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ABSTRACT

Gene regulation plays a critical role in the cellular processes that underlie human health and
disease. The regulatory relationship between transcription factors (TFs), key regulators of gene
expression, and their target genes, the so called TF regulons, can be coupled with
computational algorithms to estimate the activity of TFs. However, to interpret these findings
accurately, regulons of high reliability and coverage are needed. In this study, we present and
evaluate a collection of regulons created using the CollecTRI meta-resource containing signed
TF-gene interactions for 1,183 TFs. In this context, we introduce a workflow to integrate
information from multiple resources and assign the sign of regulation to TF-gene interactions
that could be applied to other comprehensive knowledge bases. We find that the signed
CollecTRI-derived regulons outperform other public collections of regulatory interactions in
accurately inferring changes in TF activities in perturbation experiments. Furthermore, we
showcase the value of the regulons by investigating hallmarks of TF activity profiles inferred
from the transcriptomes of three different cancer types. Overall, the CollecTRI-derived TF
regulons enable the accurate and comprehensive estimation of TF activities and thereby help to

interpret transcriptomics data.
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INTRODUCTION

The regulation of gene transcription plays a fundamental role in development, cell
differentiation, tissue homeostasis, and various physiological processes and is crucial for the
coordinated response of cells to both internal and external signals. As such, its dysregulation
can contribute to the development of numerous diseases, including cancer, autoimmunity,
neurological disorders, developmental syndromes, diabetes, or cardiovascular disease (1). In
particular, deregulated activity of transcription factors (TFs) - key regulators of transcription -
has been implicated in the development of cancer and can generally alter the core
autoregulatory circuitry of a cell (1-3). Transcription factors bind to specific regions of the DNA
and together with cofactors and other proteins influence the transcriptional rate of a specific
set of target genes (TGs) collectively known as the TF's regulon (4). The combined interactions
of all TFs to their target genes are referred to as a gene regulatory network (GRN), a simplified
representation of the underlying regulatory circuits (5). Coupling GRNs with activity inference
algorithms (6) can facilitate the interpretation of transcriptomics data and provide a more
effective means of understanding the underlying regulatory mechanisms in the system of
interest. Among other, TF activity estimation has been used to better understand aging (7) and
to relate TF activities to treatment efficacies and resistance mechanisms (8, 9), to patient
survival (10) and to cancer morphological features (11). Since the choice of TF-regulons can
substantially affect the results (12), it is important to use TF-regulons of high quality, minimizing
false-positive interactions, while having the highest coverage possible to not miss potentially

relevant TFs.

Various methods are available for identifying TF regulons, both on a small and large scale.
Experimentally, high-resolution identification of TF binding sites in vivo can be achieved using
chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) (13)
and DNase | hypersensitivity coupled with DNA sequencing (DNase-seq) (14). Despite
identifying TF-DNA binding events in their native environment, binding events might not
correspond to actual changes in the expression of the target gene, and do not take into account
other cofactors that bind indirectly to the target genes (15). In silico, the prediction of TF-gene
interactions can be done using the genomic sequence recognised by each TF, also known as
binding motifs (16, 17). Such methods involve probing the entire genome for regions that contain
these binding motifs to identify potential target genes. However, this approach is limited to TFs
with known binding motifs and does not account for context-specific interactions, where
regulatory interactions take place only in a specific cell type or condition. Furthermore, GRNs
can be inferred in a data-driven manner, as in co-expression analysis where the correlation
between the expression patterns of a TF and its potential target genes is investigated (18).
Lastly, manual curation of TF-gene interaction from the literature is another common strategy.

Such curation efforts are usually incorporated in databases such as IntAct (19), SIGNOR (20),
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and TRRUST (21). While being very attractive for their high quality, manual curations are hard to
come by since curation is a generally cumbersome task, and curated databases rarely overlap
due to the different curation standards and protocols (12, 22). For that, curation efforts can be
significantly enhanced with the aid of text-mining for the identification of TF-gene interactions,

as previously shown (23).

Despite the availability of the afore-described methods, the lack of a general consensus on the
inference of TF-gene interactions remains a challenge as each approach has its own strengths
and limitations. A few frameworks to create TF regulons based on a combination of resources
have been proposed. Such frameworks include DoRothEA (12), which combines TF-gene
interactions identified by ChIP-seq experiments, inferred interactions by gene expression and
TF binding motifs and manual curation, and ChEA3 (24), which primarily contains
co-expression and ChIP-seq-inferred interactions. Other examples include Pathway
Commons, which is a resource that integrates various types of interactions (i.e. biochemical,
complex binding and physical interactions between proteins, RNA, DNA and small molecules)
(25) and RegNetwork, which compiles experimentally observed or motif-based predicted
interactions among TFs, microRNAs and target genes (26). However, such meta-resources can
include a high number of false interactions due to the use of high false-positive generating
methods (i.e. co-expression and co-occurrence) (27), and, with the exception of DoRothEA,
they do not include the information about the sign of interactions (i.e. activating or inhibiting

interactions).

In this study, we introduce a set of TF regulons created using information on TF-gene
interactions from the CollecTRI (Collection of Transcription Regulation Interactions)
meta-resource (23) which integrates multiple sources of interaction data, including public
databases, text mining, and manual curation. The CollecTRI-derived regulons represent 45,856
signed TF-gene interactions for 1,183 TFs . Additionally, we propose a workflow for defining the
sign of interactions (activating or repressing) based on i) information about the sign curated in
the resources compiled in CollecTRI, on ii) prior knowledge about the TFs activating and/or
repressing roles and on iii) regulon properties which can also be applied to other
comprehensive knowledge bases. We benchmarked the performance of CollecTRI-derived
regulons against TF regulons from four other meta-resources: DoRothEA, ChEA3, RegNetwork
and Pathway Commons. The CollecTRI-derived regulons outperformed the other networks by
accurately inferring changes in TF activities in TF perturbation experiments collected in the
KnockTF data (28). Lastly, we demonstrated the value of the CollecTRI-derived regulons
through a case study, where we estimated the differential activities of TFs in three cancer types
using public data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). We were
able to estimatethe differential activities of TFs with known roles in cancer biology and the

studied cancer types, highlighting the value of the extended coverage of CollecTRI-derived
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regulons. In summary, we provide a new high-confidence, high-coverage collection of

TF-regulons that we make freely available via OmniPath (https://omnipathdb.org/) (29) and the
DoRothEA package (https://saezlab.github.io/dorothea/) (12).

MATERIAL AND METHODS
TF-gene data sources

The CollecTRI source data were introduced in (23) and have since been updated by gathering
more recent data from SIGNOR and GO, and by adding three new resources: DoRothEA_A,
Pavlidis 2021, and the NTNU Curated subset of EXTRI. Pavlidis consists of information extracted
from the supplemental materials of the publication. The code that implements the gathering
and merging of the data is available within the EXTRI Rbbt workflow

(https://github.com/Rbbt-Workflows/ExTRI). Each data source is processed to a common

format with transcription factors and target genes expressed as human gene symbols. For
databases that list genes and proteins of different organisms the UniProt protein to protein
identifier equivalences from the Protein Information Resource

(https://proteininformationresource.org/) were used to identify the proper human protein,

which was then translated to its gene symbol. Each resource was processed to update all gene
symbols to the most recent version (gene set in Ensembl release 109 from February 2023).
When merging databases, entries for AP1 and NFKB complex members are allowed to match
the complex names so that their information is merged across them. The result of this process
is a large table where each TRI (TF-gene pair) is listed with the databases in which it is present,
along with information from those databases, such as mode of regulation, when available, and
the PubMed ID (PMID) from which the TRI was curated/extracted. Each database thus provides

a list of PMIDs as supporting evidence for each TRI.
Filtering TF-gene interactions

CollecTRI, as well as all other GRNs included, were filtered to contain only transcription factor
(TF)-gene interactions from TFs classified as DNA-binding (dbTFs), co-regulatory (coTFs) or
general initiation (GTFs). dbTFs were downloaded from Lambert et al.
(https://ars.els-cdn.com/content/image/1-s2.0-S0092867418301065-mmc2.xlsx), Lovering et
al. (https://ars.els-cdn.com/content/image/1-s2.0-51874939921000833-mmc1.xlsx) and
TFclass (http://tfclass.bioinf.med.uni-goettingen.de/suppl/tfclass.ttl.gz). For coTFs and GTFs, we
retained all proteins annotated in Gene Ontology (CO) (30) with the term GO:0003712 or
G0:0140223 or any of their daughter terms, respectively, through QuickGO (31).
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Assigning the TF-gene mode of regulation

For each TF-gene interaction from the CollecTRI meta-resource the PMIDs were aggregated
across databases. Each PMIDs is considered evidence of whichever mode of regulation is
specified in that database, if any. Database entries that are not supported by PMIDs are thus not
considered when building the TF regulons. PMIDs can only count as evidence for a TF-gene
interaction once, even if they were used to source entries in several databases. Only in the
infrequent case of the same PMID featured as supporting different modes of regulation in
different databases, these were considered twice for determining the mode of regulation to use
in the CollecTRI-derived regulons. We then assigned a mode of regulation, indicating the effect
(activating or repressing) of transcriptional regulation from the TF to its target gene, to each
TF-target interaction based on multiple sources of information. We first checked the specific
knowledge for each TF-target interaction based on the prevalence of PMIDs linked to a
particular mode of regulation (activation or repression). If no information or the same amount
of information about the mode of regulation was present for a TF-gene interaction, we checked
information gathered about the general mode of regulation of a TF to assign an activating or
repressing mode to these TF-gene interactions. We extracted regulatory information from GO
terms (30) and Uniprot keywords (32), as well as the characterization and classification of
effector domains of 594 human TFs provided by Soto et al. (33). More specifically we checked if
the TF was annotated with either the specific term or any child term of MF_C0O:0001228,
MF_C0:0001217, MF_G0O:0001217, MF_GO:0003713, MF_CO:0003714, BP_G0O:0045944 or
BP_GO:0000122. From the uniprot keywords we extracted the information on the TF role
based on the UniProtKB keywords Activator (KW-0010) and Repressor (KW-0678). If all three
sources, meaning the classification based on the GO terms, the Uniport keywords, and the
effector domains, agreed on the regulatory effect of a TF, the mode of regulation was assigned
accordingly for all target genes without any prior information on the mode of regulation from
the PMIDs. In addition, we also considered information from other interactions in the regulon of
a TF to classify it as activator or repressor. Hereby,, we examined all TF-gene interactions with
an assigned mode of regulation in the regulon of a TF and classified a TF based on whether the
majority of these interactions were linked to an activating or repressing mode of regulation. In
instances where no information was available from any of the sources, we, by default, assigned

the activating mode to the TF-gene interactions in question.
RegNetwork, ChEA3, Pathway Commons and DoRothEA

RegNetwork (26) human regulons were downloaded from their website
(https:/regnetworkweb.org/download.jsp). The TF regulons from ARCHS4_Coexpression
(ChEA3 ARCHS4), ENCODE_ChIP-seq (ChEA3 ENCODE), Enrichr_Queries (ChEA3 Enrichr),
GTEx_Coexpression (ChEA3 GTEX), Literature_ChlIP-seq (ChEA3 Literature) and
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ReMap_ChlIP-seq (ChEA3 ReMap) were downloaded from their website
(https://maayanlab.cloud/chea3/) (24). DoRothEA (12) was downloaded using the function
get_dorothea from the decoupler v2.4.0 bioconductor package (34) and filtered by its
confidence levels A, B and C. For each TF-gene interaction where the sign of regulation was not

stated, an activating mode of regulation was assigned by default.
Computing TF-gene weights

We employed two different tools, namely MatrixRider (35) and FIMO (36), to perform motif
enrichment analysis and calculate binding weights for the TF-gene interactions in the
CollecTRI-derived regulons. Specifically, we used the Matrixrider v1.30.0 and memes v1.6.0
bioconductor packages. Before running the methods, we extracted 1,000 base pairs (bp)
upstream and 100 bp downstream of the transcription start site of each gene (TSS), defining the
promoter region, as well as 10,000 base pairs (bp) upstream and 100 bp downstream of the
TSS, reflecting proximal regulatory regions using the
TSS.TxDb.Hsapiens.UCSC.hg38.knownGene v3.4.6 package (37). Human TF binding motifs were
downloaded from MotifDb v1.40.0 (38). TF-gene pairs for which either the promoter sequence
or the TF binding motif were not available were removed from the network. For the remaining
40,440 TF-gene pairs the two different tools were used as follows. MatrixRider was used to
calculate binding weights for each TF-gene interaction as described in their reference manual.
TF binding motifs were provided as position frequency matrices, DNA sequences of the target
genes as DNAString objects and a cutoff parameter of O were passed to the getSeqOccupancy
function within the Matrixrider v1.30.0 package. For FIMO, TF binding motifs and DNA
sequences were passed to the runFimo function within the memes v1.6.0 package and the
highest score was kept as the binding weight. For both methods, calculated binding weights
were shifted to positive values with a pseudo count of 1 and normalized. We used two different
normalization strategies. First, we normalized the weights per TF, meaning that the weights for
all targets of a specific TF were divided by the highest TF-gene binding weight of that TF.
Secondly, we normalized the weights per gene, meaning that the weights for all TFs regulating a
specific gene were divided by the highest TF-gene binding weight of that gene. The final
weights were compared with each other using Pearson correlation. The benchmark procedure
was then repeated for the weighted network, using the calculated weights from MatrixRider
with a window frame of 1,000 bp before normalization, and compared to the non-weighted
CollecTRI regulons. Additionally, TF-gene links with binding weights in the lowest 10, 20 and
30% quantile were removed from the network and their performance evaluated in the

benchmark.
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Benchmark data

Differentially expressed gene tables and meta data were downloaded from 907 manually
curated RNA-seq and microarray experiments, collected in knockTF (28)

(http://www.licpathway.net/KnockTF/download.php). These datasets include

knockdown/knockout experiments across multiple tissues and cell types associated with 456
different disrupted TFs. Perturbation experiments with a perturbed TF’s log fold change greater
than -1 were excluded from the final benchmark set, leading to 388 data sets covering 234
unique perturbed TFs. For each resource only perturbation experiments of TFs covered in that

network were used for the benchmark (Table 1).

Table 1 Overview tested TFs per network.

Network Total number of TFs
covered in benchmark
ChEA3 ARCHS4 156
ChEA3 ENCODE 46
ChEAS3 Enrichr 146
ChEA3 GTEX 155
ChEA3 Literature 66
ChEA3 ReMap 101
CollecTRI 171
DoRothEA ABC 125
RegNetwork 123
Pathway Commons 92

TF activity estimation

TF activities were estimated based on the log fold-changes of the direct target genes after
perturbation. Each network was first filtered to keep only TF-gene interactions of genes
measured in the experiment. We then selected TFs with at least five gene targets and estimated
TF activities using the consensus score of the multivariate linear model method, the univariate
linear model method and the weighted sum method using the decoupler v1.2.0 python package
(34).

Benchmark procedure

The benchmark was performed using the benchmark function from the decoupler v1.2.0
python package (34). To globally evaluate collections of TF regulons, TF activity scores obtained
as described above were first multiplied by the sign of the perturbation (knockout: negative,

overexpression: positive) for each perturbation experiment. The activity scores matrix (rows:
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experiments, columns: TF activities) is then flattened across experiments into a single vector.
The objective is to distinguish between perturbed TFs, the true positives, from all unperturbed
ones, true negatives. However, due to the large class imbalance between true positives and
negatives, a downsampling strategy was employed within the benchmark. For each
permutation, an equal number of positive and negative classes were randomly selected 1,000
times to calculate the area under the Receiver Operating Characteristic (AUROC) and

Precision-Recall Curve (AUPRC) metrics, obtaining distributions of prediction measurements.

The performance evaluation for specific TFs was performed only for TFs for which at least 5
experiments were available in the KnockTF dataset (after filtering out experiments with
insufficient perturbation, Methods 4.6). In this setting, the objective is to distinguish between
perturbed experiments for each retained TF, the true positives, from all the unperturbed ones,
true negatives. The same strategy as described above is used, but instead of flattening the
activity scores matrix, only the vector of one TF is extracted for evaluating the performance.

This was done separately for each of the TFs in Supplementary Figure 2.
Evaluation of size bias

For the three top performing regulon collections, namely CollecTRI, DoRothEA ABC and
RegNetwork, we used a two-sided t-test which was adjusted for multiple testing using
Benjamini-Hochberg correction to compare if there was a difference in the number of targets
for TFs that were part of the benchmark data set, compared to the TFs that were not. Pearson
correlation coefficients were computed to assess the relationship between the number of
targets and the absolute activity scores of TFs across all benchmark experiments included in
the benchmark. We then summarized the correlation between the absolute scores and the
number of targets across experiments with the mean correlation and compared it across

networks.
Case study

We tested the network by estimating TF activities in three types of cancer: Uterine Corpus
Endometrial Carcinoma (UCEC), Lung Adenocarcinoma (LUAD), and Clear Cell Renal Cell
Carcinoma (CCRCC), retrieved from the third phase of the Clinical Proteomic Tumor Analysis
Consortium (CPTAC). The data was provided by Gaytan et al. (in preparation) which was
collected from NCI's Genomic Data Commons (GDC) (39) using the GDC transfer tool. Raw
count tables were subjected to VSN normalization, after filtering genes with a low number of
counts (40). For each cancer type, we then performed differential expression analysis between
tumor and natural tissue samples using the limma R package (41). The t-values were used to
estimate the consensus TF activity as described previously. A significance threshold of 0.05

was applied.
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RESULTS
Sources of prior knowledge on TF-gene regulatory interactions

CollecTRI (Collection of Transcription Regulation Interactions) is a compilation of available
transcription regulation information from databases integrated with information extracted from
the text-mined resource EXTRI (23), which extracts sentences containing descriptions of
transcription regulation events, known as TRIs (Transcription Regulation Interactions). Here, we
used those resources after updating some of the databases and including three new ones
(Table 2): Pavlidis (42), NTNU Curated (43) and DoRothEA A (12) (Supp. Figure 1). NTNU Curated
are a subset of EXTRI sentences manually curated for validity of TF-gene interaction and mode
of regulation, and DoRothEA A contains the TF-gene interactions with the highest confidence
level of the DoRothEA meta-resource (12), which is also evaluated in this publication separately.
Note that DoRothEA compiles some of the same resources as CollecTRI; however, the overlap
is taken into account for the creation of the CollecTRI-derived regulons as it is based on the

number of unique PubMed IDs (PMIDs) supporting each annotation across resources.

From the resources, all instances of genes or proteins have been translated into human gene
symbols, including mentions to rat or mouse entities which were translated with the help of
orthology tables. We decided to also consider TF-gene interactions from mouse and rat, as it is
a common practice in the field to assume that the TRIs translate across murine organisms and
humans due to the high conservation of regulatory mechanisms across these organisms (44).
Additionally, a large component of CollecTRI is extracted from text-mining, where it is often
difficult to assign the correct species to information extracted from PubMed abstracts; in fact,

this information may be missing entirely from abstracts.
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Table 2 Resources of TF-gene interactions used in CollecTRI. The table indicates whether all

interactions or subsets of them were included in CollecTRI.

Database Content extracted for compilation Reference

EXTRI All (cross-species) Vazquez, 2022 (23)

TFactS All (human, mouse, rat) Essaghir, 2010 (45)

HTRIdb All (human) Bovolenta, 2012 (46)

IntAct Subset: protein-gene interactions (human, mouse,  Kerrien, 2012 (47)
rat)

GOA Subset: protein-gene regulatory interactions (human, Huntley, 2015 (48)
mouse, rat)

(updated)

TRRUST All (human, mouse) Han, 2015; Han 2018

(21, 49)

SIGNOR Subset: interactions labeled with interaction Perfetto, 2016 (20)
mechanism ‘transcriptional regulation’ (human,

(updated) mouse, rat)

CytReg All (human, mouse) Carrasco Pro, 2019

(50)

GEREDB Subset: interactions with regulator TFClass TF Huang, 2019 (51)
(human)

Pavlidis (new)  All (human, mouse) Pavlidis, 2021 (42)

DoRothEA_A All (human) Garcia-Alonso, 2019

(new) (12)

NTNU Curation  Subset of about 20K sentences manually curated Leegreid, in prep (43)

from EXTRI
(new)

Moreover, two TF dimers, AP1 and NFKB, were treated as transcription factors themselves in
CollecTRI since they, in the literature, are very frequently mentioned only by their dimer name.
When merging the CollecTRI resources, the information regarding the monomer AP1 or NFKB
constituents (e.g. JUN- or FOS-family or NFKB1) was merged into information referring to the

complex (i.e. AP1 for JUN and FOS) and vice versa, see details in (23).
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Construction of TF regulons from CollecTRI

From the compiled information in CollecTRI we constructed signed and directed
CollecTRI-derived regulons which can be used for the inference of TF activities. To ensure
reliability of the TF-gene interactions and account for the overlap across resources, we
gathered the unique PMIDs for each TF-gene interaction and removed those lacking any
reference (Figure 1A). Furthermore, to focus on proteins with a direct regulatory effect on gene
expression, we included only TF-gene links from TFs classified as DNA-binding transcription
factors (dbTFs), co-regulatory transcription factors (coTFs) or general initiation transcription
factors (GTFs) based on criteria from TFclass (52), Lambert et al. (53), Lovering et al. (6), or gene

ontology (CO) annotations (30).

We then assigned a mode of regulation to each TF-gene pair, indicating the sign of
transcriptional regulation from the TF to its target gene. Specifically, we determined whether
the TF activates or represses the expression of its target gene (Figure 1B). Hereby, activation
corresponds to an increase in the expression of the target gene, whereas repression
corresponds to a decrease in expression. To determine the sign of transcriptional regulation for
each TF-gene pair in the CollecTRI-derived regulons, we integrated information from multiple
resources, including the specific knowledge for each TF-target link based on the prevalence of
PubMed references linked to a particular mode of regulation. We also incorporated general
prior knowledge about the mode of regulation of a TF derived from GO terms (30) and Uniprot
keywords (32), as well as the classification of effector domains of 594 human TFs provided by
Soto et al. (33). Given that the effector domain can activate or repress the expression of a TF's
target genes through several mechanisms, it provides additional information for the
classification of TFs into activators or repressors (54). Furthermore, we considered information
from other interactions in the regulon of a TF to make a decision on whether a TF is more likely
to activate or repress the expression of its target gene. The information from each source was
considered separately, and the prevalence of PMIDs was prioritized to determine the mode of
regulation. If information from PMIDs was not available, we relied on the general prior
knowledge about the mode of regulation of a TF and lastly on the information about other
interactions in the TFs regulon to select the mode of regulation for all TF-gene pairs in the GRN
generated based on CollecTRI (Methods: Assigning the TF-gene mode of regulation). In
instances where no information was available from any of the sources, we designated TFs as
activators by default, and assigned a mode of regulation accordingly (Figure 1B). For 18,345
TF-gene interactions, the mode of regulation was determined based on the prevalence of
PubMed references. Meanwhile, for 9,226 and 949 interactions, the mode of regulation was
assigned based on the prior knowledge of the TFs and other interactions in the regulon,
respectively. For the remaining 17,364 TF-gene interaction an activating mode was assigned by

default (Supp. Figure 2A). This annotation procedure led to 83% activatingand 17% repressing
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TF-gene links. 51% of TFs were represented with a dual role in regulation, meaning the TF was
assigned to either activate or repress the expression of its target genes. 33% of the TFs had only
activating links, whereas 16% of TFs are only represented by repressing links. (Figure 1C). In

total, the CollecTRI-derived regulons cover 1,183 TFs and 45,856 signed TF-gene interactions.

We compared the coverage of the CollecTRI-derived regulons to other known collections of TF
regulons, namely ChEA3 (24), RegNetwork (26), Pathway Commons (25) and DoRothEA (12).
ChEA3 contains a collection of gene set libraries generated from TF-gene co-expression,
TF-target associations from ChlIP-seq experiments, and TF-gene co-occurrence computed
from user-submitted lists to the Enrichr tool. RegNetwork is a manually curated database of
experimentally observed or predicted transcriptional and post-transcriptional regulatory
interactions. Pathway Commons is a resource that compiles information about regulatory
networks as well as biological pathways including molecular interactions, signaling pathways,
and DNA binding from different databases. Finally, DoRothEA integrates information on gene
regulatory interactions with assigned confidence levels from multiple sources, including
literature-curated resources, ChlP-seq peaks, motif analysis, as well as inference from gene
expression data. Only DoRothEA among the four regulon collections we compared to the
CollecTRI-derived regulons also provides signed information about the direction of
transcriptional regulation. For a fair comparison between the TF regulons, all collections were
filtered to only contain TF-gene interactions from annotated dbTFs, coTFs, or GTFs, as described

above.

We then compared the TFs and TF-gene links across all collections of TF regulons, and we
found that the CollecTRI-derived regulons exhibit the highest TF coverage (1,183) besides the
ChEA3 gene set libraries ARCHS4 (1,612), GTEx (1,578) and Enrichr (1,393). It is worth noting that
these ChEAS3 libraries were generated using co-expression or co-occurrence strategies, which
are known to produce a higher number of false positive interactions in TF-target association
studies (27). The CollecTRI regulons cover 47 TFs not present in any of the other four resources.
RegNetwork and Pathway Commons also provide information on 80 and 42 unique TFs,
respectively, otherwise 91.3% of all TFs across the analyzed resources are present in at least
two of them. In terms of TF-gene interactions, resources mainly collecting information from
curated databases, such as RegNetwork, Pathway Commons, DoRothEA and CollecTRl,
generally showed a lower number of interactions. As previously mentioned, TF regulons
generated using co-expression and co-occurrence strategies, such as some ChEA3 libraries,
tend to have a higher number of potential interactions that often include many indirect
regulatory relationships. In general, there was a low overlap between the resources we
compared, with an average of 72.4% of interactions being unique to each collection of TF

regulons (Figure 1D). Overall, the CollecTRI-derived regulons have an extensive coverage of TFs
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with high-confidence interactions and, in contrast to most other regulon collections, include

information about the sign of the transcriptional regulation.
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Figure 1 Description of transcription factor (TF)-gene interactions in the CollecTRI-derived
regulons and comparison to other regulon collections.

(A) Collecting transcription factor (TF)-gene links to construct requlons from CollecTRI.
Depicting prior knowledge resources used to collect links, which were aggregated within
CollecTRI. (B) Flow chart describing how the mode of regulation (MoR) was assigned to each
TF-gene link. The MoR, indicating the direction of transcriptional regulation from the TF to its
target gene, was determined for each TF-gene link, based on factors such as PubMed
references (PMIDs), prior classification of the TF and the MoR of other genes in the regulon. (C)
Summary of the MoR for TF-gene interactions in CollecTRI. Total number of interactions for

activating and repressive TF-gene links (left) and percentage of TFs that purely function as
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activators, repressors, or have a dual mode of regulation (right). (D) Comparison of the
number of unique TFs (top) and interactions (bottom) across different resources - with ChEA3
ARCHS4, ChEA3 GTEx and ChEA3 Enrichr being solely based on co-expression or

co-occurrence. Any TF or interaction present in more than one resource is considered shared.

Systematic comparison of TF activity inference from CollecTRI-derived regulons with other

regulon collections

We evaluated the quality of the CollecTRI-derived regulons by assessing how well they are
able to recapitulate the changes in gene expression caused by the perturbation of a TF in
comparison to other existing regulon collections. As previously described, we reasoned that if a
TF's set of targets is reliable, meaning their expression is directly regulated by the TF, the
regulon's collective expression pattern should be a proxy of the TF's transcriptional activity (12).
To test this, we downloaded perturbation data from KnocKkTF (28), a comprehensive human
gene expression profile database from TF knockdowns and knockouts studies. KnockTF
contains manually curated RNA-seq and microarray datasets associated with TFs perturbed by
different knockdown or knockout techniques across multiple tissues and cell types. For the
benchmark, we restrict the datasets to experiments were the TF perturbation is highly likely to
have been effective, by only including data from experiments where the expression of a TF was
markedly decreased after its knock down or knock out, leading to a total number of 388

perturbation experiments covering 234 unique TFs (Methods: Benchmark data).

We then followed the benchmark pipeline in the decoupler python package (34) to
systematically compare the regulons generated from CollecTRI, to the ones from DoRothEA,
Pathway Commons, RegNetwork and the ChEA3 libraries. Additionally, we used a permuted
version of the CollecTRI-regulons as a baseline of performance. In this version the target genes
and mode of regulation in CollecTRI were shuffled and randomly assigned to a TF. As such,
these TF regulons do not represent biological information and can thus serve as a baseline of
performance. TF activities were then inferred from the differentially expressed genes of each
KnocKTF experiment using the regulons provided by each resource. Only TF regulons
containing at least five target genes among the genes measured in the experiment were used
for the activity inference, leading to a restricted number of TFs for each resource (Supp.

Figure 3). All inferred TF activities across experiments were sorted by their activity scores, and
the classification of TFs based on the estimated activities compared to the knock-out
information was evaluated with the area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve (AUPRC) (Figure 2A) (Methods:
Benchmark procedure). Before systematically comparing CollecTRI regulons to those from

other resources, we first evaluated the effect of assigning the sign of regulation to the TF-gene
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interactions. We found that the fully signed CollecTRI-derived TF regulons perform better in the
benchmark than TF regulons with the mode of regulation for all TF-gene rendered activating
(adjusted p-value < 2.2x107'%, mean t-value across tests equal to 64.9 and 51.6 for AUROC and
AUPRC, respectively) (Supp. Figure 2B). We then performed the comparison of
CollecTRI-derived regulons to those from other resources and showed that the CollecTRI
regulons had median AUROC and AUPRC values of 0.7 and 0.75, respectively, which were
higher than those of all other resources (adjusted p-value < 2.2x107°, mean t-value across tests
equal to 252 and 275.1 for AUROC and AUPRC, respectively) (Supp. File 1, Figure 2B).
Furthermore, all ChEA3 libraries, except for ChEA3 ARCHS4, did not exhibit a higher
performance compared to the random baseline set by the permuted CollecTRI version (t-test:
adjusted p-value > 0.05). Overall, the results from the benchmark show that the
CollecTRI-derived regulons outperforms other TF regulon collections in identifying perturbed
TFs based on TF activities, suggesting that, of the resources here compared, the TF-gene
interaction information compiled in CollecTRI provides the most reliable starting point for

estimating TF activities.
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Figure 2 Systematic comparison of collections of transcription factor (TF) regulons.
(A) Description of benchmark pipeline for the comparison of different requlon collections. First,

transcription factor (TF) activities are inferred from the gene expression data of the knockTF
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perturbation experiments using the regulon information from each resource. TFs are presented
as differently colored hexagons and experiments are presented as different shapes. Activities
are then aggregated across experiments and ranked by their activity. A downsampling
strateqy is applied to have an equal number of perturbed and non-perturbed TFs randomly
selected 1,000 times to calculate area under the Receiver operating characteristic (AUROC)
and Precision-Recall curve metrics (AUPRC). (B) Predictive performance of TF regulons
identifying perturbed TFs in knockTF experiments. AUROC (left) and AUPRC (right) for each

regulon collection classifying TFs as perturbed or non-perturbed based on their activities.

Since the benchmark data mainly covers TFs that are well studied and usually have a larger
number of targets associated with them, we tested if the number of genes regulated by a TF
was related to the performance of the networks to predict perturbed TFs. For the top three
performing TF regulon collections, we first tested if there was a difference in the number of
targets between TFs that were part of the benchmark data set and those TFs that were not. For
all three resources, we observed that the TFs included in the benchmark had a higher number
of targets associated with them (adjusted p-value = 1.767,1.34 and 2.8 t-value = 4.68, 3.27
and 3.84 for CollecTRI, DoRothEA and RegNetwork, respectively) (Supp. Figure 4A). To assess
the relationship between the number of targets and the accuracy estimating TF activities for
each experiment included in the benchmark, we computed Pearson correlation coefficients
and found that the average correlation across all experiments was equal or less than 0.3 for all
resources, with the CollecTRI-derived regulons showing the lowest mean correlation of 0.14
(Supp. Figure 4B). Therefore, we concluded that the better performance of the
CollecTRI-derived regulons is not influenced by an increased bias towards TFs with a higher

number of targets.

Another limitation of the current benchmark is that it disregards possible off-target effects of TF
perturbation assuming that the perturbed TF has the most deregulated activity. Thus for a
limited collection of 12 TFs where we had multiple perturbation experiments we repeated the
benchmark only classifying the activity of the perturbed TFs without including non-perturbed
TFs (Methods: Benchmark procedure). In this benchmark setting, we observed a better
performance of CollecTRI regulons for the TFs REST, TP53, FLI1, NRF2F2 and SOX2 in
comparison to the other networks with average median AUROC and AUPRC value of 0.84 and
0.88, respectively, (adjusted p-value < 0.001, mean t-value across TFs = 77.6 and 76.4 for
AUROC and AUPRC, respectively) and a perfect classification for REST (Supp. Figure 5A).
However, overall all networks performed comparably (Supp. Figure 5B). Although limited to a
few TFs, CollecTRI-derived regulon’s performance was comparable to the other networks in

this benchmark setting, with an improved performance for specific TFs.
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Case study

To showcase the value of using CollecTRI-derived GRN for predicting TF activities, we
performed a TF activity inference analysis using differential expression data from three cancer
types: Uterine Corpus Endometrial Carcinoma (UCEC) (55), Lung Adenocarcinoma (LUAD) (56),
and Clear Cell Renal Cell Carcinoma (CCRCC) (57) (Figure 3A). These datasets comprise gene

expression data of tumors and adjacent normal tissues from multiple patients.
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Figure 3 Workflow and results of the case study of transcription factor activity inference using
CollecTRI and decoupleR.

(A) Schematic representation of the workflow for the inference of transcription factor activities. (B)
Transcription factors with differential activities as predicted by decoupleR. Each TF is shown as an
individual dot and colored based on the consensus score. The size of the dot is inversely related to the
p-value (the bigger the size, the more significant the observation). Abbreviations: TF: Transcription
factor, Uterine Corpus Endometrial Carcinoma (UCEC), Lung Adenocarcinoma (LUAD), Clear Cell Renal
Cell Carcinoma (CCRCC).

Based on the differentially expressed transcriptome of tumor versus normal tissue, we
predicted TF activities for each cancer type and observed in total 62 significantly deregulated
TFs, as shown in Figure 3B. Our analysis generally reflected previously described TF activity
changes in cancer tissue. For instance, proliferation- and cell survival-promoting TFs, such as

MYC, Jun-, FOS-, and E2F family TFs, were found to have significantly increased activity across


https://paperpile.com/c/3b8kEH/bDfmq
https://paperpile.com/c/3b8kEH/L8Aqt
https://paperpile.com/c/3b8kEH/lMkk1
https://doi.org/10.1101/2023.03.30.534849
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.30.534849; this version posted April 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

the three cancer types. On the other hand, cell death-related TFs, such as members of the

FOXO family, were found to have significantly reduced activity (Supplementary Table 2).

To highlight the added value of the additional TF-gene coverage of CollecTRI, we compared the
predictions of TF activities for those TFs whose regulons are included only in CollecTRI-derived
GRN and not in DoRothEA ABC, which was chosen as the main network for comparison as it
was the second-best performing network in our benchmark. To evaluate the validity and
relevance of the “CollecTRI-exclusive” TFs, a literature review for their role in their respective

cancer types was conducted.

For LUAD, in total six TFs were uniquely part of CollecTRI regulons, and four of those had a
previously reported role in several aspects of LUAD, such as its development and prognosis.
OLIG2 and ETV2 are TFs reported to be overexpressed in lung adenocarcinomas (58, 59).
Similarly, the upregulation of HDACS5 has been found to promote lung adenocarcinoma by
regulating several cell cycle and epithelial-mesenchymal transition genes (60), and in our
analysis, CollecTRI regulons predicted its increased activity in LUAD. LMO2 is a tumor
suppressor which acts through the regulation of the Wnt pathway in several tumor types. In
lung adenocarcinomas and other epithelial-derived tumors, LMO2 was found to have a

reduced expression and activity (61), as also predicted in our results.

Among the TFs for which we estimated altered activities in UCEC, eight were part of only
CollecTRI-regulons, four of which had a previously described role in this specific cancer type.
SMAD?2, together with SMAD3, has been shown to have tumor-suppressive functions in
endometrial carcinoma cells, and the inhibition of its activity has been associated with the
constituent activation of the PI3K/AKT pathway, increased proliferation and decreased
apoptosis (62). Both SMAD3 and SMAD2 showed a significantly decreased activity in the UCEC
dataset, with the latter being part uniquely of CollecTRI regulons. As the afore-described
HDACS5, HDACY is another histone deacetylase, whose inhibition with pan-HDAC inhibitors has
been reported to lead to cell cycle arrest in UCEC (63), suggesting a positive role of the TF in
cancer development, which is also reflected in the increased activity predicted with CollecTRI
regulons. The HCFCT1 transcription factor has an immunomodulatory role in cancer by inhibiting
immune responses, and by promoting tumor growth and vascularization (64). In accordance
with its cancer-promoting role, HCFC1 was found to have an increased activity in UCEC. The
ZBTB4 TF, a proposed tumor suppressor, was the only instance where CollecTRI activities did
not correspond to the expected activity given the role of the TF. ZBTB4 is an essential
component in maintaining genomic stability (65), and its expression is decreased in
endometrial cancer (66). At the same time, higher expression of ZBTB4 has been proposed as a

favorable marker of relapse-free survival in other types of cancers, such as breast cancer (67).
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ZBTB4 was found to be overactivated in the studied UCEC samples, suggesting that additional

validation is needed to evaluate the prediction.

CCRCC is one of the three main subtypes of renal cell carcinomas (RCCs), all of which have
been described for their distinct transcriptional and epigenetic characteristics. A study by (68)
reported the main driving TF of each subtype. Among those main driving TFs, two are found in
the predictions by CollecTRI-regulons. ETS1, which was estimated to be overactive by our
analysis, was found to be one of the two main TF regulators in CCRCC. On the contrary, FOXI1,
a main TF regulator of another RCC, chromophobe RCC, was found to be significantly
underactive in CCRCC, as would be expected in this specific subtype. FOXI1 was among the TFs
which were exclusively found with ColleCTRI regulons. TFAM is a mitochondrial TF which is
also included in the regulation of pyroptosis. Together with 10 more pyroptosis-related genes,
TFAM, was identified as a risk gene for the prognosis of CCRCC (69). KLF7's exact role in CCRCC
is not clear, however, KLF7 serves as a target for miR-22 which has been suggested as an
important regulator and prognostic marker for CCRCC (70). Furthermore, according to The
Human Protein Atlas, its high expression has been correlated with a favorable prognosis for
kidney carcinomas. Two additional TFs, TRERF1 and DLX1 were inferred to be more active in
tumor than normal tissue. While the role of TRERF1in CCRCC is poorly understood, TRERF1 is a
known regulator of CYP11A1, which is frequently downregulated in CCRCC. DLX1 has no
reported role in CCRCC, however, it has a known oncogenic role in other cancer types such as

prostate (71) and ovarian (72) cancers.

Overall, this comparative analysis highlights the usefulness of CollecTRI-derived regulons in
inferring TF activities. The presence of cancer-type-relevant TFs in the results showcases how
the augmented TF coverage in CollecTRI-derived regulons appears to balance the identification

of meaningful TFs without overwhelming the output with potentially extraneous information.

DISCUSSION

Transcription factor (TF) regulons represent regulatory circuits that depict the coordinated
regulation of downstream target genes by TFs. They can be valuable for understanding various
biological processes, including development, cell differentiation, tissue homeostasis, and
disease progression. To derive functional insights from these regulons, TF activities can be
inferred from the expression levels of target genes, as shown in various studies (9, 73-75).
However, to interpret these findings accurately, it is important to critically evaluate the

reliability and coverage of TF regulons.

In this paper, we present a well-defined, transparent, and reproducible workflow to generate

regulons from CollecTRI, a meta-resource that compiles TF-gene information from 12 different
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resources including information inferred from text mining, manual curations and a number of
publicly available databases (23). With that, the CollecTRI-derived regulons provide the most
extensive coverage of TF-gene interactions compared to other collections of regulons that
extract TF-gene interaction knowledge solely from literature. Since most publicly available
meta-resources of TF-gene interactions contain limited or no information about the mode of
regulation of a TF to its target genes, we propose an evidence-driven approach to infer the sign
of regulation for each TF-gene link in the CollecTRI regulons, which can also be applied to other
comprehensive knowledge bases. We evaluated the approach and confirmed that adding the
information about the sign of regulation to the CollecTRI regulons leads to more accurate TF
activity inference. Next, through systematic comparison with other known TF regulon
collections, we showed that CollecTRI-derived regulons perform best in identifying perturbed
TFs based on gene expression, suggesting a high quality in CollecTRI's TF-gene interactions.
Finally, we showcase the value of the CollecTRI regulons in inferring TF activities in three
different cancer types and successfully identifying changes in the activity levels of TFs known to

be involved in these contexts.

Despite the good performance of the CollecTRI regulons in the systematic comparison, it is
important to bear in mind that the current benchmark is limited to a specific set of TFs. Further
perturbation studies would therefore be useful to extend the current benchmark and allow for

a more comprehensive evaluation of CollecTRI and other resources.

While the coverage in the CollecTRI regulons is substantially larger than those of other
resources, it could still be expanded by including additional TF-gene interactions from other
resources. However, identifying high-quality TF-gene interactions within a resource and
distinguishing them from indirect regulatory relationships is challenging. Since CollecTRI is
primarily assembled from literature-curated resources, a bias for well-studied TFs may be
present. We observed similar bias trends across meta-resources, quantified as the correlation

of inferred TF activities with the number of targets of each TF.

Another limitation is that the CollecTRI regulons currently only take the sign of regulation into
account, omitting the quantitative nature of gene regulation (4). We therefore estimated TF
binding weights using motif enrichment analysis, but observed no benefit in the inference of TF
activities (Supplementary Note 1, Supp. Figure 6). Since CollecTRI compiles exclusively TF-gene
link interactions omitting cooperative events between TFs and other proteins, distal interactions
and the chromatin accessibility landscape among other processes (4), it only captures one layer
of the cis-regulatory code. This might explain why using TF binding weights did not increase
the overall predictability of perturbed TFs.

Finally, the CollecTRI regulons were constructed as generalistic interactions and, as such, do not

account for cell type-specific differences (76). Nonetheless, CollecTRI regulons could be used
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as a building block for context-specific interactions using complementary data types, such as

single-cell transcriptomic or chromatin accessibility data.

In summary, we constructed a collection of TF regulons with a high coverage of TFs and high
confidence TF-gene interactions, which is freely available to the community via OmniPath (29)
and DoRothEA (12) packages. We conducted a systematic comparison with other known
resources, where the CollecTRI regulons showed the best performance in recapitulating
changes in gene expression caused by the perturbation of a TF. Additionally, we demonstrated
how the regulons can be applied in a biological context and can help uncover the role of

transcriptional regulation in various biological contexts.

DATA AVAILABILITY

The code for the curation of regulatory interactions of CollecTRI and the construction of the
CollecTRI-derived regulons is available here: https://github.com/Rbbt-Workflows/EXTRI,
https://github.com/saezlab/CollecTRI. Files necessary to reproduce the presented results are
can be downloaded from https://zenodo.org/record/7773985#.ZCSMiexBw-0Q. The
CollecTRI-derived regulons are freely available and can be accessed through OmniPath
(https://omnipathdb.org/) (29) and the DoRothEA package (https://saezlab.github.io/dorothea/)

(12), which are also available in Bioconductor
https://bioconductor.org/packages/release/bioc/html/OmnipathR.html,

https://bioconductor.org/packages/release/data/experiment/html/dorothea.html).
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