

1 **Endocrine signaling mediates asymmetric motor deficits**
2 **after unilateral brain injury**

3

4 **Nikolay Lukyanov^{1,*}, Hiroyuki Watanabe^{2,*}, Liliana S. Carvalho^{1,*}, Olga Nosova^{2,*},**
5 **Daniil Sarkisyan^{2,*}, Mengliang Zhang^{3,4}, Marlene Storm Andersen⁴, Elena A.**
6 **Lukyanova¹, Vladimir Galatenko^{5,9}, Alex Tonevitsky^{6,7,8}, Igor Bazov², Tatiana**
7 **Iakovleva², Jens Schouenborg^{3,†}, Georgy Bakalkin^{2,†}**

8

9 ¹Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de
10 Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, Porto, Portugal.

11 ²Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.

12 ³Neuronano Research Center, Department of Experimental Medical Science, Lund University,
13 Lund, Sweden.

14 ⁴Department of Molecular Medicine, University of Southern Denmark, Odense, and Denmark.

15 ⁵Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

16 ⁶Faculty of Biology and Biotechnology, National Research University Higher School of
17 Economics, Moscow, Russia

18 ⁷Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia

19 ⁸Far Eastern Federal University, Vladivostok, Russia

20 ⁹Present address: Evotec International GmbH, Göttingen, Germany

21 * These authors contributed equally to this work.

22 † Co-senior authors

23

24 For correspondence:

25 georgy.bakalkin@farmbio.uu.se

26 **Abstract**

27 A paradigm in neurology is that brain injury-induced motor deficits (e.g. hemiparesis and
28 hemiplegia) arise due to aberrant activity of descending neural pathways. We discovered that a
29 unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic
30 spinal cord produces hindlimb postural asymmetry with contralateral flexion, and asymmetric
31 changes in nociceptive hindlimb withdrawal reflexes and gene expression patterns in lumbar spinal
32 cord. The injury-induced postural effects were abolished by prior hypophysectomy and were
33 mimicked by transfusion of serum from animals with unilateral brain injury. Antagonists of the
34 opioid and vasopressin receptors blocked formation of hindlimb postural asymmetry suggesting
35 that these neurohormones mediate effects of brain injury on lateralized motor responses. Our data
36 indicate that descending neural control of spinal circuits is complemented by a previously
37 unknown humoral signaling from injured brain to the contra- and ipsilesional hindlimbs, and
38 suggest the existence of a body side-specific neuroendocrine regulation in bilaterally symmetric
39 animals.

40 Introduction

41 Motor deficits secondary to stroke and traumatic brain injury (TBI) are characterized by paralysis
42 (hemiplegia) or weakness (hemiparesis) that are typically developed on the contralateral side of
43 the body (Fernandes et al., 2018; Lemon, 2008; Purves et al., 2001; Roelofs et al., 2018; Smith et
44 al., 2017; Ward, 2017; Wilson et al., 2017). Flaccid paralysis is replaced by spasticity and
45 hyperreflexia. The patients often demonstrate hyperactive stretch reflexes, clonus, clasp-knife
46 response and positive Babinski signs that differ between the left and right extremities. Balance is
47 disturbed with impairments in symmetry, steadiness and dynamic stability (Lemon, 2008; Purves
48 et al., 2001; Roelofs et al., 2018; Smith et al., 2017; Ward, 2017; Wilson et al., 2017). The survivors
49 typically have asymmetry with most of the weight shifted toward the stronger side when in sitting
50 or standing position, and poor postural responses in quiet and perturbed balance (Fernandes et al.,
51 2018). The current paradigm is that these deficits are developed due to aberrant activity of neural
52 tracts descending from the brain to the spinal cord (Lemon, 2008; Purves et al., 2001; Smith et al.,
53 2017; Ward, 2017; Wilson et al., 2017; Wolpaw, 2012).

54 Animal studies demonstrate that a unilateral brain injury (UBI) induces the hindlimb postural
55 asymmetry (HL-PA) with ipsi- or contralateral limb flexion, and that the developed asymmetry
56 is retained after transection of the spinal cord (Chamberlain et al., 1963; DiGiorgio, 1929; Wolpaw,
57 2012). Consistent with this, monosynaptic and polysynaptic hindlimb reflexes are enhanced on the
58 ipsilateral side after lateral hemisection of the spinal cord, and this pattern is sustained after spinal
59 transection (Hultborn & Malmsten, 1983; Rossignol & Frigon, 2011). Thus asymmetric motor
60 dysfunctions after brain or spinal cord injury may develop due to the spinal neuroplastic changes
61 induced by abnormal activity of descending pathways.

62 In this study we challenge the neurological paradigm by investigating whether a unilaterally
63 injured brain may signal to the lumbar spinal cord through non-spinal mechanism. We applied a
64 “reversed strategy” protocol in which brain injury was performed after complete transection of the
65 spinal cord at a superior thoracic level.

66

67 **Results**

68 **Brain injury induces postural asymmetry in rats with transected spinal cord**

69 We first demonstrated that the unilateral injury of the hindlimb representation area of the
70 sensorimotor cortex in rats induces formation of HL-PA (*Figure 1A,D,E; Figure 1—figure*
71 *supplement 1*). The effect was evident under pentobarbital anesthesia within 5 min after the lesion
72 and lasted for 14 days. The HL-PA median values and probability to develop HL-PA greater than
73 the 1 mm threshold were markedly higher in rats with UBI (n = 8) compared to those with sham
74 surgery (sham; n = 7). The UBI rats displayed a contralateral hindlimb flexion which correlated
75 with motor deficits of the same limb in the beam-working and ladder rung tests (UBI, n = 11/12;
76 sham, n = 8) (*Figure 1B,C*). The UBI rats showed the high number of slips of the contralateral
77 hindlimb compared to the ipsilateral limb, and to both hindlimbs in rats with sham surgery.
78 Consistent with earlier studies (Chamberlain et al., 1963; DiGiorgio, 1929; Hultborn & Malmsten,
79 1983; Rossignol & Frigon, 2011; Wolpaw, 2012), the HL-PA was retained after complete
80 transection of the spinal cord performed at the T2-T3 level (*Figure 1—figure supplement 1E-G*).
81 We hypothesized that the HL-PA is maintained either due to neuroplastic changes in the lumbar
82 spinal cord induced through the descending neural tracts before spinalization, or due to non-spinal
83 cord mediated signaling from the injured brain to the lumbar neural circuits.

84 We tested the second hypothesis in rats that had complete transection of the spinal cord at the T2-
85 3 level before the UBI was performed (**Figure 1F; Figure 1—figure supplement 2; Figure 1—**
86 **figure supplement 3** showing data of two replication experiments). We observed that within 3
87 hours following UBI (Left UBI, n = 26; Right UBI, n = 15; sham surgery, n = 29) the rats with
88 transected spinal cord developed HL-PA; the HL-PA values and probability to develop HL-PA
89 were much higher than in rats with sham surgery, and similar to those of the UBI animals with
90 intact spinal cords. Strikingly, the left and right UBI produced HL-PA with contralateral
91 hindlimb flexion that was on the right or left side, respectively. We conclude that HL-PA formation
92 in animals with transected spinal cord is mediated through a non-spinal pathway that decussates
93 the midline and assures the development of contralateral flexion. The HL-PA phenomenon was
94 further analyzed after the left UBI.

95 **Brain injury induces asymmetry in withdrawal reflexes in rats with transected**
96 **spinal cord**

97 The nociceptive withdrawal reflexes are instrumental in investigation of pathological changes in
98 hindlimb neural circuits given that the changes are induced by converging inputs from peripheral
99 afferents and descending motor commands (Schouenborg, 2002; Spaich et al., 2014). We next
100 sought to determine whether UBI in rats with transected spinal cord produces differences in
101 nociceptive contra- and ipsilesional hindlimb withdrawal reflexes. Electromyographic responses
102 were recorded from the extensor digitorum longus, interosseous, peroneus longus and
103 semitendinosus muscles of the contra- and ipsilesional hindlimbs in the rats with UBI (n = 18) or
104 sham surgery (n = 11) performed after complete spinal transection (**Figure 2; Figure 2—figure**
105 **supplement 1; Figure 2—figure supplement 2**). Analysis of the electrically evoked

106 electromyographic responses revealed marked significant differences in the asymmetry index
107 (AI = $\log_2[\text{Contra} / \text{Ipsi}]$, where Contra and Ipsi were values for muscles of the contra- and
108 ipsilesional limbs) from its zero value in the current threshold for the semitendinosus muscle, and
109 in the number of spikes for the extensor digitorum longus and semitendinosus muscles in UBI rats
110 (**Figure 2C,D**). No asymmetry was developed after sham surgery. Representative UBI-induced
111 asymmetry in the number of spikes for the semitendinosus muscle is shown in **Figure 2A,B** (for
112 those of extensor digitorum longus, interosseous and peroneus longus muscles, see **Figure 2—**
113 **figure supplement 1**).

114 The UBI when compared to sham surgery substantially and significantly decreased the asymmetry
115 index for the current threshold of the semitendinosus, and for the number of spikes of the
116 interosseous, while elevated the asymmetry index for the number of spikes of the extensor
117 digitorum longus and semitendinosus (**Figure 2E,F**). No significant changes in peroneus longus
118 were evident. Thus, the nociceptive withdrawal reflexes of the extensor digitorum longus and
119 semitendinosus muscles were asymmetric in the rats with transected spinal cord after the UBI.
120 UBI decreased the threshold for contralateral semitendinosus, and concomitantly activated the
121 contralateral extensor digitorum longus and semitendinosus reflexes and ipsilesional
122 interosseous reflex. This pattern is consistent with formation of the UBI induced contralateral
123 flexion.

124 **Brain injury produces molecular changes in the lumbar spinal cord**

125 We examined whether the UBI performed after complete spinal transection produces molecular
126 changes in the lumbar spinal segments. Expression of twenty neuroplasticity, opioid and
127 vasopressin genes (**Figure 3—figure supplement 1**), and the levels of three opioid peptides were

128 analyzed in the ipsi- and contralateral halves of the lumbar spinal cord of the rats with transected
129 spinal cord that were exposed to the left UBI ($n = 12$) or left sham surgery ($n = 11$). Opioid and
130 vasopressin neurohormones were included because of their involvement in spinal asymmetric
131 processes (see next section). The median expression asymmetry index ($eAI = \log_2[\text{Contra}/\text{Ipsi}]$),
132 where Contra and Ipsi were the levels in the contra- and ipsilesional lumbar domains) of 19 out of
133 20 genes at the pairwise comparison was lower in the UBI compared to sham group (sign-test: P
134 $= 4 \times 10^{-5}$) (**Figure 3A,B**). Among these 19 genes, the expression asymmetry index was decreased
135 for *Syt4* ($P = 0.004$; **Figure 3C**), and for *Oprk1*, *Oprm1*, *Dlg4* and *Homer1* ($P_{\text{un-adjusted}} < 0.05$;
136 **Figure 3—figure supplement 2A-D**). Changes in the expression asymmetry index were due to
137 elevated expression of 15 genes (sign test, $P = 0.041$) including *Syt4*, *Grin2a*, *Grin2b* and *Oprk1*
138 (for all four, $P_{\text{un-adjusted}} < 0.05$) in the ipsilesional domain (**Figure 3—figure supplement 2E-H**;
139 **Figure 3—figure supplement 3A-D**) concomitantly with decreased expression of 17 genes (sign
140 test, $P = 0.003$) including *Gap43* and *Penk* (for both, $P_{\text{un-adjusted}} < 0.05$) in the contralateral domain
141 (**Figure 3—figure supplement 2I,J**; **Figure 3—figure supplement 3A-D**). The left UBI elevated
142 the levels of opioid peptide Met-enkephalin-Arg-Phe, the proenkephalin marker, in the ipsilesional
143 ($P = 9 \times 10^{-4}$) and contralateral halves ($P_{\text{un-adjusted}} = 0.020$) (**Figure 3D**) and the prodynorphin-
144 derived dynorphin B and Leu-enkephalin-Arg in the ipsilesional domain (for both, $P_{\text{un-adjusted}} <$
145 0.05) (**Figure 3—figure supplement 2K,L**).

146 Gene co-expression patterns characterize regulatory interactions within and across tissues (Long
147 et al., 2016). We examined whether left UBI performed after spinal transection induces changes
148 in RNA–RNA intra-area correlations in the left and right halves of the lumbar spinal cord, and
149 inter-area correlations between these halves. The proportion of intra-domain positive correlations,
150 which dominated in rats with sham surgery, was reduced after the left UBI (Fisher's Exact Test:

151 all correlations in the right domain, $P = 3 \times 10^{-5}$; significant correlations in the left and right
152 domains, $P = 0.008$ and 0.009 , respectively (**Figure 3—figure supplement 3E-H**). The inter-
153 domain gene-gene coordination strength was decreased after the left UBI (Wilcoxon signed-rank
154 test; all and significant correlations: $P = 4 \times 10^{-7}$ and 3×10^{-4} , respectively) (**Figure 3E,F**). Positive
155 inter-domain correlations were predominant in rats with sham surgery (68%) in contrast to the UBI
156 group (42%) (Fisher's Exact Test: all and significant correlations, $P = 6 \times 10^{-14}$ and 0.004 ,
157 respectively). We conclude that in rats with transected spinal cord the UBI robustly impairs
158 coordination of expression of neuroplasticity and neuropeptide genes within and between the left
159 and right halves of the lumbar spinal cord, and suggest that opioid neuropeptides may mediate
160 spinal UBI effects. These experiments provide molecular evidence for the non-spinal cord
161 mediated lateralized signaling from the injured brain to spinal neural circuits.

162 **UBI effects are mediated by neuroendocrine pathway**

163 A non-spinal mechanism may operate through the neuroendocrine system by a release of pituitary
164 hormones into the blood. Consistent with this hypothesis, no HL-PA was developed in
165 hypophysectomized animals exposed to the left UBI after spinal transection ($n = 8$); the HL-PA
166 median values and P_A were nearly identical to those in sham operated rats ($n = 8$) (**Figure 4A**;
167 **Figure 4—figure supplement 1A-E**). We next examined whether the left UBI stimulates the
168 release of chemical factors, which may induce the development of HL-PA, into the blood. Serum
169 that was collected 3 hours after performing a left UBI in rats with transected spinal cord was
170 administered either centrally (into the cisterna magna; UBI serum, $n = 13$; sham serum, $n = 7$;
171 **Figure 4—figure supplement 1F-J**) or intravenously (UBI serum, $n = 13$; sham serum, $n = 7$;
172 **Figure 4B**; **Figure 4—figure supplement 1K-O**) to rats after their spinalization. Serum

173 administration by either route resulted in formation of HL-PA with its values and its probability
174 similar to those induced by the UBI in rats with transected spinal cord. Remarkably, animals
175 injected with serum from rats with left UBI displayed hindlimb flexion on the right side, which
176 was the same as the flexion side in the donor rats (**Figure 4B—figure supplement 1F-O**). No HL-
177 PA developed after administration of serum collected from rats with the left sham surgery. We
178 conclude that the left UBI may stimulate a release of chemical factors from the pituitary gland,
179 into the blood that induce HL-PA with contralateral flexion.

180 Multiple peptide factors inducing a side-specific hindlimb motor response were extracted from the
181 brain, pituitary gland and serum of intact animals; several of them may be identical to endogenous
182 peptides neurohormones (Bakalkin & Kobylyansky, 1989; Bakalkin et al., 1986; Chazov et al.,
183 1981; Klement'ev et al., 1986). After central administration two factors, Arg-vasopressin and Leu-
184 enkephalin induced HL-PA with right hindlimb flexion (for replication of Arg-vasopressin effects,
185 see **Figure 4—figure supplement 2**; peptide, n = 10; saline, n = 5/9). We here tested if β -endorphin
186 and Arg-vasopressin, which both mostly are produced in and released into the circulation from the
187 pituitary gland, may evoke asymmetric motor response after intravenous administration. Injection
188 of these neurohormones but not saline to rats with transected spinal cord resulted in development
189 of HL-PA with hindlimb flexion on the right side (**Figure 4C**; β -endorphin, n = 8; Arg-vasopressin,
190 n = 7; saline, n = 4).

191 We next investigated whether opioid receptors and vasopressin receptor V1B, that is expressed in
192 the pituitary gland (Roper et al., 2011), mediate formation of HL-PA in UBI rats or in animals
193 treated with serum from UBI rats. Naloxone and SSR-149415, the opioid and vasopressin V1B
194 receptor antagonists, respectively, administered to animals with transected spinal cord that were

195 exposed to the left UBI (naloxone, n = 6; SSR-149415, n = 6; saline and vehicle, n = 11), or
196 received serum from animals with left UBI (naloxone, n = 6; SSR-149415, n = 6; saline and
197 vehicle, n = 6), inhibited HL-PA formation (**Figure 4D,E**). Thus activation of the receptors by the
198 pituitary hormones β -endorphin and Arg-vasopressin released into the systemic circulation may
199 be a necessary part of the hormone cascade mediating UBI effects on hindlimb motor circuits.

200

201 **Discussion**

202 All three UBI effects in rats with transected spinal cord including development of HL-PA,
203 asymmetry in nociceptive withdrawal reflexes, and asymmetric changes in gene expression
204 patterns are mediated by a non-spinal endocrine pathway (**Figure 4F**). Encoding of information
205 about the UBI and its laterality in a hormonal message, transmission of this message through the
206 blood to its targets in peripheral endings of sensory neurons, dorsal root ganglia or non-neuronal
207 (e. g. muscle or skin cells), and translation of this message into the left-right side specific response,
208 are three stages of the phenomenon.

209 A bi-directional mechanism of the left-right side specific responses evoked by hormonal molecules
210 circulating in the blood is a core of the non-spinal signaling pathway. This study in combination
211 with our previous findings (Bakalkin & Kobylyansky, 1989; Bakalkin et al., 1986; Chazov et al.,
212 1981) provide the principal evidence for such a mechanism. We demonstrated that peptide
213 neurohormones and opioids administered intravenously, intrathecally or intracisternally induce
214 HL-PA in rats with transected spinal cord. The striking finding was that the side of the flexed limb
215 was dependent on the compound administered. Endogenous and synthetic κ -opioid agonists
216 dynorphin and bremazocine, and endogenous mixed μ / δ -opioid agonist Met-enkephalin induced

217 flexion of the left hindlimb (Bakalkin et al., 1989; Chazov et al., 1981). In contrast, β -endorphin,
218 δ -agonist Leu-enkephalin and Arg-vasopressin caused the right limb to flex ((Bakalkin et al., 1989;
219 Chazov et al., 1981; Klement'ev et al., 1986) and present study). Thus molecular signals circulating
220 in blood were converted into the side-specific motor response suggesting that the opioid and
221 vasopressin neurohormones may serve as chemical messengers transmitting information from an
222 injured brain to peripheral tissues. The pituitary gland is the main source of opioid peptides and
223 Arg-vasopressin in the bloodstream (Autelitano et al., 1989; Day & Akil, 1989). Naloxone and
224 SSR-149415 blocked the UBI-induced formation of HL-PA demonstrating that the activation of
225 the opioid receptors and the AVP V1b receptor is required for the signaling from the injured brain
226 mediated through the pituitary gland to lumbar spinal circuits. A humoral brain-to-spinal cord
227 signaling was earlier proposed in our study showing that administration of opioid peptide Met-
228 enkephalin into the rostral portion of the spinal cord that was completely transected at the thoracic
229 level, resulted in development of HL-PA with right hindlimb flexion (Bakalkin et al., 1986).
230 Effects were likely mediated by circulated peptide hormones because serum collected from these
231 rats and injected to intact animals also induced hindlimb flexion on the right side.

232 Hypothetically, in animals with the T2-3 transected spinal cord asymmetric effects of the UBI on
233 hindlimb motor functions may be mediated by the sympathetic outflow from the upper thoracic
234 segments to hindlimb muscle vasculature. However, projections of the preganglionic neurons
235 located above the T5 level pass superiorly along the paravertebral sympathetic trunks, those
236 located below this level pass inferiorly, and the preganglionic fibers for lower limbs are derived
237 from the lower three thoracic and upper lumbar spinal segments, i.e., 8 segments below the
238 transection level. Furthermore, the sympathetic nervous system has a limited capacity to
239 independently regulate blood flow to the left and right hindlimbs (Lee et al., 2007). In the absence

240 of published experimental support for a putative sympathetic mechanism these observations
241 suggest that the UBI-induced asymmetric sympathetic effects on hindlimb vasculature may be
242 limited, if any. Our findings do not rule out this possibility, but provide unequivocal evidence for
243 the endocrine signaling.


244 Lesion of the hindlimb sensorimotor area may also affect forelimbs that in turn may alter the
245 hindlimb burden. While these effects may contribute to hindlimb motor performance in intact
246 animals, e.g. in locomotor assays, they are apparently negligible, if any, in our experimental
247 design. Lesion of this area did not produce noticeable forelimb postural asymmetry before and
248 after complete spinal transection (Zhang et al., 2020) while spinal cord transection performed
249 before the UBI eliminated neural interactions between fore and hindlimbs.

250 The side-specific effects suggest that spinal neural circuits regulating the left and right hindlimb
251 muscles differ in sensitivity towards opioid and Arg-vasopressin neurohormones (Bakalkin et al.,
252 1989; Chazov et al., 1981; Klement'ev et al., 1986). Lateralization of receptors for these peptides
253 in the spinal cord or peripheral tissues, along with anatomical asymmetry of spinal sensorimotor
254 circuits may be a basis for different regulation of the left- or right-side functional responses. The
255 asymmetric organization of the spinal cord was demonstrated in physiological, anatomical and
256 molecular studies (de Kovel et al., 2017; Hultborn & Malmsten, 1983; Kononenko et al., 2017;
257 Nathan et al., 1990; Ocklenburg et al., 2017; Zhang et al., 2020). Activity of mono- and
258 polysynaptic segmental reflexes is higher on the right- compared to left-side in rats and cats
259 (Hultborn & Malmsten, 1983; Zhang et al., 2020). Three-quarters of spinal cords are asymmetric
260 with larger right side (Nathan et al., 1990). The genes for the opioid receptors and the opioid
261 peptides are asymmetrically expressed in the cervical spinal cord (Kononenko et al., 2017). All
262 three opioid receptors are lateralized to the left while in different proportions. Their expression

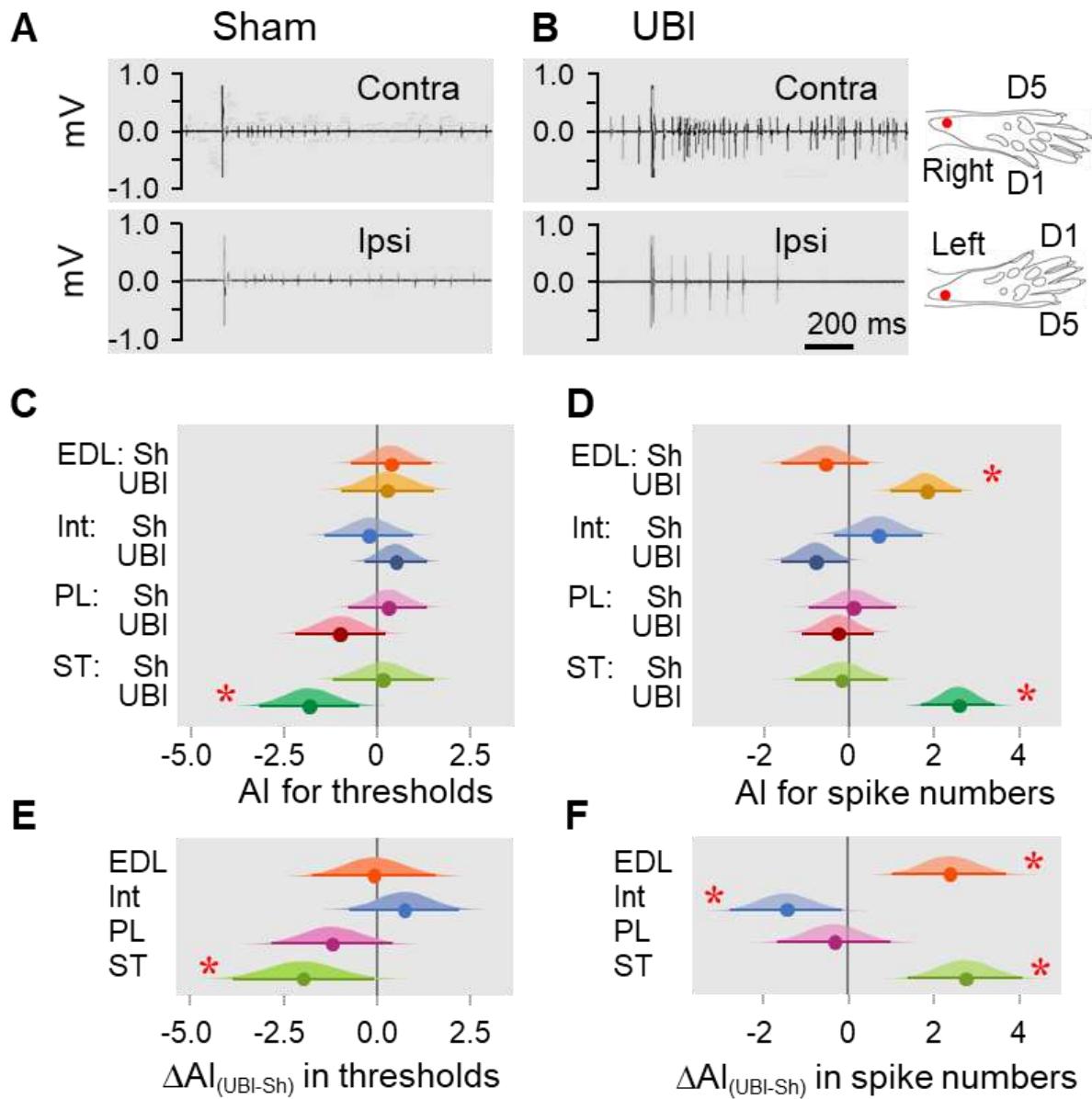
263 was coordinated between the dorsal and ventral domains but with different patterns on the left and
264 right spinal sides.

265 In conclusion, this study describes a novel phenomenon, the side-specific endocrine mechanism
266 that mediates asymmetric effects of unilateral brain injury on hindlimb motor deficits (**Figure 4F**).
267 The humoral pathway and the descending neural tracts may represent complementary routes for
268 signaling from the brain to the spinal cord. Analysis of features and proportion of sensorimotor
269 deficits transmitted by neurohormonal signals versus those mediated by neural pathways in animal
270 models and patients after stroke and traumatic brain injury should facilitate new therapeutic
271 discoveries. From a biological standpoint, the mechanism may serve to maintain a balance between
272 the left–right processes in bilaterally symmetric animals.

273 **Figures**

274

275 **Figure 1. Postural asymmetry of hindlimbs induced by the unilateral ablation of the**
276 **hindlimb representation area of sensorimotor cortex in rats with intact and completely**
277 **transected spinal cord. (A)** Location of the right hindlimb representation area on the rat brain
278 **surface** (adapted from (Frost et al., 2013)) and a representative UBI. **(B,C)** The left UBI (L-UBI)-
279 **produced** motor deficits in the beam-working and ladder rung tests. Data are Mean \pm SEM
280 **analyzed** by two-way ANOVA followed by Tukey HSD post-hoc test. **(B)** A main effect of left


281 UBI ($F_{1,36} = 8.21$, $P = 0.007$) and hindlimb side ($F_{1,36} = 5.80$, $P = 0.021$); interaction: $F_{1,36} = 6.78$,
282 $P = 0.01$. Right limb in the left UBI ($n = 12$) versus either each hindlimb in left sham surgery (L-
283 Sh; $n = 8$; $P = 0.002$), or left limb in the left UBI ($P = 0.002$) group. **(C)** A main effect of the left
284 UBI ($F_{1,34} = 3.43$, $P = 0.072$) and hindlimb side ($F_{1,34} = 4.11$, $p = 0.050$); interaction: $F_{1,34} = 4.22$,
285 $P = 0.048$. Right limb in the left UBI ($n = 11$) versus either right limb in left sham surgery ($n = 8$;
286 $P = 0.043$) or left limb in the left UBI ($P = 0.017$) group. **(D)** HL-PA analysis. **(E)** HL-PA 3 h after
287 left UBI ($n = 8$) or left sham surgery ($n = 7$). **(F)** HL-PA 3 h after left UBI ($n = 9$) or right UBI
288 ($n = 9$), and left ($n = 4$) or right ($n = 4$) sham surgery, all performed after complete spinal cord
289 transection. In **(E,F)**, the HL-PA in millimeters (mm) and probability (P_A) to develop HL-PA
290 above 1 mm threshold (shown by vertical dotted lines) are plotted as median, 95% HPDC intervals,
291 and posterior distribution from Bayesian regression. Negative and positive HL-PA values are
292 assigned to rats with the left and right hindlimb flexion, respectively. Significant asymmetry and
293 differences between the groups: 95% HPDC intervals did not include zero value, and adjusted P -
294 values were ≤ 0.05 . Adjusted P is shown for significant differences identified by Bayesian
295 regression.

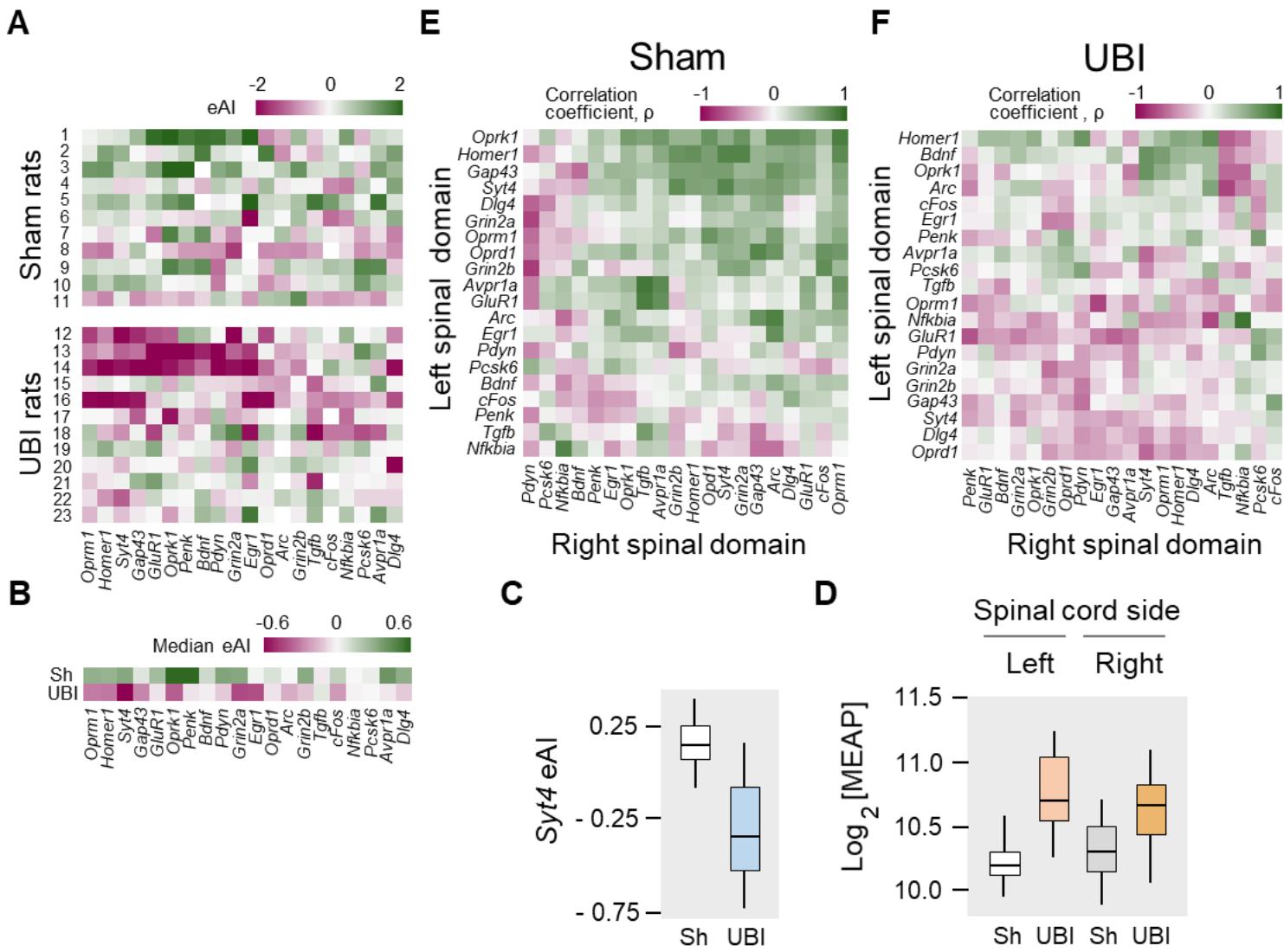
296 **Source data 1.** The EXCEL source data file contains data for panels **E** and **F** of *Figure 1*.

297 **Figure supplement 1.** UBI-induced HL-PA formation and its fixation after complete spinal cord
298 transection.

299 **Figure supplement 2.** Time-course of HL-PA formation after the left and right UBI in rats with
300 transected spinal cord.

301 **Figure supplement 3.** Replication experiments 1 and 2.

302


303 **Figure 2. Hindlimb nociceptive withdrawal reflexes in rats exposed to UBI after complete**
304 **spinal cord transection.** EMG activity of left and right extensor digitorum longus (EDL),
305 interosseous (Int), peroneus longus (PL) and semitendinosus (ST) muscles were evoked by
306 electrical stimulation of symmetric paw sites. (A,B) Representative semitendinosus responses.
307 (C,D) Asymmetry index (AI= $\log_2[\text{Contra}/\text{Ipsi}]$) for threshold and spike number. Significance of

308 differences in the asymmetry index from zero value in UBI rats in **(C)** the current threshold for the
309 semitendinosus muscle {median of the posterior distribution (median) = -1.840, 95% highest
310 posterior density continuous interval (HPDCI) = [-3.169, -0.477], adjusted P-value (P) = 0.015,
311 fold difference = 3.6}; and in **(D)** the number of spikes for the extensor digitorum longus (median
312 = 1.818, HPDCI = [0.990, 2.655], P = 4×10^{-5} , fold difference = 3.5) and semitendinosus (median
313 = 2.560, HPDCI = [1.691, 3.415], P = 1×10^{-8} , fold difference = 5.9) muscles. **(E,F)** Differences in
314 the asymmetry index between the UBI and sham surgery (Sh) groups [$\Delta AI_{(UBI - Sh)}$]. Significance
315 of differences in the asymmetry index between the UBI and sham surgery groups for **(E)** the
316 current threshold of the semitendinosus (median = -1.992, HPDCI = [-3.911, -0.106], P = 0.040,
317 fold difference = 4.0); and **(F)** the number of spikes of the interosseous (median = -1.463, HPDCI
318 = [-2.782, -0.159], P = 0.028, fold difference = 2.8), extensor digitorum longus (median = 2.379,
319 HPDCI = [1.080, 3.743], P = 4×10^{-4} , fold difference = 5.2) and semitendinosus (median = 2.745,
320 HPDCI = [1.419, 4.128], P = 6×10^{-5} , fold difference = 6.7). Medians, 95% HPDC intervals and
321 densities from Bayesian sampler are plotted. *Significant asymmetry and differences between the
322 groups: 95% HPDC intervals did not include zero value, and adjusted P-values were ≤ 0.05 .

323 **Source data 2.** The EXCEL source data file contains data for panels **C** and **D** of **Figure 2**.

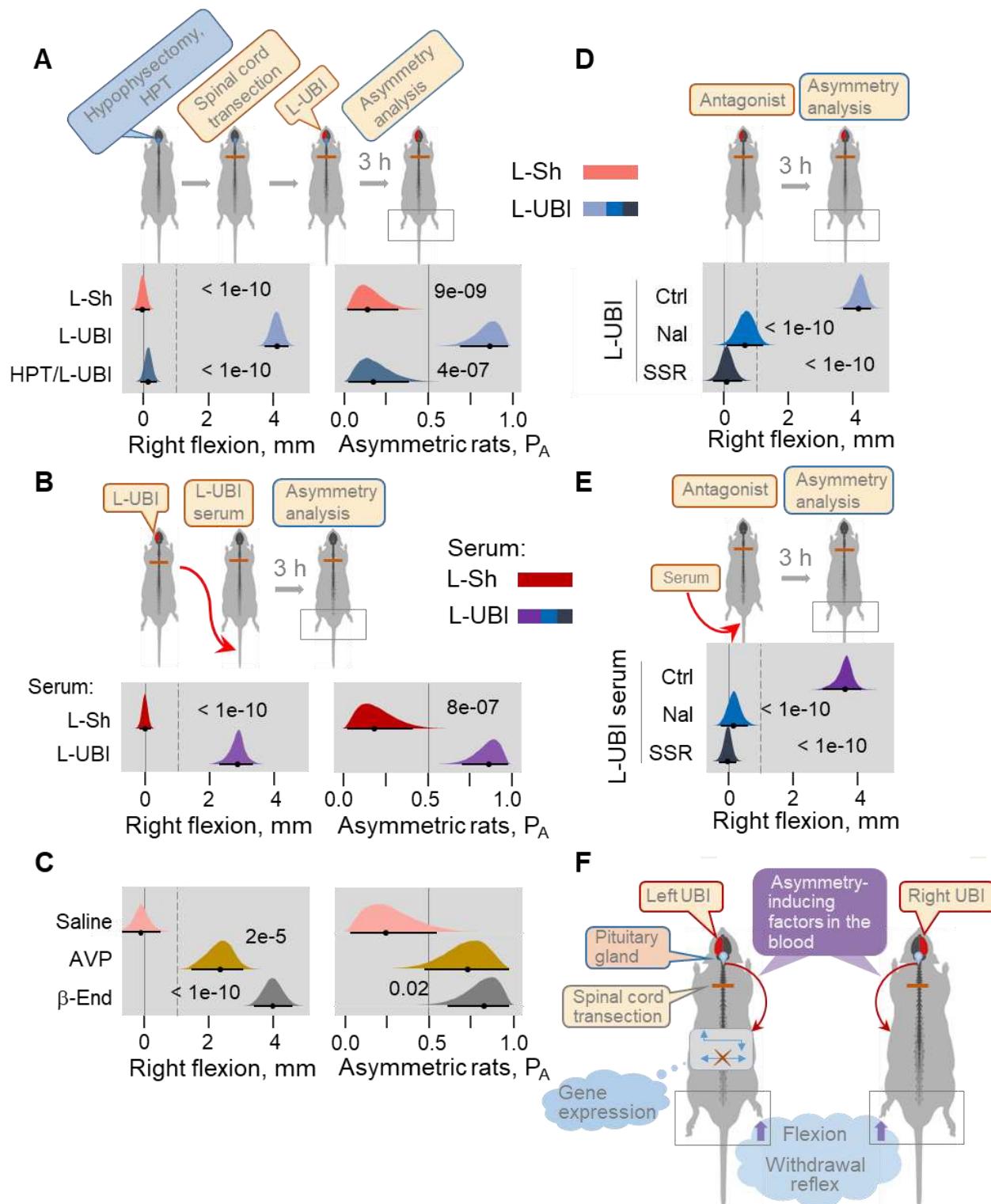
324 **Figure supplement 1.** Effects of the UBI on hindlimb nociceptive withdrawal reflexes.

325 **Figure supplement 2.** Table. The number of rats analyzed in EMG experiments.

326

327 **Figure 3. Expression of neuroplasticity and neuropeptide genes in the lumbar domains of**
328 **rats exposed to the left UBI after complete spinal cord transection.** The mRNA and peptide
329 levels were analyzed in the ipsi- and contralateral halves of lumbar spinal cord isolated 3 h after
330 the left UBI (n = 12) or left sham surgery (Sh; n = 11). **(A,B)** Heatmap for the expression
331 asymmetry index (eAI = $\log_2[\text{Contra}/\text{Ipsi}]$) for each gene denoted for each rat individually, and as
332 medians for rat groups. **(C)** UBI effects on the *Syt4* expression asymmetry index (median

333 difference 0.38); Mann-Whitney test followed by Bonferroni correction: $P_{\text{adjusted}} = 0.004$. **(D)** UBI
334 effects on the Met-enkephalin-Arg-Phe (MEAP) levels in the left ($P_{\text{adjusted}} = 9 \times 10^{-4}$; fold changes:
335 1.4) and right ($P_{\text{unadjusted}} = 0.02$; fold changes: 1.3) halves. Data is presented in fmole/mg tissue on
336 the \log_2 scale as boxplots with medians. **(E,F)** Heatmap for Spearman correlation coefficients of
337 expression levels between the left- and right lumbar halves for all gene pairs (inter-domain
338 correlations) in rats with transected spinal cord that were exposed to sham surgery or UBI.


339 **Source data 1.** The EXCEL source data file contains data for panels **A-C** of *Figure 1*.

340 **Source data 2.** The EXCEL source data file contains data for panel **D** of *Figure 3*.

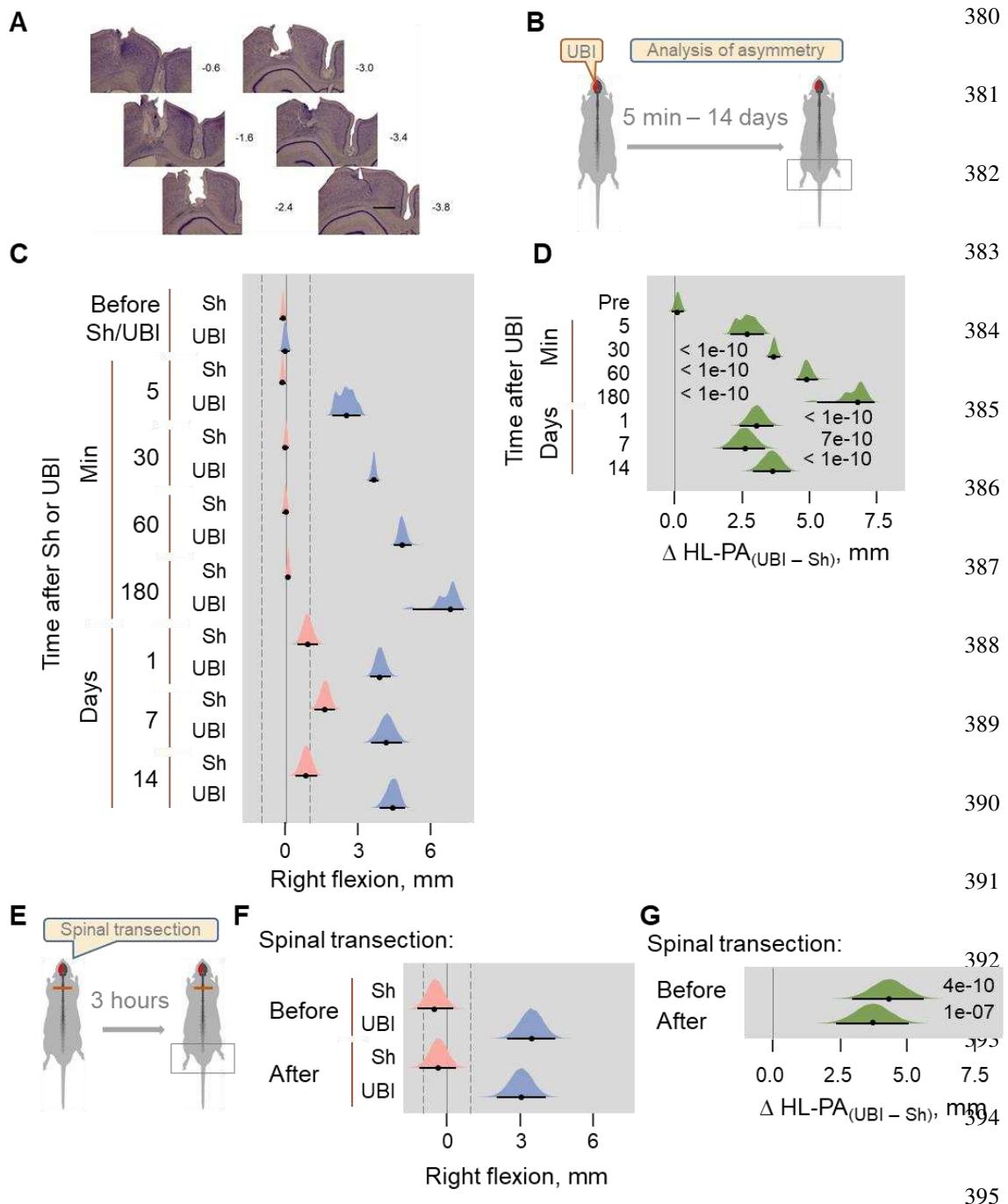
341 **Figure supplement 1.** Genes analyzed and PCR Probes for their analysis.

342 **Figure supplement 2.** Effects of the UBI on expression of neuroplasticity and neuropeptide genes,
343 and the levels of opioid peptides in the lumbar spinal domains of the rats with transected spinal
344 cord.

345 **Figure supplement 3.** Heatmap for expression levels and intra-area correlations in the ipsi- and
346 contralateral lumbar domains.

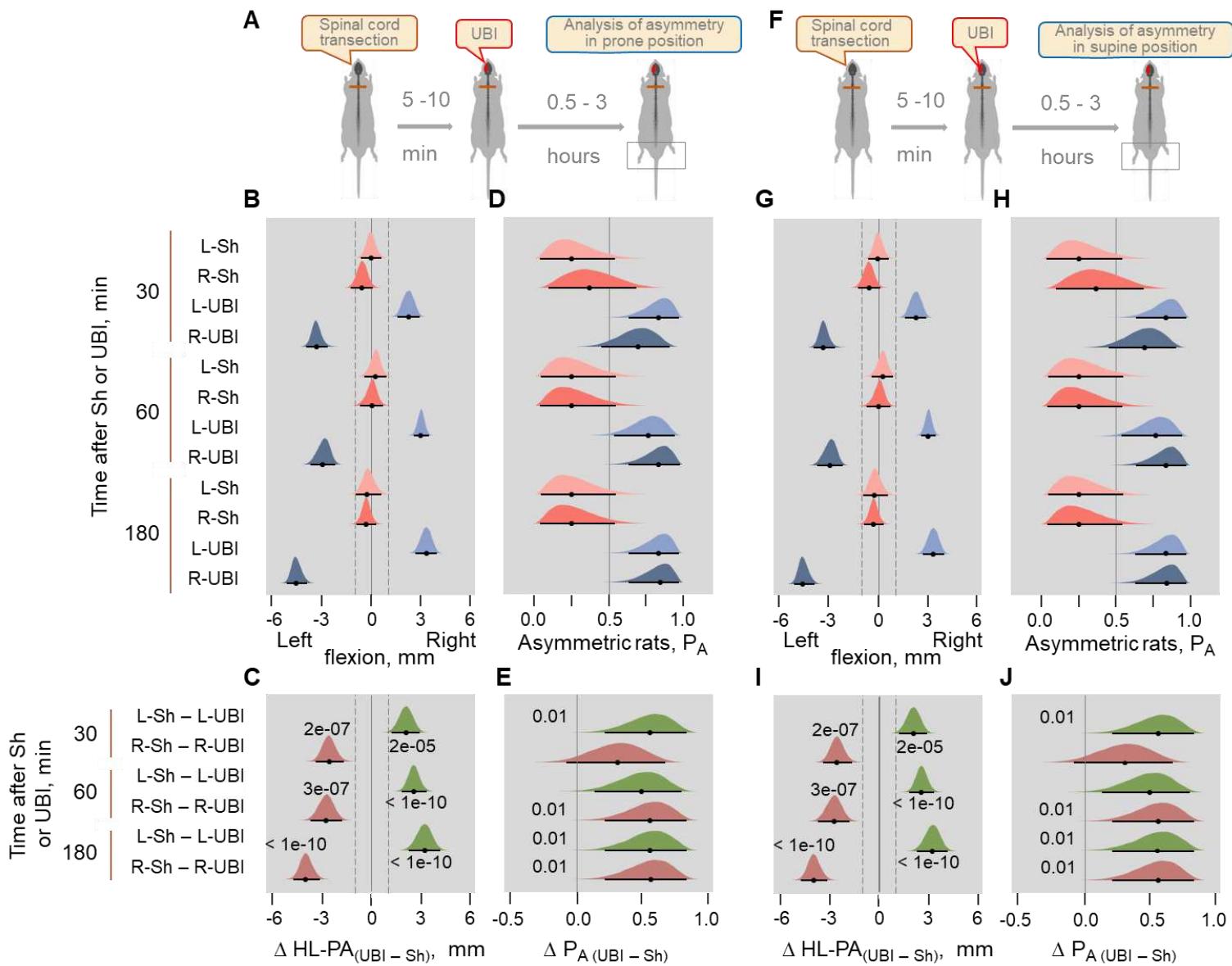
347 **Figure 4. Neuroendocrine pathway mediating postural asymmetry formation in rats with**
 348 **transected spinal cord. (A) HL-PA in hypophysectomized (HPT; n = 8) and control (n = 12) rats**

349 with transected spinal cord 3 h after left UBI (L-UBI). Left sham surgery (L-Sh): n = 8. **(B)** HL-
350 PA after intravenous administration of serum from rats with either left UBI (L-UBI serum) or left
351 sham surgery (L-Sh serum) to rats with transected spinal cord (n = 13 and 7, respectively). **(C)**
352 Induction of HL-PA by Arg-vasopressin (AVP) and β -endorphin (β -End) in rats with transected
353 spinal cord. Synthetic β -endorphin or Arg-vasopressin (1 microgram and 10 nanogram / 0.3 ml
354 saline / animal, respectively), or saline was administered intravenously to rats (n = 8, 7 and 4 rats),
355 respectively after spinal cord transection. The HL-PA was analyzed in prone position 60 min after
356 the injection under pentobarbital anesthesia. **(D)** Effect of naloxone (Nal, n = 6) or saline (n = 6),
357 and SSR-149415 (SSR, n = 6) or vehicle (n = 5) on HL-PA 3 h after left UBI in rats with transected
358 spinal cord. Vehicle and saline groups were combined into control group (Ctrl; n = 11). **(E)** Effect
359 of naloxone (n = 6) or saline (n = 3) and SSR-149415 (n = 6) or vehicle (n = 3) on HL-PA 3 h after
360 intravenous administration of the left UBI serum to rats with transected spinal cord. Ctrl; n = 6. In
361 **(D,E)**, naloxone (or saline) and SSR-149415 (or vehicle) were administered 0.5 and 3 h before
362 HL-PA analysis, respectively. HL-PA values in millimeters (mm) and probability (P_A) to develop
363 HL-PA above 1 mm threshold (denoted by vertical dotted lines) are plotted as median, 95% HPDC
364 intervals, and posterior distribution from Bayesian regression. Negative and positive HL-PA
365 values are assigned to rats with the left and right hindlimb flexion, respectively. Significant
366 asymmetry and differences between the groups: 95% HPDC intervals did not include zero value,
367 and adjusted P-values were ≤ 0.05 . Adjusted P is shown for significant differences identified by
368 Bayesian regression. **(F)** Model for the humoral neuroendocrine side-specific signaling from the
369 unilaterally injured brain to the lumbar spinal cord. In the rats with transected spinal cord, after the
370 UBI the asymmetry inducing factors (neurohormones) may be released from the pituitary into the
371 circulation, transported to their target sites and induce flexion of the contralateral hindlimb and


372 asymmetric, contra vs. ipsilesional side specific changes in withdrawal reflexes and spinal gene
373 expression patterns.

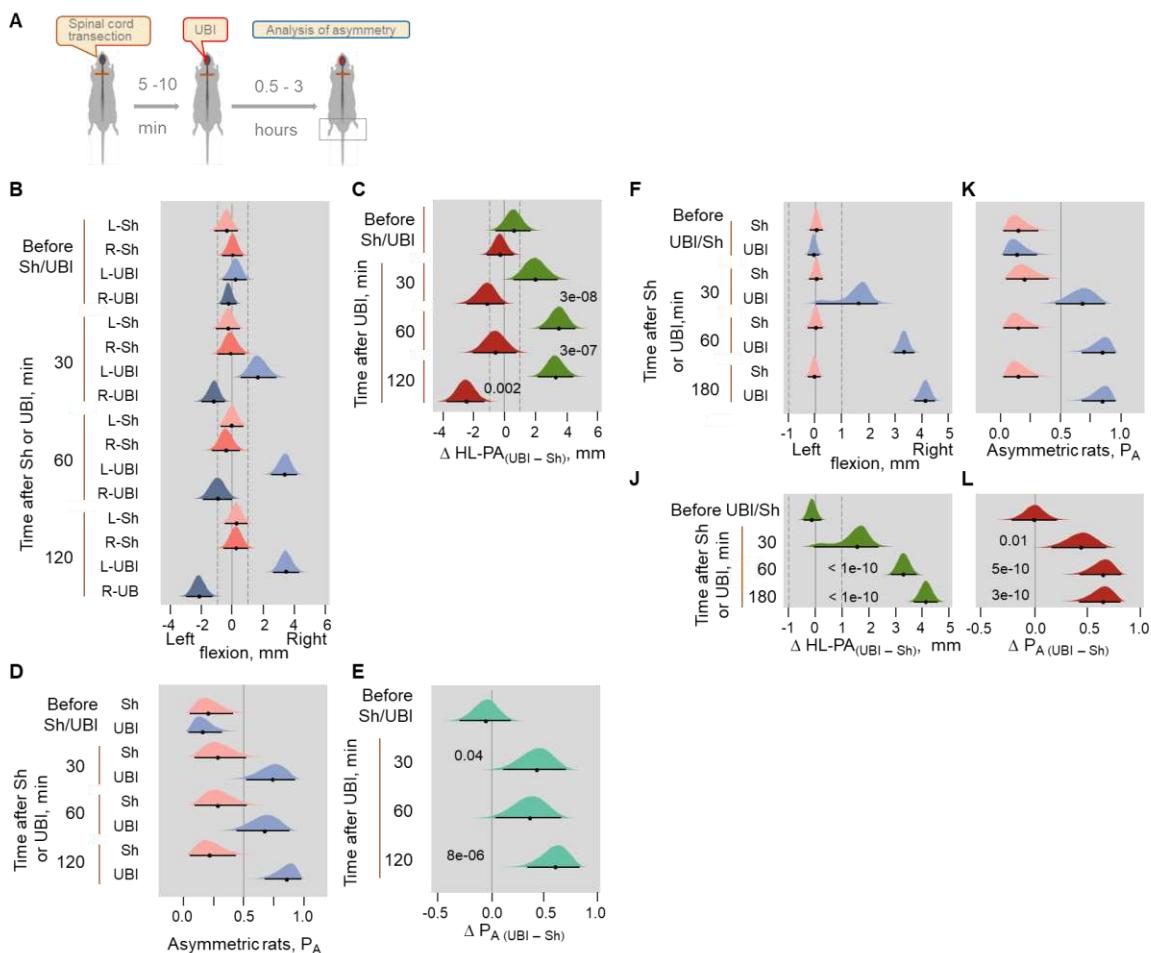
374 **Source data 1.** The EXCEL source data file contains data for panels **A-E** of *Figure 4*.

375 **Figure supplement 1.** HL-PA formation in hypophysectomized rats exposed to the UBI and in
376 control rats after administration of serum of the UBI animals.


377 **Figure supplement 2.** Induction of HL-PA by Arg-vasopressin administered intracisternally to
378 intact rats.

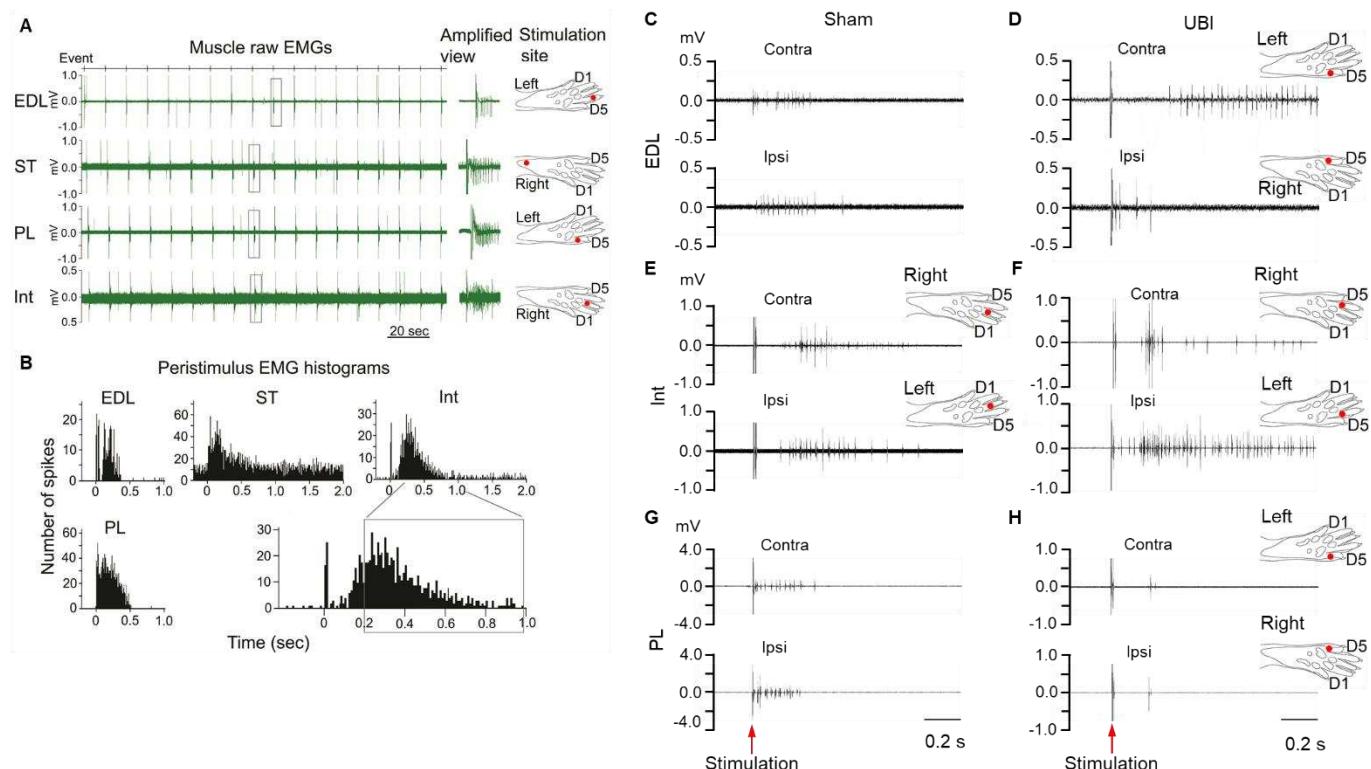
379 **Figure supplements**

396 **Figure 1—figure supplement 1. UBI-induced HL-PA formation and its fixation after**
397 **complete spinal cord transection at the T2-3 level. (A)** Histological verification of the size and


398 location of UBI resulting from a stereotaxic aspiration of brain tissue at the following coordinates:
399 0.5 – 4.0 mm posterior to the bregma and 1.8 – 3.8 lateral to the midline. Series of Nissl-stained
400 coronal brain sections show representative lesion of the rat sensorimotor cortex. The numbers on
401 the right indicate distances (in mm) from bregma. Scale bar = 1 mm. Sections like these were
402 obtained from all rats used in this study and the general distribution pattern and the extent of the
403 lesions observed were reliably similar across subjects. **(B,E)** Experimental designs. **(C,D)** The HL-
404 PA was analyzed in the prone position before and after left UBI (UBI) or left sham surgery (Sh)
405 within 5 min and at the 30, 60 and 180 min time points under pentobarbital anesthesia (UBI, n =
406 8, Sh, n = 7); and at the 1, 7 and 14-day time points under isoflurane anesthesia (UBI, n = 12; Sh,
407 n = 8). **(E-G)** In the rat subgroup on the 4th day after left UBI (n = 5) or left sham surgery (n = 10),
408 the spinal cord was transected under pentobarbital anesthesia and HL-PA was analyzed 3 h later.
409 **(C,F)** Effects of UBI on the formation of HL-PA (expressed in millimeters, mm). Negative and
410 positive HL-PA values are assigned to rats with the left and right hindlimb flexion, respectively.
411 **(D,G)** Differences in HL-PA [Δ HL-PA_(UBI – Sh) in millimeters] between UBI and sham groups.
412 Medians, 95% HPDC intervals and densities from Bayesian sampler are plotted. Significant
413 contrasts between the groups: 95% HPDC intervals did not include zero value, and adjusted P-
414 values were ≤ 0.05 . Adjusted P is shown for significant differences identified by Bayesian
415 regression.

416

417 **Figure 1—figure supplement 2. Time-course of HL-PA formation analyzed in prone (A-E)**
 418 **and supine (F-J) positions after the left-side (L-UBI) and right-side (R-UBI) UBI in Wistar**
 419 **rats with transected spinal cord. (A,F) Experimental designs. The UBI was conducted 5 -10**
 420 **min after complete spinal cord transection at the T2-T3 level. The HL-PA was analyzed under**
 421 **pentobarbital anesthesia 30, 60 and 180 min after the brain injury. Data presented for the 180 min**


422 time point on **Figure 1F** are shown for comparison. The left UBI and right UBI groups consisted
423 of 9 rats each, while the control groups consisted of 4 left- (L-Sh) and 4 right- (R-Sh) sham animals.
424 **(B,D,G,H)** Effects of UBI on the formation of HL-PA (expressed in millimeters, mm), and on the
425 probability to develop HL-PA (P_A). The rats with the HL-PA magnitude above the 1 mm threshold
426 (that is 99th HL-PA magnitude percentile in sham groups; shown by vertical dashed lines) were
427 defined as asymmetric. Negative and positive HL-PA values are assigned to rats with the left and
428 right hindlimb flexion, respectively. **(C,E,I,J)** Differences in the HL-PA [Δ HL-PA_(UBI – Sh)] in
429 millimetres] and in the the probability to develop HL-PA [$\Delta P_A(UBI – Sh)$] between UBI and sham
430 surgery groups. Medians, 95% HPDC intervals and densities from Bayesian sampler are plotted.
431 Significant contrasts between the groups: 95% HPDC intervals did not include zero value, and
432 adjusted P-values were ≤ 0.05 . Adjusted P is shown for significant differences identified by
433 Bayesian regression.

434

435 **Figure 1—figure supplement 3. Replication experiments 1 (B-E) and 2 (F-L). (A)**
436 Experimental design. Induction of HL-PA by the UBI in rats with transected spinal cord. **(B-E)**
437 Experiment 1; the HL-PA in Sprague Dawley rats was analyzed in prone position under
438 pentobarbital anesthesia 30, 60 and 120 min after the left ($n = 5$) or right ($n = 6$) UBI, and the left
439 ($n = 5$) or right ($n = 5$) sham surgery performed after complete spinal cord transection at the T2-
440 T3 level. **(D,E)** The left and right UBI groups, as well as the left and right sham surgery groups
441 were combined into the UBA and sham groups, respectively. **(F-L)** Experiment 2; the HL-PA in
442 Wistar rats was analyzed in prone position under pentobarbital anesthesia 30, 60 and 180 min after
443 the left UBI ($n = 12$) and the left sham surgery ($n = 11$) performed after complete spinal cord

444 transection at the T2-T3 level. Negative and positive HL-PA values are assigned to rats with the
445 left and right hindlimb flexion, respectively. Differences in the HL-PA [Δ HL-PA_(UBI - Sh) in
446 millimetres] and in the probability to develop HL-PA [Δ P_{A(UBI - Sh)}] between UBI and sham
447 surgery groups. Medians, 95% HPDC intervals and densities from Bayesian sampler are plotted.
448 Significant contrasts between the groups: 95% HPDC intervals did not include zero value, and
449 adjusted P-values were ≤ 0.05 . Adjusted P is shown for significant differences identified by
450 Bayesian regression.

451

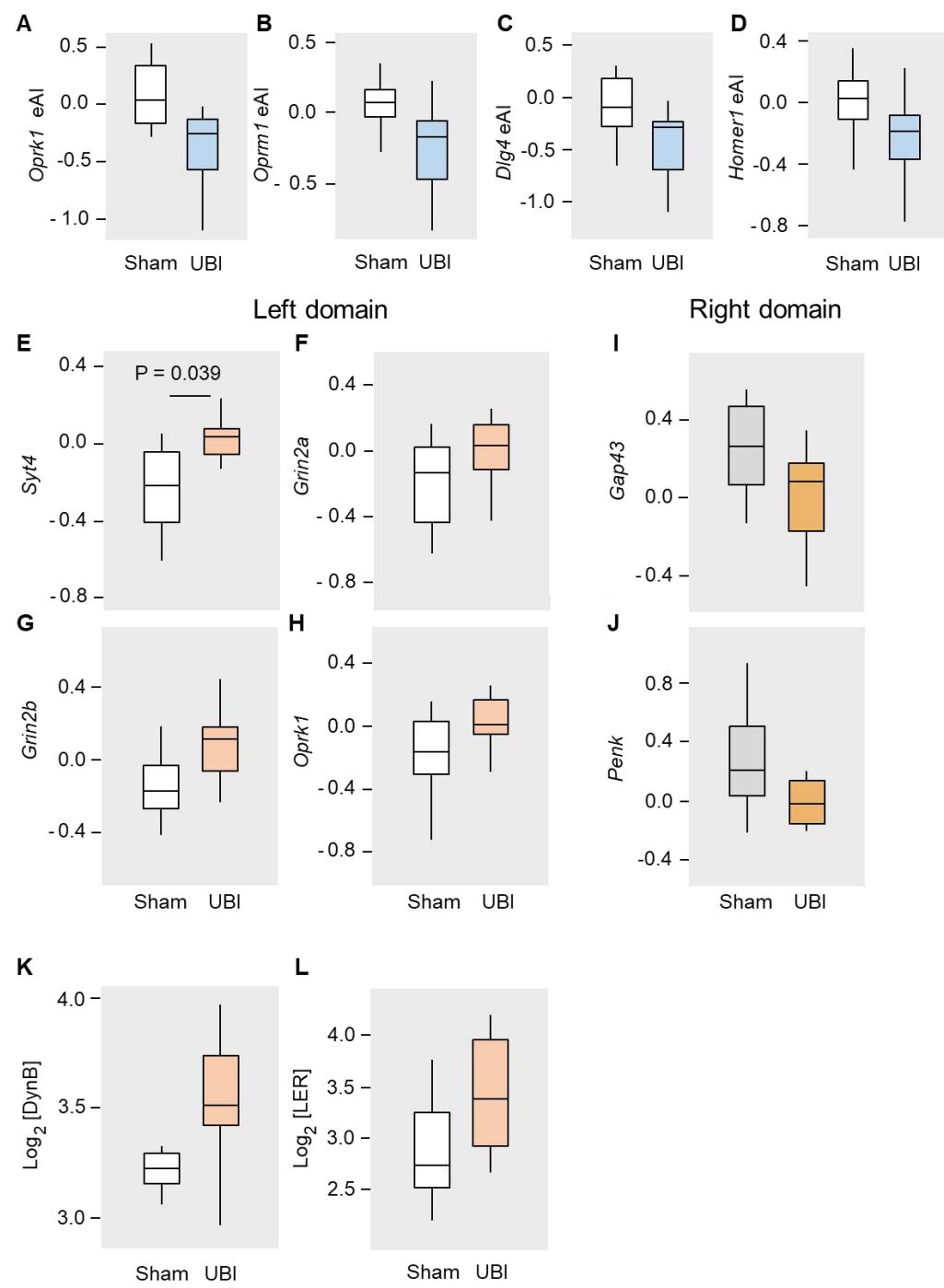
452 **Figure 2—figure supplement 1. Effects of the UBI on hindlimb nociceptive withdrawal**
453 **reflexes. (A,B)** Representative EMG examples and respective stimulation sites of hindlimb
454 muscles of the anesthetized rats with transected spinal cord that were exposed to the UBI. **(A)** Left
455 panel: EMG responses of the extensor digitorum longus (EDL), semitendinosus (ST), peroneus
456 longus (PL) and the forth interosseous (Int) muscles to 18 electrical stimulations. Middle panel:
457 Amplified view of EMG spikes from the regions delimited by the rectangles on the left panel.
458 Right panel: Stimulation site for each muscle. **(B)** Peristimulus histogram of these muscles from
459 16 stimulations (from 2nd to 17th). The area delimited by the rectangle shows the time window (0.2
460 – 1.0 s) that was analysed statistically. **(C-H)** Representative examples of EMG responses of
461 extensor digitorum longus **(C,D)**, interosseous **(E,F)** and peroneus longus **(G,H)** muscles of the
462 contra- and ipsilesional hindlimbs in rats with transected spinal cord that were exposed to UBI or

463 sham surgery. Stimulation of the left and right hindlimbs of the UBI rat with the same current
464 parameters induced larger EMG responses of the extensor digitorum longus muscle on the contra-
465 compared to the ipsilesional side (**D**), and the interosseous muscle on the ipsi- compared to the
466 contralateral side (**F**). Each of three muscles of sham rats (**C,E,G**) and of peroneus longus muscle
467 of the UBI rat (**H**) demonstrated similar responses on both sides.

468 **Figure 2—figure supplement 2**

469 **The number of rats analyzed in EMG experiments.** The rats were exposed to the left (L; n =
470 6) or right (R; n = 5) sham surgery, or to the left (n = 9) or right (n = 9) UBI.

Muscle	Stimulation sites	Sham rats	UBI rats
EDL	D4, D5	10 (5 L and 5 R)	8 (2 L and 6 R)
Int	D2, D3, D4, D5	9 (4 L and 5 R)	17 (9 L and 8 R)
PL	D5	10 (5 L and 5 R)	10 (4 L and 6 R)
ST	Heel	7 (4 L and 3 R)	7 (4 L and 3 R)

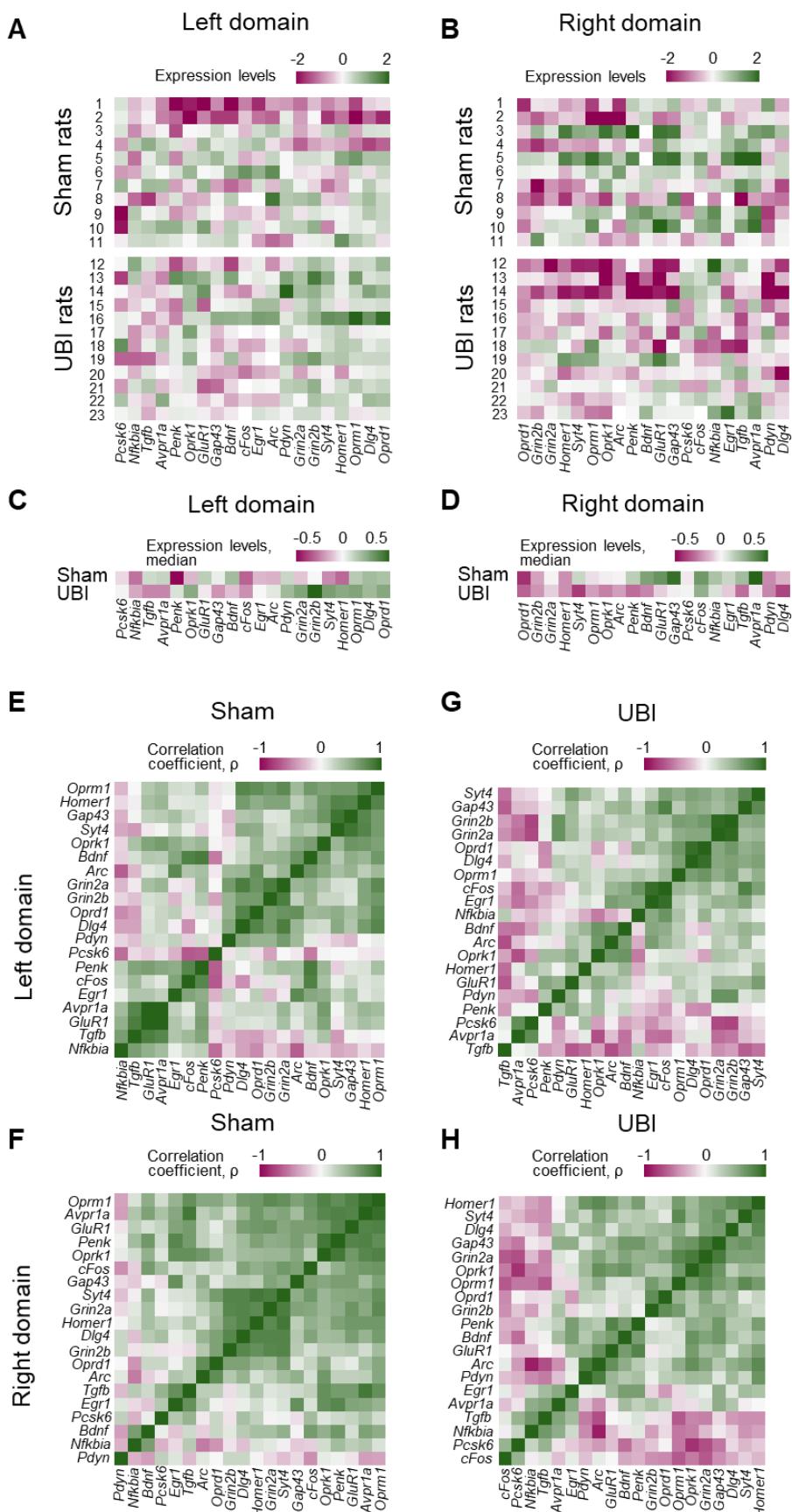

471

472 **Figure 3—figure supplement 1.**

473 Genes analyzed and PCR Probes for their analysis (Bio-Rad Laboratories, CA, USA).

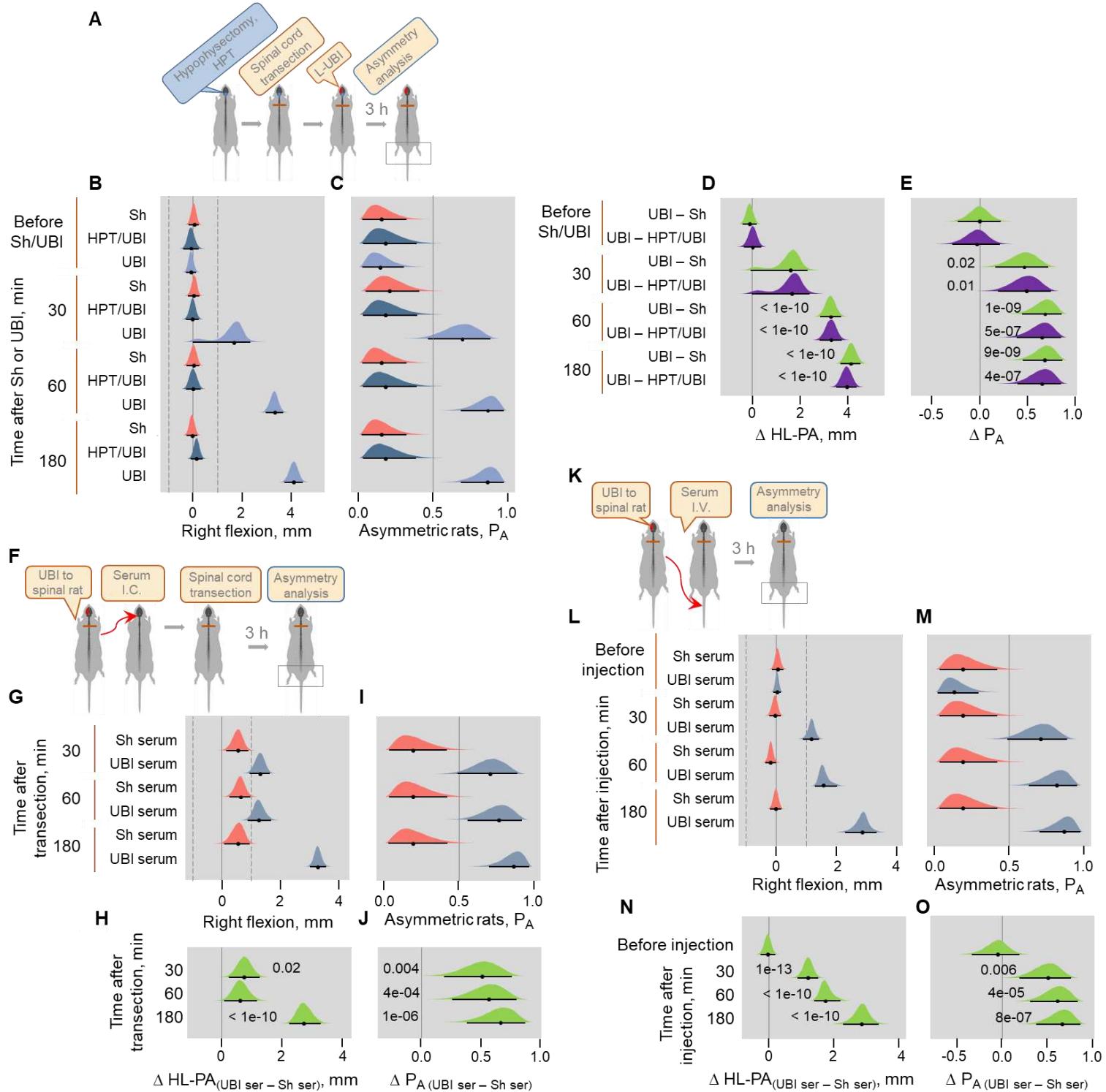
Gene	Gene symbol	Assay ID	Chanel
<i>Actin Beta</i>	<i>Actb</i>	qRnoCIP0050804	HEX
<i>Activity-regulated cytoskeleton-associated protein</i>	<i>Arc</i>	qRnoCEP0027389	HEX
<i>Arginine vasopressin receptor 1A</i>	<i>Avpr1a</i>	qRnoCEP0023750	FAM
<i>Brain-derived neurotrophic factor</i>	<i>Bdnf</i>	qRnoCEP0026843	HEX
<i>Fos proto-oncogene</i>	<i>cFos</i>	qRnoCEP0024078	HEX
<i>Discs large MAGUK scaffold protein 4</i>	<i>Dlg4</i>	qRnoCIP0026242	FAM
<i>Early growth response 1</i>	<i>Egr1</i>	qRnoCEP0022872	FAM
<i>Growth associated protein 43</i>	<i>Gap43</i>	qRnoCIP0027599	FAM
<i>Glyceraldehyde-3-phosphate dehydrogenase</i>	<i>Gapgh</i>	qRnoCIP0050838	HEX
<i>Glutamate ionotropic receptor AMPA type subunit 1</i>	<i>GluR1</i>	qRnoCIP0030725	FAM
<i>Glutamate ionotropic receptor NMDA type subunit 2a</i>	<i>Grin2a</i>	qRnoCIP0025244	HEX
<i>Glutamate ionotropic receptor NMDA type subunit 2b</i>	<i>Grin2b</i>	qRnoCIP0023973	HEX
<i>Homer scaffold protein 1</i>	<i>Homer-1</i>	qRnoCEP0023985	FAM
<i>Opioid receptor delta 1</i>	<i>Oprd1</i>	qRnoCEP0029668	FAM
<i>Opioid receptor kappa 1</i>	<i>Oprk1</i>	qRnoCIP0029310	HEX
<i>Opioid receptor mu 1</i>	<i>Oprm1</i>	qRnoCEP0024902	FAM
<i>Prodynorphin</i>	<i>Pdyn</i>	qRnoCEP0025357	FAM
<i>Proenkephalin</i>	<i>Penk</i>	qRnoCEP0029455	HEX
<i>Proprotein convertase subtilisin/kexin type 6</i>	<i>Pcsk6</i>	qRnoCIP0045340	FAM
<i>NFKB inhibitor alpha</i>	<i>Nfkbia</i>	qRnoCEP0026759	HEX
<i>Synaptotagmin 4</i>	<i>Syt4</i>	qRnoCIP0029728	FAM
<i>Transforming growth factor beta 1</i>	<i>Tgfb1</i>	qRnoCIP0031022	HEX

474

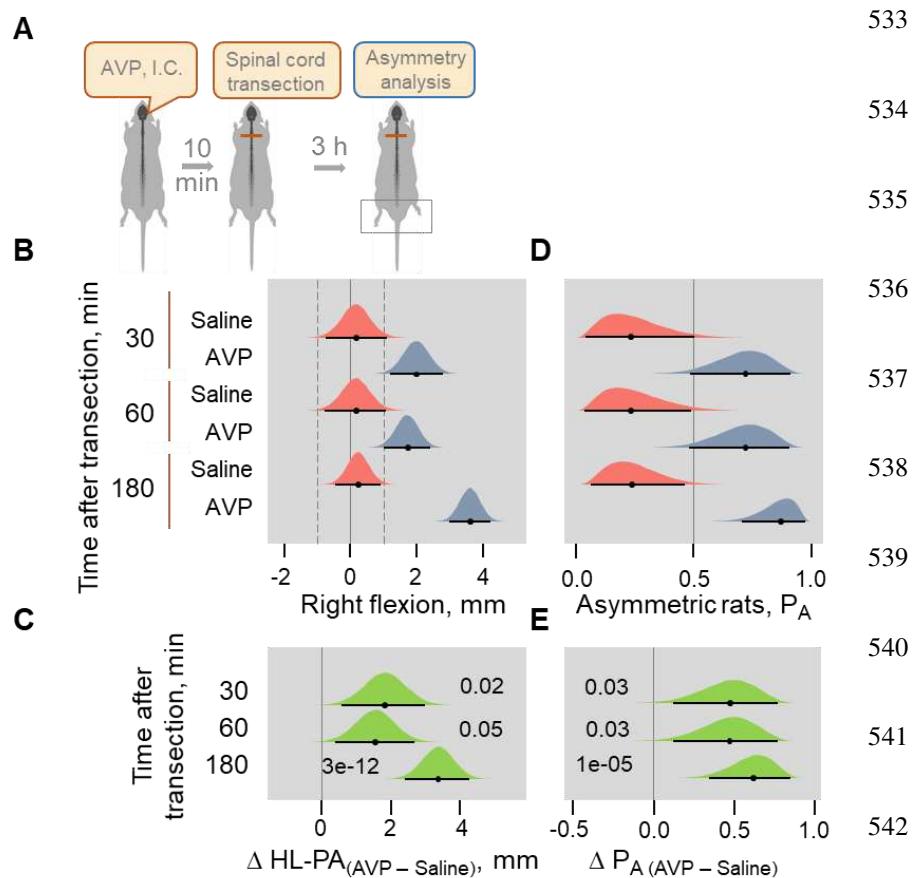


475

476 **Figure 3—figure supplement 2. Effects of the UBI on expression of neuroplasticity and**
477 **neuropeptide genes (A-J), and the levels of opioid peptides (K,L) in the lumbar spinal**


478 **domains of the rats with transected spinal cord.** The rats with spinal cord transection at the T2-
479 T3 level were exposed the left UBI (n = 12) or left sham surgery (n=11), and the mRNA levels
480 were analyzed in the ipsi- (left) and contralateral (right) domains of lumbar spinal cord isolated
481 3 h after the injury. **(A-D)** The median expression asymmetry index (eAI = $\log_2[\text{Contra}/\text{Ipsi}]$),
482 where Contra and Ipsi were the levels in the contra- and ipsilesional lumbar domains) for each of
483 20 genes was compared individually between the UBI and sham groups using Mann-Whitney test.
484 Data is presented as boxplots with medians. The expression asymmetry index for the *Oprk1*
485 (median difference 0.29; $P_{\text{un-adjusted}} = 0.009$), *Oprm1* (median difference 0.24; $P_{\text{un-adjusted}} = 0.032$),
486 *Dlg4* (median difference 0.18; $P_{\text{un-adjusted}} = 0.032$) and *Homer1* (median difference 0.19; $P_{\text{un-adjusted}}$
487 = 0.037) are shown. **(E-J)** Significance of the UBI-induced changes in expression of *Syt4* (1.19-
488 fold; $P_{\text{adjusted}} = 0.039$), *Grin2a* (1.18-fold; $P_{\text{un-adjusted}} = 0.04$), *Grin2b* (1.22-fold; $P_{\text{un-adjusted}} = 0.01$)
489 and *Oprk1* (1.13-fold; $P_{\text{un-adjusted}} = 0.03$) in the left lumbar domain; and *Gap43* (1.13-fold; $P_{\text{un-}}$
490 $P_{\text{adjusted}} = 0.04$) and *Penk* (1.17-fold; $P_{\text{un-adjusted}} = 0.03$) in the right lumbar domain of the rats with
491 transected spinal cord is shown. The mRNA levels of 20 genes were compared separately for the
492 left and right halves of the lumbar spinal cord between the rats exposed to UBI and sham surgery
493 using Mann-Whitney test followed by Bonferroni correction for a number of tests (n = 40). Data
494 is presented on the \log_2 scale as boxplots with medians. **(K,L)** Effects of the UBI on the levels of
495 opioid peptides Dynorphin B (DynB) (1.2-fold; Mann-Whitney test: unadjusted $P = 0.03$) and Leu-
496 enkephalin-Arg (LER) (1.6-fold; Mann-Whitney $P_{\text{un-adjusted}} = 0.02$) in the ipsilesional (left)
497 domain. Data is presented in fmol/mg tissue on the \log_2 scale as boxplots with medians.

498



499

500 **Figure 3—figure supplement 3. Heatmap for expression levels (A-D) and intra-area**
501 **correlations (E-H) in the left (ipsilesional) (A,C,E,G) and right (contralesional) (B,D,F,H)**
502 **lumbar domains. (A-D)** Expression levels for each gene are denoted as (0,1)-standardized values
503 for each sham and UBI rat individually (**A,B**), and as medians for the sham and UBI groups (**C,D**).
504 The data is presented on the \log_2 scale. In the left domain 15 out of 20 analyzed genes have higher
505 median expression in the UBI group (sign test: $P = 0.041$), while in the right domain for 17 out of
506 20 genes median expression is higher in the sham group (sign test: $P = 0.003$). (**E,H**) Heatmap for
507 (0,1)-standardized coefficients of Spearman correlations in expression levels for all gene pairs in
508 the rats exposed to left sham surgery (**E,F**) or left UBI (**G,H**). Differences between the UBI and
509 sham groups in the proportion of positive and negative intra-area correlations were analyzed by
510 the Fisher's Exact Test: for all correlations in the right domain: $P = 2.7 \times 10^{-5}$; for significant
511 correlations in the left and right domains, $P = 8.1 \times 10^{-3}$ and 8.9×10^{-3} , respectively.

513 **Figure 4—figure supplement 1. HL-PA formation in hypophysectomized rats exposed to the**
514 **UBI, and in rats after administration of serum of the UBI animals. (A-E)** The left UBI in
515 hypophysectomized (n = 8) and control “intact” (n = 12) rats, and left sham surgery in control
516 “intact” rats (n = 8) were performed after complete spinal cord transection at the T2-T3 level. **(F-**
517 **J)** Induction of HL-PA by serum of the UBI animals. Serum collected from the rats with transected
518 spinal cord 3 hours after their exposure to the left UBI (UBI serum) or sham surgery (Sh serum)
519 was administered to the cisterna magna (I.C.; 5 microliters / rat) to intact rats. The spinal cord was
520 transected at the T2-T3 level 10-15 min after injection of the UBI (n = 13) or sham (n = 7) serum,
521 and the HL-PA was analyzed in prone position 30, 60 and 180 min after the transection under
522 pentobarbital anesthesia. **(K-O)** Time-course of HL-PA formation after intravenous administration
523 of the left UBI serum to rats with transected spinal cord. HL-PA was analyzed after administration
524 I.V. of serum collected from the rats exposed to the left-side UBI (UBI serum; n = 13) or sham
525 surgery (Sham serum; n = 7), to the rats after their spinalization at the T2-T3 level. Data for the
526 180 min time point presented on **Figure 4B** are shown for comparison. Negative and positive HL-
527 PA values are assigned to rats with the left and right hindlimb flexion, respectively. Differences
528 in the HL-PA [Δ HL-PA (UBI – Sh) in millimetres] and in the probability to develop HL-PA [Δ PA
529 (UBI – Sh)] between UBI and sham surgery groups. Medians, 95% HPDC intervals and densities from
530 Bayesian sampler are plotted. Significant contrasts between the groups: 95% HPDC intervals did
531 not include zero value, and adjusted P-values were ≤ 0.05 . Adjusted P is shown for significant
532 differences identified by Bayesian regression.

543

544 **Figure 4—figure supplement 2. Induction of HL-PA by Arg-vasopressin (AVP) administered**
545 **intracisternally to rats with transected spinal cord.** HL-PA formation was analyzed in prone
546 position under pentobarbital anesthesia 30, 60 and 180 min after AVP (10 nanograms in 5
547 microliters / rat; n = 10 at the 30 and 60 min time points, and n = 22 at the 180 min time point) or
548 saline (n = 5 at the 30 and 60 min time points, and n = 9 rats at the 190 min time point)
549 administration followed in 10-15 min by spinal cord transection. Negative and positive HL-PA
550 values are assigned to rats with the left and right hindlimb flexion, respectively. Differences in the
551 HL-PA [Δ HL-PA_(UBI - Sh) in millimetres] and in the probability to develop HL-PA [Δ P_A_(UBI - Sh)]
552 between UBI and sham surgery groups. Medians, 95% HPDC intervals and densities from
553 Bayesian sampler are plotted. Significant contrasts between the groups: 95% HPDC intervals did

554 not include zero value, and adjusted P-values were ≤ 0.05 . Adjusted P is shown for significant
555 differences identified by Bayesian regression.

556 Materials and methods

557 Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Genetic reagent (<i>Rattus norvegicus</i>)	Wistar Hannover rat	Charles River Laboratories, Spain		
Genetic reagent (<i>Rattus norvegicus</i>)	Sprague Dawley	Taconic, Denmark and Charles River Laboratories, France		
Chemical compound	Isoflurane	Abbott Laboratories, Norway	NDC 0044-5260-03	Anesthesia agent
Chemical compound	Lidocaine hydrochloride	Merck Group, Germany	PHR1257	Anesthetic
Chemical compound	Paraformaldehyde	Sigma-Aldridge, USA	Cat#: 158127	Perfusion
Chemical compound	SSR-149415	Tocris Bioscience, United Kingdom	Cat#: 6195	vasopressin V1B antagonist
Chemical compound	Naloxone	Tocris Bioscience, United Kingdom	Cat#: 0599	Opioid antagonist
Commercial assay or kit	Giems Stain	Sigma-Aldridge, USA	Cat#: 32884	Nissl staining
Commercial assay or kit	RNasy Plus Mini kit	Qiagen, CA, USA	Cat#: 74136	Total RNA extraction
Commercial assay or kit	iScript™ cDNA Synthesis Kit	Bio-Rad Laboratories, USA	Cat#: 1708891	cDNA Synthesis
Commercial assay or kit	iTaq Universal Probes supermix	Bio-Rad Laboratories, USA	Cat# 1725131	Real-Time PCR reagent
Peptide	β-Endorphin	Bachem, Switzerland	Cat# H-2814	Neurohormone
Peptide	Arg-vasopressin	Bachem, Switzerland	Cat# H-1780	Neurohormone
Antibody	anti-dynorphin B (rabbit, polyclonal)	(Nguyen et al., 2005; Nylander et al., 1997; Yakovleva et al., 2006)		RIA
Antibody	anti-Leu-enkephalin-Arg (rabbit, polyclonal)	(Nguyen et al., 2005; Nylander et al., 1997; Yakovleva et al., 2006)		RIA

Antibody	Anti-Met-enkephalin-Arg-Pro (rabbit, polyclonal)	(Nguyen et al., 2005; Nylander et al., 1997; Watanabe et al., 2015)		RIA
Sequence-based reagent	<i>Actb</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 50804	PrimePCR Probe assay
Sequence-based reagent	<i>Arc</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 27389	PrimePCR Probe assay
Sequence-based reagent	<i>Avpr1a</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 23750	PrimePCR Probe assay
Sequence-based reagent	<i>Bdnf</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 26843	PrimePCR Probe assay
Sequence-based reagent	<i>cFos</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 24078	PrimePCR Probe assay
Sequence-based reagent	<i>Dlg4</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 26242	PrimePCR Probe assay
Sequence-based reagent	<i>Egr1</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 22872	PrimePCR Probe assay
Sequence-based reagent	<i>Gap43</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 27599	PrimePCR Probe assay
Sequence-based reagent	<i>Gapgh</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 50838	PrimePCR Probe assay
Sequence-based reagent	<i>GluR1</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 30725	PrimePCR Probe assay
Sequence-based reagent	<i>Grin2a</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 25244	PrimePCR Probe assay
Sequence-based reagent	<i>Grin2b</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 23973	PrimePCR Probe assay
Sequence-based reagent	<i>Homer-1</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 23985	PrimePCR Probe assay
Sequence-based reagent	<i>Oprd1</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 29668	PrimePCR Probe assay
Sequence-based reagent	<i>Oprk1</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 29310	PrimePCR Probe assay
Sequence-based reagent	<i>Oprm1</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 24902	PrimePCR Probe assay
Sequence-based reagent	<i>Pdyn</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 25357	PrimePCR Probe assay
Sequence-based reagent	<i>Penk</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 29455	PrimePCR Probe assay
Sequence-based reagent	<i>Pcsk6</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 45340	PrimePCR Probe assay
Sequence-based reagent	<i>Nfkbia</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCEP00 26759	PrimePCR Probe assay

Sequence-based reagent	<i>Syt4</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 29728	PrimePCR Probe assay
Sequence-based reagent	<i>Tgfb1</i> (<i>Rattus norvegicus</i>)	Bio-Rad Laboratories, USA	qRnoCIP00 31022	PrimePCR Probe assay
Software, algorithm	Spike 2	CED, UK		EMG recording
Software, algorithm	Offline Sorter	Plexon, USA	version 3	
Software, algorithm	NeuroExplorer	Nex Technologies, USA		
Software, algorithm	Stan	(Carpenter et al., 2017)	v 2.19.2	Scaling the data
Software, algorithm	R program	(R Core Team, 2018)	v 3.6.1	
Software, algorithm	<i>Brms</i>	(Burkner, 2017)	v 2.9.6	Interface for R
Software, algorithm	<i>Emmeans</i>	(Searle et al., 2012).	v 1.4	R package
Other	TissuDura	Baxter, Germany	Cat#: 0600096	Covering material

558

559 **Animals**

560 Male Wistar Hannover (Charles River Laboratories, Spain), 150-200 g body weight rats were used
561 in behavioral, HL-PA and molecular experiments (**Figures 1, 3 and 4B-E; Figure 1—figure**
562 **supplements 1, 2, 3F-L; Figure 3—figure supplements 2,3; Figure 4B—figure supplements 1F-**
563 **O,2**). Male Sprague Dawley rats were used for analysis of HL-PA (**Figure 1—figure supplement**
564 **3B-E**), in electrophysiological experiments (**Figure 2, Figure 2—figure supplements 1,2**)
565 (Taconic, Denmark; 150-400 g body weight) and for hypophysectomy (**Figure 4A and Figure 4—**
566 **figure supplement 1B-E**) (Charles River Laboratories, France; 115-125 g body weight). The
567 animals received food and water ad libitum and were kept in a 12-h day-night cycle at a constant
568 environmental temperature of 21°C (humidity: 65%). Approval for animal experiments was
569 obtained from the Malmö/Lund ethical committee on animal experiments (No.: M7-16), and the

570 ethical committee of the Faculty of Medicine of Porto University and Portuguese Direção-Geral
571 de Alimentação e Veterinária (No. 0421/000/000/2018).

572 **Surgery**

573 The animals were anesthetized with sodium pentobarbital (I.P.; 60 mg/kg body weight, as an initial
574 dose and then 6 mg/kg every hour). If needed, the anesthesia was reinforced with \approx 1.5% isoflurane
575 (IsoFlo, Abbott Laboratories, Norway) in a mixture of 65% nitrous oxide-35% oxygen. Core
576 temperature of the animals was controlled using a feedback-regulated heating system. In the
577 experiments involving electrophysiological recordings, the rats were ventilated artificially via a
578 tracheal cannula and the expiratory CO₂ and mean arterial blood pressure (65–140 mmHg) was
579 monitored continuously in the right carotid artery.

580 **Aspiration brain injury and spinal cord transection**

581 Experimental design included either the UBI alone or the UBI which was preceded by a complete
582 spinal cord transection. In the UBI-only experiments, anaesthetized rats were placed on a surgery
583 platform with stereotaxic head holder. The rat head was fixed in a position in which the bregma
584 and lambda were located at the same horizontal level. After local injection of lidocaine (Xylocaine,
585 3.5 mg/ml) with adrenaline (2.2 μ g/ml), the scalp was cut open and a piece of the parietal bone
586 located 0.5 – 4.0 mm posterior to the bregma and 1.8 – 3.8 lateral to the midline (Paxinos &
587 Watson, 2007) was removed. The part of the cerebral cortex located below the opening that
588 includes the hind-limb representation area of the sensorimotor cortex (HL-SMC) was aspirated
589 with a metallic pipette (tip diameter 0.5 mm) connected to an electrical suction machine (Craft
590 Duo-Vac Suction unit, Rocket Medical Plc, UK). Care was taken to avoid damaging the white
591 matter below the cortex. After the ablation, bleeding was stopped with a piece of Spongostone and

592 the bone opening was covered with a piece of TissuDura (Baxter, Germany). For sham operations,
593 animals underwent the same anesthesia and surgical procedures, but the cortex was not ablated.
594 In the experiments in which UBI was preceded by the spinal cord transection, the anaesthetized
595 animals were first placed on a surgery platform and the skin of the back was incised along the
596 midline at the level of the superior thoracic vertebrae. After the back muscles were retracted to the
597 sides, a laminectomy on the T2 and T3 vertebrae was performed. Then, the spinal cord between
598 the two vertebrae was completely transected using a pair of fine scissors (Bakalkin &
599 Kobylyansky, 1989). A piece of Spongostan (Medispon® (MDD sp. zo.o., Toruń, Poland) was
600 placed between the rostral and caudal stumps of the spinal cord. The completeness of the
601 transection was confirmed by (i) inspecting the cord during the operation to ensure that no spared
602 fibers bridged the transection site and that the rostral and caudal stumps of the spinal cord are
603 completely retracted; and (ii) examining the spinal cord in all animals after termination of the
604 experiment. Following the spinalization procedures, the rats were moved to the stereotaxic frame
605 and UBI was inflicted as described above. After completion of all surgical procedures, the wounds
606 were closed by the 3-0 suture (AgnTho's, Sweden) and the rat was kept under infrared radiation
607 lamp to maintain body temperature during monitoring of postural asymmetry (up to 3 h) and during
608 EMG recordings.

609 To verify the UBI site the rats were perfused with 4% paraformaldehyde and the brains were
610 removed from the skulls. Following post fixation overnight in the same fixative, the brains were
611 soaked in phosphate-buffered saline for 2 days, dissected into blocks and the blocks containing the
612 lesion area were cut into 50 μ m sections using a freezing microtome. Every fourth section was
613 mounted on slides and stained for Nissl with modified Giemsa solution (Sigma-Aldridge, USA;

614 1:5 dilution). The left drawing in **Figure 1A** shows the location of the right hindlimb representation
615 area on the rat brain surface (adapted from (Frost et al., 2013)).

616 **Hypophysectomy**

617 The hypophysectomy was performed at the Charles River Laboratories (France) and all the
618 surgery-related procedures, including postoperative care and transportation of animals, were
619 performed according to the ethical recommendations of that company. The procedure for
620 transauricular hypophysectomy, performed under isoflurane anesthesia, was described elsewhere
621 (Koyama, 1962). Briefly, a hypodermic needle fitted to a plastic syringe was introduced into the
622 external acoustic meatus until its tip reached the medial wall of the tympanic cavity. The needle
623 was then pushed slightly further, so that its tip pierced the bone and entered the pituitary capsule.
624 The hypophysis was then sucked into the syringe. The success of hypophysectomy was assessed
625 by visual inspection of the hypophyseal region of the skull under a microscope following animal
626 sacrifice and removal of the brain. Only data obtained in rats in which complete hypophysectomy
627 was confirmed were included in the analysis. Sham-operated rats underwent an identical procedure
628 except that the needle was not introduced into the pituitary capsule. Following the
629 hypophysectomy, the animals were given 3 weeks of recovery before initiating the UBI
630 experiments.

631 **Behavioral tests**

632 Experiments were performed between 10:00 and 15:00 h over the course of the week preceding
633 surgeries (pre-training) and one-day post-surgery (testing).

634 **Beam-walking test (BWT)** (Feeney et al., 1982).

635 The BWT apparatus consisted of a horizontally placed wooden beam, 130 cm long and 1.4 cm
636 wide, which was elevated 55 cm above the surface of a table. One end of the beam was free, while
637 another was connected to a square platform (10 x 10 cm, with the floor and two sidewalls painted
638 in black) leading to the rat's home cage. The rats were trained to walk along the beam from its free
639 end to their home cage. Training continued during two consecutive days preceding the brain
640 surgery, with three daily sessions and six trials per session. On the first, second and third trials, the
641 rat was placed on the beam close to the platform, at the midpoint, and at the starting point (free
642 end of the beam), respectively. The rat was considered trained if it performed the task within 80
643 seconds on the second training day. On the day following the UBI/Sham surgery, each rat was
644 given one session consisting of three trials (runs). Each run was video-recorded for further offline
645 analysis by an observer blind to the treatment groups. The number of times the left and the right
646 hindlimbs slipped off the beam were registered and averaged across all runs of a given session.

647 **Ladder Rung Walking Test (LRWT) (Metz & Whishaw, 2002).**

648 The horizontal LRWT apparatus, 100 cm long x 20 cm high, consisted of sidewalls made of clear
649 Plexiglas and metal grid floor. The width of the apparatus was approximately 12 cm. The floor
650 was composed of removable stainless steel bars (rungs), 3 mm in diameter, spaced 1 cm apart
651 (center-to-center). The ladder was placed 30 cm above the surface of a table and was connected to
652 the animal's home cage at one of its ends. Its opposite end was open and served as a starting point.
653 On each trial, the rat was placed on the starting point and allowed to cross the ladder to enter the
654 home cage. The width of the apparatus was adjusted to the size of the animal in order to prevent
655 the animal from running in the reverse direction. During training (one session consisting of five
656 trials), every second bar was removed, so that the rungs were spaced regularly at 2 cm intervals.

657 During post-surgery testing (one session of five trials), the rung spacing pattern was modified in
658 order to increase the difficulty of the task. In particular, five distinct irregular spacing patterns
659 were implemented in the testing session: 001101, 011010100, 1010011100, 1000011010 and
660 10001011000, where 1 denotes a rung and 0 a missing rung. However, the rung spacing patterns
661 and the order of their presentation were the same for all rats. Each ladder run was video-recorded
662 for further offline analysis by an observer blind to the surgery type. A total number of steps made
663 by the left and right hindlimbs during each run and the number of times the limbs slipped between
664 the rungs were registered. The limb slips/total steps ratio was averaged across the five testing trials
665 and was used as an error score.

666 **Analysis of postural asymmetry**

667 The HL-PA was recorded as described previously (Bakalkin & Kobylyansky, 1989). Briefly, the
668 postural asymmetry measurement was performed under pentobarbital (60 mg/kg, I.P.) anesthesia,
669 or isoflurane anesthesia when rats exposed to unilateral brain injury were analyzed 1 or more days
670 after the surgery. The level of anesthesia was characterized by a barely perceptible corneal reflex
671 and a lack of overall muscle tone. The rat was placed in the prone position on the 1-mm grid paper,
672 and the hindlimbs were straightened in the hip and knee joints by gently pulling them backwards
673 for 5-10 mm to reach the same level. Then, the limbs were set free and the magnitude of postural
674 asymmetry was measured in millimeters as the length of the projection of the line connecting
675 symmetric hindlimb distal points (digits 2-4) on the longitudinal axis of the rat. The procedure was
676 repeated six times in immediate succession, and the mean HL-PA value for a given rat was
677 calculated and used in statistical analyses. The measurements were performed 0.5, 1 and 3 hours
678 after the brain injury, or at other time points as shown on figures. In a separate group of rats (**Figure**

679 **1—figure supplement 1C,D)**, HL-PA was assessed 1, 4, 7 and 14 days after the UBI or sham
680 surgery under the isoflurane anesthesia (1.5% isoflurane in a mixture of 65% nitrous oxide and
681 35% oxygen). The rat was regarded as asymmetric if the magnitude of HL-PA exceeded the 1 mm
682 threshold (see statistical section). The limb displacing shorter projection was considered as flexed.

683 In a subset of the rats with UBI or sham surgery (n = 11 and 10, respectively), the hindlimbs were
684 stretched by gently pulling two threads glued to the nails of the middle three toes of the both legs.

685 In another subset (n = 6), the skin of the hindlimbs including and distal to the ankle joints was
686 fully anesthetized by a topical application of 5% lidocaine cream 10 min before the assessments
687 of HL-PA in rats with UBI. The absence of the pedal withdrawal reflexes following lidocaine
688 application was confirmed in awake rats by pinching the skin between the toes with blunt forceps.
689 None of these two procedures affected the resulting HL-PA suggesting that HL-PA formation does
690 not dependent on tactile input from the hind paw.

691 Throughout the main text and the supplement, data are shown for the prone position, with the
692 exception of **Figure 1—figure supplement 2F-J**, which displays results for the supine position.
693 For analysis in the supine position, the rat was placed in a V-shaped trough, a 90° - angled frame
694 located on a leveled table surface with the 1-mm grid sheet; otherwise, the procedure was the same
695 as for the prone position. The HL-PA values and the probability to develop asymmetry (P_A) were
696 essentially the same for both positions.

697 The postural asymmetry analysis was blind to the observer excluding the analysis combined with
698 the EMG. The “reverse design” results shown on **Figure 1F** were replicated by two groups in
699 different laboratories (**Figure 1—figure supplement 3B-E and F-L**, respectively).

700 **EMG experiments**

701 Electromyography recordings

702 Core temperature was maintained between 36 and 38°C using a thermostatically controlled,
703 feedback-regulated heating system. The EMG activity of the extensor digitorum longus (EDL),
704 interrossi (Int), peroneaus longus (PL) and semitendinosus (ST) muscles of both hindlimbs were
705 recorded as described previously (Schouenborg et al., 1992; Weng & Schouenborg, 1996). EMG
706 recordings were initiated approximately 3 hours after spinalization that was 2 h and 20 min after
707 the UBI. Recordings were performed using gauge stainless steel disposable monopolar electrodes
708 (DTM-1.00F, The Electrode Store, USA). The electrodes were insulated with Teflon except for
709 ~200 µm at the tip. The impedance of the electrodes was from 200 to 1000 kΩ. For EMG
710 recordings, a small opening was made in the skin overlying the muscle, and the electrode was
711 inserted into the mid-region of each muscle belly. A reference electrode was inserted
712 subcutaneously in an adjacent skin region. The electrode position was checked by passing trains
713 (100 Hz, 200 ms) of cathodal pulses (amplitude < 30 µA, duration 0.2 ms). The EMG signal was
714 recorded with Spike 2 program (CED, UK) with a sampling rate of 5000 Hz. Low and high pass
715 filter was set at 50000 Hz and 500 respectively. Generally, the EMG activity of three or four pairs
716 of hind limb muscles was recorded simultaneously in each experiment / rat.

717 Cutaneous stimulation

718 Digits 2, 3, 4 and 5, and the heel were stimulated to induce reflex responses according to muscle's
719 receptive field as reported previously (Schouenborg et al., 1992; Weng & Schouenborg, 1996).
720 Nociceptive stimulation was performed by intracutaneous cathodal electrical stimulation using the
721 same electrodes as for EMG recording. The same type of electrodes was used as an anode and was
722 placed subcutaneously in a skin flap well outside the stimulation area.

723 To detect the stimulation intensity that induce the maximal reflex in each muscle, graded current
724 pulses (1 ms, 0.1 Hz) were used ranging mostly from 1 to 30 mA, occasionally up to 50 mA in
725 anesthetized rats. The reflex threshold was defined as the lowest stimulation current intensity
726 evoking a response at least in 3 out of 5 stimulations. If a muscle response was induced by
727 stimulation at more than one site, the lowest current was taken as a threshold value. For EMG data
728 collection, the current level that induced submaximal EMG responses from both legs, usually at 5
729 – 20 mA was chosen. This was usually 2 – 3 times higher than the threshold currents. The same
730 current level was used on symmetrical points from the most sensitive area on both paws. For each
731 site EMG responses from 18 – 20 stimulations at 0.1 Hz frequency were collected. No visible
732 damage of the skin, or marked changes in response properties at the stimulation sites, were
733 detectable at these intensities.

734 **EMG data analysis**

735 **EMG amplitude**

736 The spikes from Spike2 EMG data files were sorted with Offline Sorter (version 3, Plexon, USA).
737 The EMG amplitude (spike number) from different muscles was calculated with NeuroExplorer
738 (Nex Technologies, USA). To avoid stimulation artifacts, spikes from the first one or two
739 stimulations were removed from further analysis. The number of spikes was calculated from 16
740 consecutive stimulations thereafter. The EMG thresholds and responses registered from 0.2 to 1.0
741 sec corresponding to C fiber evoked reflexes, were analyzed.

742 EMG activity was recorded in response to 18 stimulations with most responses stable between the
743 stimulations (Supplement Fig. 4A,B). Peristimulus histograms denote that a main fraction of the
744 responses was recorded in the 0.2 – 1.0 sec interval and were likely elicited through activation of

745 C-fibers. Responses to the 2nd to 17th stimulations recorded between 0.2 – 1.0 sec were included
746 in statistical analysis.

747 **Effects of serum, neurohormones and antagonists of opioid (naloxone) and**
748 **vasopressin V1B (SSR-149415) receptors on HL-PA development**

749 Serum was collected from 3 animals in each group of rats with transected spinal cord 3 h after the
750 UBI or sham surgery, kept at -80°C until use, and administered intravenously (0.3 mL / rat) to rats
751 under pentobarbital anesthesia 10 min after complete spinal cord transection.

752 Serum and Arg-vasopressin were administered into the cisterna magna (intracisternal route; 5
753 microliters/rat) (Ramos et al., 2019; Xavier et al., 2018) of intact rats under pentobarbital
754 anesthesia, which was followed by the spinal cord transection 10 min later. HL-PA was analyzed
755 at the 0.5, 1 and 3 h time points after injection.

756 SSR-149415 (5 mg/ml/kg, n=12) dissolved in a mixture of DMSO (10%) and saline (90%), or
757 vehicle alone (n = 8) was administered I.P. 10 min before spinal cord transection. This was
758 followed by either the left-side UBI (SSR-149415: n = 6; vehicle: n = 5) or intravenous
759 administration of serum from UBI rats (SSR-149415: n = 6; vehicle: n = 3). In rodents, effects of
760 SSR149415 develop within 0.5-1 h and last for 4-6 h after administration (Ramos et al., 2006;
761 Serradeil-Le Gal et al., 2002). Naloxone (5 mg/ml/kg in saline) or saline alone was injected I.P. 2
762 h after delivering the UBI (naloxone: n = 6; saline: n = 6) or after injecting the UBI serum
763 (naloxone: n = 6; saline: n = 3) to rats with transected spinal cord.

764 **Analysis of mRNA levels by quantitative RT-PCR (qRT-PCR)**

765 Total RNA was purified by using RNasy Plus Mini kit (Qiagen, Valencia, CA, USA). RNA
766 concentrations were measured with Nanodrop (Nanodrop Technologies, Wilmington, DE, USA).

767 RNA (1 µg) was reverse-transcribed to cDNA with the iScript™ cDNA Synthesis Kit (Bio-Rad
768 Laboratories, CA, USA) according to manufacturer's protocol. cDNA samples were aliquoted and
769 stored at -20°C. Assay was described elsewhere (Kononenko et al., 2017; Kononenko et al., 2018).
770 cDNAs were mixed with PrimePCR™ Probe assay (Table S2) and iTaq Universal Probes
771 supermix (Bio-Rad) for qPCR with a CFX384 Touch™ Real-Time PCR Detection System (Bio-
772 Rad Laboratories, CA, USA) according to manufacturer's instructions. mRNA levels of genes of
773 interest were normalized to geometric mean of expression levels of two control genes *Actb* and
774 *Gapdh* selected by geNORM program (<https://genorm.cmgg.be/> and (Kononenko et al., 2017;
775 Kononenko et al., 2018; Vandesompele et al., 2002)). In each experiment, internal control gene-
776 stability measure M (Vandesompele et al., 2002) did not exceed the established limit of 0.5.

777 **Radioimmunoassay (RIA)**

778 The procedure was described elsewhere (Christensson-Nylander et al., 1985; Merg et al., 2006).
779 Briefly, 1 M hot acetic acid was added to finely powdered frozen tissues, and samples were boiled
780 for 5 min, ultrasonicated and centrifuged. Tissue extract was run through SP-Sephadex ion
781 exchange C-25 column, and peptides were eluted and analyzed by RIA. Anti-Dynorphin B
782 antiserum showed 100% molar cross-reactivity with big dynorphin, 0.8% molar cross-reactivity
783 with Leu-morphine (29 amino acid C-terminally extended Dynorphin B), and <0.1% molar
784 crossreactivity with Dynorphin A (1–17), Dynorphin A (1–8), α -neoendorphin, and Leu-
785 enkephalin (Yakovleva et al., 2006). Cross-reactivity of Leu-enkephalin-Arg antiserum with
786 Dynorphin B and Leu- and Met-enkephalin was <0.1% molar, with α -neoendorphin 0.5% molar,
787 with Dynorphin A (1–8) 0.7% molar, with Met-enkephalin-Arg-Phe 1% molar and with Met-
788 enkephalin-Arg 10% molar. Cross-reactivity of Met-enkephalin-Arg-Phe antiserum with Met-

789 enkephalin, Met-enkephalin-Arg, Met-enkephalin-Arg-Gly-Leu, Leu-enkephalin and Leu-
790 enkephalin-Arg was <0.1% molar (Nylander et al., 1997). Our variant of RIA readily detected
791 Dynorphin B and Leu-enkephalin-Arg in wild-type mice (Nguyen et al., 2005) but not in *Pdyn*
792 knockout mice; thus the assay was highly specific and not sensitive to the presence of
793 contaminants. The peptide content is presented in fmol/mg tissue.

794 **Statistical Analysis**

795 Postural asymmetry and NWR

796 Predictors and outcomes were centered and scaled before Bayesian Regression Models were fitted
797 by calling Stan 2.19.2 (Carpenter et al., 2017) from *R* 3.6.1 (R Core Team, 2018) using *brms* 2.9.6
798 (Burkner, 2017) interface. To reduce the influence of outliers, models used Student's *t* response
799 distribution with identity link function. Models had no intercepts with indexing approach to
800 predictors (McElreath, 2019). Default priors were provided by *brms* according to Stan
801 recommendations (Gelman, 2019). Residual SD and group-level SD were given weakly
802 informative prior *student_t*(3, 0, 10). Additional parameter *v* of Student's distribution representing
803 the degrees of freedom was given wide gamma prior *gamma*(2, 0.1). Group-level effects were
804 given generic weakly informative prior *normal*(0, 1). Removal of non-significant confounders was
805 attempted in stepwise fashion comparing models by exact 10-fold cross-validation. Four Markov
806 chain Monte Carlo (MCMC) chains of 40000 iterations were simulated for each model, with a
807 warm-up of 20000 runs to ensure that effective sample size for each estimated parameter exceeded
808 10000 (Kruschke, 2015) producing stable estimates of 95% highest posterior density continuous
809 intervals (HPDCI). MCMC diagnostics were performed according to Stan manual.

810 Median of the posterior distribution, 95% HPDCI and adjusted P-values are reported as computed
811 by R package *emmeans* 1.4 (Searle et al., 2012). Adjusted P-values were produced by frequentist
812 summary in *emmeans* using the multivariate t distribution with the same covariance structure as
813 the estimates. The asymmetry and contrast between groups were defined as significant if the
814 corresponding 95% HPDCI interval did not include zero value and, simultaneously, adjusted P-
815 value was ≤ 0.05 . R scripts are available upon request.

816 The 99th percentile of the HL-PA magnitude in rats after sham surgery (n = 36) combined at the 2
817 or 3 h time points was 1.1 mm. Therefore, the rats with HL-PA magnitude > 1 mm threshold were
818 defined as asymmetric. The probability P_A to develop HL-PA above 1 mm in magnitude was
819 modelled with Bernoulli response distribution and logit link function. The UBI effects remained
820 significant for models with thresholds of 2 or 3 mm.

821 In the EMG analysis, asymmetry in stimulation threshold (Thr) and a spike number (SN) in 0.2 –
822 1 sec EMG responses for each pair of hindlimb muscles analyzed was assessed using the Contra-
823 /Ipsilesional asymmetry indexes AI_{Thr} ($AI_{Thr} = \log_2 [Thr_{contra} / Thr_{ipsi}]$) and AI_{SN} ($AI_{SN} = \log_2$
824 $[(1+SN_{contra})/(1+SN_{ipsi})]$), where *contra* and *ipsi* designate the Contralateral and Ipsilesional sides
825 relative to the brain injury side. *Operation type* (UBI vs. sham) was the factor of interest
826 analyzed for each muscle (EDL stimulated at D3, D4 and D5; Int at D2, D3, D4 and D5; PL at
827 D4 and D5; and ST at the heel). Data recorded at stimulation of more than one site were
828 processed as replicates for a given muscle. The number of rats for each pair of muscles in each
829 UBI and sham group is shown in **Figure 2—figure supplement 2**.

830 The AI_{SN} was fitted using linear multilevel model with fixed effects of *muscle* (EDL, Int, PL and
831 ST) interacting with *operation type* (UBI vs. sham) and log-transformed *recoding current*. The
832 *sweep's number* was a fixed effect confounder with non-significant effect, showing that the AI_{SN}

833 was not significantly affected by wind-up. The AI_{Thr} was fitted using the similar linear multilevel
834 model without the *recording current* and *sweep's number* factors. To get rid of No-U-Turn
835 Sampler warnings, parameters `adapt_delta=0.999` and `max_treedepth=13` were used.

836 **Gene expression and opioid peptide analyses**

837 First, the mRNA levels of 20 neuroplasticity (*Arc*, *Bdnf*, *cFos*, *Dlg4*, *Egr1*, *Homer-1*, *Gap43*,
838 *GluR1*, *Grin2a*, *Grin2b*, *Nfkb1a*, *Pck6*, *Syt4* and *Tgfb1*), and opioid and vasopressin (*Penk*, *Pdyn*,
839 *Oprm1*, *Oprd1*, *Oprk1* and *Avpr1a*) genes, and the levels of opioid peptides dynorphin B, Leu-
840 enkephalin-Arg and Met-enkephalin-Arg-Pro were compared separately for the left and right
841 halves of the lumbar spinal cord between the left UBI (n = 12) and left sham (n = 11) rat groups.
842 Only *Avpr1a* out of four genes of the vasopressin system (*Avpr1a*, *Avpr1b*, *Avpr2*, and *Avp*) was
843 found to be expressed in the lumbar spinal cord and therefore included in the statistical analyses.
844 The mRNA and peptide levels were compared between the animal groups for the left and right
845 spinal domains separately using Mann-Whitney test followed by Bonferroni correction for a
846 number of tests (correction factor for mRNAs was 40, for peptides 6). Results were considered
847 significant if P value corrected for multiple comparisons ($P_{adjusted}$) did not exceed 0.05. Log fold
848 change (logFC) was computed as a difference of median log₂-scaled expression values.

849 Second, the expression asymmetry index (eAI) defined as log₂-scaled ratio of expression levels in
850 Contra and Ipsilesional spinal domains ($\log_2[\text{Contra}/\text{Ipsi}]$), was compared between the rat groups.
851 Comparison of eAI was performed using Mann-Whitney test followed by Bonferroni correction
852 for multiple tests (correction factor was 20).

853 Heatmaps of expression levels and eAI were constructed using data (0,1)-standardized for each
854 gene by subtraction of the median value and division by an inter-quartile range. In analysis of

855 expression levels, standardization was applied to log₂-scaled expression levels pooled for the left
856 and the right spinal domains.

857 **Intra- and inter-regional gene coexpression patterns**

858 Spearman's rank correlation coefficient was calculated for all gene pairs in each area (N = 190)
859 and between the areas (N = 400). To circumvent effects of differences in a number of animals
860 between the groups (caused by differences in the number of rats or by missing values) on outcome
861 of statistical analyses, the following procedure was applied. For a given pair of genes, animals
862 with missing expression levels were excluded from calculations. For the group with smaller
863 number of remaining animals (let N denote this number) correlation coefficient was calculated in
864 a standard way. For the other group correlation coefficient was calculated for all subsets consisting
865 of N animals, and the median was taken. The procedure was applied separately for each pair of
866 genes in each analysis. Significance of correlation coefficients was assessed using *pspearman* R
867 package with precomputed null distribution (i.e., *approximation* parameter set to "exact").

868 Statistical comparison of gene-gene coordination strength between the animal groups was
869 performed by applying Wilcoxon signed-rank test to the set of absolute values of all correlation
870 coefficients and, separately, to the set of absolute values of significant correlation coefficients (i.e.,
871 having associated P-value not exceeding 0.05 for at least one animal group). As the comparison of
872 gene-gene coordination strength ignored correlation signs, a separate analysis was performed to
873 assess differences in the proportion of positive and negative correlations between animal groups.
874 This assessment was performed separately for the sets of (i) all and (ii) significant correlation
875 coefficients using the Fisher's Exact test with 2x2 contingency table.

876

877 **Acknowledgements**

878 This paper is dedicated to Professors Boris I. Klement'ev and Genrich A. Vartanian for their
879 outstanding postural asymmetry studies, which are mostly unknown to the Western scientific
880 community and which set the stage for the present investigation. We are grateful to Dr. Michael
881 Ossipov for discussion and manuscript processing, and Dr. Aleh Yahorau for help with
882 biochemical assays and figure preparation. The study was supported by the Swedish Science
883 Research Council (Grants K2014-62X-12190-19-5 and 2019-01771-3), P.O. Zetterling
884 foundation, Uppsala University, and grants of the Government of the Russian Federation
885 (14.W03.31.0031) and the Russian Scientific Foundation (17-14-01338).

886

887 **Additional information**

888 **Funding**

Funder	Grant reference number	Author
Vetenskapsrådet (Swedish Science Research Council)	K2014-62X-12190-19-5	Georgy Bakalkin
Vetenskapsrådet (Swedish Science Research Council)	2019-01771-3	Georgy Bakalkin
Uppsala University, Uppsala, Sweden		Georgy Bakalkin

Vetenskapsrådet (Swedish
Science Research Council)

2016-06195

Jens Schouenborg

Lund University, Lund,
Sweden

Jens Schouenborg

Skåne County Council F2018/1490 Jens Schouenborg
P.O. Zetterling foundation Olga Nosova

Government of the Russian Federation 14.W03.31.0031 Vladimir Galatenko

Russian Scientific Foundation 17-14-01338 Alex Tonevitsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

889

890 **Author contributions**

891 Nikolay Lukyanov, Formal analysis, Investigation, Conceptualization, Supervision,
892 Methodology, Writing – original draft, Writing – review and editing; Hiroyuki Watanabe, Data
893 curation, Formal analysis, Investigation, Methodology; Liliana S. Carvalho, Data curation, Formal
894 analysis, Investigation, Methodology; Olga Nosova, Data curation, Formal analysis,
895 Investigation, Methodology; Daniil Sarkisyan, Formal analysis, Investigation, Methodology,
896 Writing – original draft; Mengliang Zhang, Data curation, Formal analysis, Investigation,
897 Methodology, Writing – review and editing; Marlene Storm Andersen, Data curation, Formal

898 analysis, Investigation; Elena A. Lukyanova, Data curation, Formal analysis, Investigation;
899 Vladimir Galatenko, Formal analysis, Investigation, Methodology, Writing – original draft
900 preparation; Alex Tonevitsky, Formal analysis, Investigation, Resources; Igor Bazov, Data
901 curation, Formal analysis, Investigation; Tatiana Iakovleva, Data curation, Formal analysis,
902 Investigation; Jens Schouenborg, Conceptualization, Resources, Supervision, Writing – review
903 and editing; Georgy Bakalkin, Conceptualization, Resources, Supervision, Funding acquisition,
904 Project administration, Writing – original draft preparation; Writing – review and editing.

905

906 **Author ORCIDs**

907 Georgy Bakalkin: <https://orcid.org/0000-0002-8074-9833>

908

909 **Ethics**

910 Animal experimentation: The animals received food and water ad libitum and were kept in a 12-h
911 day-night cycle at a constant environmental temperature of 21°C (humidity: 65%). Approval for
912 animal experiments was obtained from the Malmö/Lund ethical committee on animal experiments
913 (No.: M7-16), and the ethical committee of the Faculty of Medicine of Porto University and
914 Portuguese Direção-Geral de Alimentação e Veterinária (No. 0421/000/000/2018).

915

916 **Competing interests**

917 The authors declare no competing interests.

918

919 **Additional files**

920 **Supplementary files**

921 Transparent reporting form.

922

923 **Data availability**

924 All data generated or analyzed during this study are summarized in the manuscript, figures and
925 supplementary files.

926 Source data files generated or analyzed during this study are included for Figures 1-4.

927

928

929 **References**

930 Autelitano, D. J., Lundblad, J. R., Blum, M., & Roberts, J. L. (1989). Hormonal regulation of
931 POMC gene expression. *Annu Rev Physiol*, 51, 715-726.
932 <https://doi.org/10.1146/annurev.ph.51.030189.003435>

933

934 Bakalkin, G., & Kobylyansky, A. G. (1989, Feb 20). Opioids induce postural asymmetry in spinal
935 rat: the side of the flexed limb depends upon the type of opioid agonist. *Brain Res*, 480(1-
936 2), 277-289. [https://doi.org/10.1016/0006-8993\(89\)90193-5](https://doi.org/10.1016/0006-8993(89)90193-5)

937

938 Bakalkin, G., Kobylyansky, A. G., Nagornaya, L. V., Yarygin, K. N., & Titov, M. I. (1986, Jul-
939 Aug). Met-enkephalin-induced release into the blood of a factor causing postural
940 asymmetry. *Peptides*, 7(4), 551-556. <http://www.ncbi.nlm.nih.gov/pubmed/3763433>

941

942 Bakalkin, G., Pivovarov, A. S., Kobylyansky, A. G., Yarygin, K. N., & Akparov, V. (1989, Aug).
943 Ipsilateral responses induced by factors present in left and right hemispheres. *Int J*
944 *Neurosci*, 47(3-4), 217-230. <https://doi.org/10.3109/00207458908987436>

945

946 Burkner, P. C. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. *Journal*
947 *of Statistical Software*, 80(1), 1-28. <https://doi.org/10.18637/jss.v080.i01>

948

949 Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.,
950 Guo, J., Li, P., & Riddell, A. (2017). Stan: A Probabilistic Programming Language.
951 *Journal of Statistical Software*, 76(1). <https://doi.org/10.18637/jss.v076.i01>

952

953 Chamberlain, T. J., Halick, P., & Gerard, R. W. (1963, Jul). Fixation of experience in the rat spinal
954 cord. *J Neurophysiol*, 26, 662-673. <https://doi.org/10.1152/jn.1963.26.4.662>

955

956 Chazov, E. I., Bakalkin, G., Yarigin, K. N., Trushina, E. D., Titov, M. I., & Smirnov, V. N. (1981).
957 Enkephalins induce asymmetrical effects on posture in the rat. *Experientia*, 37(8), 887-
958 889. <http://www.ncbi.nlm.nih.gov/pubmed/7286146>

959

960 Christensson-Nylander, I., Nyberg, F., Ragnarsson, U., & Terenius, L. (1985, May). A general
961 procedure for analysis of proenkephalin B derived opioid peptides. *Regul Pept*, 11(1), 65-
962 76. <http://www.ncbi.nlm.nih.gov/pubmed/2861627>

963

964 Day, R., & Akil, H. (1989, May). The posttranslational processing of prodynorphin in the rat
965 anterior pituitary. *Endocrinology*, 124(5), 2392-2405. <https://doi.org/10.1210/endo-124-5-2392>

967

968 de Kovel, C. G. F., Lisgo, S., Karlebach, G., Ju, J., Cheng, G., Fisher, S. E., & Francks, C. (2017,
969 Aug 1). Left-Right Asymmetry of Maturation Rates in Human Embryonic Neural
970 Development. *Biol Psychiatry*, 82(3), 204-212.
971 <https://doi.org/10.1016/j.biopsych.2017.01.016>

972

973 DiGiorgio, A. M. (1929). Persistence of postural and motor asymmetries of cerebellar origin in
974 spinal animals: I, II, III. *Archivo de Fisiologia* (27), 518-580.

975

976 Feeney, D. M., Gonzalez, A., & Law, W. A. (1982). Amphetamine, haloperidol, and experience
977 interact to affect rate of recovery after motor cortex injury. *Science* 217, 855-857.

978

979 Fernandes, C. A., Coelho, D. B., Martinelli, A. R., & Teixeira, L. A. (2018, Feb). Right cerebral
980 hemisphere specialization for quiet and perturbed body balance control: Evidence from
981 unilateral stroke. *Hum Mov Sci*, 57, 374-387. <https://doi.org/10.1016/j.humov.2017.09.015>

982

983 Frost, S. B., Iliakova, M., Dunham, C., Barbay, S., Arnold, P., & Nudo, R. J. (2013, Aug).
984 Reliability in the location of hindlimb motor representations in Fischer-344 rats: laboratory
985 investigation. *J Neurosurg Spine*, 19(2), 248-255.
986 <https://doi.org/10.3171/2013.4.SPINE12961>

987

988 Gelman, A. (2019, 2 May, 2019). Prior Choice Recommendations. *Stan-dev/stan*.
989 <https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations>

990

991 Hultborn, H., & Malmsten, J. (1983, Dec). Changes in segmental reflexes following chronic spinal
992 cord hemisection in the cat. I. Increased monosynaptic and polysynaptic ventral root
993 discharges. *Acta Physiol Scand*, 119(4), 405-422. <https://doi.org/10.1111/j.1748-1716.1983.tb07357.x>

995

996 Klement'ev, B. I., Molokoedov, A. S., Bushuev, V. N., Danilovskii, M. A., & Sepetov, N. F.
997 (1986). [Isolation of the postural asymmetry factor following right hemisection of the
998 spinal cord]. *Dokl Akad Nauk SSSR*, 291(3), 737-741.
999 <http://www.ncbi.nlm.nih.gov/pubmed/3803179>

1000

1001 Kononenko, O., Galatenko, V., Andersson, M., Bazov, I., Watanabe, H., Zhou, X. W., Iatsyshyna,
1002 A., Mityakina, I., Yakovleva, T., Sarkisyan, D., Ponomarev, I., Krishtal, O., Marklund, N.,
1003 Tonevitsky, A., Adkins, D. L., & Bakalkin, G. (2017, May). Intra- and interregional

1004 coregulation of opioid genes: broken symmetry in spinal circuits . *FASEB J*, 31(5), 1953-
1005 1963. <https://doi.org/10.1096/fj.201601039R>

1006

1007 Kononenko, O., Mityakina, I., Galatenko, V., Watanabe, H., Bazov, I., Gerashchenko, A.,
1008 Sarkisyan, D., Iatsyshyna, A., Yakovleva, T., Tonevitsky, A., Marklund, N., Ossipov, M.
1009 H., & Bakalkin, G. (2018, Sep 15). Differential effects of left and right neuropathy on
1010 opioid gene expression in lumbar spinal cord. *Brain Res*, 1695, 78-83.
1011 <https://doi.org/10.1016/j.brainres.2018.05.043>

1012

1013 Koyama, R. (1962, Dec). A simple method of hypophysectomy in rats (Koyama's external auditory
1014 canal method). *Endocrinol Jpn*, 9, 321-323.
1015 <http://www.ncbi.nlm.nih.gov/pubmed/14035271>

1016

1017 Kruschke, J. (2015). *Doing Bayesian Data Analysis*. Academic Press.
1018 <https://doi.org/https://doi.org/10.1016/C2012-0-00477-2>

1019

1020 Lee, T. K., Lois, J. H., Troupe, J. H., Wilson, T. D., & Yates, B. J. (2007, Apr). Transneuronal
1021 tracing of neural pathways that regulate hindlimb muscle blood flow. *Am J Physiol Regul
1022 Integr Comp Physiol*, 292(4), R1532-1541. <https://doi.org/10.1152/ajpregu.00633.2006>

1023

1024 Lemon, R. N. (2008). Descending pathways in motor control. *Annu Rev Neurosci*, 31, 195-218.
1025 <https://doi.org/10.1146/annurev.neuro.31.060407.125547>

1026

1027 Long, Q., Argmann, C., Houten, S. M., Huang, T., Peng, S., Zhao, Y., Tu, Z., Consortium, G. T.,
1028 & Zhu, J. (2016, Feb 9). Inter-tissue coexpression network analysis reveals DPP4 as an
1029 important gene in heart to blood communication . *Genome Med*, 8(1), 15.
1030 <https://doi.org/10.1186/s13073-016-0268-1>

1031

1032 McElreath, R. (2019). *Statistical Rethinking. A Bayesian Course with Examples in R and Stan (&
1033 PyMC3 & brms & Julia too)*. Chapman and Hall/CRC.

1034

1035 Merg, F., Filliol, D., Usynin, I., Bazov, I., Bark, N., Hurd, Y. L., Yakovleva, T., Kieffer, B. L., &
1036 Bakalkin, G. (2006, Apr). Big dynorphin as a putative endogenous ligand for the kappa-
1037 opioid receptor. *J Neurochem*, 97(1), 292-301. <https://doi.org/10.1111/j.1471-4159.2006.03732.x>

1039

1040 Metz, G. A., & Whishaw, I. Q. (2002, Apr 15). Cortical and subcortical lesions impair skilled
1041 walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping,
1042 placing, and co-ordination. *J Neurosci Methods*, 115(2), 169-179.
1043 <http://www.ncbi.nlm.nih.gov/pubmed/11992668>

1044

1045 Nathan, P. W., Smith, M. C., & Deacon, P. (1990, Apr). The corticospinal tracts in man. Course
1046 and location of fibres at different segmental levels. *Brain*, 113 (Pt 2), 303-324.
1047 <https://doi.org/10.1093/brain/113.2.303>

1048

1049 Nguyen, X. V., Masse, J., Kumar, A., Vijitruth, R., Kulik, C., Liu, M., Choi, D. Y., Foster, T. C.,
1050 Usynin, I., Bakalkin, G., & Bing, G. (2005, Jun 20). Prodynorphin knockout mice
1051 demonstrate diminished age-associated impairment in spatial water maze performance.
1052 *Behav Brain Res*, 161(2), 254-262. <https://doi.org/10.1016/j.bbr.2005.02.010>

1053

1054 Nylander, I., Stenfors, C., Tan-No, K., Mathe, A. A., & Terenius, L. (1997, Aug). A comparison
1055 between microwave irradiation and decapitation: basal levels of dynorphin and enkephalin
1056 and the effect of chronic morphine treatment on dynorphin peptides. *Neuropeptides*, 31(4),
1057 357-365. <http://www.ncbi.nlm.nih.gov/pubmed/9308024>

1058

1059 Ocklenburg, S., Schmitz, J., Moinfar, Z., Moser, D., Klose, R., Lor, S., Kunz, G., Tegenthoff, M.,
1060 Faustmann, P., Francks, C., Epplen, J. T., Kumsta, R., & Gunturkun, O. (2017, Feb 1).
1061 Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric
1062 asymmetries. *Elife*, 6. <https://doi.org/10.7554/eLife.22784>

1063

1064 Paxinos, G., & Watson, C. (2007). *The Rat Brain in Stereotaxic Coordinates* Academic Press.
1065

1066 Purves, D., Augustine, G. J., & Fitzpatrick, D. (2001). *Neuroscience. 2nd edition.* Oxford
1067 University Press.

1068

1069 R Core Team. (2018). *R: a language and environment for statistical computing.* In (Version 3.6.1)
1070 R Foundation for Statistical Computing. <https://www.r-project.org/>

1071

1072 Ramos, A. T., Troncone, L. R., & Tufik, S. (2006). Suppression of adrenocorticotropic hormone
1073 secretion by simultaneous antagonism of vasopressin 1b and CRH-1 receptors on three
1074 different stress models . *Neuroendocrinology*, 84(5), 309-316.
1075 <https://doi.org/10.1159/000097587>

1076

1077 Ramos, M., Burdon Bechet, N., Battistella, R., Pavan, C., Xavier, A. L. R., Nedergaard, M., &
1078 Lundgaard, I. (2019). Cisterna Magna Injection in Rats to Study Glymphatic Function .
1079 *Methods Mol Biol*, 1938, 97-104. https://doi.org/10.1007/978-1-4939-9068-9_7

1080

1081 Roelofs, J. M. B., van Heugten, K., de Kam, D., Weerdesteyn, V., & Geurts, A. C. H. (2018, Nov).
1082 Relationships Between Affected-Leg Motor Impairment, Postural Asymmetry, and
1083 Impaired Body Sway Control After Unilateral Supratentorial Stroke . *Neurorehabil Neural*
1084 *Repair*, 32(11), 953-960. <https://doi.org/10.1177/1545968318804405>

1085

1086 Roper, J., O'Carroll, A. M., Young, W., 3rd, & Lolait, S. (2011, Jan). The vasopressin Avpr1b
1087 receptor: molecular and pharmacological studies . *Stress*, 14(1), 98-115.
1088 <https://doi.org/10.3109/10253890.2010.512376>

1089

1090 Rossignol, S., & Frigon, A. (2011). Recovery of locomotion after spinal cord injury: some facts
1091 and mechanisms. *Annu Rev Neurosci*, 34, 413-440. <https://doi.org/10.1146/annurev-neuro-061010-113746>

1093

1094 Schouenborg, J. (2002, Oct). Modular organisation and spinal somatosensory imprinting. *Brain*
1095 *Res Brain Res Rev*, 40(1-3), 80-91. <http://www.ncbi.nlm.nih.gov/pubmed/12589908>

1096

1097 Schouenborg, J., Holmberg, H., & Weng, H. R. (1992). Functional organization of the nociceptive
1098 withdrawal reflexes. II. Changes of excitability and receptive fields after spinalization in
1099 the rat . *Exp Brain Res*, 90(3), 469-478. <http://www.ncbi.nlm.nih.gov/pubmed/1426107>

1100

1101 Searle, S. R., Speed, F. M., & Milliken, G. A. (2012). Population Marginal Means in the Linear
1102 Model: An Alternative to Least Squares Means. *The Americal Statistician*, 34(4).
1103 <https://cran.r-project.org/package=emmeans>

1104

1105 Serradeil-Le Gal, C., Wagnon, J., Simiand, J., Griebel, G., Lacour, C., Guillon, G., Barberis, C.,
1106 Brossard, G., Soubrie, P., Nisato, D., Pascal, M., Pruss, R., Scatton, B., Maffrand, J. P., &
1107 Le Fur, G. (2002, Mar). Characterization of (2S,4R)-1-[5-chloro-1-[(2,4-
1108 dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-
1109 hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally
1110 active vasopressin V1b receptor antagonist. *J Pharmacol Exp Ther*, 300(3), 1122-1130.
1111 <https://doi.org/10.1124/jpet.300.3.1122>

1112

1113 Smith, C. C., Paton, J. F. R., Chakrabarty, S., & Ichiyama, R. M. (2017, Jun 28). Descending
1114 Systems Direct Development of Key Spinal Motor Circuits. *J Neurosci*, 37(26), 6372-
1115 6387. <https://doi.org/10.1523/JNEUROSCI.0149-17.2017>

1116

1117 Spaich, E. G., Svaneborg, N., Jorgensen, H. R., & Andersen, O. K. (2014, May 7). Rehabilitation
1118 of the hemiparetic gait by nociceptive withdrawal reflex-based functional electrical
1119 therapy: a randomized, single-blinded study . *J Neuroeng Rehabil*, 11, 81.
1120 <https://doi.org/10.1186/1743-0003-11-81>

1121

1122 Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman,
1123 F. (2002, Jun 18). Accurate normalization of real-time quantitative RT-PCR data by
1124 geometric averaging of multiple internal control genes. *Genome Biol*, 3(7),
1125 RESEARCH0034. <https://doi.org/10.1186/gb-2002-3-7-research0034>

1126

1127 Ward, N. S. (2017, Apr). Restoring brain function after stroke - bridging the gap between animals
1128 and humans. *Nat Rev Neurol*, 13(4), 244-255. <https://doi.org/10.1038/nrneurol.2017.34>

1129

1130 Watanabe, H., Fitting, S., Hussain, M. Z., Kononenko, O., Iatsyshyna, A., Yoshitake, T., Kehr, J.,
1131 Alkass, K., Druid, H., Wadensten, H., Andren, P. E., Nylander, I., Wedell, D. H., Krishtal,
1132 O., Hauser, K. F., Nyberg, F., Karpyak, V. M., Yakovleva, T., & Bakalkin, G. (2015, Jan).
1133 Asymmetry of the endogenous opioid system in the human anterior cingulate: a putative
1134 molecular basis for lateralization of emotions and pain. *Cereb Cortex*, 25(1), 97-108.
1135 <https://doi.org/10.1093/cercor/bht204>

1136

1137 Weng, H. R., & Schouenborg, J. (1996, May 15). Cutaneous inhibitory receptive fields of
1138 withdrawal reflexes in the decerebrate spinal rat. *J Physiol*, 493 (Pt 1), 253-265.
1139 <https://doi.org/10.1113/jphysiol.1996.sp021380>

1140

1141 Wilson, L., Stewart, W., Dams-O'Connor, K., Diaz-Arrastia, R., Horton, L., Menon, D. K., &
1142 Polinder, S. (2017, Oct). The chronic and evolving neurological consequences of traumatic
1143 brain injury. *Lancet Neurol*, 16(10), 813-825. [https://doi.org/10.1016/S1474-4422\(17\)30279-X](https://doi.org/10.1016/S1474-4422(17)30279-X)

1145

1146 Wolpaw, J. R. (2012, Apr). Harnessing neuroplasticity for clinical applications. *Brain*, 135(Pt 4),
1147 e215; author reply e216. <https://doi.org/10.1093/brain/aws017>

1148

1149 Xavier, A. L. R., Hauglund, N. L., von Holstein-Rathlou, S., Li, Q., Sanggaard, S., Lou, N.,
1150 Lundgaard, I., & Nedergaard, M. (2018, May 23). Cannula Implantation into the Cisterna
1151 Magna of Rodents. *J Vis Exp*(135). <https://doi.org/10.3791/57378>

1152

1153 Yakovleva, T., Bazov, I., Cebers, G., Marinova, Z., Hara, Y., Ahmed, A., Vlaskovska, M.,
1154 Johansson, B., Hochgeschwender, U., Singh, I. N., Bruce-Keller, A. J., Hurd, Y. L.,
1155 Kaneko, T., Terenius, L., Ekstrom, T. J., Hauser, K. F., Pickel, V. M., & Bakalkin, G.
1156 (2006, Oct). Prodynorphin storage and processing in axon terminals and dendrites. *FASEB J*, 20(12), 2124-2126. <https://doi.org/10.1096/fj.06-6174fje>

1157

1158

1159 Zhang, M., Watanabe, H., Sarkisyan, D., Thelin, J., Schouenborg, J., & Bakalkin, G. (2020).
1160 Asymmetric hindlimb posture and withdraw reflexes induced by unilateral brain injury are
1161 encoded in spinal cord. *Brain Communications, In press.*