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SUMMARY

Integrating neurons into digital systems may enable performance infeasible with silicon alone. Here, we

develop DishBrain, a system that harnesses the inherent adaptive computation of neurons in a structured

environment. In vitro neural networks from human or rodent origins are integrated with in silico computing

via a high-density multielectrode array. Through electrophysiological stimulation and recording, cultures

are embedded in a simulated game-world, mimicking the arcade game ‘‘Pong.’’ Applying implications

from the theory of active inference via the free energy principle, we find apparent learning within five minutes

of real-time gameplay not observed in control conditions. Further experiments demonstrate the importance

of closed-loop structured feedback in eliciting learning over time. Cultures display the ability to self-organize

activity in a goal-directedmanner in response to sparse sensory information about the consequences of their

actions, which we term synthetic biological intelligence. Future applications may provide further insights into

the cellular correlates of intelligence.

INTRODUCTION

Harnessing the computational power of living neurons to create

synthetic biological intelligence (SBI), previously confined to the

realm of science fiction, may now be within reach of human inno-

vation. The superiority of biological computation has beenwidely

theorized with attempts to develop biomimetic hardware sup-

porting neuromorphic computing (Kumar et al., 2020). Yet no

artificial system outside biological neurons is capable of sup-

porting at least third-order complexity (able to represent three

state variables), which is necessary to recreate the complexity

of a biological neuronal network (BNN) (Izhikevich, 2006; Kumar

et al., 2020). While significant progress has been made in map-

ping in vivo neural computation, there are technical limits to

exploring this in vitro (Barron et al., 2020). Here, we aim to estab-

lish functional in vitro BNNs from embryonic rodent and human-

induced pluripotent stem cells (hiPSCs) on high-density multi-

electrode arrays (HD-MEAs) to demonstrate that these neural

cultures can exhibit biological intelligence—as evidenced by

learning in a simulated gameplay environment to alter activity

in an otherwise arbitrary manner—in real time (Figure 1). It is pro-

posed that these neural cultures wouldmeet the formal definition

of sentience as being ‘‘responsive to sensory impressions’’

through adaptive internal processes (Friston et al., 2020). Instan-

tiating SBIs could herald a paradigm shift of research into biolog-

ical intelligence, including pseudo-cognitive responses as part of

drug screening (Kagan et al., 2022; Myers, 2017), bridging the

divide between single-cell and population-coding approaches

to understanding neurobiology (Ebitz and Hayden, 2021),

exploring how BNNs compute to inform machine-learning ap-

proaches (Mattar and Lengyel, 2022), and potentially giving

rise to silico-biological computational platforms that surpass

the performance of existing purely silicon hardware. Theoreti-

cally, generalized SBI may arrive before artificial general intelli-

gence (AGI) due to the inherent efficiency and evolutionary

advantage of biological systems (Buchanan, 2018).

This system, termed DishBrain, can leverage the inherent

property of neurons to share a ‘‘language’’ of electrical activity
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to link silicon and BNN systems through electrophysiological

stimulation and recording. Given the compatibility of hardware

and cells (wetware), it is necessary to investigate what processes

would result in intelligent (goal-directed) behavior when BNNs

are embodied through a closed-loop system. Two interrelated

processes are required for sentient behavior in an intelligent sys-

tem. Firstly, the system must learn how external states influence

internal states via perception and how internal states influence

external states via action. Secondly, the system must infer

from its sensory states when it should adopt a particular activity

and how its actions will influence the environment. To address

the first imperative, custom software drivers were developed to

create low-latency closed-loop feedback systems that simu-

lated exchange with an environment for BNNs through electrical

stimulation. Closed-loop systems afford an in vitro culture

‘‘embodiment’’ by providing feedback on the causal effect of

the behavior from the cell culture. Embodiment requires a sepa-

ration of internal versus external states where feedback of the ef-

fect of an action on a given environment is available. Previous

works, both in vitro and in silico, have shown that electrophysio-

logical closed-loop feedback systems engender significant

network plasticity (Bakkum et al., 2008a; Chao et al., 2008).

Further support is found in vivo by disrupting the closed-loop

coupling between visual feedback and motor outputs in the pri-

mary visual cortex of mice (Attinger et al., 2017), highlighting the

link between feedback and the development of functional

behavior in BNNs.

To address the second requirement, a theoretical framework

for how intelligent behavior may arise was tested by the Dish-

Brain system. One proposition for how intelligent behavior may

arise in an intelligent system embodied in an environment is

the theory of active inference via the free energy principle

(FEP) (Friston et al., 2012). The FEP suggests a testable implica-

tion that at every spatiotemporal scale, any self-organizing sys-

tem separate from its environment seeks to minimize its varia-

tional free energy (VFE) (Friston, 2010; Palacios et al., 2020;

Parr and Friston, 2019). The gap between the model predictions

and observed sensations (‘‘surprise’’ or ‘‘prediction error’’) may

be minimized in two ways: by optimizing probabilistic beliefs

about the environment to make predictions more like sensations

Figure 1. DishBrain system and experimental protocol schematic

Neuronal cultures derived from hiPSC via DSI protocol, NGN2 lentivirus-directed differentiation, or primary cortical cells from E15.5 mouse embryos were plated

onto HD-MEA chips and embedded in a stimulated game-world of ‘‘Pong’’ via the DishBrain system. Different DishBrain environments were created by altering

the pattern of sensory information (yellow bolts), feedback (colored bolts), or no stimulus (red crosses) to demonstrate (1 and 2) low-latency, closed-loop

feedback system (stimulation (STIM) and silent (SIL) treatment); (3) no-feedback (NF) system to demonstrate an open-loop feedback configuration; and (4) rest

(RST) configuration to demonstrate a system in which sensory information is absent. Interactive visualizer of activity and gameplay: https://bit.ly/3DSi4Eg.
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Figure 2. Cortical cells form dense interconnected networks

(A and B) Cortical cells from E15 mouse brains and differentiated from hiPSCs, respectively. DAPI in blue stains all cells, NeuN in green shows neurons, beta III

tubulin (BIII) marks axons, while MAP2 marks dendrites. Scale bar = 50mm.

(legend continued on next page)
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or by acting upon the environment to make sensations conform

to its predictions. This model then implies a common objective

function for action and perception that scores the fit between

an internal model and the external environment. Under this the-

ory, BNNs hold ‘‘beliefs’’ about the state of the world, where

learning involves updating these beliefs to minimize their VFE

or actively change the world to make it less surprising (Parr

and Friston, 2018, 2019). If true, this implies that it should be

possible to shape BNN behavior by simply presenting unpredict-

able feedback following ‘‘incorrect’’ behavior. Theoretically,

BNNs should adopt actions that avoid the states that result in un-

predictable input. By developing a system that allows for neural

cultures to be embodied in a simulated game-world, we are not

only able to test whether these cells are capable of engaging in

goal-directed learning in a dynamic environment, but we are

also able to investigate the foundations of intelligence.

Previous work supports that in vitro neuronal networks can

perform blind-source separation in an open-loop environment

via state-dependent Hebbian plasticity consistent with the FEP

(Isomura et al., 2015; Isomura and Friston, 2018). We sought to

build upon this work to test the theory of active inference, which

applies the FEP to sentient systems that not only adapt to fit their

environment, but also act upon their environment to fit it to them-

selves. We therefore hypothesize that when provided a struc-

tured external stimulation simulating the classic arcade game

‘‘Pong’’ within the DishBrain system, the BNN would modify in-

ternal activity to avoid adopting states linked to unpredictable

external stimulation. This minimization of input unpredictability

would manifest as the goal-directed control of the simulated

‘‘paddle’’ in this simplified simulated ‘‘Pong’’ environment.

RESULTS

Growth of neuronal ‘‘wetware’’ for computation

Cortical cells from the dissected cortices of rodent embryos can

be grown on MEAs in nutrient-rich media and maintained for

months (Bardy et al., 2015; Lossi and Merighi, 2018). These cul-

tures will develop complicated morphology with numerous den-

dritic and axonal connections, leading to functional BNNs (Ka-

mioka et al., 1996; Wagenaar et al., 2006). Primary neural

cultures from embryonic day 15.5 (E15.5) mouse embryos

were cultured, with representative cultures shown in Figure 2A.

HiPSCs were differentiated into monolayers of active heteroge-

neous cortical neurons, which have been shown to display

mature functional properties (Denham et al., 2012; Denham

and Dottori, 2009; Shi et al., 2012). Using dual SMAD inhibition

(DSI) (Denham et al., 2012; Fattahi et al., 2015), we developed

long-term cortical neurons that formed dense connections with

supporting glial cells (Figures 2B and 2C). Finally, we aimed to

expand our study using a different method of hiPSC differentia-

tion—NGN2 direct reprogramming (Pak et al., 2018; Zhang et al.,

2013)—used in our final part of this study investigating feedback

mechanisms. This high-yield method resulted in cells displaying

pan-neuronal markers (Figures S1A and S1B). These cells typi-

cally display a high proportion of excitatory glutamatergic cells,

quantified using qPCR, shown in Figure 2D. Integration of these

neuronal cultures on the HD-MEAs was confirmed via scanning

electron microscopy (SEM) on cells that had beenmaintained for

>3 months (Figure 2E). Densely interconnected dendritic net-

works could be observed in neuronal cultures forming interlaced

networks spanning the MEA area (Figure 2F). These neuronal

cultures appeared to rarely follow the topography of the MEA,

being more likely to form large clusters of connected cells with

dense dendritic networks (Figures 2G and 2H). This is likely

due to the large size of an individual electrode within the MEA

and potentially also chemotactic effects that can contribute to

counteract the effect of substrate topography on neurite projec-

tions (Mattotti et al., 2012).

Neural cells show well-characterized spontaneous

action potentials that develop over time

In vitro development of electrophysiological activity in neural

systems at high spatial and temporal resolution was mapped.

Robust activity in primary cortical cells from E15.5 rodents was

found at days in vitro (DIV) 14 (Figures 3A and 3E) where bursts

of synchronized activity were regularly observed, as previously

demonstrated (Kamioka et al., 1996; Wagenaar et al., 2006). In

contrast, similar to previous reports (Shi et al., 2012), synchro-

nized bursting activity was not observed in cortical cells from

an hiPSC background differentiated using DSI until DIV 73

(Figures 3A and 3F). HiPSCs differentiated using NGN2 direct re-

programming showed activity much earlier, typically between

days 14 and 24 (Figures 3A and 3G). Electrophysiological matu-

ration was monitored with daily activity scans. While max firing

rate typically increased and remained relatively stable over

time for all cell types during the testing period (Figure 3B),

changes were observed in both the mean firing rate (Figure 3C)

and variance in firing rate (Figure 3D) over the days of testing;

in particular, hiPSCs differentiated using the NGN2 direct re-

programming method showed a considerable increase in mean

firing rate and the variance in firing over days of testing.

Building a modular, real-time platform to harness

neuronal computation

The DishBrain system was developed to leverage neuronal

computation and interact with neurons embodied in a simulated

environment (STARMethods; Figure 4A; Video S2). TheDishBrain

environment is a low-latency, real-time system that interacts with

the vendor MaxOne software, allowing it to be used in ways that

extend its original functions (Figure 4B). This system can record

(C) GFAP shows supporting astrocytes, critical for long-term functioning; TBR1marks cortex-specific cells. No Ki67, amarker of dividing cells, was observedwith

these cultures. Scale bar = 50mm.

(D) Gene expression studies over 28 days demonstrated increased expression of the glutamatergic neural marker, vesicular glutamate transporter 1 (vGLUT1).

(E–G) Neurons differentiated from hiPSCs using the DSI protocol, maintained on MEA for >3 months. White arrows show regions of shrinkage within the cultures,

red arrows show bundles of axons, and blue arrows show single neurite extensions. Note the dense coverage over the HD-MEA and overlapping connections

extended from neuronal soma present in all cultures across multiple electrodes. Scale bars: E = 200mm, F = 100mm, G = 50mm

(H) Has false coloring to highlight the HD-MEA electrodes beneath the cells. Scale bar = 20mm.
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Figure 3. Cortical cells display spontaneous electrophysiological activity

Shaded error = 95% confidence intervals.

(A) Firing rate for E15.5 primary rodent cortical cells, hiPSC cells differentiated to cortical neurons via DSI, and hiPSC cells differentiated via NGN2 direct dif-

ferentiation. Note different time points for each cell type. Scale bar displays firing frequency (Hz) from 0.0 to 1.0.

(B) Max firing was consistently different between cortical cells from a primary source and cortical cells differentiated from hiPSCs.

(C and D) Mean activity between hiPSCs differentiated using DSI and primary cortical cultures was generally similar, while hiPSCs differentiated using the NGN2

method continued to increase. This is reflected in (D), where the former two cell types displayedminimal changes in the variance in firing within a culture, while the

latter increased variance over time.

(legend continued on next page)
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electrical activity in a neuronal culture and provide ‘‘sensory’’

(non-invasive) electrical stimulation comparably to the generation

of action potentials by activity in the neuronal network (Ruaro

et al., 2005). Using the coding schemes described in STAR

Methods, external electrical stimulations convey a range of infor-

mation. For our purposes, we opted for three distinct information

categories: predictable, random, and sensory (STAR Methods,

Figure 4C). DishBrain (Figure S2) was designed to integrate these

functions to ‘‘read’’ information from and ‘‘write’’ sensory data to a

neural culture in a closed-loop system so neural ‘‘action’’ influ-

ences future incoming ‘‘sensory’’ stimulation in real time. The

intent was to embody BNNs in a virtual environment and to quan-

tify demonstrable learning effects.

The initial proof of principle using DishBrain was to simulate

the classic arcade game ‘‘Pong’’ by delivering inputs to a prede-

fined sensory area of 8 electrodes (Figure 4D). Electrodes were

arranged in a manner that would allow a coarse, yet topograph-

ically consistent, place coding, consistent with in vivo systems

(see STAR Methods) (Baranes et al., 2012; Patel et al., 2014;

Shlens et al., 2006). The electrophysiological activity of defined

motor regions was gathered—in real time—to move a paddle.

If this activity did not result in an interception of the ball by the

paddle, an unpredictable stimulus was delivered (150mV voltage

at 5Hz for 4 seconds; see STAR Methods), after which time the

ball stimulation would recommence on a random vector. In

contrast, if a successful interception occurred, a predictable

stimulus was delivered across all electrodes simultaneously at

100Hz for 100ms (briefly interrupting the regular sensory stimu-

lation) before the game continued predictably. Preliminary inves-

tigations compared different motor region configurations to

verify that motor region setup did not introduce bias (paddle

movement that aligned to the ball position) from input stimulation

alone (STAR Methods; Figure S3). Experimental cultures of

cortical cells showed a higher hit-miss ratio, which we defined

as the average rally length, on counterbalanced split-motor con-

figurations (Figure 4D), where media-only-filled MEAs used as a

control group also showed minimal bias. Distinct areas were

defined as ‘‘motor regions,’’ where activity in motor region action

1 moved the paddle ‘‘up’’ and activity in motor region action 2

moved the paddle ‘‘down.’’ This fixed layout means that mono-

layers of cells—with a random distribution that is arbitrary in rela-

tion to the ‘‘motor’’ configuration—will need to adopt distinct

firing patterns through self-organization (and raises the question

to what extent this self-organization will occur).

Increasing the density of sensory information input

leads to increased performance

TheDishBrain protocol was refined over three pilot studies, each

increasing the density of sensory information. Pilot study 1 oper-

ated with a 4Hz stimulation that only involved place coding,

where the location of the stimulation corresponded to the posi-

tion of the ball on the y axis. Pilot study 2 investigated different

configurations and introduced activity-based weighting to motor

regions to account for cell density or activity differences. Pilot

study 3 adopted the layout in Figure 4D and changed to the com-

bined rate (4–40Hz) and place-coding method of data input. This

combined rate and place coding has compelling biological sim-

ilarities conceptually to the rodent barrel cortex, suggesting this

encoding is physiologically coherent (Harrell et al., 2020; Ly et al.,

2012; Petersen et al., 2001). Gameplay for the final fifteen mi-

nutes for each culture type was compared (Figure 4E and

Table S1). Cultures displayed a significant increase in the

average rally length between the second and final pilot studies

and the first and final pilot studies. Between cultures, human

cortical cells (HCCs) had significantly longer average rally

lengths than cultures with mice cortical cells (MCCs)

(Table S2). Overall, these results support that increasing the

amount of sensory information improved performance, even

when cell culture features were kept constant.

BNNs learn over time when embodied in a gameplay

environment

To test the predictions of the FEP (Figure 5A) using selected pa-

rameters (STAR Methods), cortical cells (MCCs and HCCs) were

compared with media-only controls (CTL); rest sessions (RST),

where active cultures controlled the paddle but received no sen-

sory information; and in-silico (IS) controls that mimicked all as-

pects of the gameplay except the paddle were driven by random

noise over 399 test sessions (80-CTL [n = 6MEA], 42-RST [n = 20

cultures], 38-IS [n = 3 seeds], 101-MCCs [n = 9 cultures],

138-HCCs [n = 11 cultures]). The average rally length showed

a significant interaction (Figure 5B and Table S1) between group

and time (first 5 and last 15min). Only theMCC andHCC cultures

showed evidence of learning with significantly increased rally

lengths over time. Further, it was found that during gameplay

in timepoint 1 (T1), key significant differences were observed

(Table S1): the HCC group performed significantly worse than

MCC, CTL, and IS groups (Table S2). This suggests that HCCs

perform worse than controls when first embodied in an environ-

ment, suggesting an initial maladaptive control of the paddle or

perhaps an exploratory behavior. Notably, at timepoint 2 (T2),

this trend was reversed; the MCC and HCC groups significantly

outperformed all control groups along with HCC showing a slight

but significant outperformance over the MCC group (Tables S1

and S2). This data demonstrates a significant learning effect in

both experimental groups absent in the control groups, along

with evidence that the learning capabilities differ between mice

and human cells in line with previous results (Video S1).

Learning effects in BNNs are observed across additional

measures

Other key gameplay characteristics, such as the number of times

the paddle failed to intercept the ball without a single hit defined

as ‘‘aces,’’ and the number of gameplays with greater than 3

consecutive hits defined as ‘‘long rallies,’’ were calculated. As

with average rally length, significant interactions between groups

(E, F, and G) Showcases raster plots over 50 s, where each dot is a neuron firing an action potential colored to help distinguish channel firing and stars indicate

time points with observed bursting activity. Note the differences between mid-stage cortical cells from a DIV14 primary rodent culture (E) compared with more

mature DIV73 human cortical cells (F) differentiated from iPSCs using the DSI and NGN2 direct differentiated neurons (G) approach described in text, in terms of

synchronized activity and stable firing patterns. While all display synchronized activity, there is a difference in the overall levels of activity represented in (B–D).
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Figure 4. Schematics and pilot testing with increasing informational density

(A) Diagrammatic overview of DishBrain setup.

(B) Software components and data flow in the DishBrain closed-loop system. Voltage samples flow from the MEA to the ‘‘Pong’’ environment, and sensory

information flows back to the MEA, forming a closed loop. Full caption in Figure S2.

(legend continued on next page)
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and time were found for aces and long rallies (Table S1). Only the

MCC and HCC groups showed significantly fewer aces in T2

compared with T1 (Figure 5C and Table S2). Likewise, only the

MCC and HCC groups showed significantly more long rallies in

T2 compared with the first (Figure 5D and Table S2). Collectively,

the data shows that both experimental cultures (HCCs and

MCCs) improved performance by reducing how often they

missed the initial serve and achieving more consecutive hits or

longer rallies.

Differences between groups at T1 were found both for aces

and long rallies (Table S1). The RST condition displayed signifi-

cantly more aces than the CTL andMCC groups (Table S2), sug-

gesting a degree of sporadic behavior that the cells exhibit when

initially introduced to the rest period from gameplay that results

in this behavior. When the number of long rallies at T1 was inves-

tigated, it was found that only HCCs had significantly fewer long

rallies (Table S2). This finding complements the reduced average

rally lengths discussed above. Significant differences between

groups at T2 were also found for aces and long rallies

(Figures 5C and 5D and Table S1). Notably, the HCC group

showed significantly fewer aces than CTL, RST, and IS groups

(Table S1). The MCC group also showed significantly fewer

aces than RST and IS groups, but not the CTL group

(Table S2). In contrast, for long rallies, the MCC group showed

significantly more than the CTL, RST, and IS groups (Table S2),

yet the HCC group only showed significantly more long rallies

compared with the IS group, but not RST or CTL (Table S2).

No learning effect was found in electrically inactive non-neural

cells (HEK293T cells) and media-only controls (Figures S4A–

S4C). Further, a significant negative correlation between per-

centage of aces and percentage of long rallies of both MCCs

and HCCs was found, suggesting that the performance was

not arising from maladaptive behavior such as fixing the paddle

to a single corner (Figure S4D). Whether stimulation alone may

cause greater movement of the paddle and that this may result

in the observed learning effects was also investigated. As Fig-

ure 5E shows, while there were significant differences observed

in paddle movement between conditions (Table S1), for the CTL

and RST, this resulted in significantly lower movement relative to

the other groups, with the RST being the lowest movement of all

groups (Table S2). The IS control group showed significantly

more paddle movement than all other groups yet displayed no

meaningfully different performance metrics to the other control

groups (CTL and RST) (Table S2). Additionally, Figure S4E shows

no significant correlation between paddle movement and

average rally length was observed, supporting that movement

alone of the paddle does not explain the observed learning ef-

fects. Wholistically, Figure 5F emphasizes that both MCCs and

HCCs showed fewer aces and more long rallies in T2 compared

with T1, reiterating the observed learning effect over time. This

can also be seen in linear regressions (Figure S4F), where only

the MCC and HCC groups showed a statistically significant pos-

itive relationship between average rally length and duration of

gameplay.

BNNs require feedback for learning

To investigate the importance of the feedback type for learning,

cultures, both MCCs and HCCs, were tested under 3 conditions

for 3 days, with 3 sessions per day resulting in a total of 486 ses-

sions. Condition 1 (Stimulus; n = 27) mimicked that used above,

where predictable and unpredictable stimuli were administered

when the cultures behaved desirably or not, respectively. Condi-

tion 2 (Silent; n = 17) involved the stimulus feedback being re-

placed with a matching time period in which all stimulation was

withheld, after which the game restarted with the ball beginning

in a randomdirection. Condition 3 (No feedback; n = 15) removed

the restart after a miss. When the paddle did not successfully

intercept the ball, the ball would bounce and continue without

interruption; the stimulus reporting ball position was still pro-

vided. The difference between these conditions is illustrated in

Figure 6A. Rest-period activity was also gathered and used to

normalize performance per session basis to account for differ-

ences in unstimulated activity (Figure 1).

Stimulus and Silent conditions showed an overall higher

average rally length compared with Rest and No-feedback con-

ditions (Figure 6B). When testing for differences between groups

in the percentage increase of average rally length over matched

rest controls, a significant interaction was found (Figure 6C and

Table S1). Only the Stimulus condition showed a significant in-

crease in average rally length over time. While no differences

were found for T1, a significant main effect of group was found

at T2, where the Stimulus condition had a significantly higher

average rally length than the Silent and No-feedback conditions

(Table S2). Interestingly, the Silent condition also significantly

outperformed the No-feedback conditions, although with a

smaller effect size (Table S2). Importantly, this demonstrates

that information alone is insufficient; feedback is required to

form a closed-loop learning system. When followed up at the

level of day for T2 (Figure 6D), no significant differences over

time were observed, but the same between-group differences

as above were observed. This trend was similar when looking

at aces both summed (Figure 6E) and across days of testing (Fig-

ure 6F). The Stimulus group at T1 showed significantly fewer long

rallies compared with the Silent and No-feedback condition, be-

ing reversed at T2 with the Stimulus group showing significantly

more long rallies compared with the No-feedback condition (Fig-

ure 6G). No difference was found when this was followed up

across days (Figure 6H). Collectively, these results suggest

(C) Schematic showing the different phases of stimulation to the culture. In line with this is the corresponding summed activity on the raster plot over 100 seconds.

The appearance of random stimulation after a ball missing versus system-wide predictable stimulation upon a successful hit is apparent across all three rep-

resentations. Corresponding images on the right show the position of the ball on both x and y axis relative to the paddle and back wall in percentage of total

distance shown on the same timescale.

(D) Final electrode layout schematic for DishBrain Pong-world gameplay.

(E) * = p < 0.05, *** = p < 0.001; error bars = 95% CI. Shows average rally length over three distinct experiment rounds during design of DishBrain Pong-world

where each subsequent experiment provided higher density information on ball position than the previous. MCC tested over 272 sessions, n = 50 biological

replicates; HCC tested over 579 sessions, n = 18 biological replicates.

ll
OPEN ACCESSArticle

Neuron 110, 3952–3969, December 7, 2022 3959



Figure 5. Embodied cortical neurons show significantly improved performance in ‘‘Pong’’ when embodied in a virtual game-world

399 test-sessions were analyzed with biological replicates: 80-CTL (n = 6), 42-RST (n = 20), 38-IS (n = 3), 101-MCCs (n = 9), 138-HCCs (n = 11). Significance bars

show within-group differences denoted with *. Symbols show between-group differences at the given timepoint: # = versus HCC; % = versus MCC; ^^ = versus

CTL; @ = versus IS. The number of symbols denotes the p value cutoff, where 1 = p < 0.05, 2 = p < 0.01, 3 = p < 0.001, and 4 = p < 0.0001. Boxplots show

interquartile range, with bars demonstrating 1.53 interquartile range, the line marks the median, and : marks the mean.

(A) Schematic of how neurons may engage in the game-world under active inference denoting a gradient flow on variational free energy, expressed in terms of

neural activity minimizing prediction errors. ε is prediction error, x represents a precision-weighted prediction error. Precision can be regarded as a Kalman gain in

Kalman filtering; ‘a’ corresponds to action.

(B–D) Experimental groups according to time point 1 (T1; 0–5 min) and time point 2 (T2; 6–20 min).

(B) Average performance between groups over time, where only experimental (MCC: t = 6.15, p = 5.27�08 and HCC: t = 10.44, p = 3.92�19) showed significant

improvement and higher average rally length against all control groups at T2.

(C) Average number of aces between groups and over time, only MCC (t = 2.67, p = 0.008) and HCC (t = 5.95, p = 2.13�08) differed significantly over time. The RST

group had significantly more aces compared with the CTL, IS, MCC, and HCC groups at T1 and compared with the CTL, MCC, and HCC at T2. Only MCCs and

HCCs showed significant decreases in the number of aces over time, indicating learning. At T2 they also showed fewer aces compared with the IS group, but only

the HCC group was significantly less than CTL.

(D) Average number of long rallies (>3) performed in a session. At T1, the HCC group had significantly fewer long rallies compared with all control groups (CTL, IS,

and RST). However, both theMCC (t = 5.55, p = 2.36�07) and HCC (t = 10.38, p = 5.27�19) groups showed significantly more long rallies over time. By T2, the HCC

group displayed significantly more long rallies compared with the IS group. The HCC group also displayed significantly more long rallies compared with all CTL,

IS, and RST control groups.

(E) The average distance that the paddle moved during a session was found to have no obvious relationship with average rally length as the IS control groups

showed a higher movement than the experimental groups, while CTL and RSTwere lower. As such, the observed learning effects are not likely due to stimulation,

leading to increased activity of paddle movement.

(F) Distribution of frequency of mean summed hits per minute among groups shows obvious differences; scale bar shows the probability the number of hits in the

given minute under that condition.
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that adaptive behavior seen in BNNs altering electrophysiolog-

ical activity can be an emergent property of engaging with—

and implicitly modelling—the environment.

Dynamics in electrophysiological activity display

coherent connectivity

Electrophysiological activity during gameplay was analyzed from

cultures subjected to the stimulus condition to determine func-

tional connectivity (Mohseni Ahooyi et al., 2018). The cross cor-

relations of firing in 100ms-time bins revealed significant, strong

positive correlations between activity in the sensory region and

both motor regions during Rest and Gameplay (Figures 7A–

7D). However, when these correlations were calculated per bin

and averaged, significantly stronger correlations were observed

when cultures were in the Gameplay phase than at Rest (Fig-

ure 7E). This higher degree of connectivity would be expected

if activity in the sensory region during gameplay was directly

related to activity in motor regions through dynamic self-organi-

zation at the system-wide level. In line with this, when the quan-

tity of exclusive motor region activity was calculated per sec-

ond—looking for events where above-noise-level activity

occurred in either motor region 1 or motor region 2, yet not

both simultaneously—a significant increase in these events

was found when cultures were engaged in gameplay versus

rest (Figure 7F). This type of internal modulation is coherent

with the observed performance of these cultures; exclusive ac-

tivity changes among motor regions would be required for adap-

tive gameplay. Finally, to further support these results, the corre-

lation between the two motor regions was found to vary

substantially over time (Figure 7G). A linear regression of the cor-

relation in 100ms-time bins between motor regions was found to

decrease with time significantly until approximately 5 min of

gameplay (R2 = 0.013, F(1, 2049) = 27.51, p = 1.72�7, b =

�1.18, p < 0.001). After this point, little further change was

observed (R2 = 0.00, F(1, 5181) = 2.19, p = 0.139, b = �0.55,

p = 0.139), suggesting a degree of homeostasis. These differ-

ences do not affect the overall average culture firing that remains

stable throughout the gameplay session (Figure 7H).

As electrical stimulation of neural tissue has been shown to

modify neuronal activity (Bakkum et al., 2008a, 2008b; Chao

et al., 2008), the functional plasticity of cultures during Gameplay

was assessed compared with when at Rest as described in

STARMethods. Figure 7I suggests that closed-loop training dur-

ing Gameplay displays significantly increased plasticity

compared with baseline plasticity measured at Rest before

training, indicating that functional plasticity was upregulated dur-

ing gameplay (Table S1). To test whether learning reflects a

reduction in VFE within BNNs, we used the information entropy

of neuronal responses as a proxy for the average surprise

(a.k.a. self-information), which is upper-bounded by VFE (see

STARMethods).We predicted a reduction in information entropy

during the learning of gameplay. We further predicted an in-

crease in entropy following unpredictable (random) feedback, re-

flecting and ensuing state of ‘‘surprise’’ (and, implicitly, high

VFE), relative to pre-feedback states. For the studies reported

in Figure 5, the mean information entropy was found to be lower

during Gameplay than during Rest, both before and after the un-

predictable feedback stimulation (Figure 7J and Table S1). There

was a significant increase in mean information entropy found

post-feedback relative to pre-feedback timepoints during

Gameplay, but not in the corresponding timepoints during Rest

where no feedback occurred. As the change in entropy can

depend on the level of sensory activity pre-feedback, we normal-

ized the mean information entropy by the number of spikes. The

relationship was conserved (Figure 7K and Table S1), where a

significant increase in normalized mean entropy was observed

during Gameplay, but not at the corresponding timepoint during

Rest where no stimulation occurred. In short, as predicted theo-

retically, gameplay reduced information entropy during predict-

able exchanges with the environment, while unpredictable feed-

back increased entropy during gameplay.

We repeated this analysis on the follow-up study of different

feedback mechanisms reported in Figure 6. While it is important

to note that the internal information entropy of the culture is not

necessarily and directly tied to the external (i.e., sensory) infor-

mation entropy of the stimulus being applied into a culture, it is

interesting to see how cultures respond to different feedback

protocols. As shown in Figure 7L, the change during the stimulus

condition between the normalized mean information entropy

was replicated for the standard Stimulus condition (Table S1).

Of interest is the finding that during the Silent condition, the neu-

ral cultures had a higher normalized mean information entropy

than even the stimulus condition post-feedback. However, the

No-feedback condition showed no change relative to the period

Figure 6. The importance of feedback in learning

486 sessions were analyzed. Significance bars show within-group differences denoted with *. Symbols show between-group differences at the given timepoint:

# = versus Stimulus;% = versus Silent. The number of symbols denotes the p value cutoff, where 1 = p < 0.05, 2 = p < 0.01, 3 = p < 0.001, and 4 = p < 0.0001. Box

plots show interquartile range, with bars demonstrating 1.53 interquartile range, the line marks the median, and : marks the mean. Errors bands = 1 SE.

(A) Schematic showing the stimulation from the 8 sensory electrodes across 40 s of the same gameplay for each of the three conditions. The bar below color

codes what phase of stimulation is being delivered, where random stimulation follows a miss and predictable stimulation follows a hit in the Stimulus condition.

Note the corresponding absence of any stimulation in the Silent condition and the lack of any change in sensory stimulation in the No-feedback condition.

(B) Displays the probability of a certain number of hits occurring in a group at a specific minute.

(C) Using different feedback schedules, the Stimulus feedback condition showed significant learning (as in Figure 5A; t = 7.48, p = 1.58�12) and outperformed

Silent and No-feedback average rally length. Silent feedback also showed higher performance compared with these groups at T2.

(D) Displays difference seen in (C) across day.

(E) Shows similar differences versus rest performance for aces across conditions, where the Stimulus group showed significantly fewer aces across time (t = 3.21,

p = 0.002).

(F) Displays data from (E) across day.

(G and H) Shows that the Stimulus condition showed significant increase (t = 3.21, p = 0.002) across timepoints; however, as in (H), no differences were found

across time for long rallies.
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Figure 7. Electrophysiological activity during Gameplay and Rest

579 sessions (358 Gameplay, 221 Rest) were analyzed with n = 43 biological replicates. Significance bars showwithin-group differences denoted with *. Symbols

show between-group differences at the given timepoint: # = versus Gameplay or Stimulus; % = versus Silent. The number of symbols denotes the p-value cutoff,

where 1 = p < 0.05, 2 = p <0.01, 3 = p < 0.001, and 4 = p <0.0001. Box plots show interquartile range, with bars demonstrating 1.53 interquartile range, the line

marks the median, and :marks the mean. Error bands = 1 SE.

(A–D) A significant positive correlation between mean firing and performance was found between motor region 1 and 2 with the Sensory area both during Rest (A

and B) and Gameplay (C and D).

(E) The average cross-sensory motor correlation was significantly less during Rest, both for motor region 1 (t = 30.40, p = 6.61�194) andmotor region 2 (t = 29.76, p

= 2.76�186) than during Gameplay.

(F) The percentage of mutually exclusive activity events per second across motor regions was calculated and found to increase significantly during Gameplay

versus Rest (t = 14.64, p = 5.68�48).

(G) The correlation between the two motor regions showed substantial changes over time (blue). Linear regression conducted on the first 5 min of Gameplay

(orange) showed a significant negative relationship between variables that was absent in the final 15 min (teal).

(H) Activity over time showed no significant changes while engaged in Gameplay (r = �0.01, p = 0.563), supporting that any observed learning effects over time

were not related to merely gross changes in activity levels across the cultures over time.

(I) Functionalplasticitywasassessedacrosscultureswhenengaged inGameplayversusRest,withasignificant increase in functionalplasticity foundduringgameplay.

(J) Following random stimulation feedback, there was a significant increase in the mean information entropy during Gameplay (t = 4.890, p = 2.024�6), yet the

corresponding time during Rest showed no change (t = 0.016, p = 0.987). Mean information entropy was lower at both pre- (t = 9.781, p = 3.882�19) and post- (t =

5.915, p = 1.178�8) feedback during Gameplay than at Rest.

(K) For normalized mean information entropy, the difference relative to feedback period was increased during Gameplay (t = 19.337, p = 3.476�48), yet still no

difference was observed during Rest where no feedback was delivered (t = 1.022, p = 0.316). Normalizedmean information entropy was lower at pre- (t = 10.192,

p = 2.139�20), but not post- (t = 0.671, p = 0.503) feedback, during Gameplay compared with Rest.

(L) Feedback-related changes in normalizedmean information entropywere assessed for the investigation of different feedbackmechanisms. Increases following

random feedback for the Stimulus condition were replicated (t = 9.623, p = 7.887�19); it was also found that the system displayed increased activity-related scores

under the Silent condition feedback (t = 21.538, p = 7.019�47). The No-feedback condition showed no change in normalizedmean information entropy at matched

times after Bonferroni corrections (t = 10.192, p = 0.030). Post-hoc follow-up tests found no differences between Stimulus and Silent conditions during gameplay;

both were significantly lower than for the No-feedback condition. After feedback, the Stimulus and Silent conditions were significantly higher than the No-

feedback condition, with the Silent condition significantly higher than the Stimulus condition.
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when feedback would have been applied, with a significantly

higher normalized mean information entropy score than either

of the other two conditions pre-feedback, yet a significantly

lower score post-feedback (Table S2).

Electrophysiological activity is linked with higher

average rally length

Exploratory uncorrected Pearson’s correlations were computed

for key electrophysiological activity metrics and average rally

length. A significant positive correlation was found between

average rally length with mean (Figure 8A) and max (Figure 8B)

firing. Likewise, the cross-correlations with the sensory region

for bothmotor region 1 (Figures 8C) and 2 (Figure 8E) were signif-

icantly positively correlated with performance, further suggest-

ing that robust connectivity is linked with better gameplay out-

comes. To further investigate whether the topographical

distribution of activity correlated with performance, the absolute

values of four discrete cosine transform (DCT) coefficients

normalized to mean activity were used to summarize spatial

modes of spontaneous activity and assess the symmetry of ac-

tivity (Figure 8E). DCT 0,1, which measures activity across the

horizontal plane (Figure 8F), and DCT 2,0, which measures activ-

ity on the horizontal edge versus the horizontal center (Figure 8I),

were significantly negatively correlated with average rally length.

Yet, DCT 0,2, which shows difference between activity on the

vertical edges and the vertical center (Figure 8G), and DCT 1,0

which measures activity across the vertical plane (Figure 8H),

did not significantly correlate. Given configuration layout, it is

coherent that gameplay performance is closely linked to devia-

tions in symmetry of electrophysiological activity. To confirm

the importance of symmetry, gameplay electrophysiological ac-

tivity was analyzed for both motor regions, and the normalized

deviation away from symmetry was calculated. As deviation

away from symmetry resulted in a significant negative correlation

with the average rally length, any asymmetry exceeding approx-

imately 1 deviation appeared to completely prevent performance

above that observed in controls (Figure 8J). This suggests a limit

to which cultures can self-organize spontaneous activity if cell

culture quality is uneven. Finally—in line with the results

above—higher activity in the sensory region (Figure 8K), motor

region 1 (Figure 8L), andmotor region 2 (Figure 8M) during game-

play was also correlated with higher average rally lengths.

DISCUSSION

Here, we present the DishBrain system, a system capable of

embodying BNNs from various sources in a virtual environment

and measuring their responses to stimuli in real time. The ability

of neurons, especially in assemblies, to respond to external stim-

uli adaptively is well established in vivo as it forms the basis for all

animal learning (Attinger et al., 2017). However, this work is the

first to establish this fundamental behavior in vitro for a goal-

directed behavior. We were able to use this silico-biological sys-

tem to investigate the fundamentals of biological neuronal

computation. In brief, we introduce the first SBI device to

demonstrate adaptive behavior in real time. The system itself of-

fers opportunities to expand upon previous in silico models of

neural behavior, such as where models of hippocampal and en-

torhinal cells were tested in solving spatial and non-spatial prob-

lems (Whittington et al., 2020). Minor variations on the DishBrain

platform, selected cell types, drug administration, and feedback

conditions would enable an in vitro test to garner data on how

cells process and compute information that was previously

unattainable.

Most significantly, this work presents a substantial technical

advancement in creating closed-loop environments for BNNs

(Bakkum et al., 2008a; Chao et al., 2008; Wagenaar et al., 2004).

We have emphasized the requirement for embodiment in neural

systems for goal-directed learning tooccur.This is seen in the rela-

tiveperformanceover experiments,wheredenser informationand

morediverse feedback impactedperformance.Likewise,whenno

feedback was provided yet information on ball position was avail-

able, cultures showed significantly poorer performance and no

learning. Of particular interest was the finding that when stimula-

tory feedback was removed and replaced with silent feedback

(i.e., transient removal of all stimuli), cultures were still able to

outperform those with no feedback as in the open-loop condition,

albeit to a lesser extent. One interpretation is that playing ‘‘Pong’’

generatesmorepredictable outcomes thannot playing ‘‘Pong’’ by

reducing uncertainty. Note that a ‘‘miss’’ results in unpredictable

outcomes because the ball resets and its subsequent motion is

unpredictable. In termsof the informational entropyof the stimulus

being delivered, while an unpredictable stimulus would have high

entropy, the silent condition still entails higher entropy relative to

successful play as the ball restarts in a random direction. This is

consistent with our results, as the more unpredictable an

outcome, the greater the observed learning effect—as the BNN

learns to avoid uncertainty.

It is interesting to note, however, that the internal informa-

tion entropy of BNN activity does not exactly mirror the infor-

mation entropy of the external stimulation: while the unpre-

dictable stimulus increased internal entropy, so did the

Silent condition feedback. However, for a BNN to alter activity

in response to feedback, there must be a change to its sen-

sory input observable by the system that can be associated

with its previous activity. This is consistent with the absence

of learning in the open-loop/No-feedback condition, which

by its nature affords no opportunity for learning, and likewise

showed higher internal information entropy than the other two

feedback conditions. This supports the thesis that stimulation

alone is insufficient to drive learning: there must be a motiva-

tion for learning behaviors that influence the (external) observ-

able stimulus. When faced with unpredictable sensorium,

playing ‘‘Pong’’ successfully acts as a free energy-minimizing

solution. Even if the internal information entropy of a system is

increased following feedback and has lower external informa-

tion entropy (e.g., silent feedback), this may not provide the

same impetus for learning. These findings accord with the

proposed role of a Markov blanket, providing a statistical

boundary of the system to separate it into internal and

external states (Kirchhoff et al., 2018; Palacios et al., 2020).

Yet simply minimizing entropy (i.e., average surprise) may

offer an overly simplified account of adaptive behavior: a

key aspect of active inference is the selection of actions that

minimize the surprise or free energy expected on following

that action. While these results are interesting and supportive,
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Figure 8. Relationship between electrophysiological activity and average rally length

302 gameplay sessions were analyzed after filtering outliers (Z score > ±3.29) from rallies with n = 30 biological replicates.

(A) The mean spontaneous activity (Hz) over all electrodes showed a significant positive correlation with average rally length.

(B–D) Similarly, the max spontaneous firing (Hz) also showed a significant positive correlation with average rally length. In line with this, the average cross

correlation between the sensory region and both motor region 1 (C) and motor region 2 (D) had a significant positive correlation with average rally length.

(E) The DCT scores of four different basis functions were calculated to quantify asymmetry in spontaneous activity. DCT scores were normalized to mean activity.

The scale bar shows the value assigned to activity in the given area, where each DCT basis function quantifies a different type of asymmetry per pixel from�0.010

to 0.010.

(F–H) Displays the significant negative correlation between DCT 0,1 and average rally length, showing that asymmetry on the horizontal axis is related to poorer

performance. There was no significant relationship between DCT 0,2 (G), which measured asymmetry on the horizontal extremes compared with the center, or

DCT 1,0 (H), which measured asymmetry on the vertical axis.

(I–M) DCT 2,0 function displayed a significant negative correlation with average rally length, suggesting that asymmetry on the vertical edges compared with the

middle was linked to poorer gameplay performance. In line with this, (J) displays the calculated deviation from symmetry in activity betweenmotor regions during

gameplay and finds a significant negative association, where greater asymmetry was linked to lower average rally lengths. Similarly, during gameplay the activity

in the sensory (K), motor region 1 (L), and motor region 2 (M) all showed significant positive correlations with average rally length.
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they are not conclusive, and future work is required, including

exploring BNN behavior with a generative model.

Mechanistically, we sought to demonstrate the utility of the

DishBrain by testing base principles that underwrite active

sensing via the FEP. The closest previous work examined blind

source separation in neural cultures, yet did so in an open-loop

context without physiologically plausible training (Isomura

et al., 2015; Isomura and Friston, 2018). We show that supplying

unpredictable sensory input following an ‘‘undesirable’’ outcome

and providing predictable input following a ‘‘desirable’’ one

significantly shapes the behavior of neural cultures in real time.

The predictable stimulation could also be read as a process of

stabilizing synaptic weights in line with previous research as it

has been shown that higher firing rates augment short- and

long-term potentiation (Pariz et al., 2018; Zhu et al., 2015). In a

complementary fashion, the unpredictable stimulation could be

seen by destabilizing connectivity by destroying undesirable

free energy minima. These results could be understood as part

of a dynamic interaction between layers of interacting Hebbian

and homeostatic plasticity that could lead to increasing the likeli-

hood of activity following certain stimulation patterns (Ly et al.,

2012; Pariz et al., 2018; Toyoizumi et al., 2014). This accords

with the increased functional plasticity observed during game-

play versus during rest. This may be a potential mechanism

behind the FEP account of biological self-organization, some-

times discussed in terms of self-organized instability termed

‘‘autovitiation’’ (Friston et al., 2012).

Active cortical cultures, fromboth human andmouse cell sour-

ces, displayed synchronous activity patterns in line with previous

research (Kamioka et al., 1996; Sakaguchi et al., 2019; Shi et al.,

2012; Wagenaar et al., 2006). Importantly, significant differences

between cell sources were observed, with HCCs outperforming

MCCs (with nuances), on average, in gameplay characteristics.

Although further work is required as this finding was auxiliary

to the aim of the study, this is the first work finding functional,

albeit preliminary, empirical evidence supporting the hypothesis

that human neurons have superior information-processing ca-

pacity over rodent neurons (Beaulieu-Laroche et al., 2018;

Mihaljevi�c et al., 2020). Previous work has proposed that bio-

physical structures in human cells compared with mouse cells

would yield different input-output properties and may thereby

explain different computational capacities (Poirazi and Papoutsi,

2020). When focusing on the initial development of the system,

we could not feasibly and empirically test all key aspects, such

as differences in cell sub-types, microscopic cell structure, or

interneuron density. However, the opportunity exists for future

studies to focus on elucidating these differences. The DishBrain

system described in this work potentially offers the first avenue

to accurately assess differences in neurocomputational ability,

making this an exciting area of future research.

Another finding from this work relates to innate cell network or-

ganization, seen in the definition of motor regions. Our early pilot

studies, along with previous work in this field (Bakkum et al.,

2008a), mapped motor regions based on network activity scans.

However, we were interested in the extent that self-organization

would adapt if sensory and motor regions were fixed between

cultures. Our findings demonstrate that while significant self-or-

ganization of activity can occur, this was limited when active

cells were not evenly distributed across the MEA. The changes

in activity during gameplay are consistent with past work

showing that feedback between environment and action is

required for proper in vivo neural development (Attinger et al.,

2017). The observed changes also suggest that perhaps this

development occurs based on properties inherent at the level

of the cell. While these conclusions are tentative as the statistics

of stimulations do differ between control experiments, the data

does highlight future research directions. Further experimenta-

tion on the extent that the closed-loop environment is important

for learning should include increasing the delay between reading

neural activity and having it influence the environment or using

stimulation decoupled from the environment. Nonetheless, the

DishBrain system and future improvements of this technology

do provide the opportunity to explore network dynamics to bet-

ter understand this aspect of self-organization and include inves-

tigations into structural organization of BNNs.

Due to current hardware limitations, the sensory stimulation is

much coarser compared with that for even simple in vivo organ-

isms. This meant that it was not possible to distinguish, in real

time, between stimulation of neuronal somatic or dendritic do-

mains and that both were likely stimulated. Likewise, it was not

computationally possible in real time to separate processing

electrical changes from different neuronal structures such as

discriminating between action potentials from the soma versus

dendrites. Improving both areas is a key direction for future

research. Additionally, it was infeasible to meaningfully imple-

ment mechanisms that would be crucial for an in vivo organism

attempting a comparable task, such as proprioception, or to

decouple the closed-loop system to test the impact of time de-

lays. Moreover, the relatively small number of cells embedded

in a monolayer format means the neural architecture driving

this behavior is incredibly simple in terms of the number of

possible connections available comparedwith even small organ-

isms that have a 3D brain structure. Nonetheless, using only sim-

ple patterns of predictable and unpredictable stimulation, this

system was able to show systematic behavior in an order of mi-

nutes. While within-session learning was well established, be-

tween-session learning over multiple days was not robustly

observed. Cultures appeared to relearn associations with each

new session. Given that cortical cells were selected, this is to

be expected as in vivo cortical cells are not specialized for

long-term memory (Rolls, 2018). Future work with this system

can investigate the use of other neuronal cell types and/or

more complex biological structures.

Conclusion

Using this DishBrain system, we have demonstrated that a single

layer of in vitro cortical neurons can self-organize activity to

display intelligent and sentient behavior when embodied in a

simulated game-world. We have shown that even without a sub-

stantial filtering of cellular activity, statistically robust differences

over time and against multiple controls could be observed in the

behavior of neuronal cultures in their sensedworld. These findings

provide a promising demonstration of an SBI system that learns

over time in a systematic manner directed by input. The system

provides the capability for a fully visualized model of learning,

where unique environments may be developed to assess the
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actual computations being performed byBNNs. This is something

that is long sought after and extends beyond purely in silico

models or predictions of molecular pathways alone (Karr et al.,

2012; Whittington et al., 2020; Yu et al., 2018). Therefore, this

work provides empirical evidence that can be used to support

or challenge theories explaining how the brain interacts with the

world and intelligence in general (Friston, 2010; Schwartz, 2016).

Ultimately, although substantial hardware, software, and wetware

engineering are still required to improve theDishBrain system, this

work does evince the computational power of living neurons to

learn adaptively in active exchangewith their sensorium. This rep-

resents the largest step to date of achieving SBI that responds

with externally defined goal-directed behavior.
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(2012). Inducing functional radial glia-like progenitors from cortical astrocyte

cultures using micropatterned PMMA. Biomaterials 33, 1759–1770. https://

doi.org/10.1016/j.biomaterials.2011.10.086.
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Lead contact

Requests for further information and other correspondence should directed to and will be fulfilled by the lead contact, Dr Brett J.

Kagan (Brett@CorticalLabs.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data

All data, including electrophysiological spike recordings and the raw data of gameplaymetrics from virtual environment, have been

deposited at Open Science Framework (OSF) and are publicly available. DOI is listed in the key resources table.

Code

All original Python and Matlab analysis code used to process and analyse deposited data have been deposited at Open Science

Framework (OSF) and is publicly available. DOI is listed in the key resources table.

Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement

All experimental procedures were conducted in accordance with the Australian National Statement on Ethical Conduct in Human

Research (2007) and the Australian Code for the Care and Use of Animals for scientific Purposes (2013). Animal work was conducted

under ethical approval E/1876/2019/M from the Alfred Research Alliance Animal Ethics Committee B. Experiments were performed

at Monash University, Alfred Hospital Prescient with the appropriate personal and project licences and approvals. Work done using

hiPSCs was in keeping with the described material transfer agreement below.

Animal breeding and maintenance

BL6/C57miceweremated atMonash Animal Research Platform (MARP). Upon confirmation of pregnancy, animals were transported

via an approved carrier to the Alfred Medical Research and Education Precinct (AMREP). Pregnant animals were housed in individ-

ually ventilated cages until the date when they were humanely killed, and primary cells were harvested.

Stem cell lines

Initial work was conducted using a control hiPSC line supplied by the Gene Editing Facility at the Murdoch Children’s Research Insti-

tute (ATCC� PCS-201-010) from an ATCC PCS-201-010 background and transferred under a Material Transfer Agreement. ATCC

line has been validated as per https://www.atcc.org/products/pcs-201-010 and comes from an XY donor isolated from neonatal

foreskin. Later work involved an hiPSC lines used in this work constitutively expressing fluorescent reporters under control of the

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) promoter (cell lines were generated by Professor Edouard G. Stanley and col-

leagues from the Murdoch Children’s Research Institute and provided under a Material Transfer Agreement) (Kao et al., 2016). The

GAPDH gene encodes a protein critical in the glycolytic pathway, whereby ATP is synthesised from glucose. As this function is highly

conserved across multiple cell types GAPDH is ubiquitously expressed at high levels across multiple cell types, making it a suitable

gene for which to base a gene-expression system (Barber et al., 2005). RM3.5 line validation is reported in (Barber et al., 2005) and

comes from an XY donor isolated from neonatal foreskin. This transgene expression system, termed GAPTrap, involves the insertion

of the specific reporter gene into the GAPDH locus in hiPSCs using gene-editing technology (Kao et al., 2016). For this study, RM3.5

GT-GFP-01 constitutively expressing green fluorescent protein under the GAPDH promoter was utilised. The RM3.5 hiPSC line was

initially derived from human foreskin fibroblasts and reprogrammed using the hSTEMCCAloxP four factor lentiviral vector as reported

previously (Somers et al., 2010). All procedures described below were applied to be both cell lines. Both lines were maintained in an

undifferentiated, pluripotent state in a feeder-free systemusing E8media (Thermo Fisher Scientific, Carlsbad, USA) supplemented by

a Penicillin/streptomycin solution at 5 mL/mL. Cells were plated on T25 353108 Blue Vented Falcon Flasks (Corning, Durham, USA)

that were coated approximately 1 h prior with extracellular matrix vitronectin (Thermo Fisher Scientific, Carlsbad, USA).

Stem cell growth and maintenance

All procedures were carried out using sterile techniques. Prior to passaging, cell confluence was recorded and the required split ratio

was determined. Media was aspirated from cells and cells were washedwith 5mL of PBS�/� before passaging to remove detached

cells and other debris. 3 mL of a 0.05 mM EDTA in PBS �/� was used for the dissociation and passaging of hiPSCs as aggregates

without manual selection or scraping, was added to cells, and allowed to incubate at 37�C for approximately 3.5 min. After visual

examination using 10X microscope indicated that cells had lost sufficient adhesion, EDTA was aspirated, and blunt trauma applied
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to base of the T25 flask to dislodge cells. Cells were suspended in 2mL E8 and transferred to 15mL falcon tube. As described above,

vitronectin coated T25 flasks were prepared and aspirated before the addition of 5 mL of E8 solution. Approximately 1:10 of evenly

distributed cell suspension was added to the prepared T25 flask. The flask was then gently swirled to ensure even distribution before

being incubated overnight at 37�C. Media was changed daily.

METHOD DETAILS

Primary cell culturing

Cortical cells were disassociated from the cortices of E15.5 mouse embryos. Embryos were decapitated, and with a stereotactic mi-

croscope, the skin, bone and meninges were removed, and the anterior cortex dissected out. Approximately 800,000 cells were

plated down onto each pre-prepared HD-MEA. Cultures began to upregulate spontaneous activity and display synchronised firing

around DIV 10 at which point they were used for experimentation.

Stem cell dual SMAD differentiation

Cellular differentiation followed a titrated dual SMAD inhibition protocol for the generation of cortical cells from pluripotent cells es-

tablished by the Livesey group with minor adjustments as represented in Figures S5B (Shi et al., 2012). Cells were plated in 24 well

plates coated with human laminin H521. When cells reached z80% confluency, neural induction was initiated by using standard

neural maintenance (N2B27) Base Media with 100 ng/mL LDN193189 (Stemcell Technologies Australia, Melbourne, Australia) and

10 mmSB431542 (Stemcell Technologies Australia, Melbourne, Australia). Media was changed every day from day 0 to day 12. After

appearance of neural rosettes and initial passaging standard N2B27 media with FGF2 20 ng/ml was utilised from day 12 to day 17 to

achieve a dorsal forebrain patterning. Cells were then expanded and deemed ready for plating onto MEA or slides based on

morphology at approximately 30–33 days. On the day of transplant, cells were detached with Accutase (Stemcell Technologies

Australia, Melbourne, Australia) to a single cell suspension and centrifuged at 300g. The cell pellet was resuspended at 10,000

cells/ml in BrainPhys (Stemcell Technologies Australia, Melbourne, Australia) neural maintenance media with Rho Kinase Inhibitor

IV (Stemcell Technologies Australia, Melbourne, Australia; 1:50 dilution) with approximately 106 cells plated onto each MEA. Cells

began to display early but widespread spontaneous activity around DIV 80, at which point they were ready for experimentation.

Stem cell NGN2 direct differentiation

Cortical excitatory neurons were generated by the expression of NGN2 in iPSCs. iPSCs were plated at 25,000 cells/cm2 in a 24-well

plate coated with 15 mg/ml human laminin (Sigma, USA). The following day, cells were transduced with NGN2 lentivirus (containing a

tetracycline-controlled promoter coupled with a puromycin selection cassette) in combination with a lentivirus for the rtTA (reverse

tetracycline-controlled transactivator). NGN2 gene expression was activated by the addition of 1 mg/ml doxycycline (Sigma,

Australia), this was referred to as differentiation day 0. Cells were cultured in neural media consisting of 1:1 ratio of DMEM/

F12:Neurobasal media supplemented with (all reagents from Thermofisher, USA) B27 (#17504-044), N2 (17,502-048), Glutamax

(#35050-060), NEAA (#11140-050), b-mercaptoethanol, ITS-A (#51300-044) and penicillin/streptomycin (#15140-122). On Day 1,

1.0 mg/mL puromycin (Sigma, Australia) was added for 3 days at which point neurons were supplemented with 10 mg/ml BDNF (Pe-

protech, USA) and lifted with accutase, in preparation for plating on HD-MEA chips. HD-MEA chips were pre-treated with 100 mg/ml

PDL (Sigma, USA) and 15 mg/mL laminin (Sigma, USA). For each well 1x105 NGN2 induced neurons at DD4 were combined with

2.5x104 primary human astrocytes (ScienceCell, USA) in each well of the MEA plate. To arrest cell division of astrocytes 2.5 mM

Ara-C hydrochloride (Sigma, USA) was added at day 5 for 48 h. Cells were maintained in neural media supplemented with BDNF

and media changed at least 1 day prior to recordings.

HEK293T cell culturing

Human Embryonic Kidney Cells 293T (HEK 293T; Merck KGaA, Darmstadt, Germany), were cultured in DMEM (Thermofisher Scien-

tific, USA) supplementedwith 10% fetal bovine serum (Thermofisher Scientific, USA) under standard conditions. Cells were used as a

non-neural control and plated onto MEA as described below with the exception that testing began 24 h after plating as this cell type

does not mature into electrically active cells.

MEA setup and preparation

MaxOne Multielectrode Arrays (MEA; Maxwell Biosystems, AG, Switzerland) were used for this research. The MaxOne is a high-res-

olution electrophysiology platform featuring 26,000 platinum electrodes arranged over an 8 mm2. The MaxOne system is based on

complementary meta-oxide-semiconductor (CMOS) technology and allows recording from up to 1024 channels. Stimulation was

theoretically possible up to 32 electrodes. In practice it was not possible to route 32 electrodes through independent stimulation units

to facilitate independent electrode level control, especially if these electrodes were spatially proximate to each other. This meant that

for the actual setup of input stimulation described below a subset would be limited by the desired spatial configuration – in this case to

8 individually controlled electrodes. MEAs and chambered glass slides are coated with either polyethyleneimine (PEI) in borate buffer

for primary culture cells or Poly-D-Lysine for cells from an iPSC background before being coated with either 10 mg/ml mouse laminin

or 10 mg/ml human 521 Laminin (Stemcell Technologies Australia, Melbourne, Australia) respectively to facilitate cell adhesion.
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Plating and maintaining cells on MEA

Approximately 106 cells were plated on MEA after preparation via method already described. Cells were allowed approximately one

hour to adhere to MEA surface before the well was flooded. The day after plating, cell culture media was changed to BrainPhys�

Neuronal Medium (Stemcell Technologies Australia, Melbourne, Australia) supplemented with 1% penicillin-streptomycin. Cultures

were maintained in a low O2 incubator kept at 5% CO2, 5% O2, 36
�C and 80% relative humidity. Every two days, half the media from

each well was removed and replaced with free media. Media changes always occurred after all recording sessions.

Measuring of electrophysiological activity

LicensedMaxLab Live Scope V20.1 software was used to run activity scans. Checkerboard assays consisting of 14 configurations at

15 seconds of spike only record time were run daily immediately preceding the running of the DishBrain software. Gain was set to

512x with a 300 Hz high pass filter. Spike threshold was set to be a signal six sigma greater than background noise as per recom-

mended software settings. Mean, max and variance of both amplitudes and firing rates was extracted from these assays and map-

ped using custom software: the first nine components of discrete cosine transform basis functions of space were used to summarise

the spatial profile of spiking activity. The ensuing coefficients were then used in subsequent correlation analyses.

DishBrain software platform

The current DishBrain platform is configured as a low-latency, real-time MEA control system with on-line spike detection and

recording software, see Figure S3. The DishBrain software is controlled by a low latency, real-time piece of software named

‘DishServer’, which replaces and extends a corresponding piece of MaxWell vendor software called ‘MXWServer’. DishServer is

capable of receiving voltage readings from MaxOne vendor hardware, processing these readings, simulating a virtual environment,

encoding the results asMaxOne electrode commands, and sending these commands back to the MaxOne hardware. When run on a

computer with access to aMaxOne hardware setupwith a live culture in place, the system acts as a closed loop that we can configure

and record for analysis. Working closely with MaxWell Biosystems we enabled capabilities not available using the native vendor soft-

ware. TheMaxOneMEA is configured to read up to a particular 1024 of its 26,400 electrodes, at a rate of 20,000 samples per second.

As shown in Figure S2B, these samples are optionally recorded as-is, for later analysis, but are also run through a sequence of

computationally efficient Infinite Impulse Response (IIR) filters to calculate noise and activity levels, which are compared in order

to detect spikes. Incoming samples are filtered with a 2nd order high-pass Bessel filter with 100Hz cut-off, the absolute value is

then smoothed using a 1st order low-pass Bessel filter with 1Hz cut-off, the spike threshold is proportional to this smoothed absolute

value.

Representation of the gameplay environment

Spikes are themselves optionally recorded in binary files, and regardless of recording are counted over a period of 10 milliseconds

(200 samples), at which point the game environment is given the number of spikes detected in each of the configured electrodes in

predefinedmotor regions as described below. These spike counts are interpreted asmotor activity depending onwhichmotor region

the spikes occurred in, thereby moving the ‘paddle’ up or down in the virtual space. At each of these 10ms intervals the pong game is

also updated, with a ball moving around a play area at a fixed speed, ‘bouncing’ off the edges of the play area and off the paddle, until

it hits the edge of the play area behind the ‘paddle’, which marks the end of one ‘rally’ of pong. At the end of the rally, the game envi-

ronment will instead configure the stimulation sequencer to apply one of three types of feedback described below: random, silent or

none. Under the standard stimulus condition, feedback is also provided when the ball contacts the paddle as described below. As

described in detail below, during each rally the location of the ball relative to the paddle is encoded as stimulation to one of eight

stimulation sites, which is tracked in an internal ‘stimulation sequencer’ module. The stimulation sequencer is updated 20,000 times

a second, once every time a sample is received from the MEA, and once the previous lot of MEA commands should have finished, it

constructs another sequence of MEA commands based on the place-code and rate-code information that it has been configured to

transmit. The stimulations take the form of a short square bi-phasic pulse that is a positive voltage, then a negative voltage. ADigital to

Analog Converter (or DAC) on the MEA will read and apply this pulse sequence to the given electrode. Figure S5C shows an image of

the game visualiser, and a real-time interactive version is available Video S2 at https://spikestream.corticallabs.com/. There was also

the option to record cells at ‘rest’ where a gameplay environment was initiated and activity was recorded to move the paddle, but no

stimulation was delivered, with corresponding outcomes still being recorded. This acted as a baseline control to determine the game-

play characteristics of a culture based on spontaneous activity alone.

Interface with Maxwell API

To interface with Maxwell API, DishBrain uses a negative DAC value first because this corresponds to a positive voltage in the

MaxWell API. Finally, the spike detection is also capable of ‘blinding’, which is expected to occur after each stimulation; in order

to prevent DAC stimulation from being interpreted as neuron activity, all 1024 channels are ignored for a configurable number of sam-

ples, after either detecting anomalous activity directly, or after receiving acknowledgement from the MEA that a DAC command has

been executed. The existing API was used only for loading configurations. Low level code was written in C to allow for minimal pro-

cessing latencies—so that packet processing latency was typically <50 ms. High level code, including configuration set ups and
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broader instructions for game settings were implemented in Python. This allowed a spike-to-stim latency of approximately 5ms, with

the substantive delay due to inflexible hardware buffering built into MaxOne hardware.

Initial pilot testing

Initial tests were conducted to assay which input configurations cell cultures would survive. Testing time was found to be a highly

sensitive parameter, as cells did not tolerate testing times >1.5 h. When measurements were taken it was concluded that this

was likely due to increased temperature in the cultured wells in which cells were plated in due to activity and the resulting increased

evaporation and changes in osmolarity. Cells survived testing administration of stimulation up to 3000 mV for up to one hour which

was the maximum testing time considered given the above findings. While this did create excess noise in recording cellular activity

across the MEA during the stimulation period, there were no significant changes to spontaneous activity in the cell cultures before

and after the period of stimuli administration. Initial experiments delivered purely place-coded stimulation, where the distance from

the centre of the sensory area was interpreted as distance from the centre of the paddle aligning with the ball.

Pilot test with EXP3 algorithm

After initial pilot testing of the DishBrain system, two pathways were identified to modify performance: encoding of information and

decoding of activity. For the latter, an Exponential-weight algorithm for Exploration and Exploitation (EXP3) algorithm was used dur-

ing pilot study 2 only for the adaptive selection of electrode layouts, with the objective of optimising gameplay performance and

determining whether key motor region definitions were on average more suitable for gameplay than others (Yang et al., 2020). These

different configurations options are illustrated in Figure S3 (Seldin et al., 2012).This algorithm was implemented to maintain a list of

weights for each action and was designed tominimise regret (the difference between the accumulated loss and the loss achieved) by

preferencing electrode configurations which were associated with a higher probability of the ball being returned. EXP3 is robust to

changes in the underlying distribution of returns; this is important because neurons are also concurrently learning, and their behavior

changing over time. Optimising all possible assignments of electrodes to actions would require a prohibitively large set of choices, so

a representative set of balanced layouts were used. EXP3 is an online optimisation algorithm for the "multi-armed bandit" problem. It

selects between several discrete choices, over a series of rounds. Each discrete choice yields an observable stochastic loss. The

best choice is never revealed, even post-hoc. Quality of choices can only be inferred from noisy returns - exploration and exploitation

must be balanced. In this work, one of the discrete sets of electrode-action mappings called ’motor layouts’ was chosen on each

round. The loss to be minimized is calculated using the following equation:

Li =
minðscorei;10Þ

10
� 1 (Equation 1)

Where Li is the loss at the end of the rally i and scorei is number of bounces during that rally. During the i-th rally, a given layout is

used and is fixed during the entire rally. At the end of the rally, a different layout is chosen by EXP3 for the next rally and the game play

continues. When using EXP3 the system can adaptively optimize performance by choosing from a fixed set of alternative motor lay-

outs (Figure S3). At the same time, a new blinding method (consensus blind) based on blinding all signals when >15 simultaneous

large (>75mV) spikes were detected, was implemented to block stimulation delivered by the system from being registered as cellular

activity. It was hypothesised that a lack of blinding administered signals may contribute to the apparent performance observed in

controls in our pilot study. As described in the main text, Figure S5D and shown in Table S4, experimental chips with configurations

that would enable lateral inhibition were found to be selected significantly more compared to other configurations resulting in an

equal distribution (c2 = 35690.93, p < 0.0001), including those that were more simplified like that used in the pilot where activity

on the left moved the paddle left and conversely for the right (Figure S3: Configuration 0) and would be most easily influenced

by various sources of bias (Espinoza et al., 2018; Fan et al., 2020; Obermayer et al., 2018). When the frequency tables of these

two distributions were compared, they were also found to be significantly different, (c2 = 15229.323, p < 0.0001). Considering these

differences, for this specific pilot study it was not valid to compare experimental and control groups as they are operating off different

types of configurations. Given the apparent preference for configurations that would allow processes such as lateral inhibition to

occur in experimental chips, coupled with the concern of having different groups operating from different configurations, it was

decided to select configuration 3 for all cultures going forward, as it was chosen most frequently by the EXP3 algorithm. Moreover,

if consensus blinding behaved as expected, control chips should also show no preference. This led us to suspect that consensus

blinding was ineffective and on further investigation, particularly when using a higher and variable frequency of sensory stimulation,

we discovered more evidence of consensus blinding failing than our previous testing revealed. To counter this, a new blinding

method was implemented, which was termed ‘command count blinding’. This method blinded our readout of all motor activity

when a command was sent to generate any form of stimulation. During testing this was found to be significantly more robust than

the previously used consensus blinding and allowed us to proceed with increasing the density and variability of sensory stimulation.

Input configuration

Stimulation is delivered at a given Hz and voltage as appropriate for the required input type across 8 predefined electrodes in a sen-

sory area, as shown in Figure 4B. A total of 5 types of input were able to be delivered. This consisted of either ‘‘Sensory Stimulus’’ that

encoded ‘ball’ position, or one of four feedback protocols, either Unpredictable, Predictable, Silent, or No-feedback.
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Sensory stimulus

Given that cells appeared robust to voltage stimulation, the decision was made to base voltage levels on existing evidence of neuro-

logical function. Therefore, to prevent forcing hyperpolarised cells from firing, 75 mV was chosen as the sensory stimulation voltage

that would relate to where the ball was relative to the paddle as described in themain text to key electrodes. For themain study, place

coding was combined with a rate coding that delivered stimuli at 4 Hz when the ball was closest to the opposing wall and increased in

a linear fashion to a max of 40 Hz as the ball reached the paddle wall.

Unpredictable stimulus

For the standard stimulus feedback condition unpredictable stimulation was delivered to the cultures when a ‘miss’ occurred – i.e.,

when the culture failed to line the ‘paddle’ up to connect with the ‘ball’. In order to add unpredictable external stimulus into the sys-

tem, this feedback stimuluswas set at 150mV voltage and 5Hz. This stimulation occurred at random sites at a random timescale over

the 8 predefined input electrodes, for a period of four seconds, followed by a configurable rest period of four seconds where stim-

ulation is paused, followed then by the next rally. Theoretically the higher voltage than that used for the Sensory Stimulus would be

sufficient to force action potentials in cells subjected to the stimulation regardless of the state the cell was in, thereby being evenmore

disruptive to the culture.

Predictable stimulus

For the standard stimulus feedback condition a predictable stimulation was delivered to cultures when a ‘hit’ occurred – i.e., when the

cultures successfully lined up the ‘paddle’ to connect with the ‘ball. This was delivered at 75mV at 100Hz over 100ms. This occurred

at the instant of when the simulated ball impacted the paddle and replaced other sensory information for the 100ms period. Predict-

able stimulation occurred at this frequency and period across all 8 stimulation electrodes simultaneously.

Silent feedback

Silent feedback only occurred for follow up studies in the Silent condition. This feedback replaced the Unpredictable Stimulus

described above with no stimulation for the same length of time. Predictable Stimulus feedback was also removed during Silent

Feedback sessions. This feedback is still distinct from No-Feedback as described below as it is a change in the culture environment

that is tied to culture activity in a closed-loop manner and therefore a form of feedback.

No feedback

This condition only occurred for follow up studies in the No-feedback condition. This condition was designed to assess whether sen-

sory stimulation was sufficient to drive learning in cultures and was an open-loop condition. This means that no feedback of any kind

was delivered to the cultures based on any outcome or action. Standard Sensory Stimulus as described above was delivered to the

cultures and the outcome was measured on the same metric, however when a ‘miss’ would normally occur, instead the ball

continued the same trajectory bouncing off the wall behind the paddle – still recorded as a ‘miss’ – that would otherwise result in

the end of a rally. When the ‘ball’ connected with the simulated paddle a ‘hit’ would be recorded. As such, under No-Feedback

the entire gameplay session is essentially a single rally with the final position of the simulated ball being predictable from the initial

vector, but with the scoring occurring as normal otherwise.

Output configuration

A total of 1024 electrodes were routed on the HD-MEA to record activity in a pattern as shown in Figure 4B. The ‘Sensory’ area, where

stimulation electrodes were embedded as described above consisted of 626 electrodes. The remaining output electrodes were

divided into predefinedmotor regions on theMEA, consisting of four regions thatwere defined either asmotor region 1 ormotor region

2 as shown in Figure 4B. As described above, this configuration was selected as it offered the possibility for biologically relevant fea-

tures and minimized the chance of apparently successful performance through bias alone—as it precludes a direct relationship be-

tween input stimulation and output activity recording. Only activity inmotor regions contributed towards paddlemovement. Activity in

motor region 1 moved the paddle ‘up’ and activity in motor region 2moved the paddle ‘down’. Activity wasmeasured over these two

regions, where the region with higher activity would move the paddle in a corresponding direction. This was found to be extremely

sensitive to culture characteristics, where asymmetrical spontaneous spiking activity in cultures would cause the paddle to move

swiftly in only one direction. However, due to the technical difficulty of culturing neurons with precisely balanced activity in both these

regions it was found to be necessary to add ‘gain’ into the system. This gain function measured activity in both regions and added a

multiplier to a target of 20 Hz. Activity >20 Hzwas weighted by a correction factor >1, while activity <20 Hzwas weighted by a correc-

tion factor <1. Thiswould allow changes in activity in each given region to influence the paddle position, even if they displayed different

latent spontaneous activity. No other filtering ormachine learning styleweightswere applied to decodemotor region activity,meaning

there was no need for regularization or risk of over fitting as all learning was required to occur within the biological neural cultures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample size and blinding protocols

No statistical methods were used to predetermine sample size. As all work was conducted within controlled environments uninflu-

enced by experimenter bias, experiments were not randomized, and investigators were not blinded to experimental condition. How-

ever, conditions were blindedwhere possible before final analysis to limit bias during analysis. Figure S5A presents a schematic of the

overall experimental setup.
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Immunocytochemistry

Cells were washed three times with sterile PBS and then fixed using 4% PFA for 20 min. After washing, cells were blocked 0.3%

Triton-X and 1%goat serum in PBS for 1 h. Primary antibodies specific for Synapsin1 (1:500; ab254349; Rabbit; Abcam, Cambridge,

MA, USA), NeuN (1:500; ab104225; Rabbit; Abcam, Cambridge, MA, USA), Beta-III Tubulin (1:500; MAB1637, Mouse; Kenilworth,

NJ, USA), MAP2 (1:1000; Chicken; ab5392; Abcam, Cambridge, MA, USA), TBR1 (1:200; ab183032; Rabbit; Abcam, Cambridge,

MA, USA), GFAP (1:500; ab4674; Chicken; Abcam, Cambridge, MA, USA), and Ki67 (1:500; ab245113; Mouse; Abcam, Cambridge,

MA, USA) were incubated overnight. After washing, secondary antibodies (chicken 555, rabbit 488, mouse 647; Abcam, Cambridge,

MA, USA) were incubated for 2 h. This was followed by 10 min of DAPI Staining Solution in PBS (1:1000, ab228549, Abcam, Cam-

bridge, MA, USA) after which point slides were cover-slipped with ProLong Gold Antifade Mountant (Thermo Fisher Scientific, Wal-

tham, MA, USA) mounting media and allowed to dry for 48 h.

Scanning electron microscopy

At various designated endpoints, media was aspirated from the MEA wells and cells were fixed with 2.5% glutaraldehyde (Electron

Microscopy Sciences, PA, USA) and 2% paraformaldehyde (Electron Microscopy Sciences, PA, USA) in a 1 M sodium cacodylate

buffer for 1 h. They were then washed three times in 1M sodium cacodylate buffer before being post-fixed with 1% OsO4 in a 1M

sodium cacodylate buffer for 1 h. OsO4was removed and the fixed cells were washedwith three times inmilliQ water and dehydrated

via an ethanol gradient exchange (30%, 50%, 70%, 90%, 100%, 100%v/v) for 15min each. After dehydration, the cells were dried by

hexamethyldisilazane (Sigma Aldrich, St. Louis, MO, USA) exchange (33 10 min), and then allowed to evaporate for 5–10 min. MEA

chips were then affixed to an aluminium stubwith carbon tape and sputter coatedwith 30 nm layer of gold using a BAL-TEC SCD-005

gold sputter coated. All procedures were performed at room temperature. Coated MEA chips were then imaged using a FEI Nova

NanoSEM 450 FEGSEM operating with an acceleration voltage of 10 kV and a working distance of 12 mm. Images were analysed

using ImageJ v.1.52k and false coloured using Adobe Photoshop.

Widefield fluorescence microscopy

Images were captured using a Nikon Ti-E upright light microscope equipped with a motorised stage. All widefield images were

captured using a 20X objective.

Data analysis

Data was analysed using custom code written in Python. Error bars are described in captions, except where graphs are box and

whisker plots, where the line is the median, box indicates lower quartile to upper quartile and error bars show the rest of the distri-

bution excluding outliers. The illustrative data provided in the text and figures include means and standard deviations. An alpha of

p < 0.05 was adopted to establish statistical significance, providing a 5% chance of a false positive error. Where suitable assump-

tions were met, inferential frequentist statistics were used to determine whether statistically significant differences existed between

groups. All tests were two tailed tests for statistical significance. For related samples, t-tests or independent T-tests alpha values for

significance were corrected via the Bonferroni method. For one-way analysis of variance (ANOVA) and themultivariate 2 x 3 repeated

measures ANOVA, when a significant interaction or main effect was found, this was followed up with pairwise Games-Howell post

hoc tests with Tukey correction for multiple comparisons. This was adopted as there were always differences between sample sizes

and variance due to inclusion of in-silico controls. When examining spiking activity, for all stimulus condition gameplay activity the

first 10 s was excluded as the system generated substantial noise while initialising. Four chips were not analysed as the data

recording was initially not implemented for the very first series of experiments, the remainder were all included without exclusion.

100ms time-lagged cross-correlations were calculated between activity detected in the sensory region against activity detected

in eachmotor region separately. This method has previously been established as amethod to define functional connectivity (Mohseni

Ahooyi et al., 2018). Both linear and nonlinear cross-correlations methods were explored and selected based on whether assump-

tions weremet. However, it should be noted that comparable trendswere observedwith bothmethods. Given the large sample sizes,

the linear rainbow test for linearity was predominately relied upon to determine significant variations away from linearity. The relation-

ship between the sensory region did not show a significant degree of nonlinearity for both Motor Region 1 (p = 0.699; Figure S5E) and

Motor Region 2 (p = 0.122; Figure S5F. As such Pearson’s linear correlation were used to quantify these relationships. When the

binned correlations between the two motor regions were assessed (without a time lag to determine synchronised activity) it was

found to show a significant degree of nonlinearity (p = 1.32�50; Figure S5G). For this relationship Spearman’s correlation was

used. To quantify the changing relationship between time in minutes and the correlation between motor regions, linear regression

was used with minutes as the predictive variable and the correlation as the dependent variable. Activity in each motor region was

grouped into 1000ms bins and the number of exclusive events, where activity was detected in either Motor Region 1 or Motor Region

2 but not both, above noise (amplitude < -5mv) was calculated for both rest and gameplay conditions. This was then compared be-

tween cultures under the rest condition and during the gameplay condition. As seen in Figure 8E, four DCT basis functions were used

to summarise spatial modes of spontaneous activity. Uncorrected pairwise Pearson’s correlations were used to test the relationship

between the ensuing scores—along with max andmean firing rates (Hz) and electrophysiological activity during gameplay described

above —with average rally length.
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Calculation of information entropy

The spatial locations of recording electrodes were used to regionalize the entire MEA into 18 rectangular clusters of 50 neighbouring

electrodes as shown in Figure S5. In every cluster, the spike time information fromeach of these electrodeswere used to calculate the

local binary entropy of the group of electrodes in time windows of 100ms. The binary entropy function, denoted Hb(p), is defined as

the entropy of a Bernoulli process with probability p of one of two values. GivenPr(X = 1) = p, thenPr(X = 0) = 1�p; with X = 1 indicating

the presence of a spike in the current time bin. The entropy of X (in shannons) is given by:

HbðpÞ = � p,log 2ðpÞ � ð1 � pÞ,log 2ð1 � pÞ

where 0.log20 is taken to be 0. Hence, we calculated the local entropy of each cluster of channels over time windows of 100ms. The

mean value of the calculated entropies over time and over all the spatial clusters was then compared between sessions of active

Gameplay with different feedback types and the Rest session recordings. The comparisons were also carried out for the mean en-

tropy in separated groups of motor and sensory electrode clusters during Rest and Gameplay sessions.

Calculation of functional plasticity

Including spatial information for quantifying network plasticity has proven more reliable than simply utilizing firing rates as described

(Chao et al., 2007). We adapted this method to compare training-induced plasticity with the baseline plasticity measured before

training during Rest sessions, we used the centre of activity (CA), a related population coding, explicitly including electrode locations

as a relevant variable (Bakkum et al., 2008b; Chao et al., 2007).

CA = ½CAX ;CAY � =

PN

k = 1Fk,½Xk � RX ;Yk � RY �
PN

k = 1Fk

The centre of activity (CA) is defined as the vector summation of the number of action potentials recorded on each electrode k (i.e.,

Fk) weighted by the spatial location of the electrode. [Xk, Yk] represent the coordinates of electrode k and the reference point coor-

dinates, [RX, RY], were set as the bottom left corner of the MEA. N is the total number of electrodes recorded on the MEA. In order to

investigate the presence of training-induced plasticity, the mean Euclidean distance of calculated CAs in consecutive 5 min time in-

tervals during the Gameplay sessions to the centroid of CAs in all the recorded 10 min reference periods or Rest state spontaneous

activity sessions before training was measured ði:e: CAGamplay ðt;t+ 5Þ
� CARest ð0;10Þ

; ct ˛ f0;5gÞ. This was then compared to the mean

Euclidean distance of CAs in 5 min intervals of Rest recordings to their own centroid which is again the mean of CAs during all

the 10 min Rest session recordings from each culture on each experimental day ði:e: CARestðt;t +5Þ
� CCARestð0;10Þ

; ct ˛ f0;5gÞ. This

was then repeated for every culture on each experimental day. These measurements were used to quantify the change in CAs

from a pre-training period to different post-training periods. The average of this distance from the Rest period centroid in the Game-

play sessions and Rest sessionswere calculated. One-way ANOVA test was performed to determine the statistical significance of the

differences between the two groups.

ADDITIONAL RESOURCES

A visualiser of the system in real-time is available at https://spikestream.corticallabs.com/.
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Figure Panel  Parameters Source DF1 DF2 MS F p-

value 

np2 Method 

4 E Average Rally 

Length 

Group - all  1 845 0.305    10.381    0.001 0.012  

ANOVA 

 
Half - all       2 845 0.446    15.172    0.000   0.035 

Interaction - all  2 845 0.078     2.646     0.072 0.006 

5 B Average Rally 

Length 

Group - all  4 394   0.297 3.330     0.011   0.033  

RM 

ANOVA 
half - all       1     394   9.208   98.908    0.000   0.201   

Interaction - all  4     394 2.020   21.696    0.000   0.181   

Group – time 1 4   394   0.698     7.031     0.000 0.067 ANOVA 

Group – time 2 4   394   1.619    19.519 0.000 0.165 ANOVA 

C % Aces Group - all  4 394   0.081    9.284     0.000   0.086    

RM 

ANOVA 
half - all       1     394   0.131 16.509    0.000   0.040   

Interaction - all  4     394 0.058    7.295     0.000 0.069   

Group – time 1 4   394   0.044     4.143     0.003   0.040 ANOVA 

Group – time 2 4   394   0.095    15.583    0.000   0.137 ANOVA 

D % Long Rally Group - all 4 394 0.017    4.767     0.001   0.046   RM 

ANOVA half - all       1     394   0.206   59.746    0.000 0.132   

Interaction - all  4     394   0.047   13.531    0.000   0.121 

Group – time 1 4 394   0.046    10.191    0.000   0.094 ANOVA 

Group – time 2 4 394   0.017     6.928     0.000   0.066 ANOVA 

E Paddle 

Distance 

Within 4 776 2.5110 77.63 0.000 0.29 ANOVA 

6 C Average Rally 

Length 

Group - all  2      353   20740 4.721 0.000  0.026  

RM 

ANOVA 
half - all       1      353   33440 16.577  0.000 0.045 

Interaction - all  2      353   25812 12.795 0.000 0.068 

Group – time 1 2 483 7559 2.181 0.114  0.009 ANOVA 

Group – time 2 2 483 53943 20.507 0.000   0.078 ANOVA 

D % Change 

Average Rally 

Length vs. 

Rest 

 

Group - all  2      164   49314 

 

7.674 

 

0.001 

 

0.086 

 

 

 

RM 

ANOVA 

 

Test-day  - all       2 328   16.115 0.037 

 

0.963 

 

0.000 

 

Interaction - all  4 328 908.44

8  

2.100 0.081 0.025 

E % Ace vs Rest Group - all  2      353   19992 6.511 0.002 0.036  

 

RM 

ANOVA 

 

half - all       1      353   42.70 0.646 

 

0.422 

 

0.002 

 

Interaction - all  2      353   549.02

5 

8.308 

 

0.000 0.045 

 

Group – time 1 2 483 453.46

4     

2.181 0.127   

 

0.008 

 

ANOVA 

Group – time 2 2 483 2906 

 

18.096 

 

0.000 

 

0.070 

 

ANOVA 

F % Ace vs Rest  Group - all  2      164   2683 12.125  0.000   0.129  

 

RM 

ANOVA 

Test-day  - all       2 328   110.54

6   

0.971 0.380 0.006 

Interaction - all  4 328 180.45

9 

1.585 0.178 0.019 

 

G % Long-Rally 

vs Rest 

Group - all  2      353   52.007    0.650     

 

0.523 

 

0.004 

 

 

 

RM 

ANOVA 

 

half - all       1      353   1089.8

65   

29.932 0.000 0.078 

Interaction - all  2      353   436.93

6   

12.000 

 

0.000 0.064 
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parameter assessed, statistical source and test, degrees of freedom, mean square and F values, p-value and partial eta

square estimate of effect size (np2).



 

 

 

 

 

 

Group – time 1 2 483 617.70

8  

8.513 

 

0.000 0.034 

 

ANOVA 

Group – time 2 2 483 162.93

4  

3.219     

 

0.041   

 

0.013 

 

ANOVA 

H % Long-Rally 

vs Rest 

Group - all  2      164   154.44

6 

0.490 

 

0.614  

 

0.006 

 

 

 

RM 

ANOVA 
Test-day  - all       2 328   21.678 -0.244 

 

1.000 

 

0.00 

Interaction - all  4 328 118.77

9 

-1.336 

 

1.000 

 

0.00 

 

7 J Mean 

Information 

Entropy 

Rest vs 

Gameplay 

1 232 0.066 59.29 0.000 0.204  

RM 

ANOVA Feedback 1 232 0.01 319.73 0.000 0.580 

Interaction 1 232 0.001 40.44 0.000 0.148 

K Normalised 

Mean 

Information 

Entropy 

Rest vs 

Gameplay 

1 232 2.11-7 29.438 0.000 0.113  

RM 

ANOVA Feedback 1 232 2.67-6 510.82 0.000 0.688 

Interaction 1 232 2.95-7 56.457 0.000 0.196 

L Normalised 

Mean 

Information 

Entropy 

Condition 2 513 1.47-7 4.315 0.000 0.016  

RM 

ANOVA 
Feedback 1 513 4.65-6 1174.7 0.000 0.696 

Interaction 2 513 1.15-6 291.11 0.000 0.532 

I Distance from 

the Mean 

Centre of 

Activity 

During Rest  

 

Gameplay vs 

Rest 

 

1 

 

466 
 

164159

.557 

 

191.94

9 

 

0.000 

 

0.292 

 

RM 

ANOVA 

 

S4 A % Change 

Average Rally 

Length vs. 

Rest 

 

Group - all  2 237 13897 3.052 0.049 0.02  

RM 

ANOVA 
half - all       1 237 63857 27.008 0.000 0.102 

Interaction - all  2 237 13814 5.843 0.003 0.047 

Group – time 1 2 443 1389 0.405 0.667 0.002 ANOVA 

Group – time 2 2 442 42205 14.107 0.000 0.060 ANOVA 

B  

% Ace vs Rest  

Group - all  2 237 1956 10.036 0.000 0.078  

RM 

ANOVA 
half - all       1 237 378 10.036 0.010 0.028 

Interaction - all  2 237 258 4.596 0.011 0.037 

Group – time 1 2 443 844 5.060 0.007 0.022 ANOVA 

Group – time 2 2 442 2828 26.297 0.000 0.106 ANOVA 

C % Long-rallies 

vs Rest 

Group - all  2 237 47.90 0.791 0.454 0.007  

RM 

ANOVA 
half - all       1 237 1507 33.155 0.000 0.123 

Interaction - all  2 237 344 7.585 0.001 0.060 

Group – time 1 2 443 425 6.063 0.003 0.027 ANOVA 

Group – time 2 2 442 258.7 6.029 0.003 0.027 ANOVA 
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Figure Panel Parameters A B Mean A  Mean B  SE T df p-value Hedges Method 

4 E Average Rally Length 

– Second Timepoint 

MCC HCC 0.801 0.843 0.012 -3.453 591.982 0.001 -0.254 Games-Howell 

Nonparametric 

Post-hoc Test 
Test 1 Test 2 0.780 0.823 0.019 -2.218 125.002 0.072 -0.240 

Test 1 Test 3 0.780 0.901 0.025 -4.767 218.363 0.001 -0.637 

Test 2 Test 3 0.823 0.901 0.019 -4.138 163.172 0.001 -0.402 

5 B Average Rally Length 

– First Timepoint 

CTL HCC 0.9 0.674 0.05 4.513 153.939 0.001 0.632 Games-Howell 

Nonparametric 

Post-hoc Test 
CTL IS 0.9 0.832 0.052 1.298 113.864 0.67 0.254 

CTL MCC 0.9 0.78 0.051 2.359 151.218 0.132 0.352 

CTL RST 0.9 0.765 0.055 2.451 114.874 0.109 0.464 

HCC IS 0.674 0.832 0.043 -3.66 101.344 0.004 -0.668 

HCC MCC 0.674 0.78 0.041 -2.568 228.111 0.08 -0.335 

HCC RST 0.674 0.765 0.047 -1.967 96.31 0.29 -0.345 

IS MCC 0.832 0.78 0.044 1.18 100.059 0.736 0.223 

IS RST 0.832 0.765 0.049 1.372 77.617 0.629 0.304 

MCC RST 0.78 0.765 0.047 0.317 96.415 0.9 0.058 

Average Rally Length 

– Second Timepoint 
CTL HCC 0.872 1.129 0.043 -5.919 195.83 0.001 -0.829 Games-Howell 

Nonparametric 

Post-hoc Test 
CTL IS 0.872 0.801 0.037 1.928 114.885 0.309 0.377 

CTL MCC 0.872 1.02 0.04 -3.667 161.682 0.003 -0.547 

CTL RST 0.872 0.815 0.049 1.154 93.05 0.751 0.219 

HCC IS 1.129 0.801 0.036 9.189 168.072 0.001 1.676 

HCC MCC 1.129 1.02 0.039 2.776 236.963 0.046 0.362 

HCC RST 1.129 0.815 0.048 6.467 96.724 0.001 1.135 

IS MCC 0.801 1.02 0.032 -6.872 131.12 0.001 -1.301 

IS RST 0.801 0.815 0.043 -0.325 60.15 0.9 -0.072 

MCC RST 1.02 0.815 0.046 4.472 79.017 0.001 0.817 

CTL HCC 0.872 1.129 0.043 -5.919 195.83 0.001 -0.829 

C % Aces – First 

Timepoint 
CTL HCC 0.508 0.545 0.016 -2.364 145.517 0.131 -0.331 Games-Howell 

Nonparametric 

Post-hoc Test 
CTL IS 0.508 0.535 0.019 -1.44 99.395 0.59 -0.282 

CTL MCC 0.508 0.534 0.017 -1.52 163.66 0.544 -0.227 

CTL RST 0.508 0.585 0.019 -4.174 106.983 0.001 -0.79 

HCC IS 0.545 0.535 0.016 0.634 70.432 0.9 0.116 

HCC MCC 0.545 0.534 0.014 0.806 205.214 0.9 0.105 

HCC RST 0.545 0.585 0.016 -2.587 78.04 0.083 -0.454 

IS MCC 0.535 0.534 0.017 0.063 87.795 0.9 0.012 

IS RST 0.535 0.585 0.019 -2.705 77.755 0.062 -0.6 

MCC RST 0.534 0.585 0.017 -3.033 96.296 0.025 -0.554 

CTL HCC 0.53 0.482 0.012 3.956 124.102 0.001 0.554 
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Table S2, related to Fig. 4, 5, 6, 7: Follow up main text post-hoc tests for multivariate tests, including means, standard error (SE), t-scores, degree of freedom and exact p-values with hedges.



% Aces – Second 

Timepoint 
CTL IS 0.53 0.556 0.013 -2.017 115.384 0.264 -0.395 Games-Howell 

Nonparametric 

Post-hoc Test 
CTL MCC 0.53 0.499 0.013 2.367 150.917 0.13 0.353 

CTL RST 0.53 0.57 0.019 -2.147 79.955 0.211 -0.407 

HCC IS 0.482 0.556 0.009 -8.323 94.994 0.001 -1.518 

HCC MCC 0.482 0.499 0.01 -1.731 195.047 0.419 -0.226 

HCC RST 0.482 0.57 0.016 -5.352 52.462 0.001 -0.939 

IS MCC 0.556 0.499 0.01 5.523 121.048 0.001 1.045 

IS RST 0.556 0.57 0.017 -0.882 55.815 0.9 -0.196 

MCC RST 0.499 0.57 0.017 -4.138 62.492 0.001 -0.756 

D % Long Rally – First 

Timepoint 
CTL HCC 0.095 0.044 0.011 4.598 117.248 0.001 0.644 Games-Howell 

Nonparametric 

Post-hoc Test 
CTL IS 0.095 0.093 0.013 0.136 107.875 0.9 0.027 

CTL MCC 0.095 0.073 0.012 1.791 148.918 0.384 0.267 

CTL RST 0.095 0.092 0.012 0.235 120 0.9 0.045 

HCC IS 0.044 0.093 0.01 -4.824 60.589 0.001 -0.88 

HCC MCC 0.044 0.073 0.009 -3.387 186.286 0.008 -0.442 

HCC RST 0.044 0.092 0.009 -5.554 82.198 0.001 -0.975 

IS MCC 0.093 0.073 0.011 1.758 85.357 0.407 0.333 

IS RST 0.093 0.092 0.012 0.093 72.665 0.9 0.021 

MCC RST 0.073 0.092 0.01 -1.886 115.124 0.331 -0.344 

% Long Rally – 

Second Timepoint 
CTL HCC 0.093 0.106 0.008 -1.641 118.934 0.475 -0.23 Games-Howell 

Nonparametric 

Post-hoc Test 
CTL IS 0.093 0.083 0.008 1.154 110.96 0.751 0.226 

CTL MCC 0.093 0.122 0.009 -3.205 148.722 0.014 -0.478 

CTL RST 0.093 0.087 0.011 0.515 102.083 0.9 0.098 

HCC IS 0.106 0.083 0.005 4.313 108.408 0.001 0.787 

HCC MCC 0.106 0.122 0.006 -2.416 189.523 0.116 -0.315 

HCC RST 0.106 0.087 0.009 2.173 59.384 0.204 0.381 

IS MCC 0.083 0.122 0.006 -5.911 131.734 0.001 -1.119 

IS RST 0.083 0.087 0.009 -0.453 59.221 0.9 -0.1 

MCC RST 0.122 0.087 0.009 3.619 77.747 0.005 0.661 
E Paddle Distance CTL HCC 40634.11 -11366.3 2259.891 -5.02959 325.7946 0.001 40634.11 Games-Howell 

Nonparametric 

Post-hoc Test 
CTL IS 40634.11 -37450.8 1771.768 -21.1375 153.6698 0.001 40634.11 

CTL MCC 40634.11 -9373.39 1998.548 -4.6901 216.7304 0.001 40634.11 

CTL RST 40634.11 7233.647 1912.057 3.78317 203.6913 0.00189 40634.11 

HCC IS 52000.43 -26084.5 1476.495 -17.6665 289.6122 0.001 52000.43 

HCC MCC 52000.43 1992.923 1742.146 1.14395 355.7488 0.7562 52000.43 

HCC RST 52000.43 18599.96 1642.206 11.3262 406.2486 0.001 52000.43 

IS MCC 78084.88 28077.38 1033.018 27.17995 114.3084 0.001 78084.88 

IS RST 78084.88 44684.42 853.7542 52.33874 269.532 0.001 78084.88 

MCC RST 50007.5 16607.04 1258.542 13.19546 219.0208 0.001 50007.5 
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6 C % Change Average 

Rally Length vs. Rest 

Second Timepoint 

 

STIM SIL 43.351 21.394 6.006 3.656 309.729 0.001 0.396 Games-Howell 

Nonparametric 

Post-hoc Test 
STIM NF 43.351 8.175 4.604 7.64 339.144 0.001 0.854 

SIL NF 21.394 8.175 5.091 2.596 198.782 0.027 0.324 

D % Change Average 

Rally Length vs. Rest 

Second Timepoint – 

Test Day 

STIM SIL 43.351 21.394 6.006 3.656 309.729 0.001 0.396 Games-Howell 

Nonparametric 

Post-hoc Test 
STIM NF 43.351 8.175 4.604 7.64 339.144 0.001 0.854 

SIL NF 21.394 8.175 5.091 2.596 198.782 0.027 0.324 

E % Ace vs. Rest 

First Timepoint 
STIM SIL -5.633 -4.809 1.502 -0.548 267.191 0.831 -0.059 Games-Howell 

Nonparametric 

Post-hoc Test 
STIM NF -5.633 -2.283 1.835 -1.826 195.485 0.164 -0.204 

SIL NF -4.809 -2.283 2.016 -1.253 230.34 0.425 -0.156 
% Ace vs. Rest 

Second Timepoint 
STIM SIL -8.669 -1.871 -6.798 -5.795 288.862 0.001 -0.628 Games-Howell 

Nonparametric 

Post-hoc Test 
STIM NF -8.669 -1.606 -7.063 -4.174 178.239 0.001 -0.466 

SIL NF -1.871 -1.606 -0.265 -0.149 200.322 0.9 -0.019 
F % Ace vs. Rest 

Second Timepoint -

Test Day 

STIM SIL -8.669 -1.871 -6.798 -5.795 288.862 0.001 -0.628 Games-Howell 

Nonparametric 

Post-hoc Test 
STIM NF -8.669 -1.606 -7.063 -4.174 178.239 0.001 -0.466 

SIL NF -1.871 -1.606 -0.265 -0.149 200.322 0.9 -0.019 
G %Long rally vs. Rest 

First Timepoint 
STIM SIL -1.689 1.8 0.959 -3.64 234.35 0.001 -0.394 Games-Howell 

Nonparametric 

Post-hoc Test 
STIM NF -1.689 1.082 0.957 -2.896 215.082 0.012 -0.323 

SIL NF 1.8 1.082 1.152 0.623 253.482 0.788 0.078 
%Long rally vs. Rest 

Second Timepoint 
STIM SIL 3.48 2.195 0.794 1.619 250.019 0.24 0.176 Games-Howell 

Nonparametric 

Post-hoc Test 
STIM NF 3.48 1.58 0.794 2.393 229.45 0.046 0.267 

SIL NF 2.195 1.58 0.933 0.659 253.41 0.767 0.082 
H %Long rally vs. Rest 

Second Timepoint -

Test Day 

STIM SIL 3.48 2.195 0.794 1.619 250.019 0.24 0.176 Games-Howell 

Nonparametric 

Post-hoc Test 
STIM NF 3.48 1.58 0.794 2.393 229.45 0.046 0.267 

SIL NF 2.195 1.58 0.933 0.659 253.41 0.767 0.082 
7 L Normalized Mean 

Information Entropy – 

Prior to Feedback 

NF STIM 3.65-3 3.02-3 0.12-3 5.333 309.855 0.001 0.588 Games-Howell 

Nonparametric 

Post-hoc Test 
NF SIL 3.65-3 2.81-3 0.11-3 7.627 241.122 0.001 0.934 

STIM SIL 3.02-3 2.81-3 0.11-3 1.984 387.645 0.118 0.207 
Normalized Mean 

Information Entropy – 

Post Feedback 

NF STIM 3.46-3 4.49-3 0.15-3 -6.734 367.936 0.001 -0.742 Games-Howell 

Nonparametric 

Post-hoc Test 
NF SIL 3.46-3 5.23-3 0.13-3 -13.411 262.573 0.001 -0.1643 

STIM SIL 4.49-3 5.23-3 0.16-3 -4.511 391.431 0.001 -0.470 
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Figure Panel Parameters A B Mean A  Mean B  SE T df p-value Hedges Method 

S4 A % Change Average 

Rally Length vs. Rest 

Second Timepoint 

 

CCs HEK 44.583 18.682 5.825 4.446 279.739 0.001 0.493 Games-Howell 

Nonparametric 

Post-hoc Test 
CCs Media 44.583 14.374 6.652 4.541 153.166 0.001 0.591 

HEK Media 
18.682 14.374 7.074 0.609 163.673 0.796 0.089 

B % Ace vs. Rest 

First Timepoint 
CCs HEK -5.888 -2.41 1.43 -2.433 241.772 0.041 -0.27 Games-Howell 

Nonparametric 

Post-hoc Test 
CCs Media -5.888 -1.422 1.649 -2.709 132.14 0.021 -0.352 

HEK Media -2.41 -1.422 1.837 -0.538 164.491 0.837 -0.078 
% Ace vs. Rest 

Second Timepoint 
CCs HEK -8.953 -2.741 1.054 -5.894 292.584 0.001 -0.654 Games-Howell 

Nonparametric 

Post-hoc Test 
CCs Media -8.953 -0.617 1.405 -5.931 129.919 0.001 -0.772 

HEK Media -2.741 -0.617 1.452 -1.463 137.53 0.313 -0.213 
C %Long rally vs. Rest 

Second Timepoint 
CCs HEK -1.767 1.153 0.963 -3.033 200.551 0.008 -0.336 Games-Howell 

Nonparametric 

Post-hoc Test 
CCs Media -1.767 0.765 1.184 -2.139 107.676 0.087 -0.278 

HEK Media 1.153 0.765 1.366 0.284 157.623 0.9 0.041 
%Long rally vs. Rest 

Second Timepoint -

Test Day 

CCs HEK 3.523 1.309 0.734 3.016 236.704 0.008 0.335 Games-Howell 

Nonparametric 

Post-hoc Test 
CCs Media 3.523 1.424 0.824 2.548 134.013 0.032 0.332 

HEK Media 1.309 1.424 0.929 -0.124 169.022 0.9 -0.018 
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Table S3, related to Fig. 5: Follow up post-hoc tests performed on data shown in Fig. S4 for multivariate tests, including means, standard error (SE), t-scores, degree of freedom and exact p-

values with hedges.



  
        

 

  

   

 

 

 

 

 

Configuration Control % Experimental % 

0 22.17 15.51 

1 16.16 16.62 

2 13.93 18.50 

3 18.49 19.31 

4 12.25 14.69 

5 17.01 15.37 
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Table S4, related to STAR methods: Percentage configurations selected (in bold) by EXP3 algorithm for control and

experimental groups during pilot testing as shown in Fig. S5D.
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