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GRAPHICAL ABSTRACT

ABSTRACT

Gene regulation plays a critical role in the cellular processes that underlie human health and

disease. The regulatory relationship between transcription factors (TFs), key regulators of gene

expression, and their target genes, the so called TF regulons, can be coupled with

computational algorithms to estimate the activity of TFs. However, to interpret these findings

accurately, regulons of high reliability and coverage are needed. In this study, we present and

evaluate a collection of regulons created using the CollecTRI meta-resource containing signed

TF-gene interactions for 1,183 TFs. In this context, we introduce a workflow to integrate

information from multiple resources and assign the sign of regulation to TF-gene interactions

that could be applied to other comprehensive knowledge bases. We find that the signed

CollecTRI-derived regulons outperform other public collections of regulatory interactions in

accurately inferring changes in TF activities in perturbation experiments. Furthermore, we

showcase the value of the regulons by investigating hallmarks of TF activity profiles inferred

from the transcriptomes of three different cancer types. Overall, the CollecTRI-derived TF

regulons enable the accurate and comprehensive estimation of TF activities and thereby help to

interpret transcriptomics data.
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INTRODUCTION

The regulation of gene transcription plays a fundamental role in development, cell

differentiation, tissue homeostasis, and various physiological processes and is crucial for the

coordinated response of cells to both internal and external signals. As such, its dysregulation

can contribute to the development of numerous diseases, including cancer, autoimmunity,

neurological disorders, developmental syndromes, diabetes, or cardiovascular disease (1). In

particular, deregulated activity of transcription factors (TFs) - key regulators of transcription -

has been implicated in the development of cancer and can generally alter the core

autoregulatory circuitry of a cell (1–3). Transcription factors bind to specific regions of the DNA

and together with cofactors and other proteins influence the transcriptional rate of a specific

set of target genes (TGs) collectively known as the TF’s regulon (4). The combined interactions

of all TFs to their target genes are referred to as a gene regulatory network (GRN), a simplified

representation of the underlying regulatory circuits (5). Coupling GRNs with activity inference

algorithms (6) can facilitate the interpretation of transcriptomics data and provide a more

effective means of understanding the underlying regulatory mechanisms in the system of

interest. Among other, TF activity estimation has been used to better understand aging (7) and

to relate TF activities to treatment efficacies and resistance mechanisms (8, 9), to patient

survival (10) and to cancer morphological features (11). Since the choice of TF-regulons can

substantially affect the results (12), it is important to use TF-regulons of high quality, minimizing

false-positive interactions, while having the highest coverage possible to not miss potentially

relevant TFs.

Various methods are available for identifying TF regulons, both on a small and large scale.

Experimentally, high-resolution identification of TF binding sites in vivo can be achieved using

chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) (13)

and DNase I hypersensitivity coupled with DNA sequencing (DNase-seq) (14). Despite

identifying TF-DNA binding events in their native environment, binding events might not

correspond to actual changes in the expression of the target gene, and do not take into account

other cofactors that bind indirectly to the target genes (15). In silico, the prediction of TF-gene

interactions can be done using the genomic sequence recognised by each TF, also known as

binding motifs (16, 17). Such methods involve probing the entire genome for regions that contain

these binding motifs to identify potential target genes. However, this approach is limited to TFs

with known binding motifs and does not account for context-specific interactions, where

regulatory interactions take place only in a specific cell type or condition. Furthermore, GRNs

can be inferred in a data-driven manner, as in co-expression analysis where the correlation

between the expression patterns of a TF and its potential target genes is investigated (18).

Lastly, manual curation of TF-gene interaction from the literature is another common strategy.

Such curation efforts are usually incorporated in databases such as IntAct (19), SIGNOR (20),
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and TRRUST (21). While being very attractive for their high quality, manual curations are hard to

come by since curation is a generally cumbersome task, and curated databases rarely overlap

due to the different curation standards and protocols (12, 22). For that, curation efforts can be

significantly enhanced with the aid of text-mining for the identification of TF-gene interactions,

as previously shown (23).

Despite the availability of the afore-described methods, the lack of a general consensus on the

inference of TF-gene interactions remains a challenge as each approach has its own strengths

and limitations. A few frameworks to create TF regulons based on a combination of resources

have been proposed. Such frameworks include DoRothEA (12), which combines TF-gene

interactions identified by ChIP-seq experiments, inferred interactions by gene expression and

TF binding motifs and manual curation, and ChEA3 (24), which primarily contains

co-expression and ChIP-seq-inferred interactions. Other examples include Pathway

Commons, which is a resource that integrates various types of interactions (i.e. biochemical,

complex binding and physical interactions between proteins, RNA, DNA and small molecules)

(25) and RegNetwork, which compiles experimentally observed or motif-based predicted

interactions among TFs, microRNAs and target genes (26). However, such meta-resources can

include a high number of false interactions due to the use of high false-positive generating

methods (i.e. co-expression and co-occurrence) (27), and, with the exception of DoRothEA,

they do not include the information about the sign of interactions (i.e. activating or inhibiting

interactions).

In this study, we introduce a set of TF regulons created using information on TF-gene

interactions from the CollecTRI (Collection of Transcription Regulation Interactions)

meta-resource (23) which integrates multiple sources of interaction data, including public

databases, text mining, and manual curation. The CollecTRI-derived regulons represent 45,856

signed TF-gene interactions for 1,183 TFs . Additionally, we propose a workflow for defining the

sign of interactions (activating or repressing) based on i) information about the sign curated in

the resources compiled in CollecTRI, on ii) prior knowledge about the TFs activating and/or

repressing roles and on iii) regulon properties which can also be applied to other

comprehensive knowledge bases. We benchmarked the performance of CollecTRI-derived

regulons against TF regulons from four other meta-resources: DoRothEA, ChEA3, RegNetwork

and Pathway Commons. The CollecTRI-derived regulons outperformed the other networks by

accurately inferring changes in TF activities in TF perturbation experiments collected in the

KnockTF data (28). Lastly, we demonstrated the value of the CollecTRI-derived regulons

through a case study, where we estimated the differential activities of TFs in three cancer types

using public data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). We were

able to estimatethe differential activities of TFs with known roles in cancer biology and the

studied cancer types, highlighting the value of the extended coverage of CollecTRI-derived
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regulons. In summary, we provide a new high-confidence, high-coverage collection of

TF-regulons that we make freely available via OmniPath (https://omnipathdb.org/) (29) and the

DoRothEA package (https://saezlab.github.io/dorothea/) (12).

MATERIAL AND METHODS

TF-gene data sources

The CollecTRI source data were introduced in (23) and have since been updated by gathering

more recent data from SIGNOR and GO, and by adding three new resources: DoRothEA_A,

Pavlidis 2021, and the NTNU Curated subset of ExTRI. Pavlidis consists of information extracted

from the supplemental materials of the publication. The code that implements the gathering

and merging of the data is available within the ExTRI Rbbt workflow

(https://github.com/Rbbt-Workflows/ExTRI). Each data source is processed to a common

format with transcription factors and target genes expressed as human gene symbols. For

databases that list genes and proteins of different organisms the UniProt protein to protein

identifier equivalences from the Protein Information Resource

(https://proteininformationresource.org/) were used to identify the proper human protein,

which was then translated to its gene symbol. Each resource was processed to update all gene

symbols to the most recent version (gene set in Ensembl release 109 from February 2023).

When merging databases, entries for AP1 and NFKB complex members are allowed to match

the complex names so that their information is merged across them. The result of this process

is a large table where each TRI (TF-gene pair) is listed with the databases in which it is present,

along with information from those databases, such as mode of regulation, when available, and

the PubMed ID (PMID) from which the TRI was curated/extracted. Each database thus provides

a list of PMIDs as supporting evidence for each TRI.

Filtering TF-gene interactions

CollecTRI, as well as all other GRNs included, were filtered to contain only transcription factor

(TF)-gene interactions from TFs classified as DNA-binding (dbTFs), co-regulatory (coTFs) or

general initiation (GTFs). dbTFs were downloaded from Lambert et al.

(https://ars.els-cdn.com/content/image/1-s2.0-S0092867418301065-mmc2.xlsx), Lovering et

al. (https://ars.els-cdn.com/content/image/1-s2.0-S1874939921000833-mmc1.xlsx) and

TFclass (http://tfclass.bioinf.med.uni-goettingen.de/suppl/tfclass.ttl.gz). For coTFs and GTFs, we

retained all proteins annotated in Gene Ontology (GO) (30) with the term GO:0003712 or

GO:0140223 or any of their daughter terms, respectively, through QuickGO (31).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.30.534849doi: bioRxiv preprint 

https://omnipathdb.org/
https://paperpile.com/c/3b8kEH/bc7jw
https://saezlab.github.io/dorothea/
https://paperpile.com/c/3b8kEH/E9CU
https://paperpile.com/c/3b8kEH/Fs8kk
https://github.com/Rbbt-Workflows/ExTRI
https://proteininformationresource.org/
https://paperpile.com/c/3b8kEH/22ywz
https://paperpile.com/c/3b8kEH/Kz5Ru
https://doi.org/10.1101/2023.03.30.534849
http://creativecommons.org/licenses/by/4.0/


Assigning the TF-gene mode of regulation

For each TF-gene interaction from the CollecTRI meta-resource the PMIDs were aggregated

across databases. Each PMIDs is considered evidence of whichever mode of regulation is

specified in that database, if any. Database entries that are not supported by PMIDs are thus not

considered when building the TF regulons. PMIDs can only count as evidence for a TF-gene

interaction once, even if they were used to source entries in several databases. Only in the

infrequent case of the same PMID featured as supporting different modes of regulation in

different databases, these were considered twice for determining the mode of regulation to use

in the CollecTRI-derived regulons. We then assigned a mode of regulation, indicating the effect

(activating or repressing) of transcriptional regulation from the TF to its target gene, to each

TF-target interaction based on multiple sources of information. We first checked the specific

knowledge for each TF-target interaction based on the prevalence of PMIDs linked to a

particular mode of regulation (activation or repression). If no information or the same amount

of information about the mode of regulation was present for a TF-gene interaction, we checked

information gathered about the general mode of regulation of a TF to assign an activating or

repressing mode to these TF-gene interactions. We extracted regulatory information from GO

terms (30) and Uniprot keywords (32), as well as the characterization and classification of

effector domains of 594 human TFs provided by Soto et al. (33). More specifically we checked if

the TF was annotated with either the specific term or any child term of MF_GO:0001228,

MF_GO:0001217, MF_GO:0001217, MF_GO:0003713, MF_GO:0003714, BP_GO:0045944 or

BP_GO:0000122. From ​​the uniprot keywords we extracted the information on the TF role
based on the UniProtKB keywords Activator (KW-0010) and Repressor (KW-0678). If all three

sources, meaning the classification based on the GO terms, the Uniport keywords, and the

effector domains, agreed on the regulatory effect of a TF, the mode of regulation was assigned

accordingly for all target genes without any prior information on the mode of regulation from

the PMIDs. In addition, we also considered information from other interactions in the regulon of

a TF to classify it as activator or repressor. Hereby,, we examined all TF-gene interactions with

an assigned mode of regulation in the regulon of a TF and classified a TF based on whether the

majority of these interactions were linked to an activating or repressing mode of regulation. In

instances where no information was available from any of the sources, we, by default, assigned

the activating mode to the TF-gene interactions in question.

RegNetwork, ChEA3, Pathway Commons and DoRothEA

RegNetwork (26) human regulons were downloaded from their website

(https://regnetworkweb.org/download.jsp). The TF regulons from ARCHS4_Coexpression

(ChEA3 ARCHS4), ENCODE_ChIP-seq (ChEA3 ENCODE), Enrichr_Queries (ChEA3 Enrichr),

GTEx_Coexpression (ChEA3 GTEX), Literature_ChIP-seq (ChEA3 Literature) and
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ReMap_ChIP-seq (ChEA3 ReMap) were downloaded from their website

(https://maayanlab.cloud/chea3/) (24). DoRothEA (12) was downloaded using the function

get_dorothea from the decoupler v2.4.0 bioconductor package (34) and filtered by its

confidence levels A, B and C. For each TF-gene interaction where the sign of regulation was not

stated, an activating mode of regulation was assigned by default.

Computing TF-gene weights

We employed two different tools, namelyMatrixRider (35) and FIMO (36), to perform motif

enrichment analysis and calculate binding weights for the TF-gene interactions in the

CollecTRI-derived regulons. Specifically, we used theMatrixrider v1.30.0 andmemes v1.6.0

bioconductor packages. Before running the methods, we extracted 1,000 base pairs (bp)

upstream and 100 bp downstream of the transcription start site of each gene (TSS), defining the

promoter region, as well as 10,000 base pairs (bp) upstream and 100 bp downstream of the

TSS, reflecting proximal regulatory regions using the

TSS.TxDb.Hsapiens.UCSC.hg38.knownGene v3.4.6 package (37). Human TF binding motifs were

downloaded fromMotifDb v1.40.0 (38). TF-gene pairs for which either the promoter sequence

or the TF binding motif were not available were removed from the network. For the remaining

40,440 TF-gene pairs the two different tools were used as follows. MatrixRider was used to

calculate binding weights for each TF-gene interaction as described in their reference manual.

TF binding motifs were provided as position frequency matrices, DNA sequences of the target

genes as DNAString objects and a cutoff parameter of 0 were passed to the getSeqOccupancy

function within theMatrixrider v1.30.0 package. For FIMO, TF binding motifs and DNA

sequences were passed to the runFimo function within thememes v1.6.0 package and the

highest score was kept as the binding weight. For both methods, calculated binding weights

were shifted to positive values with a pseudo count of 1 and normalized. We used two different

normalization strategies. First, we normalized the weights per TF, meaning that the weights for

all targets of a specific TF were divided by the highest TF-gene binding weight of that TF.

Secondly, we normalized the weights per gene, meaning that the weights for all TFs regulating a

specific gene were divided by the highest TF-gene binding weight of that gene. The final

weights were compared with each other using Pearson correlation. The benchmark procedure

was then repeated for the weighted network, using the calculated weights from MatrixRider

with a window frame of 1,000 bp before normalization, and compared to the non-weighted

CollecTRI regulons. Additionally, TF-gene links with binding weights in the lowest 10, 20 and

30% quantile were removed from the network and their performance evaluated in the

benchmark.
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Benchmark data

Differentially expressed gene tables and meta data were downloaded from 907 manually

curated RNA-seq and microarray experiments, collected in knockTF (28)

(http://www.licpathway.net/KnockTF/download.php). These datasets include

knockdown/knockout experiments across multiple tissues and cell types associated with 456

different disrupted TFs. Perturbation experiments with a perturbed TF’s log fold change greater

than -1 were excluded from the final benchmark set, leading to 388 data sets covering 234

unique perturbed TFs. For each resource only perturbation experiments of TFs covered in that

network were used for the benchmark (Table 1).

Table 1 Overview tested TFs per network.

Network Total number of TFs
covered in benchmark

ChEA3 ARCHS4 156

ChEA3 ENCODE 46

ChEA3 Enrichr 146

ChEA3 GTEX 155

ChEA3 Literature 66

ChEA3 ReMap 101

CollecTRI 171

DoRothEA ABC 125

RegNetwork 123

Pathway Commons 92

TF activity estimation

TF activities were estimated based on the log fold-changes of the direct target genes after

perturbation. Each network was first filtered to keep only TF-gene interactions of genes

measured in the experiment. We then selected TFs with at least five gene targets and estimated

TF activities using the consensus score of the multivariate linear model method, the univariate

linear model method and the weighted sum method using the decoupler v1.2.0 python package

(34).

Benchmark procedure

The benchmark was performed using the benchmark function from the decoupler v1.2.0

python package (34). To globally evaluate collections of TF regulons, TF activity scores obtained

as described above were first multiplied by the sign of the perturbation (knockout: negative,

overexpression: positive) for each perturbation experiment. The activity scores matrix (rows:
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experiments, columns: TF activities) is then flattened across experiments into a single vector.

The objective is to distinguish between perturbed TFs, the true positives, from all unperturbed

ones, true negatives. However, due to the large class imbalance between true positives and

negatives, a downsampling strategy was employed within the benchmark. For each

permutation, an equal number of positive and negative classes were randomly selected 1,000

times to calculate the area under the Receiver Operating Characteristic (AUROC) and

Precision-Recall Curve (AUPRC) metrics, obtaining distributions of prediction measurements.

The performance evaluation for specific TFs was performed only for TFs for which at least 5

experiments were available in the KnockTF dataset (after filtering out experiments with

insufficient perturbation, Methods 4.6). In this setting, the objective is to distinguish between

perturbed experiments for each retained TF, the true positives, from all the unperturbed ones,

true negatives. The same strategy as described above is used, but instead of flattening the

activity scores matrix, only the vector of one TF is extracted for evaluating the performance.

This was done separately for each of the TFs in Supplementary Figure 2.

Evaluation of size bias

For the three top performing regulon collections, namely CollecTRI, DoRothEA ABC and

RegNetwork, we used a two-sided t-test which was adjusted for multiple testing using

Benjamini-Hochberg correction to compare if there was a difference in the number of targets

for TFs that were part of the benchmark data set, compared to the TFs that were not. Pearson

correlation coefficients were computed to assess the relationship between the number of

targets and the absolute activity scores of TFs across all benchmark experiments included in

the benchmark. We then summarized the correlation between the absolute scores and the

number of targets across experiments with the mean correlation and compared it across

networks.

Case study

We tested the network by estimating TF activities in three types of cancer: Uterine Corpus

Endometrial Carcinoma (UCEC), Lung Adenocarcinoma (LUAD), and Clear Cell Renal Cell

Carcinoma (CCRCC), retrieved from the third phase of the Clinical Proteomic Tumor Analysis

Consortium (CPTAC). The data was provided by Gaytan et al. (in preparation) which was

collected from NCI’s Genomic Data Commons (GDC) (39) using the GDC transfer tool. Raw

count tables were subjected to VSN normalization, after filtering genes with a low number of

counts (40). For each cancer type, we then performed differential expression analysis between

tumor and natural tissue samples using the limma R package (41). The t-values were used to

estimate the consensus TF activity as described previously. A significance threshold of 0.05

was applied.
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RESULTS

Sources of prior knowledge on TF-gene regulatory interactions

CollecTRI (Collection of Transcription Regulation Interactions) is a compilation of available

transcription regulation information from databases integrated with information extracted from

the text-mined resource ExTRI (23), which extracts sentences containing descriptions of

transcription regulation events, known as TRIs (Transcription Regulation Interactions). Here, we

used those resources after updating some of the databases and including three new ones

(Table 2): Pavlidis (42), NTNU Curated (43) and DoRothEA A (12) (Supp. Figure 1). NTNU Curated

are a subset of ExTRI sentences manually curated for validity of TF-gene interaction and mode

of regulation, and DoRothEA A contains the TF-gene interactions with the highest confidence

level of the DoRothEA meta-resource (12), which is also evaluated in this publication separately.

Note that DoRothEA compiles some of the same resources as CollecTRI; however, the overlap

is taken into account for the creation of the CollecTRI-derived regulons as it is based on the

number of unique PubMed IDs (PMIDs) supporting each annotation across resources.

From the resources, all instances of genes or proteins have been translated into human gene

symbols, including mentions to rat or mouse entities which were translated with the help of

orthology tables. We decided to also consider TF-gene interactions from mouse and rat, as it is

a common practice in the field to assume that the TRIs translate across murine organisms and

humans due to the high conservation of regulatory mechanisms across these organisms (44).

Additionally, a large component of CollecTRI is extracted from text-mining, where it is often

difficult to assign the correct species to information extracted from PubMed abstracts; in fact,

this information may be missing entirely from abstracts.
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Table 2 Resources of TF-gene interactions used in CollecTRI. The table indicates whether all

interactions or subsets of them were included in CollecTRI.

Database Content extracted for compilation Reference

ExTRI All (cross-species) Vazquez, 2022 (23)

TFactS All (human, mouse, rat) Essaghir, 2010 (45)

HTRIdb All (human) Bovolenta, 2012 (46)

IntAct Subset: protein-gene interactions (human, mouse,
rat)

Kerrien, 2012 (47)

GOA

(updated)

Subset: protein-gene regulatory interactions (human,
mouse, rat)

Huntley, 2015 (48)

TRRUST All (human, mouse) Han, 2015; Han 2018
(21, 49)

SIGNOR

(updated)

Subset: interactions labeled with interaction
mechanism ‘transcriptional regulation’ (human,
mouse, rat)

Perfetto, 2016 (20)

CytReg All (human, mouse) Carrasco Pro, 2019
(50)

GEREDB Subset: interactions with regulator TFClass TF
(human)

Huang, 2019 (51)

Pavlidis (new) All (human, mouse) Pavlidis, 2021 (42)

DoRothEA_A
(new)

All (human) Garcia-Alonso, 2019
(12)

NTNU Curation

(new)

Subset of about 20K sentences manually curated
from ExTRI

Lægreid, in prep (43)

Moreover, two TF dimers, AP1 and NFKB, were treated as transcription factors themselves in

CollecTRI since they, in the literature, are very frequently mentioned only by their dimer name.

When merging the CollecTRI resources, the information regarding the monomer AP1 or NFKB

constituents (e.g. JUN- or FOS-family or NFKB1) was merged into information referring to the

complex (i.e. AP1 for JUN and FOS) and vice versa, see details in (23).
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Construction of TF regulons from CollecTRI

From the compiled information in CollecTRI we constructed signed and directed

CollecTRI-derived regulons which can be used for the inference of TF activities. To ensure

reliability of the TF-gene interactions and account for the overlap across resources, we

gathered the unique PMIDs for each TF-gene interaction and removed those lacking any

reference (Figure 1A). Furthermore, to focus on proteins with a direct regulatory effect on gene

expression, we included only TF-gene links from TFs classified as DNA-binding transcription

factors (dbTFs), co-regulatory transcription factors (coTFs) or general initiation transcription

factors (GTFs) based on criteria from TFclass (52), Lambert et al. (53), Lovering et al. (6), or gene

ontology (GO) annotations (30).

We then assigned a mode of regulation to each TF-gene pair, indicating the sign of

transcriptional regulation from the TF to its target gene. Specifically, we determined whether

the TF activates or represses the expression of its target gene (Figure 1B). Hereby, activation

corresponds to an increase in the expression of the target gene, whereas repression

corresponds to a decrease in expression. To determine the sign of transcriptional regulation for

each TF-gene pair in the CollecTRI-derived regulons, we integrated information from multiple

resources, including the specific knowledge for each TF-target link based on the prevalence of

PubMed references linked to a particular mode of regulation. We also incorporated general

prior knowledge about the mode of regulation of a TF derived from GO terms (30) and Uniprot

keywords (32), as well as the classification of effector domains of 594 human TFs provided by

Soto et al. (33). Given that the effector domain can activate or repress the expression of a TF’s

target genes through several mechanisms, it provides additional information for the

classification of TFs into activators or repressors (54). Furthermore, we considered information

from other interactions in the regulon of a TF to make a decision on whether a TF is more likely

to activate or repress the expression of its target gene. The information from each source was

considered separately, and the prevalence of PMIDs was prioritized to determine the mode of

regulation. If information from PMIDs was not available, we relied on the general prior

knowledge about the mode of regulation of a TF and lastly on the information about other

interactions in the TFs regulon to select the mode of regulation for all TF-gene pairs in the GRN

generated based on CollecTRI (Methods: Assigning the TF-gene mode of regulation). In

instances where no information was available from any of the sources, we designated TFs as

activators by default, and assigned a mode of regulation accordingly (Figure 1B). For 18,345

TF-gene interactions, the mode of regulation was determined based on the prevalence of

PubMed references. Meanwhile, for 9,226 and 949 interactions, the mode of regulation was

assigned based on the prior knowledge of the TFs and other interactions in the regulon,

respectively. For the remaining 17,364 TF-gene interaction an activating mode was assigned by

default (Supp. Figure 2A). This annotation procedure led to 83% activatingand 17% repressing
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TF-gene links. 51% of TFs were represented with a dual role in regulation, meaning the TF was

assigned to either activate or repress the expression of its target genes. 33% of the TFs had only

activating links, whereas 16% of TFs are only represented by repressing links. (Figure 1C). In

total, the CollecTRI-derived regulons cover 1,183 TFs and 45,856 signed TF-gene interactions.

We compared the coverage of the CollecTRI-derived regulons to other known collections of TF

regulons, namely ChEA3 (24), RegNetwork (26), Pathway Commons (25) and DoRothEA (12).

ChEA3 contains a collection of gene set libraries generated from TF-gene co-expression,

TF-target associations from ChIP-seq experiments, and TF-gene co-occurrence computed

from user-submitted lists to the Enrichr tool. RegNetwork is a manually curated database of

experimentally observed or predicted transcriptional and post-transcriptional regulatory

interactions. Pathway Commons is a resource that compiles information about regulatory

networks as well as biological pathways including molecular interactions, signaling pathways,

and DNA binding from different databases. Finally, DoRothEA integrates information on gene

regulatory interactions with assigned confidence levels from multiple sources, including

literature-curated resources, ChIP-seq peaks, motif analysis, as well as inference from gene

expression data. Only DoRothEA among the four regulon collections we compared to the

CollecTRI-derived regulons also provides signed information about the direction of

transcriptional regulation. For a fair comparison between the TF regulons, all collections were

filtered to only contain TF-gene interactions from annotated dbTFs, coTFs, or GTFs, as described

above.

We then compared the TFs and TF-gene links across all collections of TF regulons, and we

found that the CollecTRI-derived regulons exhibit the highest TF coverage (1,183) besides the

ChEA3 gene set libraries ARCHS4 (1,612), GTEx (1,578) and Enrichr (1,393). It is worth noting that

these ChEA3 libraries were generated using co-expression or co-occurrence strategies, which

are known to produce a higher number of false positive interactions in TF-target association

studies (27). The CollecTRI regulons cover 47 TFs not present in any of the other four resources.

RegNetwork and Pathway Commons also provide information on 80 and 42 unique TFs,

respectively, otherwise 91.3% of all TFs across the analyzed resources are present in at least

two of them. In terms of TF-gene interactions, resources mainly collecting information from

curated databases, such as RegNetwork, Pathway Commons, DoRothEA and CollecTRI,

generally showed a lower number of interactions. As previously mentioned, TF regulons

generated using co-expression and co-occurrence strategies, such as some ChEA3 libraries,

tend to have a higher number of potential interactions that often include many indirect

regulatory relationships. In general, there was a low overlap between the resources we

compared, with an average of 72.4% of interactions being unique to each collection of TF

regulons (Figure 1D). Overall, the CollecTRI-derived regulons have an extensive coverage of TFs
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with high-confidence interactions and, in contrast to most other regulon collections, include

information about the sign of the transcriptional regulation.

Figure 1 Description of transcription factor (TF)-gene interactions in the CollecTRI-derived

regulons and comparison to other regulon collections.

(A) Collecting transcription factor (TF)-gene links to construct regulons from CollecTRI.

Depicting prior knowledge resources used to collect links, which were aggregated within

CollecTRI. (B) Flow chart describing how the mode of regulation (MoR) was assigned to each

TF-gene link. The MoR, indicating the direction of transcriptional regulation from the TF to its

target gene, was determined for each TF-gene link, based on factors such as PubMed

references (PMIDs), prior classification of the TF and the MoR of other genes in the regulon. (C)

Summary of the MoR for TF-gene interactions in CollecTRI. Total number of interactions for

activating and repressive TF-gene links (left) and percentage of TFs that purely function as
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activators, repressors, or have a dual mode of regulation (right). (D) Comparison of the

number of unique TFs (top) and interactions (bottom) across different resources - with ChEA3

ARCHS4, ChEA3 GTEx and ChEA3 Enrichr being solely based on co-expression or

co-occurrence. Any TF or interaction present in more than one resource is considered shared.

Systematic comparison of TF activity inference from CollecTRI-derived regulons with other

regulon collections

We evaluated the quality of the CollecTRI-derived regulons by assessing how well they are

able to recapitulate the changes in gene expression caused by the perturbation of a TF in

comparison to other existing regulon collections. As previously described, we reasoned that if a

TF's set of targets is reliable, meaning their expression is directly regulated by the TF, the

regulon's collective expression pattern should be a proxy of the TF's transcriptional activity (12).

To test this, we downloaded perturbation data from KnockTF (28), a comprehensive human

gene expression profile database from TF knockdowns and knockouts studies. KnockTF

contains manually curated RNA-seq and microarray datasets associated with TFs perturbed by

different knockdown or knockout techniques across multiple tissues and cell types. For the

benchmark, we restrict the datasets to experiments were the TF perturbation is highly likely to

have been effective, by only including data from experiments where the expression of a TF was

markedly decreased after its knock down or knock out, leading to a total number of 388

perturbation experiments covering 234 unique TFs (Methods: Benchmark data).

We then followed the benchmark pipeline in the decoupler python package (34) to

systematically compare the regulons generated from CollecTRI, to the ones from DoRothEA,

Pathway Commons, RegNetwork and the ChEA3 libraries. Additionally, we used a permuted

version of the CollecTRI-regulons as a baseline of performance. In this version the target genes

and mode of regulation in CollecTRI were shuffled and randomly assigned to a TF. As such,

these TF regulons do not represent biological information and can thus serve as a baseline of

performance. TF activities were then inferred from the differentially expressed genes of each

KnockTF experiment using the regulons provided by each resource. Only TF regulons

containing at least five target genes among the genes measured in the experiment were used

for the activity inference, leading to a restricted number of TFs for each resource (Supp.

Figure 3). All inferred TF activities across experiments were sorted by their activity scores, and

the classification of TFs based on the estimated activities compared to the knock-out

information was evaluated with the area under the receiver operating characteristic curve

(AUROC) and the area under the precision-recall curve (AUPRC) (Figure 2A) (Methods:

Benchmark procedure). Before systematically comparing CollecTRI regulons to those from

other resources, we first evaluated the effect of assigning the sign of regulation to the TF-gene
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interactions. We found that the fully signed CollecTRI-derived TF regulons perform better in the

benchmark than TF regulons with the mode of regulation for all TF-gene rendered activating

(adjusted p-value < 2.2×10−16, mean t-value across tests equal to 64.9 and 51.6 for AUROC and

AUPRC, respectively) (Supp. Figure 2B). We then performed the comparison of

CollecTRI-derived regulons to those from other resources and showed that the CollecTRI

regulons had median AUROC and AUPRC values of 0.7 and 0.75, respectively, which were

higher than those of all other resources (adjusted p-value < 2.2×10−16, mean t-value across tests

equal to 252 and 275.1 for AUROC and AUPRC, respectively) (Supp. File 1, Figure 2B).

Furthermore, all ChEA3 libraries, except for ChEA3 ARCHS4, did not exhibit a higher

performance compared to the random baseline set by the permuted CollecTRI version (t-test:

adjusted p-value > 0.05). Overall, the results from the benchmark show that the

CollecTRI-derived regulons outperforms other TF regulon collections in identifying perturbed

TFs based on TF activities, suggesting that, of the resources here compared, the TF-gene

interaction information compiled in CollecTRI provides the most reliable starting point for

estimating TF activities.

Figure 2 Systematic comparison of collections of transcription factor (TF) regulons.

(A) Description of benchmark pipeline for the comparison of different regulon collections. First,

transcription factor (TF) activities are inferred from the gene expression data of the knockTF
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perturbation experiments using the regulon information from each resource. TFs are presented

as differently colored hexagons and experiments are presented as different shapes. Activities

are then aggregated across experiments and ranked by their activity. A downsampling

strategy is applied to have an equal number of perturbed and non-perturbed TFs randomly

selected 1,000 times to calculate area under the Receiver operating characteristic (AUROC)

and Precision-Recall curve metrics (AUPRC). (B) Predictive performance of TF regulons

identifying perturbed TFs in knockTF experiments. AUROC (left) and AUPRC (right) for each

regulon collection classifying TFs as perturbed or non-perturbed based on their activities.

Since the benchmark data mainly covers TFs that are well studied and usually have a larger

number of targets associated with them, we tested if the number of genes regulated by a TF

was related to the performance of the networks to predict perturbed TFs. For the top three

performing TF regulon collections, we first tested if there was a difference in the number of

targets between TFs that were part of the benchmark data set and those TFs that were not. For

all three resources, we observed that the TFs included in the benchmark had a higher number

of targets associated with them (adjusted p-value = 1.76-5, 1.34-3 and 2.8-4, t-value = 4.68, 3.27

and 3.84 for CollecTRI, DoRothEA and RegNetwork, respectively) (Supp. Figure 4A). To assess

the relationship between the number of targets and the accuracy estimating TF activities for

each experiment included in the benchmark, we computed Pearson correlation coefficients

and found that the average correlation across all experiments was equal or less than 0.3 for all

resources, with the CollecTRI-derived regulons showing the lowest mean correlation of 0.14

(Supp. Figure 4B). Therefore, we concluded that the better performance of the

CollecTRI-derived regulons is not influenced by an increased bias towards TFs with a higher

number of targets.

Another limitation of the current benchmark is that it disregards possible off-target effects of TF

perturbation assuming that the perturbed TF has the most deregulated activity. Thus for a

limited collection of 12 TFs where we had multiple perturbation experiments we repeated the

benchmark only classifying the activity of the perturbed TFs without including non-perturbed

TFs (Methods: Benchmark procedure). In this benchmark setting, we observed a better

performance of CollecTRI regulons for the TFs REST, TP53, FLI1, NRF2F2 and SOX2 in

comparison to the other networks with average median AUROC and AUPRC value of 0.84 and

0.88, respectively, (adjusted p-value < 0.001, mean t-value across TFs = 77.6 and 76.4 for

AUROC and AUPRC, respectively) and a perfect classification for REST (Supp. Figure 5A).

However, overall all networks performed comparably (Supp. Figure 5B). Although limited to a

few TFs, CollecTRI-derived regulon’s performance was comparable to the other networks in

this benchmark setting, with an improved performance for specific TFs.
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Case study

To showcase the value of using CollecTRI-derived GRN for predicting TF activities, we

performed a TF activity inference analysis using differential expression data from three cancer

types: Uterine Corpus Endometrial Carcinoma (UCEC) (55), Lung Adenocarcinoma (LUAD) (56),

and Clear Cell Renal Cell Carcinoma (CCRCC) (57) (Figure 3A). These datasets comprise gene

expression data of tumors and adjacent normal tissues from multiple patients.

Figure 3 Workflow and results of the case study of transcription factor activity inference using

CollecTRI and decoupleR.

(A) Schematic representation of the workflow for the inference of transcription factor activities. (B)

Transcription factors with differential activities as predicted by decoupleR. Each TF is shown as an

individual dot and colored based on the consensus score. The size of the dot is inversely related to the

p-value (the bigger the size, the more significant the observation). Abbreviations: TF: Transcription

factor, Uterine Corpus Endometrial Carcinoma (UCEC), Lung Adenocarcinoma (LUAD), Clear Cell Renal

Cell Carcinoma (CCRCC).

Based on the differentially expressed transcriptome of tumor versus normal tissue, we

predicted TF activities for each cancer type and observed in total 62 significantly deregulated

TFs, as shown in Figure 3B. Our analysis generally reflected previously described TF activity

changes in cancer tissue. For instance, proliferation- and cell survival-promoting TFs, such as

MYC, Jun-, FOS-, and E2F family TFs, were found to have significantly increased activity across
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the three cancer types. On the other hand, cell death-related TFs, such as members of the

FOXO family, were found to have significantly reduced activity (Supplementary Table 2).

To highlight the added value of the additional TF-gene coverage of CollecTRI, we compared the

predictions of TF activities for those TFs whose regulons are included only in CollecTRI-derived

GRN and not in DoRothEA ABC, which was chosen as the main network for comparison as it

was the second-best performing network in our benchmark. To evaluate the validity and

relevance of the “CollecTRI-exclusive” TFs, a literature review for their role in their respective

cancer types was conducted.

For LUAD, in total six TFs were uniquely part of CollecTRI regulons, and four of those had a

previously reported role in several aspects of LUAD, such as its development and prognosis.

OLIG2 and ETV2 are TFs reported to be overexpressed in lung adenocarcinomas (58, 59).

Similarly, the upregulation of HDAC5 has been found to promote lung adenocarcinoma by

regulating several cell cycle and epithelial-mesenchymal transition genes (60), and in our

analysis, CollecTRI regulons predicted its increased activity in LUAD. LMO2 is a tumor

suppressor which acts through the regulation of the Wnt pathway in several tumor types. In

lung adenocarcinomas and other epithelial-derived tumors, LMO2 was found to have a

reduced expression and activity (61), as also predicted in our results.

Among the TFs for which we estimated altered activities in UCEC, eight were part of only

CollecTRI-regulons, four of which had a previously described role in this specific cancer type.

SMAD2, together with SMAD3, has been shown to have tumor-suppressive functions in

endometrial carcinoma cells, and the inhibition of its activity has been associated with the

constituent activation of the PI3K/AKT pathway, increased proliferation and decreased

apoptosis (62). Both SMAD3 and SMAD2 showed a significantly decreased activity in the UCEC

dataset, with the latter being part uniquely of CollecTRI regulons. As the afore-described

HDAC5, HDAC7 is another histone deacetylase, whose inhibition with pan-HDAC inhibitors has

been reported to lead to cell cycle arrest in UCEC (63), suggesting a positive role of the TF in

cancer development, which is also reflected in the increased activity predicted with CollecTRI

regulons. The HCFC1 transcription factor has an immunomodulatory role in cancer by inhibiting

immune responses, and by promoting tumor growth and vascularization (64). In accordance

with its cancer-promoting role, HCFC1 was found to have an increased activity in UCEC. The

ZBTB4 TF, a proposed tumor suppressor, was the only instance where CollecTRI activities did

not correspond to the expected activity given the role of the TF. ZBTB4 is an essential

component in maintaining genomic stability (65), and its expression is decreased in

endometrial cancer (66). At the same time, higher expression of ZBTB4 has been proposed as a

favorable marker of relapse-free survival in other types of cancers, such as breast cancer (67).
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ZBTB4 was found to be overactivated in the studied UCEC samples, suggesting that additional

validation is needed to evaluate the prediction.

CCRCC is one of the three main subtypes of renal cell carcinomas (RCCs), all of which have

been described for their distinct transcriptional and epigenetic characteristics. A study by (68)

reported the main driving TF of each subtype. Among those main driving TFs, two are found in

the predictions by CollecTRI-regulons. ETS1, which was estimated to be overactive by our

analysis, was found to be one of the two main TF regulators in CCRCC. On the contrary, FOXI1,

a main TF regulator of another RCC, chromophobe RCC, was found to be significantly

underactive in CCRCC, as would be expected in this specific subtype. FOXI1 was among the TFs

which were exclusively found with ColleCTRI regulons. TFAM is a mitochondrial TF which is

also included in the regulation of pyroptosis. Together with 10 more pyroptosis-related genes,

TFAM, was identified as a risk gene for the prognosis of CCRCC (69). KLF7's exact role in CCRCC

is not clear, however, KLF7 serves as a target for miR-22 which has been suggested as an

important regulator and prognostic marker for CCRCC (70). Furthermore, according to The

Human Protein Atlas, its high expression has been correlated with a favorable prognosis for

kidney carcinomas. Two additional TFs, TRERF1 and DLX1 were inferred to be more active in

tumor than normal tissue. While the role of TRERF1 in CCRCC is poorly understood, TRERF1 is a

known regulator of CYP11A1, which is frequently downregulated in CCRCC. DLX1 has no

reported role in CCRCC, however, it has a known oncogenic role in other cancer types such as

prostate (71) and ovarian (72) cancers.

Overall, this comparative analysis highlights the usefulness of CollecTRI-derived regulons in

inferring TF activities. The presence of cancer-type-relevant TFs in the results showcases how

the augmented TF coverage in CollecTRI-derived regulons appears to balance the identification

of meaningful TFs without overwhelming the output with potentially extraneous information.

DISCUSSION

Transcription factor (TF) regulons represent regulatory circuits that depict the coordinated

regulation of downstream target genes by TFs. They can be valuable for understanding various

biological processes, including development, cell differentiation, tissue homeostasis, and

disease progression. To derive functional insights from these regulons, TF activities can be

inferred from the expression levels of target genes, as shown in various studies (9, 73–75).

However, to interpret these findings accurately, it is important to critically evaluate the

reliability and coverage of TF regulons.

In this paper, we present a well-defined, transparent, and reproducible workflow to generate

regulons from CollecTRI, a meta-resource that compiles TF-gene information from 12 different
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resources including information inferred from text mining, manual curations and a number of

publicly available databases (23). With that, the CollecTRI-derived regulons provide the most

extensive coverage of TF-gene interactions compared to other collections of regulons that

extract TF-gene interaction knowledge solely from literature. Since most publicly available

meta-resources of TF-gene interactions contain limited or no information about the mode of

regulation of a TF to its target genes, we propose an evidence-driven approach to infer the sign

of regulation for each TF-gene link in the CollecTRI regulons, which can also be applied to other

comprehensive knowledge bases. We evaluated the approach and confirmed that adding the

information about the sign of regulation to the CollecTRI regulons leads to more accurate TF

activity inference. Next, through systematic comparison with other known TF regulon

collections, we showed that CollecTRI-derived regulons perform best in identifying perturbed

TFs based on gene expression, suggesting a high quality in CollecTRI’s TF-gene interactions.

Finally, we showcase the value of the CollecTRI regulons in inferring TF activities in three

different cancer types and successfully identifying changes in the activity levels of TFs known to

be involved in these contexts.

Despite the good performance of the CollecTRI regulons in the systematic comparison, it is

important to bear in mind that the current benchmark is limited to a specific set of TFs. Further

perturbation studies would therefore be useful to extend the current benchmark and allow for

a more comprehensive evaluation of CollecTRI and other resources.

While the coverage in the CollecTRI regulons is substantially larger than those of other

resources, it could still be expanded by including additional TF-gene interactions from other

resources. However, identifying high-quality TF-gene interactions within a resource and

distinguishing them from indirect regulatory relationships is challenging. Since CollecTRI is

primarily assembled from literature-curated resources, a bias for well-studied TFs may be

present. We observed similar bias trends across meta-resources, quantified as the correlation

of inferred TF activities with the number of targets of each TF.

Another limitation is that the CollecTRI regulons currently only take the sign of regulation into

account, omitting the quantitative nature of gene regulation (4). We therefore estimated TF

binding weights using motif enrichment analysis, but observed no benefit in the inference of TF

activities (Supplementary Note 1, Supp. Figure 6). Since CollecTRI compiles exclusively TF-gene

link interactions omitting cooperative events between TFs and other proteins, distal interactions

and the chromatin accessibility landscape among other processes (4), it only captures one layer

of the cis-regulatory code. This might explain why using TF binding weights did not increase

the overall predictability of perturbed TFs.

Finally, the CollecTRI regulons were constructed as generalistic interactions and, as such, do not

account for cell type-specific differences (76). Nonetheless, CollecTRI regulons could be used
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as a building block for context-specific interactions using complementary data types, such as

single-cell transcriptomic or chromatin accessibility data.

In summary, we constructed a collection of TF regulons with a high coverage of TFs and high

confidence TF-gene interactions, which is freely available to the community via OmniPath (29)

and DoRothEA (12) packages. We conducted a systematic comparison with other known

resources, where the CollecTRI regulons showed the best performance in recapitulating

changes in gene expression caused by the perturbation of a TF. Additionally, we demonstrated

how the regulons can be applied in a biological context and can help uncover the role of

transcriptional regulation in various biological contexts.

DATA AVAILABILITY

The code for the curation of regulatory interactions of CollecTRI and the construction of the

CollecTRI-derived regulons is available here: https://github.com/Rbbt-Workflows/ExTRI,

https://github.com/saezlab/CollecTRI. Files necessary to reproduce the presented results are
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