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Abstract

Motivation: Infectious diseases from novel viruses have become a major public health concern. Rapid

identification of virus–host interactions can reveal mechanistic insights into infectious diseases and shed

light on potential treatments. Current computational prediction methods for novel viruses are based mainly

on protein sequences. However, it is not clear to what extent other important features, such as the

symptoms caused by the viruses, could contribute to a predictor. Disease phenotypes (i.e., signs and

symptoms) are readily accessible from clinical diagnosis and we hypothesize that they may act as a

potential proxy and an additional source of information for the underlying molecular interactions between

the pathogens and hosts.

Results: We developed DeepViral, a deep learning based method that predicts protein–protein interactions

(PPI) between humans and viruses. Motivated by the potential utility of infectious disease phenotypes,

we first embedded human proteins and viruses in a shared space using their associated phenotypes and

functions, supported by formalized background knowledge from biomedical ontologies. By jointly learning

from protein sequences and phenotype features, DeepViral significantly improves over existing sequence-

based methods for intra- and inter-species PPI prediction. Lastly, we propose a novel experimental setup

to realistically evaluate prediction methods for novel viruses.

Availability:https://github.com/bio-ontology-research-group/DeepViral

Contact: robert.hoehndorf@kaust.edu.sa

1 Introduction

Infectious diseases emerging unexpectedly from novel and reemerging
pathogens have been a major enduring public health concern around
the globe (Jones et al., 2008). Pathogens disrupt host cell functions
(Finlay and Cossart, 1997) and target immune pathways (Dyer et al.,
2010) through complex inter-species interactions of proteins (Dyer et al.,
2008), RNA (Fajardo et al., 2015) and DNA (Weitzman et al., 2004).
The study of pathogen–host interactions (PHI) can therefore provide
insights into the molecular mechanisms underlying infectious diseases
and guide the discoveries of novel therapeutics or provide a basis for

the repurposing of available drugs. For example, a previous study of
many PHIs showed that pathogens typically interact with the protein hubs
(those with many interaction partners) and bottlenecks (those of central
locations to important pathways) in human protein–protein interaction
(PPI) networks (Dyer et al., 2008). However, due to cost and time
constraints, experimentally validated pairs of interacting pathogen–host
proteins are limited in number. Therefore, the computational prediction
of PHIs is a useful complementary approach in suggesting candidate
interaction partners from the human proteome.

Existing PHI prediction methods for novel viruses typically utilize
protein sequence features of the interacting proteins (Eid et al., 2016;
Zhou et al., 2018; Alguwaizani et al., 2018; Yang et al., 2020). While
protein functions have been shown to predict intra-species (e.g., human)
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2 Liu-Wei et al.

PPIs (Guzzi et al., 2011; Jain and Bader, 2010; Pesquita et al., 2009)
and such protein specific features exist for some extensively studied
pathogens, such as Mycobacterium tuberculosis (Huo et al., 2015) and HIV
(Mukhopadhyay et al., 2014), for most pathogens, these features are rare
and expensive to obtain. As new virus species continue to be discovered
(Woolhouse et al., 2012), a method is needed to rapidly identify candidate
interactions from information that can be obtained quickly, such as the
signs and symptoms of the host, which may be utilized as a proxy for the
underlying molecular interactions between host and pathogen proteins.

The phenotypes elicited by pathogens, i.e., the signs and symptoms
observed in a patient, may provide information about molecular
mechanisms (Gkoutos et al., 2018). The information that phenotypes
provide about molecular mechanisms is commonly exploited in
computational studies of Mendelian disease mechanisms (Oellrich et al.,
2016; Schofield et al., 2012), for example to suggest candidate genes
(Hoehndorf et al., 2011; Meehan et al., 2017) or diagnose patients (Köhler
et al., 2009), but the information can also be used to identify drug targets
(Hoehndorf et al., 2013a) or gene functions (Hoehndorf et al., 2013b).
We hypothesize that the host phenotypes elicited by an infection with a
pathogen are, among others, the result of molecular interactions, and that
knowledge of the phenotypes exhibited by the host can be used to suggest
the protein perturbations from which these phenotypes arise.

One major challenge of the novel PHI prediction problem is the lack
of ground truth negative data. A recent method, DeNovo (Eid et al., 2016),
adopted a “dissimilarity-based negative sampling”: for each virus protein,
the negatives are sampled from human proteins that do not have known
interactions with other similar virus proteins (above a certain sequence
similarity threshold). Another method based on protein sequences (Zhou
et al., 2018), samples negatives from only the set of host proteins that are
less than 80% similar (in terms of sequence similarity) to the host proteins
in the positive training data. However, the influence of sequence similarity
on function is not uniform and while there is evidence for a number of
general evolutionary rules, we are unable to determine cutoffs for any
specific protein or function (Whisstock and Lesk, 2003; Ponting, 2001).
By construction, these sampling schemes make the human proteins in the
negative set different from the positive set; when used not only for training
a model but also for evaluating its performance, this sampling scheme
has the potential to over-estimate the actual performance for finding novel
PHIs. In a more realistic evaluation for a novel virus species, a model
would be evaluated on all the host proteins with which it could potentially
interact, regardless of sequence similarity.

From these motivations, we developed a machine learning method,
DeepViral, to predict potential interactions between viruses and all
human proteins for which we can generate the relevant features. Firstly,
the features of phenotypes, functions and taxonomic classifications are
embedded in a shared space for human proteins and viruses. We then
extended a sequence model by incorporating the phenotype features of
viruses into the model. We show that the joint model trained on both the
sequences and phenotypes can significantly outperform state-of-the-art
methods and predict potential PHIs in a realistic experimental setup for
novel viruses.

2 Materials and methods

DeepViral is a model that predicts potential protein interactions between
viruses and human hosts from the protein sequences and feature
embeddings of phenotypes, functions and taxonomies. To enable
predictions based on such different features we embedded them in a shared
representation space. We then combine these feature embeddings with a
protein sequence model to predict potential PHIs of novel viruses. The
workflow of DeepViral is illustrated in Figure 1.

2.1 Data sources

Interactions between hosts and pathogens were obtained from the Host
Pathogen Interaction Database (HPIDB; version 3) (Ammari et al., 2016).
The phenotypes associated with pathogens were collected from the
PathoPhenoDB (Kafkas et al., 2018), a database of manually curated and
text-mined associations of pathogens, infectious diseases and phenotypes.
We downloaded the PathoPhenoDB database version 1.2.1 (http://
patho.phenomebrowser.net/).

The phenotypes associated with human genes were collected from
the Human Phenotype Ontology (HPO) database (Köhler et al., 2018),
and the phenotypes associated with mouse genes and the orthologous
gene mappings from mouse genes to human genes originated from the
Mouse Genome Informatics (MGI) database (Smith et al., 2018). The
Entrez gene IDs in HPO and MGI were mapped to reviewed Uniprot
protein IDs using the Uniprot Retrieve/ID mapping tool (https://www.
uniprot.org/uploadlists) on March 6, 2020. The Gene Ontology
annotations of human proteins (release date 2020-02-22) were downloaded
from the Gene Ontology Consortium (Ashburner et al., 2000; The Gene
Ontology Consortium, 2017). Human PPI networks were downloaded
from String (Szklarczyk et al., 2019) and filtered to only include the
interactions with experimental evidence. The human protein sequences
were obtained from the Swiss-Prot database (Consortium, 2019).

To add background knowledge from biomedical ontologies of
phenotypes and GO classes, we downloaded the cross-species
PhenomeNET ontology (Hoehndorf et al., 2011; Rodríguez-García et al.,
2017), from the AberOWL ontology repository (Hoehndorf et al., 2015a)
on September 13, 2018. We obtained the NCBI Taxonomy classification
(Sayers et al., 2009) as an ontology in OWL format (version 2018-07-27)
from EMBL-EBI ontology repository (https://www.ebi.ac.uk/
ols/ontologies/ncbitaxon).

2.2 Learning feature embeddings

To generate feature embeddings, we used DL2Vec (Chen et al., 2020),
a recent method for learning features for entities (in our case, the
human proteins and viruses) from their associations to ontological classes.
DL2Vec first converted the ontologies and entity associations into a
graph, with the classes and entities as the nodes and the associations
and ontology axioms as the edges. Then a number of random walks were
performed, starting from the entities over to the ontology graph and thereby
generating a corpus of walks in the form of sentences capturing the graph
neighborhoods and thereby the ontology axioms. After the construction
of such sentences, a Word2vec skipgram model (Mikolov et al., 2013)
was used to learn an embedding for each entity by learning from the
corpus. Following the recommendations of the authors of DL2Vec, we
fixed the number of walks to 100, the walk length to 30, the embedding
dimension to100 and the number of training epochs to30. The embeddings
were trained with the Word2Vec library in Julia (version 1.0.4). The
resultant embedding was a vector representation of an entity capturing
its co-occurrence relations with other entities within the walks generated
by DL2Vec. As an example, the walks starting from a virus node explored
its graph neighborhood, i.e., its associated phenotypes and its taxonomic
relatives, and as an result, its feature embedding captured this information
according to the co-occurrence patterns.

2.3 Supervised prediction models and parameter tuning

The neural network model of DeepViral consists of two components: a
phenotype model based on the feature embeddings of viruses and human
proteins and a sequence model based on the amino acid sequences of the
human and viral proteins. The maximum input length of protein sequences
is set to 1,000 amino acids and all shorter sequences are repeated up to
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Fig. 1: The workflow of DeepViral. (a) Generation of an embedding: the arrows of human proteins and virus taxa represent their annotations to the
ontology classes. The dashed lines between viruses represent their taxonomic relations. The annotations, taxonomic relations and ontologies were fed
into DL2Vec to generate feature embeddings of dimension 100 for each human protein and virus taxa. (b) Joint prediction model: latent representation
learned from feature embeddings and protein sequences are concatenated into a joint representation, for human protein and virus protein respectively, on
which a dot product is performed to predict interactions.

the maximum length. The input protein sequences are encoded as a one-
hot encoding matrix of 22 rows that represents each amino acid type and
the original sequence length (before being repeated), and 1,000 columns
representing each position of the amino acid sequence.

To predict the likelihood of an interaction between a pair of proteins,
we trained the network as a binary classifier, to minimize the binary cross-
entropy loss defined below,

L = −
1

N

N∑

i=1

yt · log(yp) + (1− yt) · log(1− yp)

where N is the total number of predictions, yt and yp is the true label and
predicted likelihood of y.

We implemented our model using the Keras library (Chollet et al.,
2015) and performed training on Nvidia Tesla V100 GPUs. The phenotype
model consists of a fully connected layer with the feature embeddings
as input. The sequence model is a convolutional neural network (CNN)
with the sequences as input and consists of 1-dimensional convolution,
max pooling and fully connected layers. We tuned the following
hyperparameters of the model: the sizes and numbers of the convolution
filters, the size of the max pool and the number of neurons in the fully
connected layers. We fixed these hyperparameters throughout all the
experiments: 16 convolutional layers for each filter of 8, 16, ..., 64 in
length, a pool size of 200 and 8 neurons for the dense layers. We also used
dropouts (Srivastava et al., 2014) for the convolutional and dense layers
with a rate of 0.5 and LeakyReLU as the activation function for the dense
layer with an alpha set to 0.1.

3 Results

3.1 Embedding features of viruses and human proteins

from phenotypes, functions and taxonomies

We started with the biological hypothesis that phenotypes (i.e., symptoms)
elicited by viruses in their hosts can act as a proxy for the underlying
molecular mechanisms of the infection, and therefore may provide
additional information to the prediction of potential PHIs for novel viruses.

To generate feature embeddings for human proteins and virus taxa,
we applied a recent representation learning method DL2Vec (Chen et al.,
2020), which learned feature embeddings for entities based on their
annotations to ontology classes (see Section 2.2). DL2Vec takes two types
of inputs: the associations of the entities with ontology classes (e.g., human
proteins and their functions), and the ontologies themselves.

For representing virus taxa through the phenotypes they elicit in their
hosts, we used the phenotype associations for viruses from PathoPhenoDB
(Kafkas et al., 2018), a database of pathogen to host phenotype (signs and
symptoms) associations. To increase the coverage of phenotypes beyond
PathoPhenoDB, the taxonomic relations of the viruses were added from
the NCBI Taxonomy (Sayers et al., 2009). By adding these taxonomic
relations (as annotations of viruses to DL2Vec), we propagated the known
phenotypes along the taxonomic hierarchies and learned a generalized
embedding for viruses that do not have any phenotype annotations in
PathoPhenoDB but have close relatives that do.

Similarly, for representing human proteins, we used the annotations
of their associated phenotypes from the Human Phenotype Ontology
(HPO) database (Köhler et al., 2018), the phenotypes associated with their
mouse orthologs from the Mouse Genome Informatics (MGI) database
(Smith et al., 2018), and their protein functions from the Gene Ontology
(GO) database (Ashburner et al., 2000; The Gene Ontology Consortium,
2017). We propagated these annotations through the human PPI network,
which has been shown to improve prediction for gene-disease associations
(Alshahrani and Hoehndorf, 2018).

To provide DL2Vec with structured background knowledge of human
and mouse phenotypes as well as protein functions, we used the cross-
species phenotype ontology PhenomeNET (Hoehndorf et al., 2011;
Rodríguez-García et al., 2017), which is built upon and includes the Gene
Ontology (Ashburner et al., 2000; The Gene Ontology Consortium, 2017).
These ontologies contain formalized biological background knowledge
(Hoehndorf et al., 2015b), which has the potential to significantly improve
the performance of these features in machine learning and predictive
analyses (Smaili et al., 2019; Kulmanov et al., 2020).
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3.2 A joint model for PPI prediction from sequences and

phenotypes

DeepViral consists of a phenotype model trained on phenotypes caused
by a viral infection and a sequence model trained on protein sequences,
as shown in Figure 1 (b). The two models take a pair of virus and human
proteins as input and predicts the probability score of their interaction. The
inputs for a human protein are its feature embedding and its sequence, and
the features for a viral protein are its sequence and the feature embedding
of the virus species to which it belongs. The sequence model projects
the protein sequence into a low dimension vector representation, which
is concatenated with the vector projected from the embedding by the
phenotype model to form a joint representation of the proteins. A dot
product was performed over the two vector representations of the pair
of proteins to compute their similarity, which was then used as input to
a sigmoid activation function to compute their predicted probability of
interaction. In an evaluation where the inputs were not symmetric, e.g.,
only using the feature embeddings of human proteins but not viruses (or
vice versa), an additional dense layer was added to project the longer
representation to the same dimension as the other so that the dot product
could be performed.

Existing prediction methods for inter-species PPI (e.g., virus–human
interactions) have rarely been compared with methods designed for intra-
species (e.g. human) PPI prediction. To compare with the existing
sequence-based methods for both intra- and inter-species PPI prediction,
we evaluated DeepViral and RCNN (Chen et al., 2019), a recent method
designed for intra-species prediction, on an existing dataset (Eid et al.,
2016) that has been used to evaluate a number of PHI prediction methods
(Yang et al., 2020; Alguwaizani et al., 2018; Zhou et al., 2018). The
respective model performances and implementation details are shown in
Supplementary Table 1. DeepViral trained only on sequences achieves
comparable performance with other sequence based methods, while the
joint model is able to achieve the best performances in most metrics.
However, the evaluation dataset suffers from several drawbacks: 1)
negative sampling (to create a balanced dataset) was based on sequence
dissimilarity; 2) the training and test sets are small relative to the current
size of the PHI databases; 3) there are overlapping viruses (i.e., data
leakage) at species level between the training and test sets, which makes
it unsuitable for the problem of novel PHI prediction.

3.3 Experimental setup, negative sampling and evaluation

metrics for novel viruses

Motivated by the need for more representative datasets to evaluate methods
for novel PHI prediction, we constructed a larger dataset from the curated
virus–host interactions in HPIDB (Ammari et al., 2016), a database of
host–pathogen protein–protein interactions. We constructed our positive
set by filtering HPIDB to include all virus–host interactions that 1) are
provided with an MIscore, a confidence score for molecular interactions
(Villaveces et al., 2015); 2) are associated with an existing virus family
in the NCBI taxonomy (Sayers et al., 2009); 3) are within 1,000 amino
acids in length (for both human and viral proteins). The sequence length
cut-off of 1,000 is chosen to include over 88.2% of the human proteins in
Swiss-Prot and over 91.6% of the virus proteins in HPIDB. After filtering,
the dataset includes 24,678 positive interactions and 1,066 viral proteins
from 14 virus families and 292 virus taxa.

To realistically evaluate the prediction performance, we performed
a leave-one-family-out (LOFO) cross validation: at each run, one virus
family in our positive set was left out for testing, 20% of the remaining
families for validation, and the rest 80% for training. The objective of the
LOFO cross-validation is to evaluate the model under a scenario in which
the novel virus emerges from a novel virus family - in our study, “novel” is

defined as the situation in which we have no or very little knowledge about
its protein interactions and the molecular functions of the viral proteins.

Instead of using “dissimilarity-based negative sampling” to construct a
balanced dataset, we sampled our negatives from all the possible pairwise
combinations of human and viral proteins, as long as the pair did not occur
in the positive set. Essentially, we treated all “unknown” interactions as
negatives. As the dataset was at this point unbalanced with more negatives
than positives, we evaluated the model with the area under the receiver
operating characteristic (ROC) curve (Fawcett, 2006). A high ROCAUC
indicates the ability of the model to prioritize the true positive interacting
proteins out of all the human proteins. We computed a ROCAUC for each
virus family, and also for each viral protein and virus taxon in that family,
for which we reported the mean across them, i.e. macro averages. Each
model was evaluated 5 times independently to compute the 95% confidence
interval of the ROCAUC, which is bounded bymean±1.96× σ√

n
, where

n is the sample size andσ is the standard deviation. Additionally, the mean
ranks of the true positive proteins were provided as a more interpretable
metric: for each viral protein, we ranked all of the 16,627 human proteins
in Swiss-Prot (with a length limit of 1,000) as its potential interaction
partner based on the prediction score and obtained the mean ranks of the
true positives.

3.4 Phenotypes improve prediction for novel viruses

With the newly constructed dataset, we further evaluated the existing
methods as well as the variants of DeepViral, under the scenario in which
a novel virus (from a novel family) emerges and no previous knowledge
(except about its protein sequences and the phenotypes elicited in its hosts)
is known.

We compared DeepViral with two existing state-of-the-art methods
based on protein sequences: Doc2Vec + RF (Yang et al., 2020), a
recent method predicting for virus–human interactions; and RCNN (Chen
et al., 2019), a recent deep learning based method for intra-species (e.g.,
human) PPI prediction. To adapt Doc2Vec + RF on our dataset, we used
the pretrained Doc2Vec model provided by the authors and the same
parameters for the random forest model for training. Similarly, for RCNN,
we used the pre-trained embeddings for amino acids and the same model
parameters for training. Since the stop criterion for Doc2Vec + RF was to
have at most 2 samples at each leaf node, we did not use validation data
and trained it with the entirety of the training data, while a validation set
was used for both RCNN and DeepViral as described in the experimental
setup.

The performance of each model is shown in Table 1. For models
using only sequence features, DeepViral and Doc2Vec + RF perform on a
similar level across the metrics. As the current state-of-the-art method
for intra-species PPI prediction, RCNN consistently yields the lowest
performances. Adding human or virus embeddings individually shows
a slight improvement in most metrics, compared to the sequence-only
models, while the joint model with both embeddings achieved the best
performances overall.

4 Discussion

We developed DeepViral, a machine learning method for predicting PHIs
between viruses and human hosts. DeepViral is, based on our review of
the literature, the first predictor using clinical phenotypes as an additional
feature in PHI prediction and it has been seen to provide a significant
improvement (p < 0.05; see confidence intervals in Table 1) over
purely sequence based methods. Phenotype-based approaches have been
successful in predicting disease-gene associations for Mendelian diseases
(Hoehndorf et al., 2011) and intra-species PPIs (Alshahrani et al., 2017),
but have not yet been used for the prediction of (inter-species) PHIs in
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Method Family-wise ROCAUC Taxon-wise ROCAUC Protein-wise ROCAUC Mean rank

RCNN (Chen et al., 2019) 0.726 [0.717 - 0.734] 0.759 [0.750 - 0.768] 0.737 [0.731 - 0.743] 4669
Doc2Vec + RF (Yang et al., 2020) 0.764 [0.763 - 0.765] 0.768 [0.766 - 0.770] 0.751 [0.751 - 0.752] 3740

DeepViral (seq) 0.770 [0.763 - 0.777] 0.768 [0.759 - 0.777] 0.749 [0.742 - 0.756] 4064
DeepViral (seq + human embedding) 0.778 [0.766 - 0.790] 0.789 [0.776 - 0.801] 0.757 [0.742 - 0.771] 4245
DeepViral (seq + viral embedding) 0.788 [0.776 - 0.801] 0.782 [0.773 - 0.790] 0.757 [0.746 - 0.767] 3496

DeepViral (joint) 0.813 [0.808 - 0.817] 0.829 [0.822 - 0.836] 0.800 [0.797 - 0.804] 3156

Table 1. Comparison with the state-of-the-art methods on our dataset to evaluate the performances for novel viruses. The brackets after DeepViral indicate the

features used for the model: seq – protein sequences, joint – both sequences and embeddings of human proteins and viruses. The square brackets behind ROCAUC

scores indicate the 95% confidence interval.

infectious diseases. Our model avoids the bottleneck of identifying the
molecular functions of pathogen proteins by instead introducing a novel
and – in the context of infectious diseases – rarely explored type of feature,
the phenotypes elicited by pathogens in their hosts, as a “proxy” for the
molecular mechanisms, which in turn eventually produce the observed
clinical phenotypes.

The focus of our method on utilizing features generated based
on endo-phenotypes observed in humans and mice (Schofield et al.,
2016) has therefore the crucial advantage that we can identify host-
pathogen interactions that may contribute to particular signs and
symptoms. For example, our model consistently prioritizes the interaction
between the proteins of Zika virus (NCBITaxon:64320) and DDX3X
(UniProt:O00571) in humans. Infections with Zika virus have
the potential to result in abnormal embryogenesis and, specifically,
microcephaly (Wang et al., 2017). Phenotypes associated with DDX3X
in the mouse ortholog include abnormal embryogenesis, microcephaly,
and abnormal neural tube closure (Chen et al., 2016). DDX3X mutations
in humans have been found to result in intellectual disability, specifically
in females and affect individuals in a dose-dependent manner (Blok et al.,
2015). While DDX3X has previously been linked to the infectivity of the
Zika virus (Doñate-Macián et al., 2018), our model further suggests a role
of DDX3X in the development of the embryogenesis phenotypes resulting
from Zika virus infections.

While we demonstrate quantitatively an improvement over existing
methods on an existing dataset (Eid et al., 2016), we argue that
the performances using this evaluation approach may have been over-
estimated due to the negative sampling scheme based on sequence
similarity that is used not only for training but also for evaluation of
the model. Under a more realistic evaluation procedure that considers
all host proteins as potential interaction partners for novel viruses, the
achieved predictive performances are considerably lower. This calls for
future efforts in the direction of PHI prediction of novel viruses, an issue
today of increasing relevance to global public health. Accurate predictions
of potential PHIs for novel pathogens with rapidly obtainable features
would be an important development for understanding infectious disease
mechanisms and the repurposing of existing drugs.

An example of such a novel virus is the novel coronavirus SARS-CoV-
2, which as of 6th August 2020 reached more than 18 million infected cases
and 707 thousand fatalities globally (Dong et al., 2020) in a timespan of
9 months. Based on a recently released dataset of 332 PHIs from 26 viral
proteins of SARS-CoV-2 (Gordon et al., 2020), we applied DeepViral
by treating it as a novel family (with no other Coronaviridae viruses
in the dataset) and achieved a family-wise ROCAUC of 0.723 (0.699–
0.747; 95% CI), which is within the observed variability in predicting for
different virus families, as shown in Figure 2. This family-wise variability
suggests that the learned features to predict for PHIs may have different
generalization power across families, possibly a result of varying degrees

of (dis)similarity between the virus families. Nonetheless, optimizing the
predictive power for a single virus, e.g., SARS-CoV-2, requires a case-
by-case experimental setup. Specifically in the case of SARS-CoV-2, one
can potentially relax the leave-one-family-out evaluation, as we have prior
knowledge about other species in its family, e.g., SARS-CoV and MERS-
CoV, and their interactions with hosts and protein functions (Thiel et al.,
2003). This is indeed a topic for further investigation.

Fig. 2: ROCAUC for each of the 14 virus families from the joint model,
colored by the number of positives belonging to that family.

There are several limitations that can be addressed by future efforts.
One is the scarcity of training data for inter-species PPIs and this may
be leveraged by transfer learning on the much larger intra-species PPI
data available for humans and other model organisms. We also ignored
other types of PHIs outside virus–human interactions in our current study,
such as those of other hosts, e.g., plants and fishes, and other types of
pathogens, e.g., bacteria and fungi. Additionally, predicting tissue-specific
PHIs would also provide additional insights, as proteins of both human
hosts (Fagerberg et al., 2014) and viruses (Jarosinski et al., 2012) often
have tissue-specific expressions and functions.
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