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In brief

The DishBrain system is the first real-time
synthetic biological intelligence platform
that demonstrates that biological
neurons can adjust firing activity in a way
that suggests the ability to learn to
perform goal-oriented tasks when
provided with simple electrophysiological
sensory input and feedback while
embodied in a game-world.
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SUMMARY

Integrating neurons into digital systems may enable performance infeasible with silicon alone. Here, we
develop DishBrain, a system that harnesses the inherent adaptive computation of neurons in a structured
environment. In vitro neural networks from human or rodent origins are integrated with in silico computing
via a high-density multielectrode array. Through electrophysiological stimulation and recording, cultures
are embedded in a simulated game-world, mimicking the arcade game “Pong.” Applying implications
from the theory of active inference via the free energy principle, we find apparent learning within five minutes
of real-time gameplay not observed in control conditions. Further experiments demonstrate the importance
of closed-loop structured feedback in eliciting learning over time. Cultures display the ability to self-organize
activity in a goal-directed manner in response to sparse sensory information about the consequences of their
actions, which we term synthetic biological intelligence. Future applications may provide further insights into

the cellular correlates of intelligence.

INTRODUCTION

Harnessing the computational power of living neurons to create
synthetic biological intelligence (SBI), previously confined to the
realm of science fiction, may now be within reach of human inno-
vation. The superiority of biological computation has been widely
theorized with attempts to develop biomimetic hardware sup-
porting neuromorphic computing (Kumar et al., 2020). Yet no
artificial system outside biological neurons is capable of sup-
porting at least third-order complexity (able to represent three
state variables), which is necessary to recreate the complexity
of a biological neuronal network (BNN) (Izhikevich, 2006; Kumar
et al., 2020). While significant progress has been made in map-
ping in vivo neural computation, there are technical limits to
exploring this in vitro (Barron et al., 2020). Here, we aim to estab-
lish functional in vitro BNNs from embryonic rodent and human-
induced pluripotent stem cells (hiPSCs) on high-density multi-
electrode arrays (HD-MEAs) to demonstrate that these neural
cultures can exhibit biological intelligence—as evidenced by

3952 Neuron 770, 3952-3969, December 7, 2022 © 2022 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

learning in a simulated gameplay environment to alter activity
in an otherwise arbitrary manner—in real time (Figure 1). Itis pro-
posed that these neural cultures would meet the formal definition
of sentience as being “responsive to sensory impressions”
through adaptive internal processes (Friston et al., 2020). Instan-
tiating SBIs could herald a paradigm shift of research into biolog-
ical intelligence, including pseudo-cognitive responses as part of
drug screening (Kagan et al., 2022; Myers, 2017), bridging the
divide between single-cell and population-coding approaches
to understanding neurobiology (Ebitz and Hayden, 2021),
exploring how BNNs compute to inform machine-learning ap-
proaches (Mattar and Lengyel, 2022), and potentially giving
rise to silico-biological computational platforms that surpass
the performance of existing purely silicon hardware. Theoreti-
cally, generalized SBI may arrive before artificial general intelli-
gence (AGI) due to the inherent efficiency and evolutionary
advantage of biological systems (Buchanan, 2018).

This system, termed DishBrain, can leverage the inherent
property of neurons to share a “language” of electrical activity
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Figure 1. DishBrain system and experimental protocol schematic
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Neuronal cultures derived from hiPSC via DSI protocol, NGN2 lentivirus-directed differentiation, or primary cortical cells from E15.5 mouse embryos were plated
onto HD-MEA chips and embedded in a stimulated game-world of “Pong” via the DishBrain system. Different DishBrain environments were created by altering
the pattern of sensory information (yellow bolts), feedback (colored bolts), or no stimulus (red crosses) to demonstrate (1 and 2) low-latency, closed-loop
feedback system (stimulation (STIM) and silent (SIL) treatment); (3) no-feedback (NF) system to demonstrate an open-loop feedback configuration; and (4) rest
(RST) configuration to demonstrate a system in which sensory information is absent. Interactive visualizer of activity and gameplay: https://bit.ly/3DSi4Eg.

to link silicon and BNN systems through electrophysiological
stimulation and recording. Given the compatibility of hardware
and cells (wetware), it is necessary to investigate what processes
would result in intelligent (goal-directed) behavior when BNNs
are embodied through a closed-loop system. Two interrelated
processes are required for sentient behavior in an intelligent sys-
tem. Firstly, the system must learn how external states influence
internal states via perception and how internal states influence
external states via action. Secondly, the system must infer
from its sensory states when it should adopt a particular activity
and how its actions will influence the environment. To address
the first imperative, custom software drivers were developed to
create low-latency closed-loop feedback systems that simu-
lated exchange with an environment for BNNs through electrical
stimulation. Closed-loop systems afford an in vitro culture
“embodiment” by providing feedback on the causal effect of
the behavior from the cell culture. Embodiment requires a sepa-
ration of internal versus external states where feedback of the ef-
fect of an action on a given environment is available. Previous
works, both in vitro and in silico, have shown that electrophysio-

logical closed-loop feedback systems engender significant
network plasticity (Bakkum et al., 2008a; Chao et al., 2008).
Further support is found in vivo by disrupting the closed-loop
coupling between visual feedback and motor outputs in the pri-
mary visual cortex of mice (Attinger et al., 2017), highlighting the
link between feedback and the development of functional
behavior in BNNs.

To address the second requirement, a theoretical framework
for how intelligent behavior may arise was tested by the Dish-
Brain system. One proposition for how intelligent behavior may
arise in an intelligent system embodied in an environment is
the theory of active inference via the free energy principle
(FEP) (Friston et al., 2012). The FEP suggests a testable implica-
tion that at every spatiotemporal scale, any self-organizing sys-
tem separate from its environment seeks to minimize its varia-
tional free energy (VFE) (Friston, 2010; Palacios et al., 2020;
Parr and Friston, 2019). The gap between the model predictions
and observed sensations (“surprise” or “prediction error”) may
be minimized in two ways: by optimizing probabilistic beliefs
about the environment to make predictions more like sensations

Neuron 770, 3952-3969, December 7, 2022 3953
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Figure 2. Cortical cells form dense interconnected networks
(A and B) Cortical cells from E15 mouse brains and differentiated from hiPSCs, respectively. DAPI in blue stains all cells, NeuN in green shows neurons, beta IlI
tubulin (BIll) marks axons, while MAP2 marks dendrites. Scale bar = 50um.

(legend continued on next page)
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or by acting upon the environment to make sensations conform
to its predictions. This model then implies a common objective
function for action and perception that scores the fit between
an internal model and the external environment. Under this the-
ory, BNNs hold “beliefs” about the state of the world, where
learning involves updating these beliefs to minimize their VFE
or actively change the world to make it less surprising (Parr
and Friston, 2018, 2019). If true, this implies that it should be
possible to shape BNN behavior by simply presenting unpredict-
able feedback following “incorrect” behavior. Theoretically,
BNNs should adopt actions that avoid the states that result in un-
predictable input. By developing a system that allows for neural
cultures to be embodied in a simulated game-world, we are not
only able to test whether these cells are capable of engaging in
goal-directed learning in a dynamic environment, but we are
also able to investigate the foundations of intelligence.
Previous work supports that in vitro neuronal networks can
perform blind-source separation in an open-loop environment
via state-dependent Hebbian plasticity consistent with the FEP
(Isomura et al., 2015; Isomura and Friston, 2018). We sought to
build upon this work to test the theory of active inference, which
applies the FEP to sentient systems that not only adapt to fit their
environment, but also act upon their environment to fit it to them-
selves. We therefore hypothesize that when provided a struc-
tured external stimulation simulating the classic arcade game
“Pong” within the DishBrain system, the BNN would modify in-
ternal activity to avoid adopting states linked to unpredictable
external stimulation. This minimization of input unpredictability
would manifest as the goal-directed control of the simulated
“paddle” in this simplified simulated “Pong” environment.

RESULTS

Growth of neuronal “wetware” for computation

Cortical cells from the dissected cortices of rodent embryos can
be grown on MEAs in nutrient-rich media and maintained for
months (Bardy et al., 2015; Lossi and Merighi, 2018). These cul-
tures will develop complicated morphology with numerous den-
dritic and axonal connections, leading to functional BNNs (Ka-
mioka et al., 1996; Wagenaar et al., 2006). Primary neural
cultures from embryonic day 15.5 (E15.5) mouse embryos
were cultured, with representative cultures shown in Figure 2A.
HiPSCs were differentiated into monolayers of active heteroge-
neous cortical neurons, which have been shown to display
mature functional properties (Denham et al., 2012; Denham
and Dottori, 2009; Shi et al., 2012). Using dual SMAD inhibition
(DSI) (Denham et al., 2012; Fattahi et al., 2015), we developed
long-term cortical neurons that formed dense connections with
supporting glial cells (Figures 2B and 2C). Finally, we aimed to
expand our study using a different method of hiPSC differentia-
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tion—NGN2 direct reprogramming (Pak et al., 2018; Zhang et al.,
2013)—used in our final part of this study investigating feedback
mechanisms. This high-yield method resulted in cells displaying
pan-neuronal markers (Figures S1A and S1B). These cells typi-
cally display a high proportion of excitatory glutamatergic cells,
quantified using gPCR, shown in Figure 2D. Integration of these
neuronal cultures on the HD-MEAs was confirmed via scanning
electron microscopy (SEM) on cells that had been maintained for
>3 months (Figure 2E). Densely interconnected dendritic net-
works could be observed in neuronal cultures forming interlaced
networks spanning the MEA area (Figure 2F). These neuronal
cultures appeared to rarely follow the topography of the MEA,
being more likely to form large clusters of connected cells with
dense dendritic networks (Figures 2G and 2H). This is likely
due to the large size of an individual electrode within the MEA
and potentially also chemotactic effects that can contribute to
counteract the effect of substrate topography on neurite projec-
tions (Mattotti et al., 2012).

Neural cells show well-characterized spontaneous
action potentials that develop over time

In vitro development of electrophysiological activity in neural
systems at high spatial and temporal resolution was mapped.
Robust activity in primary cortical cells from E15.5 rodents was
found at days in vitro (DIV) 14 (Figures 3A and 3E) where bursts
of synchronized activity were regularly observed, as previously
demonstrated (Kamioka et al., 1996; Wagenaar et al., 2006). In
contrast, similar to previous reports (Shi et al., 2012), synchro-
nized bursting activity was not observed in cortical cells from
an hiPSC background differentiated using DSI until DIV 73
(Figures 3A and 3F). HiPSCs differentiated using NGN2 direct re-
programming showed activity much earlier, typically between
days 14 and 24 (Figures 3A and 3G). Electrophysiological matu-
ration was monitored with daily activity scans. While max firing
rate typically increased and remained relatively stable over
time for all cell types during the testing period (Figure 3B),
changes were observed in both the mean firing rate (Figure 3C)
and variance in firing rate (Figure 3D) over the days of testing;
in particular, hiPSCs differentiated using the NGN2 direct re-
programming method showed a considerable increase in mean
firing rate and the variance in firing over days of testing.

Building a modular, real-time platform to harness
neuronal computation

The DishBrain system was developed to leverage neuronal
computation and interact with neurons embodied in a simulated
environment (STAR Methods; Figure 4A; Video S2). The DishBrain
environment is a low-latency, real-time system that interacts with
the vendor MaxOne software, allowing it to be used in ways that
extend its original functions (Figure 4B). This system can record

(C) GFAP shows supporting astrocytes, critical for long-term functioning; TBR1 marks cortex-specific cells. No Ki67, a marker of dividing cells, was observed with

these cultures. Scale bar = 50um.

(D) Gene expression studies over 28 days demonstrated increased expression of the glutamatergic neural marker, vesicular glutamate transporter 1 (vGLUT1).
(E-G) Neurons differentiated from hiPSCs using the DSI protocol, maintained on MEA for >3 months. White arrows show regions of shrinkage within the cultures,
red arrows show bundles of axons, and blue arrows show single neurite extensions. Note the dense coverage over the HD-MEA and overlapping connections
extended from neuronal soma present in all cultures across multiple electrodes. Scale bars: E = 200um, F = 100pum, G = 50um

(H) Has false coloring to highlight the HD-MEA electrodes beneath the cells. Scale bar = 20um.
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Figure 3. Cortical cells display spontaneous electrophysiological activity

Shaded error = 95% confidence intervals.

(A) Firing rate for E15.5 primary rodent cortical cells, hiPSC cells differentiated to cortical neurons via DSI, and hiPSC cells differentiated via NGN2 direct dif-
ferentiation. Note different time points for each cell type. Scale bar displays firing frequency (Hz) from 0.0 to 1.0.

(B) Max firing was consistently different between cortical cells from a primary source and cortical cells differentiated from hiPSCs.

(C and D) Mean activity between hiPSCs differentiated using DSI and primary cortical cultures was generally similar, while hiPSCs differentiated using the NGN2
method continued to increase. This is reflected in (D), where the former two cell types displayed minimal changes in the variance in firing within a culture, while the
latter increased variance over time.

(legend continued on next page)
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electrical activity in a neuronal culture and provide “sensory”
(non-invasive) electrical stimulation comparably to the generation
of action potentials by activity in the neuronal network (Ruaro
et al.,, 2005). Using the coding schemes described in STAR
Methods, external electrical stimulations convey a range of infor-
mation. For our purposes, we opted for three distinct information
categories: predictable, random, and sensory (STAR Methods,
Figure 4C). DishBrain (Figure S2) was designed to integrate these
functions to “read” information from and “write” sensory datato a
neural culture in a closed-loop system so neural “action” influ-
ences future incoming “sensory” stimulation in real time. The
intent was to embody BNNs in a virtual environment and to quan-
tify demonstrable learning effects.

The initial proof of principle using DishBrain was to simulate
the classic arcade game “Pong” by delivering inputs to a prede-
fined sensory area of 8 electrodes (Figure 4D). Electrodes were
arranged in a manner that would allow a coarse, yet topograph-
ically consistent, place coding, consistent with in vivo systems
(see STAR Methods) (Baranes et al., 2012; Patel et al., 2014;
Shlens et al., 2006). The electrophysiological activity of defined
motor regions was gathered—in real time—to move a paddle.
If this activity did not result in an interception of the ball by the
paddle, an unpredictable stimulus was delivered (150mV voltage
at 5Hz for 4 seconds; see STAR Methods), after which time the
ball stimulation would recommence on a random vector. In
contrast, if a successful interception occurred, a predictable
stimulus was delivered across all electrodes simultaneously at
100Hz for 100ms (briefly interrupting the regular sensory stimu-
lation) before the game continued predictably. Preliminary inves-
tigations compared different motor region configurations to
verify that motor region setup did not introduce bias (paddle
movement that aligned to the ball position) from input stimulation
alone (STAR Methods; Figure S3). Experimental cultures of
cortical cells showed a higher hit-miss ratio, which we defined
as the average rally length, on counterbalanced split-motor con-
figurations (Figure 4D), where media-only-filled MEAs used as a
control group also showed minimal bias. Distinct areas were
defined as “motor regions,” where activity in motor region action
1 moved the paddle “up” and activity in motor region action 2
moved the paddle “down.” This fixed layout means that mono-
layers of cells—with arandom distribution that is arbitrary in rela-
tion to the “motor” configuration—will need to adopt distinct
firing patterns through self-organization (and raises the question
to what extent this self-organization will occur).

Increasing the density of sensory information input
leads to increased performance

The DishBrain protocol was refined over three pilot studies, each
increasing the density of sensory information. Pilot study 1 oper-
ated with a 4Hz stimulation that only involved place coding,
where the location of the stimulation corresponded to the posi-
tion of the ball on the y axis. Pilot study 2 investigated different
configurations and introduced activity-based weighting to motor

¢ CellP’ress
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regions to account for cell density or activity differences. Pilot
study 3 adopted the layout in Figure 4D and changed to the com-
bined rate (4-40Hz) and place-coding method of data input. This
combined rate and place coding has compelling biological sim-
ilarities conceptually to the rodent barrel cortex, suggesting this
encoding is physiologically coherent (Harrell et al., 2020; Ly et al.,
2012; Petersen et al., 2001). Gameplay for the final fifteen mi-
nutes for each culture type was compared (Figure 4E and
Table S1). Cultures displayed a significant increase in the
average rally length between the second and final pilot studies
and the first and final pilot studies. Between cultures, human
cortical cells (HCCs) had significantly longer average rally
lengths than cultures with mice cortical cells (MCCs)
(Table S2). Overall, these results support that increasing the
amount of sensory information improved performance, even
when cell culture features were kept constant.

BNNs learn over time when embodied in a gameplay
environment

To test the predictions of the FEP (Figure 5A) using selected pa-
rameters (STAR Methods), cortical cells (MCCs and HCCs) were
compared with media-only controls (CTL); rest sessions (RST),
where active cultures controlled the paddle but received no sen-
sory information; and in-silico (IS) controls that mimicked all as-
pects of the gameplay except the paddle were driven by random
noise over 399 test sessions (80-CTL [n = 6 MEA], 42-RST [n=20
cultures], 38-IS [n = 3 seeds], 101-MCCs [n = 9 cultures],
138-HCCs [n = 11 cultures]). The average rally length showed
a significant interaction (Figure 5B and Table S1) between group
and time (first 5 and last 15 min). Only the MCC and HCC cultures
showed evidence of learning with significantly increased rally
lengths over time. Further, it was found that during gameplay
in timepoint 1 (T1), key significant differences were observed
(Table S1): the HCC group performed significantly worse than
MCC, CTL, and IS groups (Table S2). This suggests that HCCs
perform worse than controls when first embodied in an environ-
ment, suggesting an initial maladaptive control of the paddle or
perhaps an exploratory behavior. Notably, at timepoint 2 (T2),
this trend was reversed; the MCC and HCC groups significantly
outperformed all control groups along with HCC showing a slight
but significant outperformance over the MCC group (Tables S1
and S2). This data demonstrates a significant learning effect in
both experimental groups absent in the control groups, along
with evidence that the learning capabilities differ between mice
and human cells in line with previous results (Video S1).

Learning effects in BNNs are observed across additional
measures

Other key gameplay characteristics, such as the number of times
the paddle failed to intercept the ball without a single hit defined
as “aces,” and the number of gameplays with greater than 3
consecutive hits defined as “long rallies,” were calculated. As
with average rally length, significant interactions between groups

(E, F, and G) Showcases raster plots over 50 s, where each dot is a neuron firing an action potential colored to help distinguish channel firing and stars indicate
time points with observed bursting activity. Note the differences between mid-stage cortical cells from a DIV14 primary rodent culture (E) compared with more
mature DIV73 human cortical cells (F) differentiated from iPSCs using the DSI and NGN2 direct differentiated neurons (G) approach described in text, in terms of
synchronized activity and stable firing patterns. While all display synchronized activity, there is a difference in the overall levels of activity represented in (B-D).
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Figure 4. Schematics and pilot testing with increasing informational density
(A) Diagrammatic overview of DishBrain setup.
(B) Software components and data flow in the DishBrain closed-loop system. Voltage samples flow from the MEA to the “Pong” environment, and sensory
information flows back to the MEA, forming a closed loop. Full caption in Figure S2.

3958 Neuron 710, 3952-3969, December 7, 2022

(legend continued on next page)



Neuron

and time were found for aces and long rallies (Table S1). Only the
MCC and HCC groups showed significantly fewer aces in T2
compared with T1 (Figure 5C and Table S2). Likewise, only the
MCC and HCC groups showed significantly more long rallies in
T2 compared with the first (Figure 5D and Table S2). Collectively,
the data shows that both experimental cultures (HCCs and
MCCs) improved performance by reducing how often they
missed the initial serve and achieving more consecutive hits or
longer rallies.

Differences between groups at T1 were found both for aces
and long rallies (Table S1). The RST condition displayed signifi-
cantly more aces than the CTL and MCC groups (Table S2), sug-
gesting a degree of sporadic behavior that the cells exhibit when
initially introduced to the rest period from gameplay that results
in this behavior. When the number of long rallies at T1 was inves-
tigated, it was found that only HCCs had significantly fewer long
rallies (Table S2). This finding complements the reduced average
rally lengths discussed above. Significant differences between
groups at T2 were also found for aces and long rallies
(Figures 5C and 5D and Table S1). Notably, the HCC group
showed significantly fewer aces than CTL, RST, and IS groups
(Table S1). The MCC group also showed significantly fewer
aces than RST and IS groups, but not the CTL group
(Table S2). In contrast, for long rallies, the MCC group showed
significantly more than the CTL, RST, and IS groups (Table S2),
yet the HCC group only showed significantly more long rallies
compared with the IS group, but not RST or CTL (Table S2).

No learning effect was found in electrically inactive non-neural
cells (HEK293T cells) and media-only controls (Figures S4A-
S4C). Further, a significant negative correlation between per-
centage of aces and percentage of long rallies of both MCCs
and HCCs was found, suggesting that the performance was
not arising from maladaptive behavior such as fixing the paddle
to a single corner (Figure S4D). Whether stimulation alone may
cause greater movement of the paddle and that this may result
in the observed learning effects was also investigated. As Fig-
ure 5E shows, while there were significant differences observed
in paddle movement between conditions (Table S1), for the CTL
and RST, this resulted in significantly lower movement relative to
the other groups, with the RST being the lowest movement of all
groups (Table S2). The IS control group showed significantly
more paddle movement than all other groups yet displayed no
meaningfully different performance metrics to the other control
groups (CTL and RST) (Table S2). Additionally, Figure S4E shows
no significant correlation between paddle movement and
average rally length was observed, supporting that movement
alone of the paddle does not explain the observed learning ef-
fects. Wholistically, Figure 5F emphasizes that both MCCs and
HCCs showed fewer aces and more long rallies in T2 compared
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with T1, reiterating the observed learning effect over time. This
can also be seen in linear regressions (Figure S4F), where only
the MCC and HCC groups showed a statistically significant pos-
itive relationship between average rally length and duration of
gameplay.

BNNs require feedback for learning

To investigate the importance of the feedback type for learning,
cultures, both MCCs and HCCs, were tested under 3 conditions
for 3 days, with 3 sessions per day resulting in a total of 486 ses-
sions. Condition 1 (Stimulus; n = 27) mimicked that used above,
where predictable and unpredictable stimuli were administered
when the cultures behaved desirably or not, respectively. Condi-
tion 2 (Silent; n = 17) involved the stimulus feedback being re-
placed with a matching time period in which all stimulation was
withheld, after which the game restarted with the ball beginning
in arandom direction. Condition 3 (No feedback; n = 15) removed
the restart after a miss. When the paddle did not successfully
intercept the ball, the ball would bounce and continue without
interruption; the stimulus reporting ball position was still pro-
vided. The difference between these conditions is illustrated in
Figure 6A. Rest-period activity was also gathered and used to
normalize performance per session basis to account for differ-
ences in unstimulated activity (Figure 1).

Stimulus and Silent conditions showed an overall higher
average rally length compared with Rest and No-feedback con-
ditions (Figure 6B). When testing for differences between groups
in the percentage increase of average rally length over matched
rest controls, a significant interaction was found (Figure 6C and
Table S1). Only the Stimulus condition showed a significant in-
crease in average rally length over time. While no differences
were found for T1, a significant main effect of group was found
at T2, where the Stimulus condition had a significantly higher
average rally length than the Silent and No-feedback conditions
(Table S2). Interestingly, the Silent condition also significantly
outperformed the No-feedback conditions, although with a
smaller effect size (Table S2). Importantly, this demonstrates
that information alone is insufficient; feedback is required to
form a closed-loop learning system. When followed up at the
level of day for T2 (Figure 6D), no significant differences over
time were observed, but the same between-group differences
as above were observed. This trend was similar when looking
at aces both summed (Figure 6E) and across days of testing (Fig-
ure 6F). The Stimulus group at T1 showed significantly fewer long
rallies compared with the Silent and No-feedback condition, be-
ing reversed at T2 with the Stimulus group showing significantly
more long rallies compared with the No-feedback condition (Fig-
ure 6G). No difference was found when this was followed up
across days (Figure 6H). Collectively, these results suggest

(C) Schematic showing the different phases of stimulation to the culture. In line with this is the corresponding summed activity on the raster plot over 100 seconds.
The appearance of random stimulation after a ball missing versus system-wide predictable stimulation upon a successful hit is apparent across all three rep-
resentations. Corresponding images on the right show the position of the ball on both x and y axis relative to the paddle and back wall in percentage of total

distance shown on the same timescale.
(D) Final electrode layout schematic for DishBrain Pong-world gameplay.

(E) *=p < 0.05, ™ = p < 0.001; error bars = 95% CI. Shows average rally length over three distinct experiment rounds during design of DishBrain Pong-world
where each subsequent experiment provided higher density information on ball position than the previous. MCC tested over 272 sessions, n = 50 biological

replicates; HCC tested over 579 sessions, n = 18 biological replicates.
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Figure 5. Embodied cortical neurons show significantly improved performance in “Pong” when embodied in a virtual game-world

399 test-sessions were analyzed with biological replicates: 80-CTL (n = 6), 42-RST (n = 20), 38-IS (n = 3), 101-MCCs (n = 9), 138-HCCs (n = 11). Significance bars
show within-group differences denoted with *. Symbols show between-group differences at the given timepoint: # = versus HCC; % = versus MCC; A = versus
CTL; @ = versus IS. The number of symbols denotes the p value cutoff, where 1 = p < 0.05, 2 = p < 0.01, 3 = p < 0.001, and 4 = p < 0.0001. Boxplots show
interquartile range, with bars demonstrating 1.5% interquartile range, the line marks the median, and A marks the mean.

(A) Schematic of how neurons may engage in the game-world under active inference denoting a gradient flow on variational free energy, expressed in terms of
neural activity minimizing prediction errors. ¢ is prediction error, £ represents a precision-weighted prediction error. Precision can be regarded as a Kalman gain in
Kalman filtering; ‘a’ corresponds to action.

(B-D) Experimental groups according to time point 1 (T1; 0-5 min) and time point 2 (T2; 6-20 min).

(B) Average performance between groups over time, where only experimental (MCC: t = 6.15, p = 5.27 % and HCC: t = 10.44, p = 3.92 ") showed significant
improvement and higher average rally length against all control groups at T2.

(C) Average number of aces between groups and over time, only MCC (t = 2.67, p = 0.008) and HCC (t = 5.95, p = 2.13~ %) differed significantly over time. The RST
group had significantly more aces compared with the CTL, IS, MCC, and HCC groups at T1 and compared with the CTL, MCC, and HCC at T2. Only MCCs and
HCCs showed significant decreases in the number of aces over time, indicating learning. At T2 they also showed fewer aces compared with the IS group, but only
the HCC group was significantly less than CTL.

(D) Average number of long rallies (>3) performed in a session. At T1, the HCC group had significantly fewer long rallies compared with all control groups (CTL, IS,
and RST). However, both the MCC (t = 5.55, p = 2.367°") and HCC (t = 10.38, p = 5.27'°) groups showed significantly more long rallies over time. By T2, the HCC
group displayed significantly more long rallies compared with the IS group. The HCC group also displayed significantly more long rallies compared with all CTL,
IS, and RST control groups.

(E) The average distance that the paddle moved during a session was found to have no obvious relationship with average rally length as the IS control groups
showed a higher movement than the experimental groups, while CTL and RST were lower. As such, the observed learning effects are not likely due to stimulation,
leading to increased activity of paddle movement.

(F) Distribution of frequency of mean summed hits per minute among groups shows obvious differences; scale bar shows the probability the number of hits in the
given minute under that condition.
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that adaptive behavior seen in BNNs altering electrophysiolog-
ical activity can be an emergent property of engaging with—
and implicitly modelling—the environment.

Dynamics in electrophysiological activity display
coherent connectivity

Electrophysiological activity during gameplay was analyzed from
cultures subjected to the stimulus condition to determine func-
tional connectivity (Mohseni Ahooyi et al., 2018). The cross cor-
relations of firing in 100ms-time bins revealed significant, strong
positive correlations between activity in the sensory region and
both motor regions during Rest and Gameplay (Figures 7A-
7D). However, when these correlations were calculated per bin
and averaged, significantly stronger correlations were observed
when cultures were in the Gameplay phase than at Rest (Fig-
ure 7E). This higher degree of connectivity would be expected
if activity in the sensory region during gameplay was directly
related to activity in motor regions through dynamic self-organi-
zation at the system-wide level. In line with this, when the quan-
tity of exclusive motor region activity was calculated per sec-
ond—looking for events where above-noise-level activity
occurred in either motor region 1 or motor region 2, yet not
both simultaneously—a significant increase in these events
was found when cultures were engaged in gameplay versus
rest (Figure 7F). This type of internal modulation is coherent
with the observed performance of these cultures; exclusive ac-
tivity changes among motor regions would be required for adap-
tive gameplay. Finally, to further support these results, the corre-
lation between the two motor regions was found to vary
substantially over time (Figure 7G). A linear regression of the cor-
relation in 100ms-time bins between motor regions was found to
decrease with time significantly until approximately 5 min of
gameplay (R? = 0.013, F(1, 2049) = 27.51, p = 1.7277, 8 =
—1.18, p < 0.001). After this point, little further change was
observed (R? = 0.00, F(1, 5181) = 2.19, p = 0.139, § = —0.55,
p = 0.139), suggesting a degree of homeostasis. These differ-
ences do not affect the overall average culture firing that remains
stable throughout the gameplay session (Figure 7H).

As electrical stimulation of neural tissue has been shown to
modify neuronal activity (Bakkum et al., 2008a, 2008b; Chao
et al., 2008), the functional plasticity of cultures during Gameplay
was assessed compared with when at Rest as described in

Neuron

STAR Methods. Figure 71 suggests that closed-loop training dur-
ing Gameplay displays significantly increased plasticity
compared with baseline plasticity measured at Rest before
training, indicating that functional plasticity was upregulated dur-
ing gameplay (Table S1). To test whether learning reflects a
reduction in VFE within BNNs, we used the information entropy
of neuronal responses as a proxy for the average surprise
(a.k.a. self-information), which is upper-bounded by VFE (see
STAR Methods). We predicted a reduction in information entropy
during the learning of gameplay. We further predicted an in-
crease in entropy following unpredictable (random) feedback, re-
flecting and ensuing state of “surprise” (and, implicitly, high
VFE), relative to pre-feedback states. For the studies reported
in Figure 5, the mean information entropy was found to be lower
during Gameplay than during Rest, both before and after the un-
predictable feedback stimulation (Figure 7J and Table S1). There
was a significant increase in mean information entropy found
post-feedback relative to pre-feedback timepoints during
Gameplay, but not in the corresponding timepoints during Rest
where no feedback occurred. As the change in entropy can
depend on the level of sensory activity pre-feedback, we normal-
ized the mean information entropy by the number of spikes. The
relationship was conserved (Figure 7K and Table S1), where a
significant increase in normalized mean entropy was observed
during Gameplay, but not at the corresponding timepoint during
Rest where no stimulation occurred. In short, as predicted theo-
retically, gameplay reduced information entropy during predict-
able exchanges with the environment, while unpredictable feed-
back increased entropy during gameplay.

We repeated this analysis on the follow-up study of different
feedback mechanisms reported in Figure 6. While it is important
to note that the internal information entropy of the culture is not
necessarily and directly tied to the external (i.e., sensory) infor-
mation entropy of the stimulus being applied into a culture, it is
interesting to see how cultures respond to different feedback
protocols. As shown in Figure 7L, the change during the stimulus
condition between the normalized mean information entropy
was replicated for the standard Stimulus condition (Table S1).
Of interest is the finding that during the Silent condition, the neu-
ral cultures had a higher normalized mean information entropy
than even the stimulus condition post-feedback. However, the
No-feedback condition showed no change relative to the period

Figure 6. The importance of feedback in learning

486 sessions were analyzed. Significance bars show within-group differences denoted with *. Symbols show between-group differences at the given timepoint:
# = versus Stimulus; % = versus Silent. The number of symbols denotes the p value cutoff, where 1 =p <0.05,2 =p < 0.01,3=p <0.001, and 4 = p < 0.0001. Box
plots show interquartile range, with bars demonstrating 1.5x interquartile range, the line marks the median, and A marks the mean. Errors bands = 1 SE.

(A) Schematic showing the stimulation from the 8 sensory electrodes across 40 s of the same gameplay for each of the three conditions. The bar below color
codes what phase of stimulation is being delivered, where random stimulation follows a miss and predictable stimulation follows a hit in the Stimulus condition.
Note the corresponding absence of any stimulation in the Silent condition and the lack of any change in sensory stimulation in the No-feedback condition.

(B) Displays the probability of a certain number of hits occurring in a group at a specific minute.

(C) Using different feedback schedules, the Stimulus feedback condition showed significant learning (as in Figure 5A; t = 7.48, p = 1.58'2) and outperformed
Silent and No-feedback average rally length. Silent feedback also showed higher performance compared with these groups at T2.

(D) Displays difference seen in (C) across day.

(E) Shows similar differences versus rest performance for aces across conditions, where the Stimulus group showed significantly fewer aces across time (t = 3.21,
p = 0.002).

(F) Displays data from (E) across day.

(G and H) Shows that the Stimulus condition showed significant increase (t = 3.21, p = 0.002) across timepoints; however, as in (H), no differences were found
across time for long rallies.
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Figure 7. Electrophysiological activity during Gameplay and Rest

579 sessions (358 Gameplay, 221 Rest) were analyzed with n = 43 biological replicates. Significance bars show within-group differences denoted with *. Symbols
show between-group differences at the given timepoint: # = versus Gameplay or Stimulus; % = versus Silent. The number of symbols denotes the p-value cutoff,
where 1=p < 0.05,2 =p <0.01,3=p <0.001, and 4 = p <0.0001. Box plots show interquartile range, with bars demonstrating 1.5x interquartile range, the line
marks the median, and A marks the mean. Error bands = 1 SE.

(A-D) A significant positive correlation between mean firing and performance was found between motor region 1 and 2 with the Sensory area both during Rest (A
and B) and Gameplay (C and D).

(E) The average cross-sensory motor correlation was significantly less during Rest, both for motor region 1 (t=30.40, p = 6.6
= 2.76 ') than during Gameplay.

(F) The percentage of mutually exclusive activity events per second across motor regions was calculated and found to increase significantly during Gameplay
versus Rest (t = 14.64, p = 5.68749).

(G) The correlation between the two motor regions showed substantial changes over time (blue). Linear regression conducted on the first 5 min of Gameplay
(orange) showed a significant negative relationship between variables that was absent in the final 15 min (teal).

(H) Activity over time showed no significant changes while engaged in Gameplay (r = —0.01, p = 0.563), supporting that any observed learning effects over time
were not related to merely gross changes in activity levels across the cultures over time.

(I) Functional plasticity was assessed across cultures when engaged in Gameplay versus Rest, with a significant increase in functional plasticity found during gameplay.
(J) Following random stimulation feedback, there was a significant increase in the mean information entropy during Gameplay (t = 4.890, p = 2.0247°), yet the
corresponding time during Rest showed no change (t = 0.016, p = 0.987). Mean information entropy was lower at both pre- (t = 9.781, p = 3.882'®) and post- (t =
5.915, p = 1.17878) feedback during Gameplay than at Rest.

(K) For normalized mean information entropy, the difference relative to feedback period was increased during Gameplay (t = 19.337, p = 3.476 %), yet still no
difference was observed during Rest where no feedback was delivered (t = 1.022, p = 0.316). Normalized mean information entropy was lower at pre- (t = 10.192,
p = 2.139729), but not post- (t = 0.671, p = 0.503) feedback, during Gameplay compared with Rest.

(L) Feedback-related changes in normalized mean information entropy were assessed for the investigation of different feedback mechanisms. Increases following
random feedback for the Stimulus condition were replicated (t = 9.623, p = 7.887'%); it was also found that the system displayed increased activity-related scores
under the Silent condition feedback (t = 21.538, p = 7.019~%"). The No-feedback condition showed no change in normalized mean information entropy at matched
times after Bonferroni corrections (t = 10.192, p = 0.030). Post-hoc follow-up tests found no differences between Stimulus and Silent conditions during gameplay;
both were significantly lower than for the No-feedback condition. After feedback, the Stimulus and Silent conditions were significantly higher than the No-
feedback condition, with the Silent condition significantly higher than the Stimulus condition.

17"9%) and motor region 2 (t = 29.76, p

Neuron 770, 3952-3969, December 7, 2022 3963




¢ CellPress

when feedback would have been applied, with a significantly
higher normalized mean information entropy score than either
of the other two conditions pre-feedback, yet a significantly
lower score post-feedback (Table S2).

Electrophysiological activity is linked with higher
average rally length

Exploratory uncorrected Pearson’s correlations were computed
for key electrophysiological activity metrics and average rally
length. A significant positive correlation was found between
average rally length with mean (Figure 8A) and max (Figure 8B)
firing. Likewise, the cross-correlations with the sensory region
for both motor region 1 (Figures 8C) and 2 (Figure 8E) were signif-
icantly positively correlated with performance, further suggest-
ing that robust connectivity is linked with better gameplay out-
comes. To further investigate whether the topographical
distribution of activity correlated with performance, the absolute
values of four discrete cosine transform (DCT) coefficients
normalized to mean activity were used to summarize spatial
modes of spontaneous activity and assess the symmetry of ac-
tivity (Figure 8E). DCT 0,1, which measures activity across the
horizontal plane (Figure 8F), and DCT 2,0, which measures activ-
ity on the horizontal edge versus the horizontal center (Figure 8l),
were significantly negatively correlated with average rally length.
Yet, DCT 0,2, which shows difference between activity on the
vertical edges and the vertical center (Figure 8G), and DCT 1,0
which measures activity across the vertical plane (Figure 8H),
did not significantly correlate. Given configuration layout, it is
coherent that gameplay performance is closely linked to devia-
tions in symmetry of electrophysiological activity. To confirm
the importance of symmetry, gameplay electrophysiological ac-
tivity was analyzed for both motor regions, and the normalized
deviation away from symmetry was calculated. As deviation
away from symmetry resulted in a significant negative correlation
with the average rally length, any asymmetry exceeding approx-
imately 1 deviation appeared to completely prevent performance
above that observed in controls (Figure 8J). This suggests a limit
to which cultures can self-organize spontaneous activity if cell
culture quality is uneven. Finally—in line with the results
above—higher activity in the sensory region (Figure 8K), motor
region 1 (Figure 8L), and motor region 2 (Figure 8M) during game-
play was also correlated with higher average rally lengths.

DISCUSSION

Here, we present the DishBrain system, a system capable of
embodying BNNs from various sources in a virtual environment
and measuring their responses to stimuli in real time. The ability
of neurons, especially in assemblies, to respond to external stim-
uli adaptively is well established in vivo as it forms the basis for all
animal learning (Attinger et al., 2017). However, this work is the
first to establish this fundamental behavior in vitro for a goal-
directed behavior. We were able to use this silico-biological sys-
tem to investigate the fundamentals of biological neuronal
computation. In brief, we introduce the first SBI device to
demonstrate adaptive behavior in real time. The system itself of-
fers opportunities to expand upon previous in silico models of
neural behavior, such as where models of hippocampal and en-
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torhinal cells were tested in solving spatial and non-spatial prob-
lems (Whittington et al., 2020). Minor variations on the DishBrain
platform, selected cell types, drug administration, and feedback
conditions would enable an in vitro test to garner data on how
cells process and compute information that was previously
unattainable.

Most significantly, this work presents a substantial technical
advancement in creating closed-loop environments for BNNs
(Bakkum et al., 2008a; Chao et al., 2008; Wagenaar et al., 2004).
We have emphasized the requirement for embodiment in neural
systems for goal-directed learning to occur. Thisis seenin therela-
tive performance over experiments, where denser information and
more diverse feedback impacted performance. Likewise, when no
feedback was provided yet information on ball position was avail-
able, cultures showed significantly poorer performance and no
learning. Of particular interest was the finding that when stimula-
tory feedback was removed and replaced with silent feedback
(i.e., transient removal of all stimuli), cultures were still able to
outperform those with no feedback as in the open-loop condition,
albeit to a lesser extent. One interpretation is that playing “Pong”
generates more predictable outcomes than not playing “Pong” by
reducing uncertainty. Note that a “miss” results in unpredictable
outcomes because the ball resets and its subsequent motion is
unpredictable. Interms of the informational entropy of the stimulus
being delivered, while an unpredictable stimulus would have high
entropy, the silent condition still entails higher entropy relative to
successful play as the ball restarts in a random direction. This is
consistent with our results, as the more unpredictable an
outcome, the greater the observed learning effect—as the BNN
learns to avoid uncertainty.

It is interesting to note, however, that the internal informa-
tion entropy of BNN activity does not exactly mirror the infor-
mation entropy of the external stimulation: while the unpre-
dictable stimulus increased internal entropy, so did the
Silent condition feedback. However, for a BNN to alter activity
in response to feedback, there must be a change to its sen-
sory input observable by the system that can be associated
with its previous activity. This is consistent with the absence
of learning in the open-loop/No-feedback condition, which
by its nature affords no opportunity for learning, and likewise
showed higher internal information entropy than the other two
feedback conditions. This supports the thesis that stimulation
alone is insufficient to drive learning: there must be a motiva-
tion for learning behaviors that influence the (external) observ-
able stimulus. When faced with unpredictable sensorium,
playing “Pong” successfully acts as a free energy-minimizing
solution. Even if the internal information entropy of a system is
increased following feedback and has lower external informa-
tion entropy (e.g., silent feedback), this may not provide the
same impetus for learning. These findings accord with the
proposed role of a Markov blanket, providing a statistical
boundary of the system to separate it into internal and
external states (Kirchhoff et al., 2018; Palacios et al., 2020).
Yet simply minimizing entropy (i.e., average surprise) may
offer an overly simplified account of adaptive behavior: a
key aspect of active inference is the selection of actions that
minimize the surprise or free energy expected on following
that action. While these results are interesting and supportive,
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Figure 8. Relationship between electrophysiological activity and average rally length

302 gameplay sessions were analyzed after filtering outliers (Z score > +3.29) from rallies with n = 30 biological replicates.

(A) The mean spontaneous activity (Hz) over all electrodes showed a significant positive correlation with average rally length.

(B-D) Similarly, the max spontaneous firing (Hz) also showed a significant positive correlation with average rally length. In line with this, the average cross
correlation between the sensory region and both motor region 1 (C) and motor region 2 (D) had a significant positive correlation with average rally length.

(E) The DCT scores of four different basis functions were calculated to quantify asymmetry in spontaneous activity. DCT scores were normalized to mean activity.
The scale bar shows the value assigned to activity in the given area, where each DCT basis function quantifies a different type of asymmetry per pixel from —0.010
to 0.010.

(F-H) Displays the significant negative correlation between DCT 0,1 and average rally length, showing that asymmetry on the horizontal axis is related to poorer
performance. There was no significant relationship between DCT 0,2 (G), which measured asymmetry on the horizontal extremes compared with the center, or
DCT 1,0 (H), which measured asymmetry on the vertical axis.

(I-M) DCT 2,0 function displayed a significant negative correlation with average rally length, suggesting that asymmetry on the vertical edges compared with the
middle was linked to poorer gameplay performance. In line with this, (J) displays the calculated deviation from symmetry in activity between motor regions during
gameplay and finds a significant negative association, where greater asymmetry was linked to lower average rally lengths. Similarly, during gameplay the activity
in the sensory (K), motor region 1 (L), and motor region 2 (M) all showed significant positive correlations with average rally length.
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they are not conclusive, and future work is required, including
exploring BNN behavior with a generative model.

Mechanistically, we sought to demonstrate the utility of the
DishBrain by testing base principles that underwrite active
sensing via the FEP. The closest previous work examined blind
source separation in neural cultures, yet did so in an open-loop
context without physiologically plausible training (Isomura
et al., 2015; Isomura and Friston, 2018). We show that supplying
unpredictable sensory input following an “undesirable” outcome
and providing predictable input following a “desirable” one
significantly shapes the behavior of neural cultures in real time.
The predictable stimulation could also be read as a process of
stabilizing synaptic weights in line with previous research as it
has been shown that higher firing rates augment short- and
long-term potentiation (Pariz et al., 2018; Zhu et al., 2015). In a
complementary fashion, the unpredictable stimulation could be
seen by destabilizing connectivity by destroying undesirable
free energy minima. These results could be understood as part
of a dynamic interaction between layers of interacting Hebbian
and homeostatic plasticity that could lead to increasing the likeli-
hood of activity following certain stimulation patterns (Ly et al.,
2012; Pariz et al., 2018; Toyoizumi et al., 2014). This accords
with the increased functional plasticity observed during game-
play versus during rest. This may be a potential mechanism
behind the FEP account of biological self-organization, some-
times discussed in terms of self-organized instability termed
“autovitiation” (Friston et al., 2012).

Active cortical cultures, from both human and mouse cell sour-
ces, displayed synchronous activity patterns in line with previous
research (Kamioka et al., 1996; Sakaguchi et al., 2019; Shi et al.,
2012; Wagenaar et al., 2006). Importantly, significant differences
between cell sources were observed, with HCCs outperforming
MCCs (with nuances), on average, in gameplay characteristics.
Although further work is required as this finding was auxiliary
to the aim of the study, this is the first work finding functional,
albeit preliminary, empirical evidence supporting the hypothesis
that human neurons have superior information-processing ca-
pacity over rodent neurons (Beaulieu-Laroche et al., 2018;
Mihaljevi¢ et al., 2020). Previous work has proposed that bio-
physical structures in human cells compared with mouse cells
would vyield different input-output properties and may thereby
explain different computational capacities (Poirazi and Papoutsi,
2020). When focusing on the initial development of the system,
we could not feasibly and empirically test all key aspects, such
as differences in cell sub-types, microscopic cell structure, or
interneuron density. However, the opportunity exists for future
studies to focus on elucidating these differences. The DishBrain
system described in this work potentially offers the first avenue
to accurately assess differences in neurocomputational ability,
making this an exciting area of future research.

Another finding from this work relates to innate cell network or-
ganization, seen in the definition of motor regions. Our early pilot
studies, along with previous work in this field (Bakkum et al.,
2008a), mapped motor regions based on network activity scans.
However, we were interested in the extent that self-organization
would adapt if sensory and motor regions were fixed between
cultures. Our findings demonstrate that while significant self-or-
ganization of activity can occur, this was limited when active
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cells were not evenly distributed across the MEA. The changes
in activity during gameplay are consistent with past work
showing that feedback between environment and action is
required for proper in vivo neural development (Attinger et al.,
2017). The observed changes also suggest that perhaps this
development occurs based on properties inherent at the level
of the cell. While these conclusions are tentative as the statistics
of stimulations do differ between control experiments, the data
does highlight future research directions. Further experimenta-
tion on the extent that the closed-loop environment is important
for learning should include increasing the delay between reading
neural activity and having it influence the environment or using
stimulation decoupled from the environment. Nonetheless, the
DishBrain system and future improvements of this technology
do provide the opportunity to explore network dynamics to bet-
ter understand this aspect of self-organization and include inves-
tigations into structural organization of BNNs.

Due to current hardware limitations, the sensory stimulation is
much coarser compared with that for even simple in vivo organ-
isms. This meant that it was not possible to distinguish, in real
time, between stimulation of neuronal somatic or dendritic do-
mains and that both were likely stimulated. Likewise, it was not
computationally possible in real time to separate processing
electrical changes from different neuronal structures such as
discriminating between action potentials from the soma versus
dendrites. Improving both areas is a key direction for future
research. Additionally, it was infeasible to meaningfully imple-
ment mechanisms that would be crucial for an in vivo organism
attempting a comparable task, such as proprioception, or to
decouple the closed-loop system to test the impact of time de-
lays. Moreover, the relatively small number of cells embedded
in a monolayer format means the neural architecture driving
this behavior is incredibly simple in terms of the number of
possible connections available compared with even small organ-
isms that have a 3D brain structure. Nonetheless, using only sim-
ple patterns of predictable and unpredictable stimulation, this
system was able to show systematic behavior in an order of mi-
nutes. While within-session learning was well established, be-
tween-session learning over multiple days was not robustly
observed. Cultures appeared to relearn associations with each
new session. Given that cortical cells were selected, this is to
be expected as in vivo cortical cells are not specialized for
long-term memory (Rolls, 2018). Future work with this system
can investigate the use of other neuronal cell types and/or
more complex biological structures.

Conclusion

Using this DishBrain system, we have demonstrated that a single
layer of in vitro cortical neurons can self-organize activity to
display intelligent and sentient behavior when embodied in a
simulated game-world. We have shown that even without a sub-
stantial filtering of cellular activity, statistically robust differences
over time and against multiple controls could be observed in the
behavior of neuronal cultures in their sensed world. These findings
provide a promising demonstration of an SBI system that learns
over time in a systematic manner directed by input. The system
provides the capability for a fully visualized model of learning,
where unique environments may be developed to assess the
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actual computations being performed by BNNs. This is something
that is long sought after and extends beyond purely in silico
models or predictions of molecular pathways alone (Karr et al.,
2012; Whittington et al., 2020; Yu et al., 2018). Therefore, this
work provides empirical evidence that can be used to support
or challenge theories explaining how the brain interacts with the
world and intelligence in general (Friston, 2010; Schwartz, 2016).
Ultimately, although substantial hardware, software, and wetware
engineering are still required to improve the DishBrain system, this
work does evince the computational power of living neurons to
learn adaptively in active exchange with their sensorium. This rep-
resents the largest step to date of achieving SBI that responds
with externally defined goal-directed behavior.
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Lead contact
Requests for further information and other correspondence should directed to and will be fulfilled by the lead contact, Dr Brett J.
Kagan (Brett@CorticalLabs.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data
All data, including electrophysiological spike recordings and the raw data of gameplay metrics from virtual environment, have been
deposited at Open Science Framework (OSF) and are publicly available. DOl is listed in the key resources table.
Code
All original Python and Matlab analysis code used to process and analyse deposited data have been deposited at Open Science
Framework (OSF) and is publicly available. DOI is listed in the key resources table.
Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement

All experimental procedures were conducted in accordance with the Australian National Statement on Ethical Conduct in Human
Research (2007) and the Australian Code for the Care and Use of Animals for scientific Purposes (2013). Animal work was conducted
under ethical approval E/1876/2019/M from the Alfred Research Alliance Animal Ethics Committee B. Experiments were performed
at Monash University, Alfred Hospital Prescient with the appropriate personal and project licences and approvals. Work done using
hiPSCs was in keeping with the described material transfer agreement below.

Animal breeding and maintenance

BL6/C57 mice were mated at Monash Animal Research Platform (MARP). Upon confirmation of pregnancy, animals were transported
via an approved carrier to the Alfred Medical Research and Education Precinct (AMREP). Pregnant animals were housed in individ-
ually ventilated cages until the date when they were humanely killed, and primary cells were harvested.

Stem cell lines

Initial work was conducted using a control hiPSC line supplied by the Gene Editing Facility at the Murdoch Children’s Research Insti-
tute (ATCC® PCS-201-010) from an ATCC PCS-201-010 background and transferred under a Material Transfer Agreement. ATCC
line has been validated as per https://www.atcc.org/products/pcs-201-010 and comes from an XY donor isolated from neonatal
foreskin. Later work involved an hiPSC lines used in this work constitutively expressing fluorescent reporters under control of the
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) promoter (cell lines were generated by Professor Edouard G. Stanley and col-
leagues from the Murdoch Children’s Research Institute and provided under a Material Transfer Agreement) (Kao et al., 2016). The
GAPDH gene encodes a protein critical in the glycolytic pathway, whereby ATP is synthesised from glucose. As this function is highly
conserved across multiple cell types GAPDH is ubiquitously expressed at high levels across multiple cell types, making it a suitable
gene for which to base a gene-expression system (Barber et al., 2005). RM3.5 line validation is reported in (Barber et al., 2005) and
comes from an XY donor isolated from neonatal foreskin. This transgene expression system, termed GAPTrap, involves the insertion
of the specific reporter gene into the GAPDH locus in hiPSCs using gene-editing technology (Kao et al., 2016). For this study, RM3.5
GT-GFP-01 constitutively expressing green fluorescent protein under the GAPDH promoter was utilised. The RM3.5 hiPSC line was
initially derived from human foreskin fibroblasts and reprogrammed using the hSTEMCCAIoxP four factor lentiviral vector as reported
previously (Somers et al., 2010). All procedures described below were applied to be both cell lines. Both lines were maintained in an
undifferentiated, pluripotent state in a feeder-free system using E8 media (Thermo Fisher Scientific, Carlsbad, USA) supplemented by
a Penicillin/streptomycin solution at 5 pL/mL. Cells were plated on T25 353108 Blue Vented Falcon Flasks (Corning, Durham, USA)
that were coated approximately 1 h prior with extracellular matrix vitronectin (Thermo Fisher Scientific, Carlsbad, USA).

Stem cell growth and maintenance

All procedures were carried out using sterile techniques. Prior to passaging, cell confluence was recorded and the required split ratio
was determined. Media was aspirated from cells and cells were washed with 5 mL of PBS —/— before passaging to remove detached
cells and other debris. 3 mL of a 0.05 uM EDTA in PBS —/— was used for the dissociation and passaging of hiPSCs as aggregates
without manual selection or scraping, was added to cells, and allowed to incubate at 37°C for approximately 3.5 min. After visual
examination using 10X microscope indicated that cells had lost sufficient adhesion, EDTA was aspirated, and blunt trauma applied
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to base of the T25 flask to dislodge cells. Cells were suspended in 2 mL E8 and transferred to 15 mL falcon tube. As described above,
vitronectin coated T25 flasks were prepared and aspirated before the addition of 5 mL of E8 solution. Approximately 1:10 of evenly
distributed cell suspension was added to the prepared T25 flask. The flask was then gently swirled to ensure even distribution before
being incubated overnight at 37°C. Media was changed daily.

METHOD DETAILS

Primary cell culturing

Cortical cells were disassociated from the cortices of E15.5 mouse embryos. Embryos were decapitated, and with a stereotactic mi-
croscope, the skin, bone and meninges were removed, and the anterior cortex dissected out. Approximately 800,000 cells were
plated down onto each pre-prepared HD-MEA. Cultures began to upregulate spontaneous activity and display synchronised firing
around DIV 10 at which point they were used for experimentation.

Stem cell dual SMAD differentiation

Cellular differentiation followed a titrated dual SMAD inhibition protocol for the generation of cortical cells from pluripotent cells es-
tablished by the Livesey group with minor adjustments as represented in Figures S5B (Shi et al., 2012). Cells were plated in 24 well
plates coated with human laminin H521. When cells reached =80% confluency, neural induction was initiated by using standard
neural maintenance (N2B27) Base Media with 100 ng/mL LDN193189 (Stemcell Technologies Australia, Melbourne, Australia) and
10 um SB431542 (Stemcell Technologies Australia, Melbourne, Australia). Media was changed every day from day 0 to day 12. After
appearance of neural rosettes and initial passaging standard N2B27 media with FGF2 20 ng/ml was utilised from day 12 to day 17 to
achieve a dorsal forebrain patterning. Cells were then expanded and deemed ready for plating onto MEA or slides based on
morphology at approximately 30-33 days. On the day of transplant, cells were detached with Accutase (Stemcell Technologies
Australia, Melbourne, Australia) to a single cell suspension and centrifuged at 300g. The cell pellet was resuspended at 10,000
cells/ul in BrainPhys (Stemcell Technologies Australia, Melbourne, Australia) neural maintenance media with Rho Kinase Inhibitor
IV (Stemcell Technologies Australia, Melbourne, Australia; 1:50 dilution) with approximately 10° cells plated onto each MEA. Cells
began to display early but widespread spontaneous activity around DIV 80, at which point they were ready for experimentation.

Stem cell NGN2 direct differentiation

Cortical excitatory neurons were generated by the expression of NGN2 in iPSCs. iPSCs were plated at 25,000 cells/cm? in a 24-well
plate coated with 15 ng/ml human laminin (Sigma, USA). The following day, cells were transduced with NGN2 lentivirus (containing a
tetracycline-controlled promoter coupled with a puromycin selection cassette) in combination with a lentivirus for the rtTA (reverse
tetracycline-controlled transactivator). NGN2 gene expression was activated by the addition of 1 pg/ml doxycycline (Sigma,
Australia), this was referred to as differentiation day 0. Cells were cultured in neural media consisting of 1:1 ratio of DMEM/
F12:Neurobasal media supplemented with (all reagents from Thermofisher, USA) B27 (#17504-044), N2 (17,502-048), Glutamax
(#35050-060), NEAA (#11140-050), B-mercaptoethanol, ITS-A (#51300-044) and penicillin/streptomycin (#15140-122). On Day 1,
1.0 pg/mL puromycin (Sigma, Australia) was added for 3 days at which point neurons were supplemented with 10 pg/ml BDNF (Pe-
protech, USA) and lifted with accutase, in preparation for plating on HD-MEA chips. HD-MEA chips were pre-treated with 100 pg/ml
PDL (Sigma, USA) and 15 ug/mL laminin (Sigma, USA). For each well 1x10° NGN2 induced neurons at DD4 were combined with
2.5x10* primary human astrocytes (ScienceCell, USA) in each well of the MEA plate. To arrest cell division of astrocytes 2.5 uM
Ara-C hydrochloride (Sigma, USA) was added at day 5 for 48 h. Cells were maintained in neural media supplemented with BDNF
and media changed at least 1 day prior to recordings.

HEK293T cell culturing

Human Embryonic Kidney Cells 293T (HEK 293T; Merck KGaA, Darmstadt, Germany), were cultured in DMEM (Thermofisher Scien-
tific, USA) supplemented with 10% fetal bovine serum (Thermofisher Scientific, USA) under standard conditions. Cells were used as a
non-neural control and plated onto MEA as described below with the exception that testing began 24 h after plating as this cell type
does not mature into electrically active cells.

MEA setup and preparation

MaxOne Multielectrode Arrays (MEA; Maxwell Biosystems, AG, Switzerland) were used for this research. The MaxOne is a high-res-
olution electrophysiology platform featuring 26,000 platinum electrodes arranged over an 8 mm?. The MaxOne system is based on
complementary meta-oxide-semiconductor (CMOS) technology and allows recording from up to 1024 channels. Stimulation was
theoretically possible up to 32 electrodes. In practice it was not possible to route 32 electrodes through independent stimulation units
to facilitate independent electrode level control, especially if these electrodes were spatially proximate to each other. This meant that
for the actual setup of input stimulation described below a subset would be limited by the desired spatial configuration —in this case to
8 individually controlled electrodes. MEAs and chambered glass slides are coated with either polyethyleneimine (PEI) in borate buffer
for primary culture cells or Poly-D-Lysine for cells from an iPSC background before being coated with either 10 pg/ml mouse laminin
or 10 ug/ml human 521 Laminin (Stemcell Technologies Australia, Melbourne, Australia) respectively to facilitate cell adhesion.
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Plating and maintaining cells on MEA

Approximately 108 cells were plated on MEA after preparation via method already described. Cells were allowed approximately one
hour to adhere to MEA surface before the well was flooded. The day after plating, cell culture media was changed to BrainPhys™
Neuronal Medium (Stemcell Technologies Australia, Melbourne, Australia) supplemented with 1% penicillin-streptomycin. Cultures
were maintained in alow O, incubator kept at 5% CO,, 5% O,, 36°C and 80% relative humidity. Every two days, half the media from
each well was removed and replaced with free media. Media changes always occurred after all recording sessions.

Measuring of electrophysiological activity

Licensed MaxLab Live Scope V20.1 software was used to run activity scans. Checkerboard assays consisting of 14 configurations at
15 seconds of spike only record time were run daily immediately preceding the running of the DishBrain software. Gain was set to
512x with a 300 Hz high pass filter. Spike threshold was set to be a signal six sigma greater than background noise as per recom-
mended software settings. Mean, max and variance of both amplitudes and firing rates was extracted from these assays and map-
ped using custom software: the first nine components of discrete cosine transform basis functions of space were used to summarise
the spatial profile of spiking activity. The ensuing coefficients were then used in subsequent correlation analyses.

DishBrain software platform

The current DishBrain platform is configured as a low-latency, real-time MEA control system with on-line spike detection and
recording software, see Figure S3. The DishBrain software is controlled by a low latency, real-time piece of software named
‘DishServer’, which replaces and extends a corresponding piece of MaxWell vendor software called ‘MXWServer'. DishServer is
capable of receiving voltage readings from MaxOne vendor hardware, processing these readings, simulating a virtual environment,
encoding the results as MaxOne electrode commands, and sending these commands back to the MaxOne hardware. When run on a
computer with access to a MaxOne hardware setup with a live culture in place, the system acts as a closed loop that we can configure
and record for analysis. Working closely with MaxWell Biosystems we enabled capabilities not available using the native vendor soft-
ware. The MaxOne MEA is configured to read up to a particular 1024 of its 26,400 electrodes, at a rate of 20,000 samples per second.
As shown in Figure S2B, these samples are optionally recorded as-is, for later analysis, but are also run through a sequence of
computationally efficient Infinite Impulse Response (lIR) filters to calculate noise and activity levels, which are compared in order
to detect spikes. Incoming samples are filtered with a 2nd order high-pass Bessel filter with 100Hz cut-off, the absolute value is
then smoothed using a 1st order low-pass Bessel filter with 1Hz cut-off, the spike threshold is proportional to this smoothed absolute
value.

Representation of the gameplay environment

Spikes are themselves optionally recorded in binary files, and regardless of recording are counted over a period of 10 milliseconds
(200 samples), at which point the game environment is given the number of spikes detected in each of the configured electrodes in
predefined motor regions as described below. These spike counts are interpreted as motor activity depending on which motor region
the spikes occurred in, thereby moving the ‘paddle’ up or down in the virtual space. At each of these 10ms intervals the pong game is
also updated, with a ball moving around a play area at a fixed speed, ‘bouncing’ off the edges of the play area and off the paddle, until
it hits the edge of the play area behind the ‘paddle’, which marks the end of one ‘rally’ of pong. At the end of the rally, the game envi-
ronment will instead configure the stimulation sequencer to apply one of three types of feedback described below: random, silent or
none. Under the standard stimulus condition, feedback is also provided when the ball contacts the paddle as described below. As
described in detail below, during each rally the location of the ball relative to the paddle is encoded as stimulation to one of eight
stimulation sites, which is tracked in an internal ‘stimulation sequencer’ module. The stimulation sequencer is updated 20,000 times
a second, once every time a sample is received from the MEA, and once the previous lot of MEA commands should have finished, it
constructs another sequence of MEA commands based on the place-code and rate-code information that it has been configured to
transmit. The stimulations take the form of a short square bi-phasic pulse that is a positive voltage, then a negative voltage. A Digital to
Analog Converter (or DAC) on the MEA will read and apply this pulse sequence to the given electrode. Figure S5C shows an image of
the game visualiser, and a real-time interactive version is available Video S2 at https://spikestream.corticallabs.com/. There was also
the option to record cells at ‘rest’ where a gameplay environment was initiated and activity was recorded to move the paddle, but no
stimulation was delivered, with corresponding outcomes still being recorded. This acted as a baseline control to determine the game-
play characteristics of a culture based on spontaneous activity alone.

Interface with Maxwell API

To interface with Maxwell API, DishBrain uses a negative DAC value first because this corresponds to a positive voltage in the
MaxWell API. Finally, the spike detection is also capable of ‘blinding’, which is expected to occur after each stimulation; in order
to prevent DAC stimulation from being interpreted as neuron activity, all 1024 channels are ignored for a configurable number of sam-
ples, after either detecting anomalous activity directly, or after receiving acknowledgement from the MEA that a DAC command has
been executed. The existing APl was used only for loading configurations. Low level code was written in C to allow for minimal pro-
cessing latencies—so that packet processing latency was typically <50 us. High level code, including configuration set ups and
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broader instructions for game settings were implemented in Python. This allowed a spike-to-stim latency of approximately 5ms, with
the substantive delay due to inflexible hardware buffering built into MaxOne hardware.

Initial pilot testing

Initial tests were conducted to assay which input configurations cell cultures would survive. Testing time was found to be a highly
sensitive parameter, as cells did not tolerate testing times >1.5 h. When measurements were taken it was concluded that this
was likely due to increased temperature in the cultured wells in which cells were plated in due to activity and the resulting increased
evaporation and changes in osmolarity. Cells survived testing administration of stimulation up to 3000 mV for up to one hour which
was the maximum testing time considered given the above findings. While this did create excess noise in recording cellular activity
across the MEA during the stimulation period, there were no significant changes to spontaneous activity in the cell cultures before
and after the period of stimuli administration. Initial experiments delivered purely place-coded stimulation, where the distance from
the centre of the sensory area was interpreted as distance from the centre of the paddle aligning with the ball.

Pilot test with EXP3 algorithm

After initial pilot testing of the DishBrain system, two pathways were identified to modify performance: encoding of information and
decoding of activity. For the latter, an Exponential-weight algorithm for Exploration and Exploitation (EXP3) algorithm was used dur-
ing pilot study 2 only for the adaptive selection of electrode layouts, with the objective of optimising gameplay performance and
determining whether key motor region definitions were on average more suitable for gameplay than others (Yang et al., 2020). These
different configurations options are illustrated in Figure S3 (Seldin et al., 2012).This algorithm was implemented to maintain a list of
weights for each action and was designed to minimise regret (the difference between the accumulated loss and the loss achieved) by
preferencing electrode configurations which were associated with a higher probability of the ball being returned. EXPS3 is robust to
changes in the underlying distribution of returns; this is important because neurons are also concurrently learning, and their behavior
changing over time. Optimising all possible assignments of electrodes to actions would require a prohibitively large set of choices, so
arepresentative set of balanced layouts were used. EXP3 is an online optimisation algorithm for the "multi-armed bandit" problem. It
selects between several discrete choices, over a series of rounds. Each discrete choice yields an observable stochastic loss. The
best choice is never revealed, even post-hoc. Quality of choices can only be inferred from noisy returns - exploration and exploitation
must be balanced. In this work, one of the discrete sets of electrode-action mappings called ’'motor layouts’ was chosen on each
round. The loss to be minimized is calculated using the following equation:

min(score;, 10)
10

Where L is the loss at the end of the rally i and score; is number of bounces during that rally. During the i-th rally, a given layout is
used and is fixed during the entire rally. At the end of the rally, a different layout is chosen by EXP3 for the next rally and the game play
continues. When using EXP3 the system can adaptively optimize performance by choosing from a fixed set of alternative motor lay-
outs (Figure S3). At the same time, a new blinding method (consensus blind) based on blinding all signals when >15 simultaneous
large (>75 mV) spikes were detected, was implemented to block stimulation delivered by the system from being registered as cellular
activity. It was hypothesised that a lack of blinding administered signals may contribute to the apparent performance observed in
controls in our pilot study. As described in the main text, Figure S5D and shown in Table S4, experimental chips with configurations
that would enable lateral inhibition were found to be selected significantly more compared to other configurations resulting in an
equal distribution (x2 = 35690.93, p < 0.0001), including those that were more simplified like that used in the pilot where activity
on the left moved the paddle left and conversely for the right (Figure S3: Configuration 0) and would be most easily influenced
by various sources of bias (Espinoza et al., 2018; Fan et al., 2020; Obermayer et al., 2018). When the frequency tables of these
two distributions were compared, they were also found to be significantly different, (x2 = 15229.323, p < 0.0001). Considering these
differences, for this specific pilot study it was not valid to compare experimental and control groups as they are operating off different
types of configurations. Given the apparent preference for configurations that would allow processes such as lateral inhibition to
occur in experimental chips, coupled with the concern of having different groups operating from different configurations, it was
decided to select configuration 3 for all cultures going forward, as it was chosen most frequently by the EXP3 algorithm. Moreover,
if consensus blinding behaved as expected, control chips should also show no preference. This led us to suspect that consensus
blinding was ineffective and on further investigation, particularly when using a higher and variable frequency of sensory stimulation,
we discovered more evidence of consensus blinding failing than our previous testing revealed. To counter this, a new blinding
method was implemented, which was termed ‘command count blinding’. This method blinded our readout of all motor activity
when a command was sent to generate any form of stimulation. During testing this was found to be significantly more robust than
the previously used consensus blinding and allowed us to proceed with increasing the density and variability of sensory stimulation.

L = -1 (Equation 1)

Input configuration

Stimulation is delivered at a given Hz and voltage as appropriate for the required input type across 8 predefined electrodes in a sen-
sory area, as shown in Figure 4B. A total of 5 types of input were able to be delivered. This consisted of either “Sensory Stimulus” that
encoded ‘ball’ position, or one of four feedback protocols, either Unpredictable, Predictable, Silent, or No-feedback.
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Sensory stimulus

Given that cells appeared robust to voltage stimulation, the decision was made to base voltage levels on existing evidence of neuro-
logical function. Therefore, to prevent forcing hyperpolarised cells from firing, 75 mV was chosen as the sensory stimulation voltage
that would relate to where the ball was relative to the paddle as described in the main text to key electrodes. For the main study, place
coding was combined with a rate coding that delivered stimuli at 4 Hz when the ball was closest to the opposing wall and increased in
a linear fashion to a max of 40 Hz as the ball reached the paddle wall.

Unpredictable stimulus

For the standard stimulus feedback condition unpredictable stimulation was delivered to the cultures when a ‘miss’ occurred —i.e.,
when the culture failed to line the ‘paddle’ up to connect with the ‘ball’. In order to add unpredictable external stimulus into the sys-
tem, this feedback stimulus was set at 150 mV voltage and 5 Hz. This stimulation occurred at random sites at arandom timescale over
the 8 predefined input electrodes, for a period of four seconds, followed by a configurable rest period of four seconds where stim-
ulation is paused, followed then by the next rally. Theoretically the higher voltage than that used for the Sensory Stimulus would be
sufficient to force action potentials in cells subjected to the stimulation regardless of the state the cell was in, thereby being even more
disruptive to the culture.

Predictable stimulus

For the standard stimulus feedback condition a predictable stimulation was delivered to cultures when a ‘hit’ occurred —i.e., when the
cultures successfully lined up the ‘paddle’ to connect with the ‘ball. This was delivered at 75mV at 100Hz over 100ms. This occurred
at the instant of when the simulated ball impacted the paddle and replaced other sensory information for the 100ms period. Predict-
able stimulation occurred at this frequency and period across all 8 stimulation electrodes simultaneously.

Silent feedback

Silent feedback only occurred for follow up studies in the Silent condition. This feedback replaced the Unpredictable Stimulus
described above with no stimulation for the same length of time. Predictable Stimulus feedback was also removed during Silent
Feedback sessions. This feedback is still distinct from No-Feedback as described below as it is a change in the culture environment
that is tied to culture activity in a closed-loop manner and therefore a form of feedback.

No feedback

This condition only occurred for follow up studies in the No-feedback condition. This condition was designed to assess whether sen-
sory stimulation was sufficient to drive learning in cultures and was an open-loop condition. This means that no feedback of any kind
was delivered to the cultures based on any outcome or action. Standard Sensory Stimulus as described above was delivered to the
cultures and the outcome was measured on the same metric, however when a ‘miss’ would normally occur, instead the ball
continued the same trajectory bouncing off the wall behind the paddle - still recorded as a ‘miss’ — that would otherwise result in
the end of a rally. When the ‘ball’ connected with the simulated paddle a ‘hit’ would be recorded. As such, under No-Feedback
the entire gameplay session is essentially a single rally with the final position of the simulated ball being predictable from the initial
vector, but with the scoring occurring as normal otherwise.

Output configuration

Atotal of 1024 electrodes were routed on the HD-MEA to record activity in a pattern as shown in Figure 4B. The ‘Sensory’ area, where
stimulation electrodes were embedded as described above consisted of 626 electrodes. The remaining output electrodes were
divided into predefined motor regions on the MEA, consisting of four regions that were defined either as motor region 1 or motor region
2 as shown in Figure 4B. As described above, this configuration was selected as it offered the possibility for biologically relevant fea-
tures and minimized the chance of apparently successful performance through bias alone—as it precludes a direct relationship be-
tween input stimulation and output activity recording. Only activity in motor regions contributed towards paddle movement. Activity in
motor region 1 moved the paddle ‘up’ and activity in motor region 2 moved the paddle ‘down’. Activity was measured over these two
regions, where the region with higher activity would move the paddle in a corresponding direction. This was found to be extremely
sensitive to culture characteristics, where asymmetrical spontaneous spiking activity in cultures would cause the paddle to move
swiftly in only one direction. However, due to the technical difficulty of culturing neurons with precisely balanced activity in both these
regions it was found to be necessary to add ‘gain’ into the system. This gain function measured activity in both regions and added a
multiplier to a target of 20 Hz. Activity >20 Hz was weighted by a correction factor >1, while activity <20 Hz was weighted by a correc-
tion factor <1. This would allow changes in activity in each given region to influence the paddle position, even if they displayed different
latent spontaneous activity. No other filtering or machine learning style weights were applied to decode motor region activity, meaning
there was no need for regularization or risk of over fitting as all learning was required to occur within the biological neural cultures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample size and blinding protocols

No statistical methods were used to predetermine sample size. As all work was conducted within controlled environments uninflu-
enced by experimenter bias, experiments were not randomized, and investigators were not blinded to experimental condition. How-
ever, conditions were blinded where possible before final analysis to limit bias during analysis. Figure S5A presents a schematic of the
overall experimental setup.
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Immunocytochemistry

Cells were washed three times with sterile PBS and then fixed using 4% PFA for 20 min. After washing, cells were blocked 0.3%
Triton-X and 1% goat serum in PBS for 1 h. Primary antibodies specific for Synapsin1 (1:500; ab254349; Rabbit; Abcam, Cambridge,
MA, USA), NeuN (1:500; ab104225; Rabbit; Abcam, Cambridge, MA, USA), Beta-Ill Tubulin (1:500; MAB1637, Mouse; Kenilworth,
NJ, USA), MAP2 (1:1000; Chicken; ab5392; Abcam, Cambridge, MA, USA), TBR1 (1:200; ab183032; Rabbit; Abcam, Cambridge,
MA, USA), GFAP (1:500; ab4674; Chicken; Abcam, Cambridge, MA, USA), and Ki67 (1:500; ab245113; Mouse; Abcam, Cambridge,
MA, USA) were incubated overnight. After washing, secondary antibodies (chicken 555, rabbit 488, mouse 647; Abcam, Cambridge,
MA, USA) were incubated for 2 h. This was followed by 10 min of DAPI Staining Solution in PBS (1:1000, ab228549, Abcam, Cam-
bridge, MA, USA) after which point slides were cover-slipped with ProLong Gold Antifade Mountant (Thermo Fisher Scientific, Wal-
tham, MA, USA) mounting media and allowed to dry for 48 h.

Scanning electron microscopy

At various designated endpoints, media was aspirated from the MEA wells and cells were fixed with 2.5% glutaraldehyde (Electron
Microscopy Sciences, PA, USA) and 2% paraformaldehyde (Electron Microscopy Sciences, PA, USA) in a 1 M sodium cacodylate
buffer for 1 h. They were then washed three times in 1M sodium cacodylate buffer before being post-fixed with 1% OsO,4 in a 1M
sodium cacodylate buffer for 1 h. OsO4 was removed and the fixed cells were washed with three times in milliQ water and dehydrated
via an ethanol gradient exchange (30%, 50%, 70%, 90%, 100%, 100% v/v) for 15 min each. After dehydration, the cells were dried by
hexamethyldisilazane (Sigma Aldrich, St. Louis, MO, USA) exchange (3 x 10 min), and then allowed to evaporate for 5-10 min. MEA
chips were then affixed to an aluminium stub with carbon tape and sputter coated with 30 nm layer of gold using a BAL-TEC SCD-005
gold sputter coated. All procedures were performed at room temperature. Coated MEA chips were then imaged using a FEI Nova
NanoSEM 450 FEGSEM operating with an acceleration voltage of 10 kV and a working distance of 12 mm. Images were analysed
using Imaged v.1.52k and false coloured using Adobe Photoshop.

Widefield fluorescence microscopy
Images were captured using a Nikon Ti-E upright light microscope equipped with a motorised stage. All widefield images were
captured using a 20X objective.

Data analysis

Data was analysed using custom code written in Python. Error bars are described in captions, except where graphs are box and
whisker plots, where the line is the median, box indicates lower quartile to upper quartile and error bars show the rest of the distri-
bution excluding outliers. The illustrative data provided in the text and figures include means and standard deviations. An alpha of
p < 0.05 was adopted to establish statistical significance, providing a 5% chance of a false positive error. Where suitable assump-
tions were met, inferential frequentist statistics were used to determine whether statistically significant differences existed between
groups. All tests were two tailed tests for statistical significance. For related samples, t-tests or independent T-tests alpha values for
significance were corrected via the Bonferroni method. For one-way analysis of variance (ANOVA) and the multivariate 2 x 3 repeated
measures ANOVA, when a significant interaction or main effect was found, this was followed up with pairwise Games-Howell post
hoc tests with Tukey correction for multiple comparisons. This was adopted as there were always differences between sample sizes
and variance due to inclusion of in-silico controls. When examining spiking activity, for all stimulus condition gameplay activity the
first 10 s was excluded as the system generated substantial noise while initialising. Four chips were not analysed as the data
recording was initially not implemented for the very first series of experiments, the remainder were all included without exclusion.
100ms time-lagged cross-correlations were calculated between activity detected in the sensory region against activity detected
in each motor region separately. This method has previously been established as a method to define functional connectivity (Mohseni
Ahooyi et al., 2018). Both linear and nonlinear cross-correlations methods were explored and selected based on whether assump-
tions were met. However, it should be noted that comparable trends were observed with both methods. Given the large sample sizes,
the linear rainbow test for linearity was predominately relied upon to determine significant variations away from linearity. The relation-
ship between the sensory region did not show a significant degree of nonlinearity for both Motor Region 1 (p = 0.699; Figure S5E) and
Motor Region 2 (p = 0.122; Figure S5F. As such Pearson’s linear correlation were used to quantify these relationships. When the
binned correlations between the two motor regions were assessed (without a time lag to determine synchronised activity) it was
found to show a significant degree of nonlinearity (p = 1.3275%; Figure S5G). For this relationship Spearman’s correlation was
used. To quantify the changing relationship between time in minutes and the correlation between motor regions, linear regression
was used with minutes as the predictive variable and the correlation as the dependent variable. Activity in each motor region was
grouped into 1000ms bins and the number of exclusive events, where activity was detected in either Motor Region 1 or Motor Region
2 but not both, above noise (amplitude < -5uv) was calculated for both rest and gameplay conditions. This was then compared be-
tween cultures under the rest condition and during the gameplay condition. As seen in Figure 8E, four DCT basis functions were used
to summarise spatial modes of spontaneous activity. Uncorrected pairwise Pearson’s correlations were used to test the relationship
between the ensuing scores —along with max and mean firing rates (Hz) and electrophysiological activity during gameplay described
above —with average rally length.
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Calculation of information entropy

The spatial locations of recording electrodes were used to regionalize the entire MEA into 18 rectangular clusters of 50 neighbouring
electrodes as shown in Figure S5. In every cluster, the spike time information from each of these electrodes were used to calculate the
local binary entropy of the group of electrodes in time windows of 100ms. The binary entropy function, denoted H,(p), is defined as
the entropy of a Bernoulli process with probability p of one of two values. Given Pr(X = 1) = p, then Pr(X = 0) = 1—p; with X = 1 indicating
the presence of a spike in the current time bin. The entropy of X (in shannons) is given by:

Hb(p) = — p+log2(p) — (1 — p)-log2(1 —p)

where 0.log,0 is taken to be 0. Hence, we calculated the local entropy of each cluster of channels over time windows of 100ms. The
mean value of the calculated entropies over time and over all the spatial clusters was then compared between sessions of active
Gameplay with different feedback types and the Rest session recordings. The comparisons were also carried out for the mean en-
tropy in separated groups of motor and sensory electrode clusters during Rest and Gameplay sessions.

Calculation of functional plasticity

Including spatial information for quantifying network plasticity has proven more reliable than simply utilizing firing rates as described
(Chao et al., 2007). We adapted this method to compare training-induced plasticity with the baseline plasticity measured before
training during Rest sessions, we used the centre of activity (CA), a related population coding, explicitly including electrode locations
as a relevant variable (Bakkum et al., 2008b; Chao et al., 2007).

N
_41Fk*Xe — Rx,Yx — R
Ca = [Cax,Cav] :Zk_1 el kN Xk i
> k= 1Fk

The centre of activity (CA) is defined as the vector summation of the number of action potentials recorded on each electrode k (i.e.,
Fk) weighted by the spatial location of the electrode. [Xk, Yk] represent the coordinates of electrode k and the reference point coor-
dinates, [RX, RY], were set as the bottom left corner of the MEA. N is the total number of electrodes recorded on the MEA. In order to
investigate the presence of training-induced plasticity, the mean Euclidean distance of calculated CAs in consecutive 5 min time in-
tervals during the Gameplay sessions to the centroid of CAs in all the recorded 10 min reference periods or Rest state spontaneous
activity sessions before training was measured (i.e. Cag,,,., s Chrest 010 ;Y € {0,5}). This was then compared to the mean
Euclidean distance of CAs in 5 min intervals of Rest recordings to their own centroid which is again the mean of CAs during all
the 10 min Rest session recordings from each culture on each experimental day (i.e. EAR%MM) - EAR%KOM; Vt e {0,5}). This
was then repeated for every culture on each experimental day. These measurements were used to quantify the change in CAs
from a pre-training period to different post-training periods. The average of this distance from the Rest period centroid in the Game-
play sessions and Rest sessions were calculated. One-way ANOVA test was performed to determine the statistical significance of the
differences between the two groups.

ADDITIONAL RESOURCES

A visualiser of the system in real-time is available at https://spikestream.corticallabs.com/.
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DAPI Synapsin1

Fig. S1. Cortical neurons can be obtained via multiple methods, related to Fig. 2. Scale bars as shown on figure. A)
Primary mouse cortical neurons show diverse expression of synapsinl which marks synaptic vesicles and actin filaments
across long reaching neural networks. B) — F) Shows that using a RM3.5 cell line comparable cortical cultures can be
generated using the dual SMAD inhibition protocol described in Methods. B) Shows endogenous expression of GFP, beta3-
tubulin (BIII) marking axons and a lack of Ki67 suggesting no dividing cells, C) additional shows these cells expressing
GFAP for supporting glial cells Further images in D) show a characteristic neurosphere structure neurons would often
spontaneously form when plated at high density, a dense pseudo three-dimensional sphere with dense connections of
neurons and axons throughout. E) & F) display hIPCSs differentiated to neurons using the NGN2 method and mouse
primary cortical neurons respectively, both plated of HD-MEA and allowed to mature before staining. These cells display
all markers previously described, but due to the reflective material of the CMOS chip, it is infeasible to get high resolution
fluorescent images of cells on the chips, leading to the adoption of SEM imaging shown in the main text. G) & H) also
show hIPCSs differentiated to neurons using the NGN2 method; G) Staining of mature neural monolayer cultures with the
majority of cells expressing NeuN which marks neuronal cells, MAP2 marks dendrites and 3-Tubulin which marks long-
range axons. H) Further staining shows that along with B3-Tubulin these cells express the pre-synaptic marker synapsinl
across the soma and cell projections.
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Fig. S2. Schematics of software used for DishBrain, related to Fig. 4B. A) Software components and data flow
in the DishBrain closed loop system. Voltage samples flow from the MEA to the ‘pong’ environment, and sensory
information flows from the ‘pong’ environment back to the MEA, forming a closed loop. The blue rectangles
mark proprietary pieces of hardware from MaxWell, including the MEA well which may contain a live culture of
neurons. The green MXWServer is a piece of software provided by MaxWell which is used to configure the MEA
and Hub, using a private API directly over the network. The red rectangles mark components of the 'DishServer’
program, a high-performance program consisting of four components designed to run asynchronously, despite
being run on a single CPU thread. The 'LAN Interface’ component stores network state, for talking to the Hub,
and produces arrays of voltage values for processing. Voltage values are passed to the ’Spike Detection’
component, which stores feedback values and spike counts, and passes recalibration commands back to the LAN
Interface. When the pong environment is ready to run, it updates the state of the paddle based on the spike counts,
updates the state of the ball based on its velocity and collision conditions, and reconfigures the stimulation
sequencer based on the relative position of the ball and current state of the game. The stimulation sequencer stores
and updates indices and countdowns relating to the stimulations it must produce and converts these into
commands each time the corresponding countdown reaches zero, which are finally passed back to the LAN
Interface, to send to the MEA system, closing the loop. The procedures associated with each component are run
one after the other in a simple loop control flow, but the ‘pong’ environment only moves forward every 200
update, short-circuiting otherwise. Additionally, up to three worker processes are launched in parallel, depending
on which parts of the system need to be recorded. They receive data from the main thread via shared memory and
write it to file, allowing the main thread to continue processing data without having to hand control to the
operating system and back again. B) Numeric operations in the real-time spike detection component of the
DishBrain closed loop system, including multiple IIR filters. Running a virtual environment in a closed loop
imposes strict performance requirements, and digital signal processing is the main bottleneck of this system, with
close to 40 MiB of data to process every second. Simple sequences of IR digital filters is applied to incoming
data, storing multiple arrays of 1024 feedback values in between each sample. First, spikes on the incoming data
are detected by applying a high pass filter to determine the deviation of the activity, and comparing that to the
MAD, which is itself calculated with a subsequent low pass filter. Then, a low pass filter is applied to the original
data to determine whether the MEA hardware needs to be recalibrated, affecting future samples. This system was
able to keep up with the incoming data on a single thread of an Intel Core 17-8809G.
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Fig. S3. Representation of the specific configurations of the DishBrain platform, related to Fig. 4E.
Stimulation is delivered to a predefined sensory area and activity is measured in the motor regions to determine
how the paddle will move. Feedback is provided via the sensory area based on the outcome of the motor region
activity. Note the different configurations in which motor activity may have been interpreted. Configuration 0
was initially adopted as the beginning choice, however when the EXP3 algorithm was used to control selection
from all of the above options, experimental cultures adopted a preference for configuration 3, which was then
adopted going forward.
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Fig. S4. Further controls and follow up for initially investigation into learning effects, related to Fig. 5.
Significance bars show within group differences denoted with *. Symbols show between group differences at the
given timepoint: # = vs Cortical cells. The number of symbols denotes the p-value cut off, where 1 =p <0.05, 2
=p <0.01,3=p <0.001 and 4 = p <0.0001. Box plots show interquartile range, with bars demonstrating 1.5X
interquartile range, the line marks the median and A marks the mean. Electrically inactive non-neural cells also
display no learning over time and perform at media control levels compared to cortical cells. A) Looking at the
% change in rally length compared to match rest controls, cortical cells condition showed significant ¢ = 8.22, p
= 1.15") and outperformed HEK293T cells and media control groups at timepoint 2 which showed no change
over time (Table S3). B) Shows similar differences vs rest performance for aces across conditions, where the
Cortical cell group showed significantly less % of aces across time (¢ = 3.21, p = 0.002) along with significantly
fewer aces than the HEK control and Media control groups at both timepoints (Table S3). C) differences vs rest
performance for % if long-rallies across conditions, where the Cortical cell group showed significantly more
long-rallies across time (¢ = 3.40, p = 0.0007) along with significantly fewer aces than the HEK control and Media
control groups at the second timepoint (Table S3). D) Significant negative correlation (» = -0.35, p < 0.001)
between % aces and % long rallies for experimental cultures by session. E) No statistically significant correlation
was observed between average paddle distance moved in a session and average rally length. This supports that
paddle movement alone could explain the observed learning effects for neural cultures embodied in closed-loop
feedback. F) Learning effects overtime when embodied in a closed-loop stimulation can also be observed with
linear regression. After controlling for family wise error with a Bonferroni correction, a significant linear
regression was found for both the human cortical cells (HCC) (R*> = 0.007, F(1, 2698) = 27.51, p = 0.0001, =
0.30, p <0.001) and mouse cortical cells (MCC) (R>=0.015, F(1, 1875) =28.06, p=6.557, = 0.71, p <0.001).
After correction, no significant linear regression was found for the rest condition (RST) (R? = 0.006, F(1, 836) =
5.07, p=0.123, p = 0.55, p =0.125), media control (CTL) (R*=0.001, F(1, 1279) = 1.72, p = 0.950, = 0.24, p
=0.950), or the in-silico control (IS) (R* = 0.003, F(1, 758) =2.49, p = 0.575, p = -0.76, p =0.575). While these
R values are relatively small due to the other factors explored throughout this paper, this is simply another way
to showcase the learning pattern seen over time in cells but not in control conditions, suggesting that the increase
in the average rally length is not chance alone.
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Fig. S5. Key methods used in this study, related to Star Methods. A) Diagrammatic illustration of the core experimental
setup which drove the research in this project. B) Illustration of Dual SMAD inhibition protocol for differentiating
pluripotent cells into cortical cells. C) Starting position of paddle and ball as visualised in the DishBrain platform. From the
perspective of the neural cultures, it is more accurate to imagine that they view this world from the perspective of the paddle
looking at the ball opposed to top-down as presented here. D) Shows the distribution differences relative to chance in
percentage that a motor configuration was chosen by EXP3 algorithm (2 = 35690.93, p<0.0001) for control and
experimental cultures. Motor configuration 0 was selected most often for media control while motor configuration 3 was
selected most often for experimental. E) — G) The predicted vs residual values for the regression testing the assumption of
linearity between variables: E) Motor Region 1 from Sensory Region, F) Motor Region 2 from Sensory region, and G) Motor
Region 1 from Motor Region 2.
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Fig. S6. Schematic of spatial clustering used to calculate subregions for mean local information entropy, related to Fig. 7 and

Star Methods. The spatial clustering of channels is represented according to their x and y coordinates on the MEA surface. Each
cluster contains 50 channels. Motor area groups are labelled with m_i while clusters of sensory channels are labelled by s_i
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Table S1, related to Fig. 4, 5, 6, 7, S4: Multivariate statistical tests and all results for tests done, including figure panel,
parameter assessed, statistical source and test, degrees of freedom, mean square and F values, p-value and partial eta
square estimate of effect size (np?).

Figure | Panel | Parameters Source DF1 | DF2 MS F p- np? Method
value
4 E Average Rally | Group - all 1 845 0.305 10.381 | 0.001 | 0.012
Length Half - all 2 845 | 0.446 | 15.172 | 0.000 | 0.035 = ANOVA
Interaction - all | 2 845 0.078 2.646 0.072 | 0.006
5 B Average Rally | Group - all 4 394 0.297 3.330 0.011 | 0.033
Length half - all 1 394 19208 | 98.908 | 0.000 | 0.201 RM
Interaction - all | 4 394 2.020 21.696 | 0.000 | 0.181 | ANOVA
Group—time 1 | 4 394 1 0.698 | 7.031 | 0.000  0.067 ANOVA
Group —time2 | 4 394 1619 | 19.519 | 0.000  0.165 ANOVA
C % Aces Group - all 4 394 1 0.081 | 9.284 | 0.000  0.086
half - all 1 394 0.131 | 16.509 | 0.000 | 0.040 RM
Interaction - all | 4 394 0058 | 7295 | 0000 0069 ANOVA
Group —time 1 | 4 394 1 0.044 | 4.143 | 0.003 | 0.040 = ANOVA
Group —time2 | 4 394 1 0.095 15.583 | 0.000 | 0.137 | ANOVA
D % Long Rally | Group - all 4 394 | 0.017 | 4767 | 0.001 | 0.046 RM
half - all 1 394 | 0206 | 59.746 | 0.000 | 0.132 = ANOVA
Interaction - all | 4 394 | 0.047 | 13.531 | 0.000 | 0.121
Group—time 1 | 4 394 1 0.046 | 10.191 | 0.000 | 0.094 ANOVA
Group—time 2 | 4 394 1 0.017 | 6928 | 0.000 0.066 ANOVA
E Paddle Within 4 776 | 251 | 77.63 | 0.000 029 | ANOVA
Distance
6 C Average Rally | Group - all 2 353 20740 4.721 0.000 | 0.026
Length half - all 1 353 133440 | 16.577 | 0.000 | 0.045 RM
Interaction - all | 2 353 25812 | 12795 | 0.000 | 0.068 = ANOVA
Group —time 1 | 2 483 | 7559 2.181 | 0.114 |1 0.009 = ANOVA
Group —time2 | 2 4383 53943 | 20.507 | 0.000 @ 0.078 ANOVA
D % Change Group - all 2 164 49314 | 7.674 0.001 | 0.086
Average Rally
Length vs. Test-day -all | 2 328 | 16.115 0037 | 0963  0.000 KM
Rest ANOVA
Interaction - all | 4 328 190844 | 2.100 | 0.081 | 0.025
8
E % Ace vs Rest | Group - all 2 353 19992 6.511 0.002 | 0.036
half - all 1 353 4270 | 0.646 | 0.422 | 0.002
RM
Interaction - all | 2 353 549.02 | 8.308 0.000 | 0.045 ANOVA
5
Group —time 1 | 2 483 | 45346 | 2.181 | 0.127 | 0.008 @ ANOVA
4
Group —time 2 | 2 483 | 2906 18.096 | 0.000 | 0.070 = ANOVA
F % Ace vs Rest | Group - all 2 164 2683 12.125 | 0.000 | 0.129
Test-day - all 2 328 110.54 | 0.971 | 0.380 | 0.006
6 RM
Interaction - all | 4 328 180.45 | 1.585 0.178 | 0.019 ANOVA
9
G % Long-Rally | Group - all 2 353 152,007 | 0.650 | 0.523 | 0.004
vs Rest
half - all 1 353 1089.8 | 29.932 | 0.000 0078 @ RM
65 ANOVA
Interaction - all | 2 353 | 436.93 | 12.000 | 0.000 | 0.064
6
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Table S2, related to Fig. 4, 5, 6, 7: Follow up main text post-hoc tests for multivariate tests, including means, standard error (SE), t-scores, degree of freedom and exact p-values with hedges.

Figure | Panel Parameters A B Mean A Mean B SE T df p-value Hedges Method
4 E Average Rally Length | MCC HCC 0.801 0.843 0.012 -3.453 591.982 0.001 -0.254 Games-Howell
— Second Timepoint | Test 1 | Test 2 0.780 0.823 0.019 -2.218 125.002 0.072 -0.240 Nonparametric
Test 1 | Test3 0.780 0.901 0.025 -4.767 218.363 0.001 -0.637 Post-hoc Test
Test 2 | Test3 0.823 0.901 0.019 -4.138 163.172 0.001 -0.402
5 B Average Rally Length | CTL HCC 0.9 0.674 0.05 4.513 153.939 0.001 0.632 Games-Howell
— First Timepoint CTL IS 0.9 0.832 0.052 1.298 113.864 0.67 0.254 Nonparametric
CTL | MCC 0.9 0.78 0.051 2.359 151.218 0.132 0.352 Post-hoc Test
CTL RST 0.9 0.765 0.055 2.451 114.874 0.109 0.464
HCC IS 0.674 0.832 0.043 -3.66 101.344 0.004 -0.668
HCC | MCC 0.674 0.78 0.041 -2.568 228.111 0.08 -0.335
HCC RST 0.674 0.765 0.047 -1.967 96.31 0.29 -0.345
IS MCC 0.832 0.78 0.044 1.18 100.059 0.736 0.223
IS RST 0.832 0.765 0.049 1.372 77.617 0.629 0.304
MCC RST 0.78 0.765 0.047 0.317 96.415 0.9 0.058
Average Rally Length | CTL | HCC 0.872 1.129 0.043 -5.919 195.83 0.001 -0.829 Games-Howell
—Second Timepoint | CTL | IS 0.872 0.801 0.037 1.928 114.885 0.309 0.377 Nonparametric
CTL | MCC 0.872 1.02 0.04 -3.667 161.682 0.003 -0.547 Post-hoc Test
CTL | RST 0.872 0.815 0.049 1.154 93.05 0.751 0.219
HCC IS 1.129 0.801 0.036 9.189 168.072 0.001 1.676
HCC | MCC 1.129 1.02 0.039 2.776 236.963 0.046 0.362
HCC | RST 1.129 0.815 0.048 6.467 96.724 0.001 1.135
IS MCC 0.801 1.02 0.032 -6.872 131.12 0.001 -1.301
IS RST 0.801 0.815 0.043 -0.325 60.15 0.9 -0.072
MCC | RST 1.02 0.815 0.046 4.472 79.017 0.001 0.817
CTL | HCC 0.872 1.129 0.043 -5.919 195.83 0.001 -0.829
C % Aces — First CTL | HCC 0.508 0.545 0.016 -2.364 145.517 0.131 -0.331 Games-Howell
Timepoint CTL IS 0.508 0.535 0.019 -1.44 99.395 0.59 -0.282 Nonparametric
CTL | MCC | 0.508 0.534 0.017 -1.52 163.66 0.544 -0.227 Post-hoc Test
CTL RST 0.508 0.585 0.019 -4.174 106.983 0.001 -0.79
HCC IS 0.545 0.535 0.016 0.634 70.432 0.9 0.116
HCC | MCC 0.545 0.534 0.014 0.806 205.214 0.9 0.105
HCC | RST 0.545 0.585 0.016 -2.587 78.04 0.083 -0.454
IS MCC 0.535 0.534 0.017 0.063 87.795 0.9 0.012
IS RST 0.535 0.585 0.019 -2.705 77.755 0.062 -0.6
MCC | RST 0.534 0.585 0.017 -3.033 96.296 0.025 -0.554
CTL | HCC 0.53 0.482 0.012 3.956 124.102 0.001 0.554
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Table S3, related to Fig. 5: Follow up post-hoc tests performed on data shown in Fig. S4 for multivariate tests, including means, standard error (SE), t-scores, degree of freedom and exact p-

values with hedges.

Figure | Panel  Parameters A B Mean A Mean B SE T df p-value Hedges Method
S4 A | % Change Average CCs = HEK @ 44.583 18.682 5.825 4.446 279.739 0.001 0.493 Games-Howell
Rally Length vs. Rest | CCs | Media | 44.583 14.374 6.652 4.541 153.166 0.001 0.591 Nonparametric
Second Timepoint HEK | Media Post-hoc Test

18.682 14.374 7.074 0.609 163.673 0.796 0.089

B % Ace vs. Rest CCs HEK -5.888 241 1.43 -2.433 241.772 0.041 -0.27 Games-Howell
First Timepoint CCs  Media -5.888 -1.422 1.649 -2.709 132.14 0.021 0.352 Nonparametric
HEK  Media = -2.41 -1.422 1.837 -0.538 164.491 0.837 -0.078 Post-hoc Test
% Ace vs. Rest CCs = HEK @ -8.953 2.741 1.054 -5.894 292.584 0.001 -0.654 Games-Howell
Second Timepoint | CCs | Media = -8.953 0.617 1.405 -5.931 129.919 0.001 0.772 Nonparametric
HEK Media -2.741 0.617 1.452 -1.463 137.53 0.313 0213 Post-hoc Test
C | %Longrallyvs.Rest = CCs | HEK | -1.767 1.153 0.963 -3.033 200.551 0.008 0.336 Games-Howell
Second Timepoint CCs | Media | -1.767 0.765 1.184 -2.139 107.676 0.087 -0.278 Nonparametric
HEK | Media = 1.153 0.765 1.366 0.284 157.623 0.9 0.041 Post-hoc Test
%Long rally vs. Rest | CCs | HEK | 3.523 1.309 0.734 3.016 236.704 0.008 0.335 Games-Howell
Second Timepoint- | CCs | Media | 3.523 1.424 0.824 2.548 134.013 0.032 0.332 Nonparametric
Test Day HEK | Media  1.309 1.424 0.929 0.124 169.022 0.9 0.018 Post-hoc Test
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Table S4, related to STAR methods: Percentage configurations selected (in bold) by EXP3 algorithm for control and

experimental groups during pilot testing as shown in Fig. S5D.

Configuration | Control % Experimental %
0 22.17 15.51
1 16.16 16.62
2 13.93 18.50
3 18.49 19.31
4 12.25 14.69
5 17.01 15.37
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