanol
3 concentration (5%); these differences disappeared when animals were offered a higher
4 concentration of ethanol (20%) (Advani et al., 2007). Together, these findings generally suggest
5 that adolescent isolation does not reliably produce a translationally relevant escalation of ethanol
6 self-administration in C57BL/6J mice.

7 In general, we found that C57BL/6J mice are not reliably sensitive to isolation stress. Beyond the
8 findings outlined herein, others have presented some evidence that single housing may not be
9 experienced as an adversity among C57BL/6J mice (Bartolomucci et al., 2003, Arndt et al.,
10 2009), and in fact may actually decrease social stress in males of this species (Singewald et al.,
11 2009). Others have not found evidence to support a protective effect of adolescent social
12 isolation in female C57BL/6J mice (Martin and Brown, 2010). Interestingly, the majority of
13 studies reporting a behavioral effect of adolescent isolation on anxiety-like behavior, fear
14 memory formation, or drug self-administration in have initiated isolation at the same time that
15 play behavior is typically increasing, suggesting that disruption of play behavior may be a major
16 contributor to this phenotype (Walker et al., 2019). As mice engage in less social play in
17 adolescence than rats, this may partly explain the variability in the behavioral effects of
18 adolescent isolation rearing reported here and elsewhere. Although these findings present an
19 issue for researchers interested in identifying the link between developmental stress and
20 psychopathology using mouse models on a C57BL/6J strain, the most common background for
21 genetic manipulation, it also suggests that experimentally-mandated individual housing in
22 adolescence or adulthood may not produce confounding effects on basal behavioral states that
23 experimenters prefer to avoid.

24

25 **Author contributions**

26 JKRI and MJS collected and analyzed the data. JKRI, MJS, and KEP designed the studies and
27 wrote and edited the manuscript.

28

29 **Funding**

30 This research was supported by a NARSAD Young Investigator Award, a Stephen and Anna
31 Maria Kellen Foundation Junior Faculty Award, and R00 AA023559 to KEP and F32 AA025530
32 to MJS.

Adolescent stress and hypersociability

1 References

2 Advani T, Hensler JG, Koek W (2007) Effect of early rearing conditions on alcohol drinking and
3 5-HT1A receptor function in C57BL/6J mice. *The international journal of*
4 *neuropsychopharmacology* 10:595-607.

5 Amiri S, Haj-Mirzaian A, Rahimi-Balaei M, Razmi A, Kordjazy N, Shirzadian A, Ejtemaei
6 Mehr S, Sianati H, Dehpour AR (2015) Co-occurrence of anxiety and depressive-like
7 behaviors following adolescent social isolation in male mice; possible role of nitrergic
8 system. *Physiology & behavior* 145:38-44.

9 Arakawa H (2018) Ethological approach to social isolation effects in behavioral studies of
10 laboratory rodents. *Behavioural brain research* 341:98-108.

11 Arndt SS, Laarakker MC, van Lith HA, van der Staay FJ, Gieling E, Salomons AR, van't
12 Klooster J, Ohl F (2009) Individual housing of mice--impact on behaviour and stress
13 responses. *Physiology & behavior* 97:385-393.

14 Balemans MC, Huibers MM, Eikelenboom NW, Kuipers AJ, van Summeren RC, Pijpers MM,
15 Tachibana M, Shinkai Y, van Bokhoven H, Van der Zee CE (2010) Reduced exploration,
16 increased anxiety, and altered social behavior: Autistic-like features of euchromatin
17 histone methyltransferase 1 heterozygous knockout mice. *Behavioural brain research*
18 208:47-55.

19 Bartolomucci A, Palanza P, Sacerdote P, Ceresini G, Chirieleison A, Panerai AE, Parmigiani S
20 (2003) Individual housing induces altered immuno-endocrine responses to psychological
21 stress in male mice. *Psychoneuroendocrinology* 28:540-558.

22 Becker HC, Ron D (2014) Animal models of excessive alcohol consumption: Recent advances
23 and future challenges. *Alcohol* 48:205-208.

24 Blakemore SJ, Robbins TW (2012) Decision-making in the adolescent brain. *Nature*
25 *neuroscience* 15:1184-1191.

26 Bondar NP, Lepeshko AA, Reshetnikov VV (2018) Effects of Early-Life Stress on Social and
27 Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects. *Behavioural neurology*
28 2018:1538931.

29 Bray JH, Adams GJ, Getz JG, Stovall T (2001) Interactive effects of individuation, family
30 factors, and stress on adolescent alcohol use. *Am J Orthopsychiat* 71:436-449.

31 Burke AR, McCormick CM, Pellis SM, Lukkes JL (2017) Impact of adolescent social
32 experiences on behavior and neural circuits implicated in mental illnesses. *Neuroscience*
33 and biobehavioral reviews 76:280-300.

34 Butler TR, Ariwodola OJ, Weiner JL (2014a) The impact of social isolation on HPA axis
35 function, anxiety-like behaviors, and ethanol drinking. *Frontiers in integrative*
36 *neuroscience* 7:102.

37 Butler TR, Carter E, Weiner JL (2014b) Adolescent social isolation does not lead to persistent
38 increases in anxiety- like behavior or ethanol intake in female long-evans rats.
39 *Alcoholism, clinical and experimental research* 38:2199-2207.

40 Butler TR, Karkhanis AN, Jones SR, Weiner JL (2016) Adolescent Social Isolation as a Model
41 of Heightened Vulnerability to Comorbid Alcoholism and Anxiety Disorders.
42 *Alcoholism, clinical and experimental research* 40:1202-1214.

43 Caruso MJ, Seemiller LR, Fetherston TB, Miller CN, Reiss DE, Cavigelli SA, Kamens HM
44 (2018) Adolescent social stress increases anxiety-like behavior and ethanol consumption
45 in adult male and female C57BL/6J mice. *Scientific reports* 8:10040.

Adolescent stress and hypersociability

1 Casey BJ, Jones RM (2010) Neurobiology of the adolescent brain and behavior: implications for
2 substance use disorders. *Journal of the American Academy of Child and Adolescent*
3 *Psychiatry* 49:1189-1201; quiz 1285.

4 Casey BJ, Jones RM, Levita L, Libby V, Pattwell SS, Ruberry EJ, Soliman F, Somerville LH
5 (2010) The storm and stress of adolescence: insights from human imaging and mouse
6 genetics. *Developmental psychobiology* 52:225-235.

7 Conrad KL, Winder DG (2011) Altered anxiety-like behavior and long-term potentiation in the
8 bed nucleus of the stria terminalis in adult mice exposed to chronic social isolation,
9 unpredictable stress, and ethanol beginning in adolescence. *Alcohol* 45:585-593.

10 Crowley NA, Bloodgood DW, Hardaway JA, Kendra AM, McCall JG, Al-Hasani R, McCall
11 NM, Yu W, Schools ZL, Krashes MJ, Lowell BB, Whistler JL, Bruchas MR, Kash TL
12 (2016) Dynorphin Controls the Gain of an Amygdalar Anxiety Circuit. *Cell reports*
13 14:2774-2783.

14 Deutsch AR, Chernyavskiy P, Steinley D, Slutsko WS (2015) Measuring peer socialization for
15 adolescent substance use: a comparison of perceived and actual friends' substance use
16 effects. *Journal of studies on alcohol and drugs* 76:267-277.

17 Eichelsheim VI, Buist KL, Dekovic M, Wissink IB, Frijns T, van Lier PA, Koot HM, Meeus
18 WH (2010) Associations among the parent-adolescent relationship, aggression and
19 delinquency in different ethnic groups: a replication across two Dutch samples. *Social*
20 *psychiatry and psychiatric epidemiology* 45:293-300.

21 Eiland L, Romeo RD (2013) Stress and the Developing Adolescent Brain. *Neuroscience*
22 249:162-171.

23 Endo N, Ujita W, Fujiwara M, Miyauchi H, Mishima H, Makino Y, Hashimoto L, Oyama H,
24 Makinodan M, Nishi M, Tohyama C, Kakeyama M (2018) Multiple animal positioning
25 system shows that socially-reared mice influence the social proximity of isolation-reared
26 cagemates. *Communications biology* 1:225.

27 Ernst M, Fudge JL (2009) A developmental neurobiological model of motivated behavior:
28 anatomy, connectivity and ontogeny of the triadic nodes. *Neuroscience and biobehavioral*
29 *reviews* 33:367-382.

30 Ferdman N, Murmu RP, Bock J, Braun K, Leshem M (2007) Weaning age, social isolation, and
31 gender, interact to determine adult explorative and social behavior, and dendritic and
32 spine morphology in prefrontal cortex of rats. *Behavioural brain research* 180:174-182.

33 Gan JO, Bowline E, Lourenco FS, Pickel VM (2014) Adolescent social isolation enhances the
34 plasmalemmal density of NMDA NR1 subunits in dendritic spines of principal neurons in
35 the basolateral amygdala of adult mice. *Neuroscience* 258:174-183.

36 Hawk ST, Keijsers L, Hale WW, 3rd, Meeus W (2009) Mind your own business! Longitudinal
37 relations between perceived privacy invasion and adolescent-parent conflict. *Journal of*
38 *family psychology : JFP : journal of the Division of Family Psychology of the American*
39 *Psychological Association* 23:511-520.

40 Huang Q, Zhou Y, Liu LY (2017) Effect of post-weaning isolation on anxiety- and depressive-
41 like behaviors of C57BL/6J mice. *Experimental brain research* 235:2893-2899.

42 Hunt C, Hambly C (2006) Faecal corticosterone concentrations indicate that separately housed
43 male mice are not more stressed than group housed males. *Physiology & behavior*
44 87:519-526.

Adolescent stress and hypersociability

1 Hwa LS, Chu A, Levinson SA, Kayyali TM, DeBold JF, Miczek KA (2011) Persistent escalation
2 of alcohol drinking in C57BL/6J mice with intermittent access to 20% ethanol.
3 *Alcoholism, clinical and experimental research* 35:1938-1947.

4 Jager J, Yuen CX, Putnick DL, Hendricks C, Bornstein MH (2015) Adolescent-Peer
5 Relationships, Separation and Detachment From Parents, and Internalizing and
6 Externalizing Behaviors: Linkages and Interactions. *J Early Adolescence* 35:511-537.

7 Karkhanis AN, Alexander NJ, McCool BA, Weiner JL, Jones SR (2015) Chronic social isolation
8 during adolescence augments catecholamine response to acute ethanol in the basolateral
9 amygdala. *Synapse* 69:385-395.

10 Karkhanis AN, Leach AC, Yorgason JT, Uneri A, Barth S, Niere F, Alexander NJ, Weiner JL,
11 McCool BA, Raab-Graham KF, Ferris MJ, Jones SR (2019) Chronic Social Isolation
12 Stress during Peri-Adolescence Alters Presynaptic Dopamine Terminal Dynamics via
13 Augmentation in Accumbal Dopamine Availability. *ACS chemical neuroscience*
14 10:2033-2044.

15 Keijsers L, Frijns T, Branje SJ, Meeus W (2009) Developmental links of adolescent disclosure,
16 parental solicitation, and control with delinquency: moderation by parental support.
17 *Developmental psychology* 45:1314-1327.

18 Kercmar J, Buddefeld T, Grgurevic N, Tobet SA, Majdic G (2011) Adolescent social isolation
19 changes social recognition in adult mice. *Behavioural brain research* 216:647-651.

20 Kessler RC, Amminger GP, Aguilar-Gaxiola S, Alonso J, Lee S, Ustun TB (2007) Age of onset
21 of mental disorders: a review of recent literature. *Current opinion in psychiatry* 20:359-
22 364.

23 Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime
24 prevalence and age-of-onset distributions of DSM-IV disorders in the National
25 Comorbidity Survey Replication. *Archives of general psychiatry* 62:593-602.

26 Kochenderfer-Ladd B, Wardrop JL (2001) Chronicity and instability of children's peer
27 victimization experiences as predictors of loneliness and social satisfaction trajectories.
28 *Child development* 72:134-151.

29 Koike H, Ibi D, Mizoguchi H, Nagai T, Nitta A, Takuma K, Nabeshima T, Yoneda Y, Yamada
30 K (2009) Behavioral abnormality and pharmacologic response in social isolation-reared
31 mice. *Behavioural brain research* 202:114-121.

32 Leshem R (2016) Brain Development, Impulsivity, Risky Decision Making, and Cognitive
33 Control: Integrating Cognitive and Socioemotional Processes During Adolescence-An
34 Introduction to the Special Issue. *Developmental neuropsychology* 41:1-5.

35 Lopez MF, Doremus-Fitzwater TL, Becker HC (2011) Chronic social isolation and chronic
36 variable stress during early development induce later elevated ethanol intake in adult
37 C57BL/6J mice. *Alcohol* 45:355-364.

38 Lopez MF, Laber K (2015) Impact of social isolation and enriched environment during
39 adolescence on voluntary ethanol intake and anxiety in C57BL/6J mice. *Physiology &*
40 *behavior* 148:151-156.

41 Lueptow LM (2017) Novel Object Recognition Test for the Investigation of Learning and
42 Memory in Mice. *Journal of visualized experiments : JoVE*.

43 Lukkes JL, Mokin MV, Scholl JL, Forster GL (2009a) Adult rats exposed to early-life social
44 isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal
45 stress responses. *Hormones and behavior* 55:248-256.

Adolescent stress and hypersociability

1 Lukkes JL, Watt MJ, Lowry CA, Forster GL (2009b) Consequences of post-weaning social
2 isolation on anxiety behavior and related neural circuits in rodents. *Frontiers in*
3 *behavioral neuroscience* 3:18.

4 Lyons AM, Lowery EG, Sparta DR, Thiele TE (2008) Effects of food availability and
5 administration of orexigenic and anorectic agents on elevated ethanol drinking associated
6 with drinking in the dark procedures. *Alcoholism, clinical and experimental research*
7 32:1962-1968.

8 Manouze H, Ghestem A, Poillerat V, Bennis M, Ba-M'hamed S, Benoliel JJ, Becker C, Bernard
9 C (2019) Effects of Single Cage Housing on Stress, Cognitive, and Seizure Parameters in
10 the Rat and Mouse Pilocarpine Models of Epilepsy. *eNeuro* 6.

11 Marcinkiewcz CA, Mazzone CM, D'Agostino G, Halladay LR, Hardaway JA, DiBerto JF,
12 Navarro M, Burnham N, Cristiano C, Dorrier CE, Tipton GJ, Ramakrishnan C, Kozicz T,
13 Deisseroth K, Thiele TE, McElligott ZA, Holmes A, Heisler LK, Kash TL (2016)
14 Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala.
15 *Nature* 537:97-101.

16 Martin AL, Brown RE (2010) The lonely mouse: verification of a separation-induced model of
17 depression in female mice. *Behavioural brain research* 207:196-207.

18 Masten CL, Telzer EH, Fuligni AJ, Lieberman MD, Eisenberger NI (2012) Time spent with
19 friends in adolescence relates to less neural sensitivity to later peer rejection. *Social*
20 *cognitive and affective neuroscience* 7:106-114.

21 McCool BA, Chappell AM (2009) Early social isolation in male Long-Evans rats alters both
22 appetitive and consummatory behaviors expressed during operant ethanol self-
23 administration. *Alcoholism, clinical and experimental research* 33:273-282.

24 Medendorp WE, Petersen ED, Pal A, Wagner LM, Myers AR, Hochgeschwender U, Jenrow KA
25 (2018) Altered Behavior in Mice Socially Isolated During Adolescence Corresponds
26 With Immature Dendritic Spine Morphology and Impaired Plasticity in the Prefrontal
27 Cortex. *Frontiers in behavioral neuroscience* 12:87.

28 Melendez RI, Middaugh LD, Kalivas PW (2006) Development of an alcohol deprivation and
29 escalation effect in C57BL/6J mice. *Alcoholism, clinical and experimental research*
30 30:2017-2025.

31 Mulligan MK, Rhodes JS, Crabbe JC, Mayfield RD, Harris RA, Ponomarev I (2011) Molecular
32 profiles of drinking alcohol to intoxication in C57BL/6J mice. *Alcoholism, clinical and*
33 *experimental research* 35:659-670.

34 Mumtaz F, Khan MI, Zubair M, Dehpour AR (2018) Neurobiology and consequences of social
35 isolation stress in animal model-A comprehensive review. *Biomed Pharmacother*
36 105:1205-1222.

37 Noom MJ, Dekovic M, Meeus WH (1999) Autonomy, attachment and psychosocial adjustment
38 during adolescence: a double-edged sword? *Journal of adolescence* 22:771-783.

39 Okada R, Fujiwara H, Mizuki D, Araki R, Yabe T, Matsumoto K (2015) Involvement of
40 dopaminergic and cholinergic systems in social isolation-induced deficits in social
41 affiliation and conditional fear memory in mice. *Neuroscience* 299:134-145.

42 Panksepp JB, Jochman KA, Kim JU, Koy JJ, Wilson ED, Chen Q, Wilson CR, Lahvis GP (2007)
43 Affiliative behavior, ultrasonic communication and social reward are influenced by
44 genetic variation in adolescent mice. *PloS one* 2:e351.

45 Panksepp JB, Lahvis GP (2007) Social reward among juvenile mice. *Genes, brain, and behavior*
46 6:661-671.

Adolescent stress and hypersociability

1 Paus T (2007) Mapping brain maturation and cognitive development during adolescence. *Eur
2 Neuropsychopharmacology* 17:S217-S217.

3 Pibiri F, Nelson M, Guidotti A, Costa E, Pinna G (2008) Decreased corticolimbic
4 allopregnanolone expression during social isolation enhances contextual fear: A model
5 relevant for posttraumatic stress disorder. *Proceedings of the National Academy of
6 Sciences of the United States of America* 105:5567-5572.

7 Pinna G (2019) Animal Models of PTSD: The Socially Isolated Mouse and the Biomarker Role
8 of Allopregnanolone. *Frontiers in behavioral neuroscience* 13:114.

9 Pinna G, Agis-Balboa RC, Pibiri F, Nelson M, Guidotti A, Costa E (2008) Neurosteroid
10 biosynthesis regulates sexually dimorphic fear and aggressive behavior in mice.
11 *Neurochemical research* 33:1990-2007.

12 Platt B, Cohen Kadosh K, Lau JY (2013) The role of peer rejection in adolescent depression.
13 *Depression and anxiety* 30:809-821.

14 Pleil KE, Rinker JA, Lowery-Gionta EG, Mazzone CM, McCall NM, Kendra AM, Olson DP,
15 Lowell BB, Grant KA, Thiele TE, Kash TL (2015) NPY signaling inhibits extended
16 amygdala CRF neurons to suppress binge alcohol drinking. *Nature neuroscience* 18:545-
17 552.

18 Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC (2005) Evaluation of a simple model of
19 ethanol drinking to intoxication in C57BL/6J mice. *Physiology & behavior* 84:53-63.

20 Romeo RD, Bellani R, Karatsoreos IN, Chhua N, Vernov M, Conrad CD, McEwen BS (2006)
21 Stress history and pubertal development interact to shape hypothalamic-pituitary-adrenal
22 axis plasticity. *Endocrinology* 147:1664-1674.

23 Romer D (2010) Adolescent risk taking, impulsivity, and brain development: implications for
24 prevention. *Developmental psychobiology* 52:263-276.

25 Singewald GM, Nguyen NK, Neumann ID, Singewald N, Reber SO (2009) Effect of chronic
26 psychosocial stress-induced by subordinate colony (CSC) housing on brain neuronal
27 activity patterns in mice. *Stress* 12:58-69.

28 Skelly MJ, Chappell AE, Carter E, Weiner JL (2015) Adolescent social isolation increases
29 anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood:
30 Possible role of disrupted noradrenergic signaling. *Neuropharmacology* 97:149-159.

31 Spear LP (2004) Adolescent brain development and animal models. *Annals of the New York
32 Academy of Sciences* 1021:23-26.

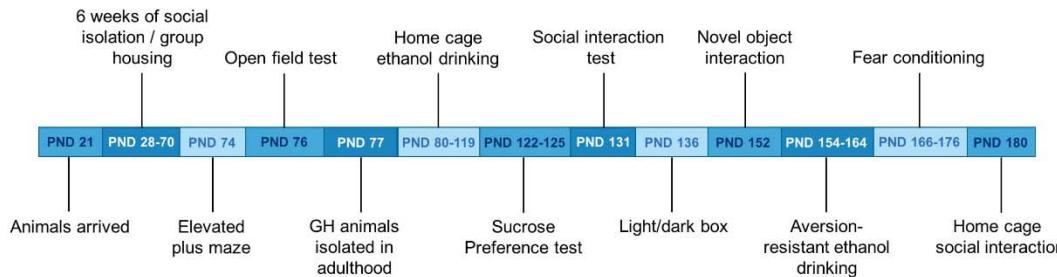
33 Steinberg L (2004) Risk taking in adolescence: what changes, and why? *Annals of the New York
34 Academy of Sciences* 1021:51-58.

35 Steinberg L (2010) A dual systems model of adolescent risk-taking. *Developmental
36 psychobiology* 52:216-224.

37 Tian SW, Yu XD, Cen L, Xiao ZY (2019) Glutamate transporter GLT1 inhibitor dihydrokainic
38 acid impairs novel object recognition memory performance in mice. *Physiology &
39 behavior* 199:28-32.

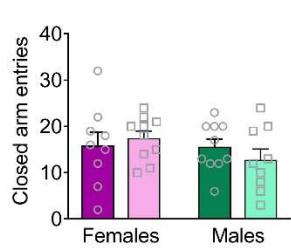
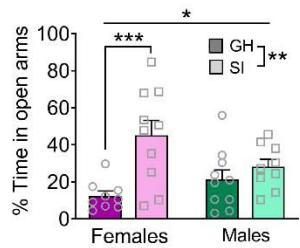
40 Trentacosta CJ, Shaw DS (2009) Emotional Self-Regulation, Peer Rejection, and Antisocial
41 Behavior: Developmental Associations from Early Childhood to Early Adolescence.
42 *Journal of applied developmental psychology* 30:356-365.

43 Turner RJ, Lloyd DA (2004) Stress burden and the lifetime incidence of psychiatric disorder in
44 young adults: racial and ethnic contrasts. *Archives of general psychiatry* 61:481-488.

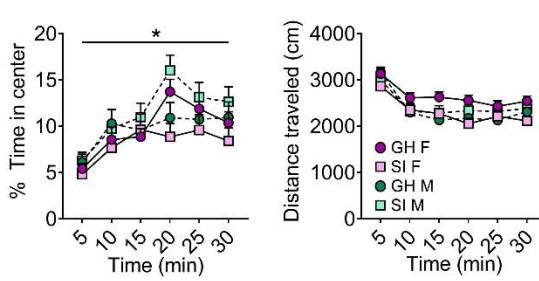

Adolescent stress and hypersociability

- 1 Voikar V, Polus A, Vasar E, Rauvala H (2005) Long-term individual housing in C57BL/6J and
- 2 DBA/2 mice: assessment of behavioral consequences. *Genes, brain, and behavior* 4:240-
- 3 252.
- 4 Walker DM, Cunningham AM, Gregory JK, Nestler EJ (2019) Long-Term Behavioral Effects of
- 5 Post-weaning Social Isolation in Males and Females. *Frontiers in behavioral*
- 6 *neuroscience* 13:66.
- 7 Whitaker LR, Degoulet M, Morikawa H (2013) Social deprivation enhances VTA synaptic
- 8 plasticity and drug-induced contextual learning. *Neuron* 77:335-345.
- 9 Yoneyama N, Crabbe JC, Ford MM, Murillo A, Finn DA (2008) Voluntary ethanol consumption
- 10 in 22 inbred mouse strains. *Alcohol* 42:149-160.
- 11 Yorgason JT, Calipari ES, Ferris MJ, Karkhanis AN, Fordahl SC, Weiner JL, Jones SR (2016)
- 12 Social isolation rearing increases dopamine uptake and psychostimulant potency in the
- 13 striatum. *Neuropharmacology* 101:471-479.

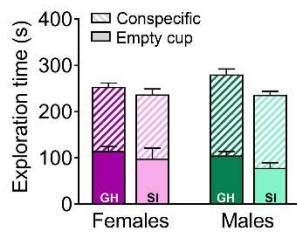
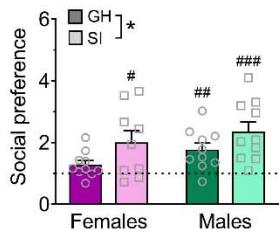
Adolescent stress and hypersociability



1 Figures

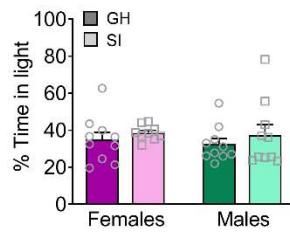
A


B

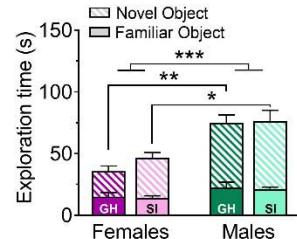
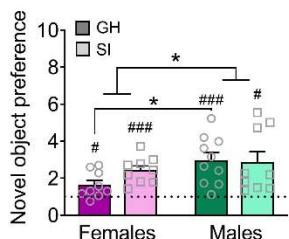
Elevated plus maze



C

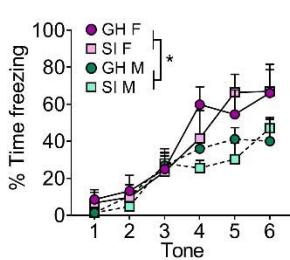
Open field


D

Social interaction



E

Light/dark Box

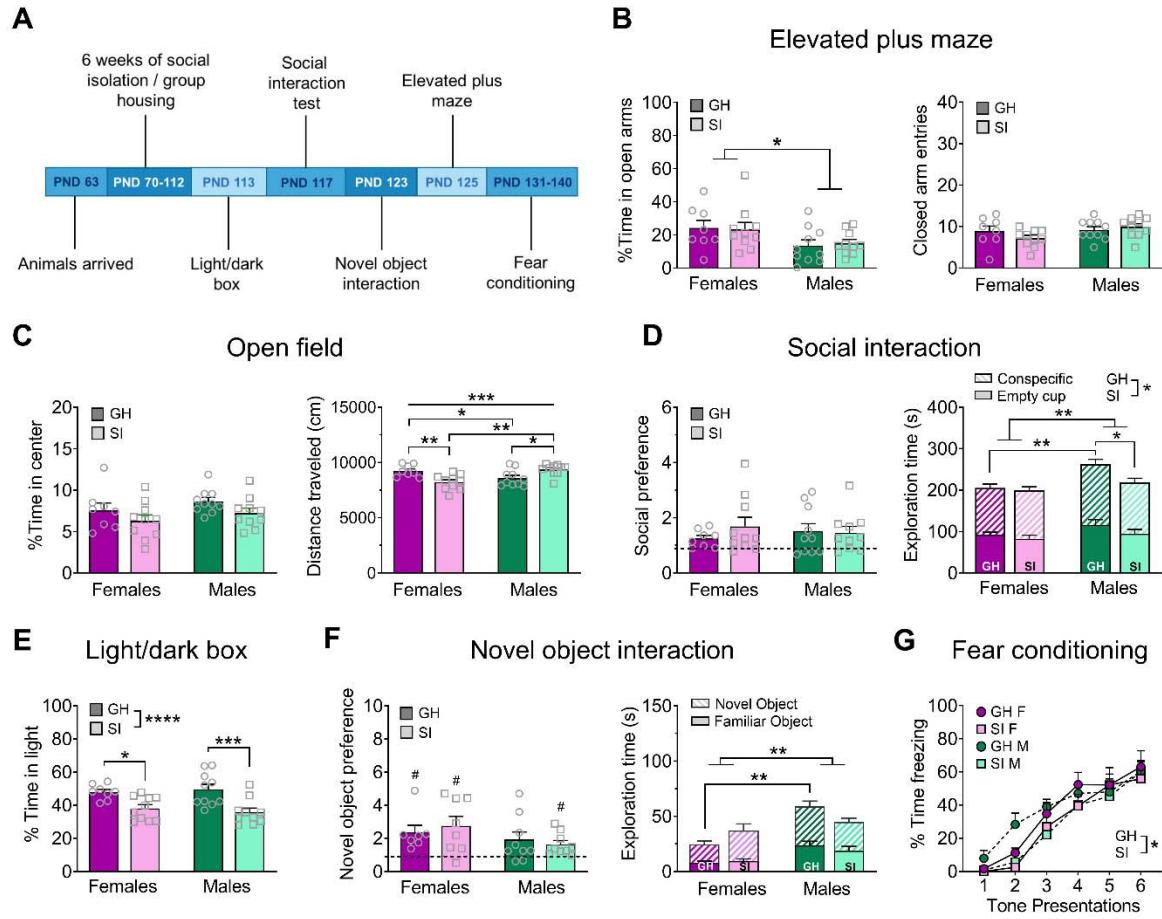

F

Novel object interaction

G

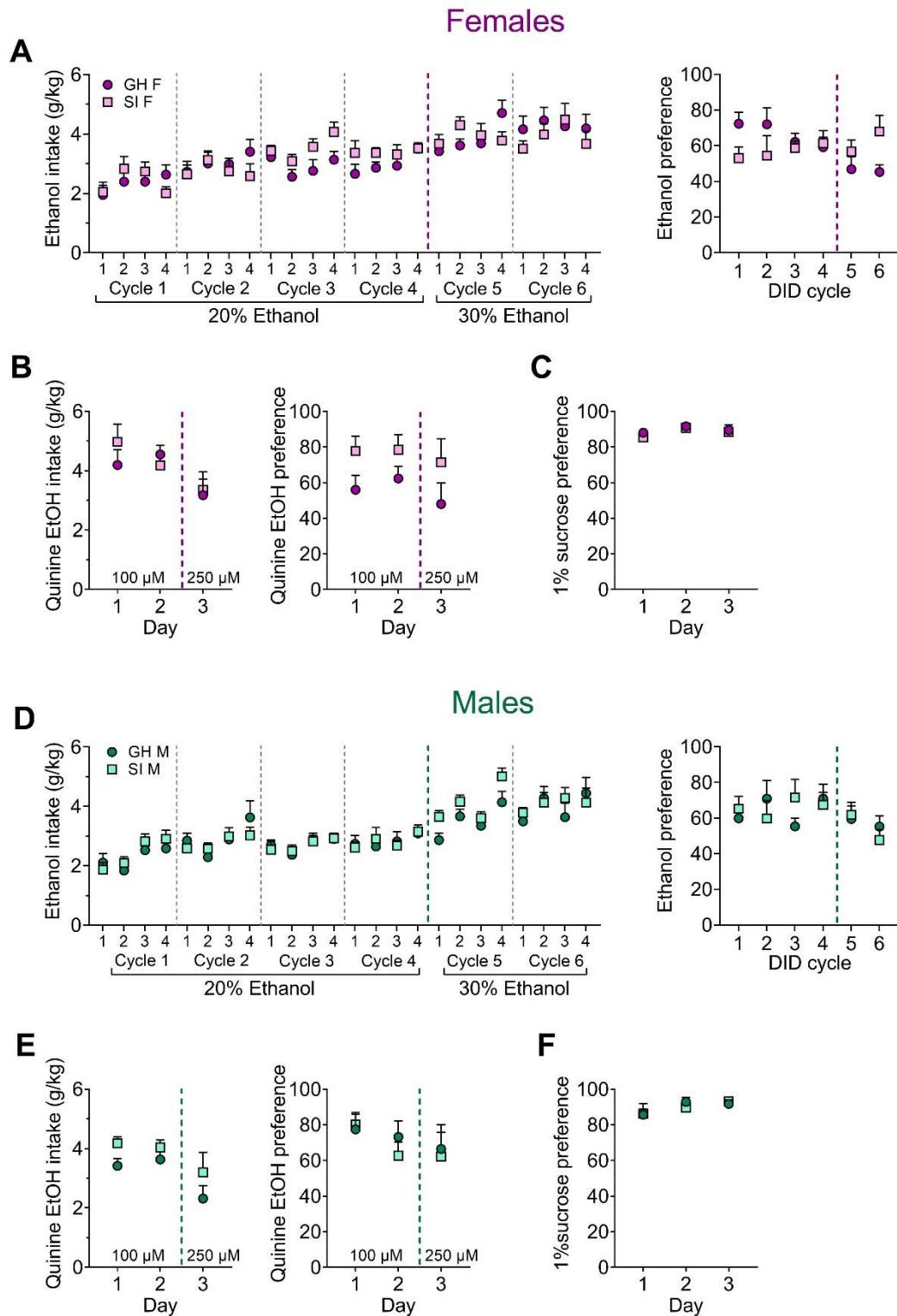
Fear conditioning

2


3 **Figure 1. Adolescent social isolation behavior battery.** (A) Experimental timeline. (B) In the elevated plus maze (EPM), adolescent social isolation (SI) increases the percent time spent exploring the open arms, an effect driven by females (left), without altering locomotor activity as measured by closed arm entries (right). (C) Adolescent SI oppositely affects the percent time

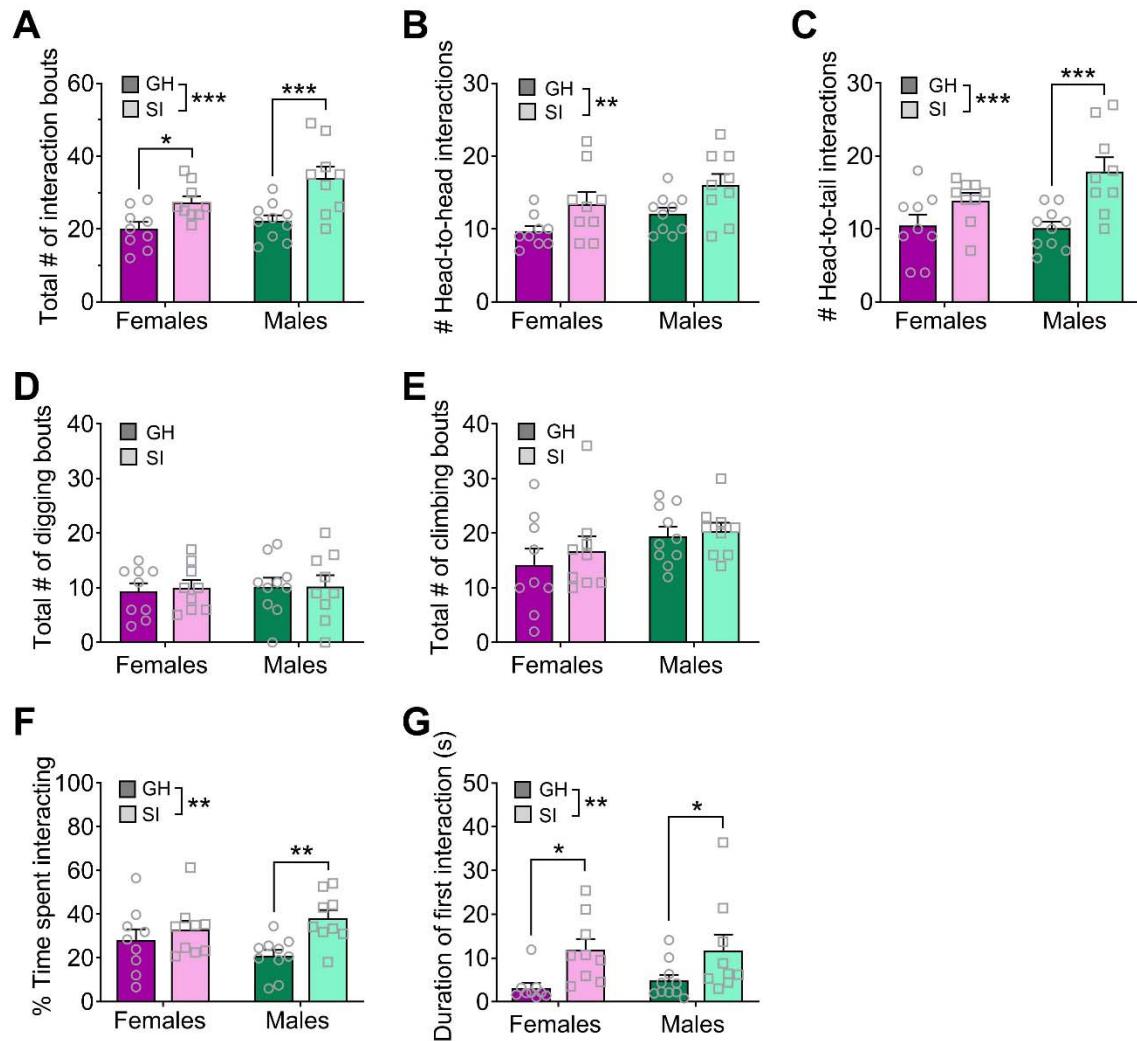
Adolescent stress and hypersociability

1 spent exploring the center of an open field in males and females (left) but does not affect the
2 distance traveled in this assay (right). **(D)** On the social interaction test, all but GH females
3 display a significant preference for a novel social partner over an empty cup, and adolescent SI
4 increases preference (left) without impacting total time spent exploring both objects (right). **(E)**
5 Adolescent SI has no effect on anxiety-like behavior in the light/dark box. **(F)** All groups display
6 a preference for a novel object over a familiar one, and this preference was greater in males than
7 females but unaffected by adolescent SI (left). Total time spent exploring both objects is likewise
8 increased in males compared to females (right). **(G)** Females display enhanced fear conditioning
9 compared to males, but adolescent SI does not alter this measure. Data are expressed as means +
10 SEM; * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ between groups; # $p < 0.05$, ## $p < 0.01$, ### $p < 0.001$
11 compared to null hypothesis of preference score = 1.


12

Adolescent stress and hypersociability

Figure 2. Adult isolation behavior battery. (A) Experimental timeline. (B) Females spend more time exploring the open arms of the EPM, but adult SI does not influence this measure (left); there are no difference in general locomotor behavior, measured by the number of entries into the closed arms (right). (C) There are no effects of sex or adult SI on the percent time spent exploring the center of the OF (left), however there is a sex-dependent effect of adult SI on the total distance traveled in the OF (right). (D) Adult SI does not alter preference for a novel social partner over an empty cup in the social interaction test (left) but does decrease total time spent interacting with the social partner and empty cup, an effect driven by males (right). GH males also spend more total time exploring both objects compared to GH females. (E) Adult SI decreases the percent time spent exploring the light side of the light/dark box in both males and females. (F) In the novel object interaction test, all groups except GH males display a preference for a novel vs. familiar object (left), however this is driven by greater overall interaction time with both objects in males (right). (G) Adult SI mice show delayed fear acquisition compared to GH mice. Data are expressed as means + SEM; * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$ between groups; # $p < 0.05$ compared to null hypothesis of preference score = 1.


Adolescent stress and hypersociability

1
2 **Figure 3. Effects of adolescent social isolation on home cage ethanol drinking and reward**
3 **and aversion sensitivity in adult female (A-C) and male (D-F) mice. (A)** There are no effects
4 of adolescent SI on binge ethanol consumption (left) or 24-hr ethanol preference (right) across

Adolescent stress and hypersociability

1 six weeks of 20% and 30% ethanol in a modified EtOH DID paradigm in females. (B)
2 Adolescent GH and SI females display similar consumption of quinine-adulterated ethanol (left)
3 and preference for it over water (right) across multiple quinine concentrations. (C) Adolescent SI
4 does not alter preference for a 1% sucrose solution over water in female mice. (D-F) Similarly,
5 adolescent SI in males does not alter ethanol intake or preference (D), quinine-adulterated
6 ethanol intake or preference (E), or 1% sucrose preference (F).

7
8 **Figure 4. Effects of adolescent social isolation on home cage social interaction in adulthood.**
9 (A) aSI mice display an increased number of social interaction bouts in both males and females.
10 (B-C) This overall phenotype is present when only head-to-head interactions (B) or head-to-tail
11 interactions (C) are considered. (D-E) In contrast, digging (D) and climbing (E) behaviors are
12 not altered by adolescent SI. (F) Adolescent SI mice spend a greater proportion of the 5 min
13 assay interacting with the stranger mouse than their GH counterparts, and effect driven by males.
14 (G) The duration of the first social interaction bout is longer in adolescent SI mice of both sexes.
15 Data are expressed as means + SEM; *p < 0.05, **p < 0.01, ***p < 0.001 between groups.