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Abstract 

 
Deep learning  (DL) methods accurately predict gene expression levels from genomic DNA, 
promising to serve as an important tool in interpreting the full spectrum of genetic variations in 
personal genomes. However, systematic benchmarking is needed to assess the gap in their utility 
as personal DNA interpreters. Using paired Whole Genome Sequencing and gene expression data 
we evaluate DL sequence-to-expression models, identifying their failure to make correct 
predictions on a substantial number of genomic loci due to their inability to correctly determine 
the direction of variant effects, highlighting the limits of the current model training paradigm. 
 
Main 

 
Deep learning (DL) methods have recently become the state-of-the-art in a variety of regulatory 
genomic prediction tasks136. By adapting convolutional neural networks (CNNs), these models 
take as input sub-sequences of genomic DNA and predict as outputs functional properties such as 
epigenomic modifications2,7, 3D interactions5,8, and gene expression values1,9,10. A key insight has 
been to formulate model training and evaluation such that genomic regions are treated as data 
points, resulting in millions of training sequences in a single Reference genome to optimize model 
parameters11,12.  This training approach allows models to identify DNA subsequences (motifs) that 
are shared across the genome and exploits variations in motif combinations across genomic regions 
to enable their predictions. Indeed, this strategy has enabled accurate prediction of context specific 
functional profiles from the Reference genome sub-sequences. However, an extraordinary promise 
of these sequence-based models is to make predictions for sequence alternatives across individuals 
at a particular locus, each presenting a unique combination of genetic variants 3 a combinatorial 
space that is simply not feasible to evaluate with current experimental assays4,6. Selective 
evaluation using  natural genetic variation in expression quantitative trait loci (eQTL) studies has 
shown some promise in the ability of these models to make such predictions1,13. Moreover, 
evaluations using massively parallel reporter assay (MPRA) experiments on select genomic 
locations1,14  has shown that these models can predict the effects of single nucleotide changes, 
despite experimental noise and context differences between in-vivo training datasets and MPRA 
in-vitro experiments.  Here, to assess how far we are from deploying existing sequence-to-
expression DL models as personalized DNA interpreters genome-wid, we use paired Whole 
Genome Sequencing (WGS) and RNA-sequencing from a cohort of 839 individuals to 
systematically benchmark the utility of existing sequence-to-expression DL models trained on the 
Reference genome in in-vivo prediction of gene expression across individuals.  
 
First, we focus our evaluation on Enformer1, the top-performing sequence-to-expression CNN-
based model that follows the standard training approach, utilizing genomic regions across a single 
Reference genome to learn the relevant sequence patterns for predicting gene expression, TF 
binding, and histone modifications across hundreds of cell types in a multitask framework (Fig. 

1A).  We initially evaluated Enformer9s prediction of population-average gene expression in the 
cerebral cortex from the Reference Genome (Methods). We observe a Pearson correlation R=0.58 
(Fig. 1B, S1, R=0.51 for Enformer9s test set; Methods) between observed and predicted gene 
expression across genes which is consistent with previous reports1,15. 
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Next, we evaluated Enformer9s performance in predicting individual-specific expression levels 
based on personalized sequences. As an example, we first present here results for a highly heritable 
gene (heritability r2=0.8) related to DNA replication: DDX11. DDX119s variance in expression 
across individuals can be attributed to a single causal single-nucleotide variant (SNV) using 
statistical fine-mapping13. Using WGS data, we created 839 input sequences of length 196,608bp 
centered at the transcription start site (TSS), one per individual for the gene (Fig. 1C). Each 
individual9s input sequence contains all their observed SNVs (Fig. S2). Applying Enformer to 
these input sequences we observed a Pearson correlation of 0.85 between predicted and observed 
gene expression levels (Fig. 1D). Further, in-silico mutagenesis (ISM) at this locus showed that 
Enformer utilized a single SNV with high correlation to gene expression (eQTLs) in making its 
predictions (Fig. 1E). This SNV is the same causal SNV that was identified through statistical 
fine-mapping with Susie13. Thus, at this locus, Enformer is able to identify the causal SNV 
amongst all those in LD, and in addition provides hypotheses about the underlying functional 
cause, in this case the extension of a repressive motif (Fig. S3).  
 
However, the impressive predictions on DDX11 proved to be the exception rather than the rule.  
When we compared the predicted to observed expression levels across individuals for 6,825 
cortex-expressed genes that we were able to test, we found a large distribution in the Pearson9s R 

(Fig. 2A, Table S1). While the model9s predicted gene expression values were significantly 
correlated to observed expression for 598 genes (FDRBH=0.05, Methods), the predictions were 
significantly anti-correlated with the true gene expression values for 195 of these genes (33%). For 
example, predictions for GSTM3 gene expression values are anti-correlated with the observed gene 
expression across individuals (Fig. 2B). The results are similar when we select the best output 
track that matches the cerebral cortex (<CAGE, cortex, adult=) instead of fine-tuning the 
predictions with an elastic net model (Fig. S4, Methods). As well, model ensembling, whereby we 
averaged over model predictions on shifted sub-sequences and reverse and forward strands, did 
not impact  the sign of significant correlations  in ~96% of cases (Fig. S5). When we focused this 
analysis on 184 genes with known causal SNVs according to previous eQTL analysis13, again we 
observed that while Enformer can make significant predictions, the predicted expression levels are 
anti-correlated for 80 (43%) of these genes (Fig. S6A, Table S1). Overall, these results imply that 
the model fails to correctly attribute the variants9 direction of effect (i.e., whether a given variant 
decreases or increases gene expression level).   
 
We then compared Enformer  against a widely-used linear approach called PrediXcan16. PrediXcan 
constructs an elastic net model per gene from cis genotype SNVs across individuals. Unlike 
Enformer, PrediXcan is explicitly trained to predict gene expression from variants but it does not 
take into account variants that were not present in its training data and cannot output a prediction 
for unseen variants. While the models are conceptually different the PrediXcan model gives a 
lower bound on the fraction of gene expression variance that can be predicted from genotype. For 
a fair comparison, we used a prediXcan model pretrained on GTEx data16 and applied it to 
ROSMAP samples. Hence neither Enformer nor PrediXcan have seen the ROSMAP samples prior 
to their application. For the 1,570 genes where PrediXcan9s elastic net model was available, 
performance of Enformer is substantially lower than PrediXcan (Mean R Enformer = 0.02, Mean 
R PrediXcan = 0.26 Fig. 2C, Table S1). Further, PrediXcan did not have the same challenge with 
mis-prediction of the direction of SNV effect. Interestingly, when we compared the absolute 
Pearson R values across genes between Enformer and PrediXcan, we observed a substantial 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.03.16.532969doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532969
http://creativecommons.org/licenses/by-nd/4.0/


correlation (R=0.58, Fig. S6B), implying that genes whose expression values from genotype across 
subjects can be predicted well by PrediXcan overlap the set of genes where Enformer assesses a 
relationship between SNVs and expression. However, Enformer is not able to determine the sign 
of SNV effects accurately (hence a very low mean R value between observed and predicted gene 
expression of 0.02). We note that Enformer predictions were evaluated against eQTLs in the 
original study using SLDP regression demonstrating improved performance over competing 
models in terms of z-score. Our results are not in contradiction with these findings. The SLDP 
approach computes the association of effects genome-wide; taking a conservative estimate for the 
degrees of freedom to be the number of independent LD blocks (1,36117) a z-score of 7  would 
correspond to an R2 of 0.034. 
 
To investigate if these observations are specific to Enformer or more broadly apply to sequence-
based DL models that follow the same training recipe, we trained a simple CNN that takes as input 
sub-sequences from the Reference genome centered at genese9 TSS (40Kbp) and predicts 
population-average RNA-seq gene expression from cortex as output (see Supplementary 
Methods). We observed that while this vanilla method can predict population-average gene 
expression levels with similar accuracy to Enformer (Fig. S7A), it exhibits similar characteristics 
when applied to predict variation in gene expression across individuals (Fig. S7B). Thus, our 
results on Enformer are likely to generalize to other sequence-based DL models trained in the same 
way. In parallel work, the results described in the manuscript co-submitted by  Huang, Shuai, 
Baokar et al., 2023 indeed confirm this hypothesis.  
 
To explore the causes for the negative correlation between Enformer predictions and the observed 
gene expression values we applied two explainable AI (XAI) techniques on all genes with a 
significant correlation value (abs(R)>0.2, Fig. 2A): ISM and gradients (Grad) 18320. Both XAI 
methods decompose the nonlinear neural network into a linear function whose weights 
approximate the effect and direction of every SNV to the prediction (Methods). While there was a 
moderate correlation between attributions computed with Grad and ISM (mean Pearson R = 0.28, 
Fig. S8), we found that linear decomposition with ISM generated a better approximation of 
Enformer9s predictions (Fig. S9), and was able to accurately approximate Enformer9s predictions 
for 95% of the examined genes (R>0.2, p<10-8).  
 
For each gene, based on its ISM attributions, we determined the main SNV driver(s) that dominate 
the differential gene expression predictions across individuals (Methods). Across the 256 
examined genes, we found that 32% have a single SNV driver, and the vast majority (85%) have 
five or fewer drivers (Fig. S10, Table S2) which determine the direction and correlation with the 
observed expression values. To understand how these driver SNVs cause mispredictions, we 
directly computed the SNV direction of effect by contrasting the gene expression levels across 
people when stratified by the SNV9s genotypes (Methods), referred to as the eQTL effect size. We 
classified Enformer-identified driver SNVs into <supported= and <unsupported= categories based 
on the agreement of SNVs ISM attribution sign with the direction of effect according to the eQTL 
analysis. For example, GSTM3 has two common driver SNVs and their predicted direction of 
effect was unsupported by the observed gene expression data (Fig. 2D). For all 256 inspected 
genes, we found that mispredicted genes had almost exclusively unsupported driver SNVs (Figure 

2E), confirming that this small number of driver SNVs per gene are in fact the cause of Enformer9s 
misprediction for the sign of the effect.  
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To investigate whether these unsupported attributions are caused by systematically erroneous 
sequence-based motifs that Enformer learns, we analyzed the genomic sequences around driver 
SNVs. We did not find any enrichment for specific sequence motifs (Fig. S11). When we plotted 
the location of SNV drivers along the input sequences, we found that most drivers were located 
close to the TSS (Fig. 2F, Fig. S12), supporting a recent report15 that shows current sequence-
based DL models mainly predict gene expression from genomic DNA close to TSS, despite using 
larger input DNA sequences. Further, we looked at Grad attributions along the entire sequence 
(Fig 2G top, S13) and ISM attributions for large windows around the TSS (Fig 2G, bottom) and 
found that the area around the TSS not only contained distinguishable learned sequence motifs but 
also both the strongest positive and strongest negative attributions outside of apparent learned 
motifs. We observe that the majority of the SNVs that drive the significant positive and negative 
correlations to the observed expression do not fall into one of these distinguishable motifs but 
instead in regions of increased <spurious attributions= where training data was likely not sufficient 
to deduce the regulatory logic (Fig. S14, Table S3).  
 
In summary, our results suggest that current models trained on the output of a single Reference 
genome often fail to correctly predict the direction of SNV effects because most predictive SNVs 
do not fall into the learned regulatory motifs. This observation extends evaluation of sequence-
based NN models in predicting eQTL effects1,10,15,19 as summarized across the genome, and instead 
investigates how accurately differences in gene expression can be predicted across individuals on 
a per-gene basis with nearly complete genetic information captured in personal genomes. We 
further show that current NN models perform worse than simple baseline approaches like 
PrediXcan.  Going forward, we recommend that new models are  not only assessed on genome-
wide statistics of absolute causal eQTL effect sizes but also on a per gene agreement between the 
sign and the size of the predicted and measured effect of causal variants.  
 
We hypothesize that two complementary strategies will be fruitful for improving the prediction of 
gene expression across individuals. Firstly, current methods do not accurately model all of the 
biochemical processes that determine RNA abundance. For example, post-transcription RNA 
processing (whose dependence on sequence is mediated via RNA-protein or RNA-RNA 
interactions) is entirely ignored.  Similarly, while some models have large receptive fields and are 
technically capable of modeling long-range interactions, they do so only to a limited extent15. 
Secondly, the mechanisms that explain gene-to-gene variation may be distinct from those that 
explain interpersonal variation. For example, long-range interaction appears to be much more 
important for the latter15. Thus, training on the input-outputs-pairs of diverse genomes and their 
corresponding gene expression measurements may be required for accurate personalized 
predictions.  
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Figure Legends 
 
Figure 1. Evaluation of Enformer across genomic regions and select loci. (A) Schematic of the training 

approach implemented by Enformer and other sequence-based CNN models. Different genomic regions 

from the Reference genome are treated as data points. Genomic DNA underlying a given region is the input 

to the model, and the model learns to predict various functional properties including gene expression 
(CAGE-seq), chromatin accessibility (ATAC-Seq), or TF binding (ChIP-Seq). (B) Population-average gene 

expression levels in cerebral cortex (averaged in ROSMAP samples, n=839) for expressed genes 

(n=13,397) shown on the x-axis. Enformer9s prediction of gene expression levels for cortex based on the 
Reference genome sequences centered at TSS of each gene (196Kb) is shown on the y-axis. Enformer9s 

output tracks are fine-tuned with an elastic net model (see Methods). (C) Schematic of the per-locus 

evaluation strategy. Personal genomes are constructed for each individual by inserting their observed SNVs 
into the Reference genome. The personalized sequences centered at the TSS of gene DDX11 are used as 

input to Enformer. (D) Prediction of cortex gene expression levels for individuals in the ROSMAP cohort. 

Each dot represents an individual. Output of Enformer is fine-tuned using an elastic net model. E) In-silico 

mutagenesis (ISM) values for all SNVs which occur at least once in 839 genomes within 98Kb of DDX11 
TSS. SNVs are colored by minor allele frequency (MAF). The border of the <driver= SNV is shown in red 

and its size is proportional to its impact on the linear approximation (Supplementary Methods).  

 

Figure 2. Evaluation of Enformer on prediction of gene expression across individuals. (A) Y-axis 

shows the Pearson R coefficient between observed expression values and Enformer9s predicted values per-

gene. X-axis shows the negative log10 p-value, computed using a gene-specific null model (Supplementary 
Method). The color represents the predicted mean expression using the most relevant Enformer output track 

(<CAGE, adult, brain=). Red dashed line indicates FDRBH=0.05. (B) Prediction of cortex gene expression 

levels (<CAGE, adult, brain= track) in the ROSMAP cohort (n=839) for the GSTM3 gene, x-axis shows the 

observed gene expression values. (C) Pearson R coefficient between PrediXcan predicted versus observed 
expression across 839 individuals (x-axis) versus Enformer9s Pearson R values on the same sample (y-

axis). Red lines indicate threshold for significance (abs(R)>0.2), darker colored dots are significant genes 

from panel A. Green cross represents the location of the mean across all x- and y-values. (D) ISM value (x-
axis) versus eQTL effect size (y-axis) for all SNVs within the 196Kb input sequence of the GSTM3 gene. 

Red circles represent SNVs that drive the linear approximation to the predictions. SNVs are defined as 

supported or unsupported based on the concordance with the sign of the eQTL effect size. (E) Fraction of 

supported driver SNVs per gene (y-axis) versus Pearson9s R values between Enformer9s predictions and 
observed expressions (x-axis). (F) Number of driver SNVs within the 1000bp window to the TSS. Main 

drivers are the drivers with the strongest impact on linear approximation, shown in different colors. (G) 

Top: Gradient attributions (grey) across the entire sequence of the GSTM3 gene with location of all SNVs 
and driver SNVs. Bottom: 300bp window around the TSS with ISM attributions normalized by the 

estimated standard deviation across the entire sequence. Most significant connected motifs are framed in 

red. Main driver shown as magenta triangle.  

 
Software and intermediate results 

Scripts for running the analyses presented, as well as intermediate results are available from: 
https://github.com/mostafavilabuw/EnformerAssessment 
 

Accession Codes 

Genotype, RNA-seq, and DNAm data for the Religious Orders Study and Rush Memory and 
Aging Project (ROSMAP) samples are available from the Synapse AMP-AD Data Portal 
https://www.synapse.org/#!Synapse:syn2580853/discussion/default as well as RADC Research 
Resource Sharing Hub at www.radc.rush.edu. 
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Figure 1

Figure 1. Evaluation of Enformer across genomic regions and select loci. (A) Schematic of the
training approach implemented by Enformer and other sequence-based CNN models. Different genomic
regions from the Reference genome are treated as data points. Genomic DNA underlying a given region is
the input to the model, and the model learns to predict various functional properties including gene
expression (CAGE-seq), chromatin accessibility (ATAC-Seq), or TF binding (ChIP-Seq). (B)
Population-average gene expression levels in cerebral cortex (averaged in ROSMAP samples, n=839) for
expressed genes (n=13,397) shown on the x-axis. Enformer9s prediction of gene expression levels for
cortex based on the Reference genome sequences centered at TSS of each gene (196Kb) is shown on the
y-axis. Enformer9s output tracks are fine-tuned with an elastic net model (see Methods). (C) Schematic of
the per-locus evaluation strategy. Personal genomes are constructed for each individual by inserting their
observed SNVs into the Reference genome. The personalized sequences centered at the TSS of gene
DDX11 are used as input to Enformer. (D) Prediction of cortex gene expression levels for individuals in
the ROSMAP cohort. Each dot represents an individual. Output of Enformer is fine-tuned using an elastic
net model. E) In-silico mutagenesis (ISM) values for all SNVs which occur at least once in 839 genomes
within 98Kb of DDX11 TSS. SNVs are colored by minor allele frequency (MAF). The border of the
<driver= SNV is shown in red and its size is proportional to its impact on the linear approximation
(Supplementary Methods).
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Figure 2

Figure 2. Evaluation of Enformer on prediction of gene expression across individuals. (A)
Y-axis shows the Pearson R coefficient between observed expression values and Enformer9s
predicted values per-gene. X-axis shows the negative log10 p-value, computed using a
gene-specific null model (Supplementary Method). The color represents the predicted mean
expression using the most relevant Enformer output track (<CAGE, adult, brain=). Red dashed
line indicates FDRBH=0.05. (B) Prediction of cortex gene expression levels (<CAGE, adult,
brain= track) in the ROSMAP cohort (n=839) for the GSTM3 gene, x-axis shows the observed
gene expression values. (C) Pearson R coefficient between PrediXcan predicted versus observed
expression across 839 individuals (x-axis) versus Enformer9s Pearson R values on the same
sample (y-axis). Red lines indicate threshold for significance (abs(R)>0.2), darker colored dots
are significant genes from panel A. Green cross represents the location of the mean across all x-
and y-values. (D) ISM value (x-axis) versus eQTL effect size (y-axis) for all SNVs within the
196Kb input sequence of the GSTM3 gene. Red circles represent SNVs that drive the linear
approximation to the predictions. SNVs are defined as supported or unsupported based on the
concordance with the sign of the eQTL effect size. (E) Fraction of supported driver SNVs per
gene (y-axis) versus Pearson9s R values between Enformer9s predictions and observed
expressions (x-axis). (F) Number of driver SNVs within the 1000bp window to the TSS. Main
drivers are the drivers with the strongest impact on linear approximation, shown in different
colors. (G) Top: Gradient attributions (grey) across the entire sequence of the GSTM3 gene with
location of all SNVs and driver SNVs. Bottom: 300bp window around the TSS with ISM
attributions normalized by the estimated standard deviation across the entire sequence. Most
significant connected motifs are framed in red. Main driver shown as magenta triangle.
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