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Abstract

Proteins are key to all cellular processes and their structure is important in understanding their
function and evolution. Sequence-based predictions of protein structures have increased in
accuracy with over 214 million predicted structures available in the AlphaFold database (AFDB).
However, studying protein structures at this scale requires highly efficient methods. Here, we
developed a structural-alignment based clustering algorithm - Foldseek cluster - that can cluster
hundreds of millions of structures. Using this method we have clustered all structures in AFDB,
identifying 2.27M non-singleton structural clusters, of which 31% lack annotations representing
likely novel structures. Clusters without annotation tend to have few representatives covering
only 4% of all proteins in the AFDB. Evolutionary analysis suggests that most clusters are
ancient in origin but 4% seem species specific, representing lower quality predictions or
examples of de-novo gene birth. Additionally, we show how structural comparisons can be used
to predict domain families and their relationships, identifying examples of remote homology.
Based on these analyses we identify several examples of human immune related proteins with
remote homology in prokaryotic species which illustrates the value of this resource for studying
protein function and evolution across the tree of life.

Availability: Methods and data are available at cluster.foldseek.com
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Introduction

Proteins are the major actors in all cellular processes, from the generation of energy to the
division of the cell. Knowing their structure is relevant for studying their function, their evolution
and potentially for the design of drugs. While our knowledge of protein sequences has grown
dramatically over the last years, reaching over hundreds of millions of sequences, the
knowledge of their 3D structures has lagged behind due to the lack of highly scalable
experimental methods. Improvements in methods for predicting structure from sequence’ now
allow for the scalable prediction of protein structures for the known protein universe. The
AlphaFold Protein Structure Database (AlphaFold DB) is a publicly available data repository of
protein structures and their confidence metrics, predicted using the AlphaFold2 Al system'*.
The AlphaFold predicted structures have been generally assessed to be of high quality when
the confidence metrics are accounted for, despite remaining inferior to experimentally
determined structures®. AlphaFold2 and its predicted structures have now been used for diverse
applications, including studies of protein pockets®, prediction of structures of complexes’?,
studies of structural similarity®, novel fold predictions'® and even improvement of genomic
annotation®*.

The large increase in available predicted protein structures has spurred the development of
more efficient computational approaches, including structural data file compressions'?, methods
for pocket predictions®** and comparison of protein structures through structural alignments.
For the latter, Foldseek has been developed that can increase the speed of comparisons of
structures by four to five orders of magnitudes relative to previous approaches while maintaining
sensitivity®® that makes it possible to perform structural comparisons on a large scale.
Clustering proteins by their structure is a crucial tool for analyzing structural databases as it
allows to group remotely related proteins. ldentifying distant relationships might provide valuable
insights into protein structure evolution and function. For example, protein family analysis of the
initial release of about 365,000 structures'®'’, covering the proteomes of humans and 20 model
organisms, suggested that 92% of predicted domains within this set match existing domain
superfamilies. However, comparing all 214 million structures against each other using current
methods would take approximately 10 years on a 64-core machine. To speed up the process of
clustering amino acid sequences, a linear time algorithm Linclust'® has been proposed to reduce
the computational time significantly. However, such methods have yet to be applied to clustering
by protein structural similarity.

Here, we analyze the AlphaFold Protein Structure Database that contains predicted structures
for 214 million proteins across the tree of life. To be able to explore this resource, we developed
a highly scalable structure-based clustering algorithm based on Linclust*® that structurally aligns
and clusters 52 million structures in 5 days on 64 cores. We clustered the AlphaFold structural
database into 2.27 million clusters with 31% of clusters - representing 4% of protein sequences
- not matching previously known structural or domain family annotations. We find that 532,478
clusters have representatives present in all of the tree of life and we find several species-
specific structural clusters that could contain examples of de novo gene birth events. Finally, we
used structural comparisons to predict domain families and their relationships identifying remote
homologies that expand the evolutionary coverage of previously known families.
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Results

Structure-based clustering of the AlphaFold Protein Structure Database

The AlphaFold DB covers over 214 million predicted protein structures and has grown in several
stages (Fig. 1A). The initial release focused on 20 key model organisms, while subsequent
updates provided predictions for the Swiss-Prot dataset of the Universal Protein Resource®
(UniProt) and proteomes relevant to global health, taken from priority lists compiled by the
World Health Organisation. The current update covers most of the TrEMBL dataset of UniProt.
AlphaFold DB parses and archives these data and makes them accessible through bulk
download options, programmatic access endpoints and interactive web pages. The
programmatic access, in particular, facilitated the integration of AlphaFold models into other
biological data repositories, such as PDBe?°, UniProt*®, Pfam?!, InterPro* and Ensembl?,

In order to gain insights into the 214,684,311 structures of the AlphaFold Uniprot v3 database
we developed a scalable clustering approach in two steps as depicted in Fig. 1B. The first step
involved using MMseqs2 % to cluster the database based on 50% sequence identity and a 90%
sequence alignment overlap of both sequences, resulting in 52,327,413 clusters. For each
cluster, the protein structure with the highest pLDDT score was selected as the representative.
Clustering proteins by structural similarity remains computationally intensive and difficult to
scale to the sizes of protein structures predicted in AlphaFold DB. For this reason, we
developed a novel structure-based clustering algorithm based on Foldseek (see Methods).
Briefly, we adapted Linclust and MMseqs2 sequence clustering algorithms to the 3Di structural
alphabet used in Foldseek to allow structural clusters in linear time complexity. Our novel
structural clustering method resulted in the identification of 18,661,407 clusters, using an E-
value of 0.01 and structural alignment overlap of 90% of both sequence criteria. It took 129
hours on 64 cores to finish the clustering. As the final step, we removed every sequence labeled
as “fragment” in Uniprot. This identified 2,278,854 non-singleton clusters having on average
13.2 proteins per cluster with an average pLDDT of 71.59. The remaining 12,951,691 singleton
clusters have an average pLDDT of 58.87.

We measure the quality of our AFDB clusters (Fig. 1C) by assessing their structural and Pfam
consistency. First, we align each cluster member with a representative and calculate the
average LDDT and TM-score per cluster (see Methods). The TM-score measure is based on
superpositioning the structures, while LDDT is a superposition-free measure that allows for
flexibility, which helps to judge the similarity of e.g. multi-domain proteins with flexible domains.
Across all clusters, we found a median LDDT of 0.77 and a median TM-score of 0.71.

We also evaluate the clusters for Pfam consistency. We examine clusters with at least two
sequences annotated with a Pfam domain in the UniProtKB and calculate pairwise Pfam
consistency among all annotated sequences within each cluster. Our analysis revealed that
64% of these clusters have a perfect consistency score. Supplementary Figure 1 depicts the
relationship between cluster members and consistency score, revealing clusters with thousands
of members that have perfect consistency.
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Figure 1 - The AlphaFold database, structural clustering workflow, and summary of the clusters.
(A) The AlphaFold DB started as a collaborative effort between EMBL-EBI and DeepMind in 2021. The
database grew in multiple stages, with the latest version of 2022 containing over 214 million predicted
protein structures and their confidence metrics. (B) A two-step approach was used to cluster proteins in
the database. Firstly, MMseqs2 was utilized to cluster 214 million UniprotKB protein sequences (AFDB)
based on 50% sequence identity and 90% sequence overlap, resulting in a reduction of the database size
to 52 million clusters (AFDB50). For each cluster, the protein with the highest pLDDT score was selected
as the representative. Next, using Foldseek, the representative structures were clustered into 18.8 million
clusters (Foldseek clusters) without a sequence identity threshold, but still enforcing a 90% sequence
overlap and an E-value of less than 0.01 for each structural alignment. As the last step, we remove all
sequences labeled as fragments from the clustering ending up with 2.27 million clusters with at least two
structures (AFDB clusters). (C) AFDB clusters structural and Pfam consistency. Our clusters have an
average LDDT of 0.75 and an average TM-score of 0.69 across all clusters and 64% of clusters with
Pfam annotations are 100% consistent. (D) Summary graph of sequences and clusters with and without
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annotation (left panel) and the relationship of cluster sizes to annotation (right panel). Each bin occupies
AFDB clusters at rates of 12.0%, 10.5%, 9.2%, 10.2%, 10.5%, 10.1%, 9.1%, 9.2%, 9.2% and 9.9%
from left to right respectively.

Structurally and functionally unknown clusters in the protein universe

The availability of predicted structures covering a large fraction of the known protein universe
allows us to ask what fraction of this structural space is novel. We tried to uncover structurally
and functionally unknown protein clusters in the AFDB dataset - defined as "dark clusters". We
first identified 1,132,440 (50% of AFDB clusters) clusters that were found to be, at least partially,
similar to previously known structures in the PDB (see Methods). Next, the representative
proteins of the remaining clusters were annotated to the Pfam database by MMseqs2 search,
resulting in 882,608 (39% of AFDB clusters) dark clusters (see Methods). Lastly, we identified
clusters containing members with Pfam or TIGRFAM? annotations in the Uniprot/TrEMBL and
SwissProt database. This resulted in the identification of 705,936 (31% of AFDB clusters) dark
clusters, likely enriched for novel structures.

The distribution of the known and unknown clusters as a function of their size is shown in Fig.
1D. The sizes of clusters that lack annotations are smaller compared to the annotated clusters.
For this reason, the dark clusters map to a proportionally smaller fraction of the protein universe.
While these clusters comprise approximately 31.0% of the AFDB clusters, they only represent
3.85% of the AFDB. This is inline with the expectation that structures with many representatives
in the protein universe are more well studied and that the vast majority of protein structures can
be annotated with at least partial similarity to a known structure of domain family annotation.

Prediction of putative novel enzymes and small molecule binding proteins

From the 705,936 clusters without annotations (“dark clusters"), we selected 46,997 with a
representative structure having an average pLDDT score of over 90 for further investigation. To
focus on predicting potential novel enzymes, we searched each structure for pockets and
predicted gene ontology and Enzyme Commission (EC) number using DeepFRI, a structure
based function prediction method (see Methods). In total, we identified 1,723 pockets in 1,660
structures. We then predicted 5,324 functional assignments within the structures with predicted
pockets. The pocket prediction led to the identification of high confidence structure predictions
(pLDDT>90) that don’'t appear to be correct. From 1723 pockets, 559 (32%) encompass more
than 40% of the total protein (examples are shown in SFig. 2), indicating a general lack of
compactness.

The top most often predicted molecular functions are shown in Fig. 2A with the top 3 including
the term “transporter activity”. Similarly, the most often predicted cellular component was
“intrinsic component of membrane” (391 annotations). This indicates that structures without
annotations may be enriched for membrane-bound proteins which have been historically difficult
to determine experimentally. Two examples of putative transporters are shown in Fig. 2B,
including the top predicted pocket and coloured by the residue importance given by DeepFRI for
this predicted function. In addition to the putative transporters, there are a wide diversity of other
predicted functions. For example, AOA849ZK06 (Fig. 2C) is predicted as a ribonucleotide
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binding protein with the overall structure having an organization that resembles a protein kinase
fold. The residues contributing the most to the DeepFRI prediction are directly in contact with
the top scoring pocket (Fig. 2C), suggesting a potential nucleotide binding function for this
pocket. Finally, SOEULS8 (Fig. 2D), has a top prediction of EC:5.6.2.-, which annotates enzymes
that can alter nucleic acid conformations. The structure resembles members of the Structural
Maintenance of Chromosomes (SMC) family but it is missing several characteristic elements.
The preceding gene in the genome encodes for a RecN homolog (an SMC family member),
giving additional evidence for a role of SOEUL8 in chromosome maintenance.

A C AOAB49ZKO06
Top predicted molecular functions

transporter activity

transmembrane transporter activity

ion transmembrane transporter activity

DNA binding

hydrolase activity, acting on ester bonds

nuclease activity

catalytic activity, acting on a protein

ribonucleotide binding

carbohydrate derivative binding
peptidase activity

0 40 80 . 120

Predicted GO:0032553
ribonucleotide binding

Residues colored by saliencg BE

for predicted GO/E
P .under over []

SOEULS

AOAB49TG76 AOA2DS8BRH7

Predicted EC:5.6.2.-

Predicted GO0:0005215 - transporter activi . : : .
2 o altering nucleic acid conformation

Figure 2 - Putative novel enzymes and small molecule binding proteins in structures lacking
annotation. (A) Count of Gene Ontology Molecular Function terms most often predicted by DeepFRI on
the set of selected 1,660 structures with predicted pockets. (B - D) Examples of structures with predicted
pockets and functional annotations. Each example shows the UniProt ID (top), highest-scoring DeepFRI
function prediction (bottom) and the top-scoring pocket (pink surface). The structures are colored by
residue-level contributions to the DeepFRI function predictions, ranging from blue (no contribution) to
yellow (strong contribution).
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Evolutionary conservation of the structural clusters

To gain insights into the distribution of the identified structural clusters we examined their
taxonomic composition to determine the extent of protein machinery shared across different
super-kingdoms (see Fig. 3A). For this we mapped the members of the cluster in the tree of life
and identified the most recent common ancestor for all members of the cluster (see Methods).
Out of the non-singleton structural clusters, 532,478 (23.4%), 365,561 (16%), 307,365 (13.5%)
and 11,151 (0.5%) were found to be conserved at the Cellular organism (e.g. universal to all
life), Bacterial, Eukaryota, and Archaea levels, respectively. Together this suggests that the
majority of the structural clusters are likely to be very ancient in origin.

While the majority of protein clusters are mapped to the common ancestor of eukarya or older,
we found 88,828 (3.8%) species-specific structural clusters. Of these species-specific clusters,
81.65% only have two members, compared to the 35.59% of clusters found to have a more
ancient common ancestor. These species-specific clusters are also more likely to be "dark", with
the percentage increasing from 20.31% for those specific to cellular organisms (e.g. universal to
life) to 56.62% for species-specific clusters. On average, species-specific clusters tend to be
smaller proteins, with a median length of 161.5 and a mean length of 228.8, compared to the
remaining clusters with a median length of 207.9 and a mean length of 281.5. Of the 43,435
members of these clusters, nearly half have an average pLDDT of less than 70, suggesting low
confidence or higher disorder. However, the overall pLDDT of these clusters is comparable to
that of the remaining clusters, with an average of 73.42 compared to 73.97. The organisms with
the largest species-specific clusters are Acidobacteria bacterium, Araneus ventricosus,
Escherichia coli, Sepia pharaonis, and Chloroflexi bacterium, which account for 1,853, 1,764,
1,646, 1,396, and 1,375 clusters, respectively.
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Visualization of the lowest common ancestor of all non-singleton clusters as a Sankey plot produced by
Pavian. Only the largest 13 taxonomical nodes per rank are shown. (B) The distribution of selected GO
terms across the human lineage is shown based on the analysis of human protein-containing clusters
(abundance is normalized per GO category). (C) Three example structures from the human clusters that
are conserved across Human and bacteria, among the eukaryote GO-annotated clusters. The left panel
shows a histone protein with a nucleus GO annotation, which was found to be conserved at the cellular
organism level and supports the previously reported evolutionary connection between eukaryotic and
bacterial histones?. The middle and right panels display the human innate immunity genes BPI And AIM2
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having structurally similar proteins in bacterial species highlighting the potential for cross-kingdom sharing
of immunity-related proteins.

Evolutionary conservation of human-related structural clusters

As an example application, we studied human protein-containing clusters from an evolutionary
conservation perspective. We mapped the clusters containing human proteins to the tree of life
(see SFig. 3) and first looked for human-specific clusters (i.e. containing only human proteins).
Out of the 12 human-specific clusters identified, 8 are predicted non-confident with a pLDDT
score less than 70 and did not contain structural proteins. The remaining four clusters contained
a herpes virus U54 (AOA126LB04) unit, Annexin (AOA4D5RA95) with limited human homologs
in UniRef50, a U2 snRNP-specific A" protein (Q9UEN1) that appeared to be a fragment but is
not labeled as one, and VPS53 (AOA7P0T9Z7), a single long coil structure that was not
clustered by Foldseek due to high random chances of observing such a structure. Our findings
do not support the presence of newly emerging human-specific structural clusters within the set
of human sequences annotated in UniProt. However, this does take into account singleton
clusters.

Next, we extracted all clusters containing a human protein and associated each human cluster
with its corresponding GO terms and LCA (Lowest Common Ancestor). When multiple human
sequences were present in a cluster, the GO annotation of the human protein with the highest
pLDDT score was selected. A small selection of GO annotations that highlight the evolutionary
conservation of human structures is shown in Fig. 3B. Human proteins with similar structures
across most of the tree of life are annotated with a diverse set of terms including several
enzyme activities (e.g. ligase activity, oxidoreductase activity, serine-type endopeptidase
activity). Present in bacteria and eukarya include proteins linked with the microtubule organizing
center and voltage-gated potassium channel activity. Mostly restricted to eukarya include terms
such as nucleus, chromatin organization and microtubule motor activity. More recently evolved
structures include annotations such as immune response and hormone activity.

Bacterial remote homology of human immunity related proteins

We noted that even if some biological processes were primarily restricted to eukarya or more
recently diverged clades, we could find cluster representatives that were present in bacterial
species. For example, most human proteins that are annotated to the nucleus (GO:0005634)
are in clusters mapped to eukarya as their LCA. However, we find exceptions including for
example a histone-related cluster (Fig. 3C) supporting the previously reported evolutionary link
between eukaryotic and bacterial histones?. Similarly, we found several immunity related
proteins with structural homologs present in bacteria. These include TNFRSF4 (P43489) with
similar structures in bacteria due to common cysteine-rich repeat regions which overlap with the
TNFR/NGFR cysteine-rich region domain annotations in InterPro (IPR001368). We also found
bacterial structures related to the human CD4 like protein B4E1TO (SFig. 4A) although these
can also be annotated by sequence matching to the Immunoglobulin-like domain family in
InterPro (IPR013783).
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The structural similarity between human and bacterial proteins may also inform on their function
in bacteria. The human Bactericidal permeability-increasing (BPI) protein (B4DKH6), is a key
component of the innate immune system and is known to have a strong affinity for negatively
charged lipopolysaccharides found in Gram-negative bacteria. In our analyses, this protein
clusters with bacterial structures (Fig 3C), for example, the protein AOA2D5ZNGO, which aligns
with the human protein at a TM-score of 0.81 normalized by the length of the human protein.
Additionally, searching for partial hits by Foldseek identified the YceB from E. coli and other
gram-negative bacteria, having structural similarity to the C-terminal region of human BPI (SFig
4B). The E. coli YceB protein is a tubular putative lipid-binding protein without a well
characterized function. This structural similarity may suggest a role of YceB homologs in
regulating the outer-membrane.

Our analysis identified a cluster containing the human protein, AIM2 (014862), which
recognizes pathogenic dsDNA?" and leads to the formation of the AIM2 inflammasome. When
searching the NR database with NCBI BLAST?, we found no bacterial hits for the human AIM2
gene. However, three structures in Candidatus Lokiarchaeota archaeon and one in the
bacterium Clostridium sp. from an uncultured source (AOALC5UEQS5) were identified as similar
to human AIM2 in our analysis. The bacterial protein (AOALC5UEQ5), encoded on a contig of
length 138,559 (GenBank FMFM01000010), is unlikely to be a contaminant due to its length?.
AOA1C5UEQS is not unique, as many homologous sequences, mostly labeled as "hypothetical
protein,” were found in the NR database from mostly uncultured human gut bacterial sequences
with >90% sequence identity. We predicted the structure of one homologous protein that is 64%
identical to AOA1C5UEQS5 (see SFig. 5), which originates from a cultured Lachnospiraceae
bacterium that is part of Culturable Genome Reference® of humans gut, using ColabFold* and
confirmed that is has a similar structure of the DNA binding domain (TMscore of 0.97 and 0.56
in relation to AOA1C5UEQ5 and human AIM respectively. These results suggest that the AIM2
inflammasome may have been repurposed from ancient DNA sensing related proteins. It is
possible that the bacterial versions may also play a role in pathogen DNA sensing and
response.

These results exemplify how the structural clusters can inform the evolutionary origin of specific
biological processes and further illustrate the cross-kingdom similarities in immune systems.

Prediction of domain families using structural similarity searches

The clusters defined above group structurally similar proteins at full length. Proteins are
sometimes composed of different regions or domains that can fold independently, with a
growing collection of such domain families being cataloged in databases such as Pfam? or
InterPro??. Domain family prediction is done primarily by sequence searches, exploring the fact
that domain families have conserved sequence features. The vast increase in protein structures
and fast algorithms to compare them opens the possibility of predicting domain families by
structural similarity. Here, we devised a procedure using structural similarity matches by
Foldseek to predict putative domain regions and families (see Methods, Fig. 4A). Briefly, a
representative structure from each of the Foldseek clusters defined above was used for an all-
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by-all structural similarity search using Foldseek. While these representative structures should
be structurally non-redundant at the full protein level, they will still share many structurally
similar domains. For each sequence/structure we cluster the start and end positions of all
Foldseek hits and use these to define likely domain boundaries. The predicted domain regions
were then connected if they had structural similarity and a network clustering method was used
to cluster domain regions into putative domain families (see Methods).

We used Pfam annotations to assess the quality of these predictions (Fig. 4B-G). For each
putative domain family with =5 representatives we determined the frequency of the first and
second most frequent Pfam annotations, with the majority having homogeneous annotations
(Fig. 4B). Each Pfam annotation is predominantly found within a single domain family
suggesting that these tend to be non-redundant. For domain families with =5 representatives,
7,599 families match Pfam, 2,032 match Pfam Domains of Unknown Function (DUFs) and
10,722 do not match Pfam and are likely enriched in novel families. The median length of the
regions is similar for previously known or putative novel families (Fig. 4E). Given that we started
with mostly non-redundant structures, we don’'t expect this approach to recover most domain
families. We found 5,388 non-redundant Pfam annotations for predicted domain families with =5
representatives, corresponding to ~29% of the 19,000 known Pfam families.

In summary, clustering of local Foldseek hits can accurately predict domain families leading to
the prediction of many potential unexplored families. We provided a complete list of all predicted
domain families in cluster.foldseek.com.

Prediction of domain families
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Figure 4 - Prediction of domain families by local structural similarity hits. (A) Diagram illustrating the
structure based domain family prediction method. Clustering of start and end positions for Foldseek hits of
one protein against all others is used to define potential domain boundary positions. Each predicted
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domain region is linked to others sharing structural similarities and graph based clustering is used to
define domain families and inter-domain similarity. (B) The boxplots contain the frequency distribution of
the most common and second most common Pfam annotations found members of all predicted domain
families. (C) Histogram for the counts of the number of clusters having a given Pfam as the most frequent.
(D) Number of domain family clusters annotated to a Pfam, DUF or no domain annotation. (E) Distribution
of protein region length in the predicted domain families, stratified by their annotations. (F) Non-redundant
count of Pfam and DUF domain families found in the structure based predicted families. (G) Distribution of
the number of structures found for each predicted domain family annotated with a known Pfam or DUF
domain.

Structural similarity across distantly related domain families

The network clustering procedure used above also allows for the identification of pairs of
predicted domain families that share some structural similarity. Among such pairs, we found
~500 connections between clusters enriched with a Pfam annotation and other domains without
clear annotations, providing examples of potential functional annotations. From these we
focused on connected domain families enriched in proteins from different kingdoms (Fig 5). The
Fragl like domains exemplify the strength of structural-based similarity searching (Fig 5A,
Fragl like). The Fragl/DRAM/Sfk1 Pfam domain (PF10277) annotates proteins with a 6 alpha-
helix bundle transmembrane region that is observed in eukaryotic species. In our analysis a
domain family enriched for this Pfam annotation was linked to two additional families enriched in
bacterial and archeal sequences, one enriched for a domain of unknown function
(DUF998/PF06197) and a second not annotated. The 3 families are structurally identical,
typically forming a 6 alpha-helix bundle, despite the very low sequence similarity between the
sequences forming these.

We also found a cluster enriched for the Anthrax_toxA Pfam (PF03497, Fig 5B), more
specifically, the annotated domains contained structures similar to the Edema factor (EF), a
calmodulin-activated adenylyl cyclase®*. The EF is one of the 3 components forming the
bacterial anthrax toxin system. Our analysis identified a structurally similar putative domain
family enriched in eukaryotic proteins (Fig 5B). Specifically, several algae proteins were found
to have structures that had partial matches to the EF domain related structures. This raises the
possibility that algae might be using similar toxin systems.

Identification of nhovel gasdermin like domains

Our search resulted in the discovery of 2 domain families with structural similarity with a cluster
enriched for the gasdermin domain (Fig 5C). In human, gasdermin is the executor of
inflammatory cell death called pyroptosis and is crucial for defense against pathogens. Upon
sensing a pathogen, caspases are activated that cleave off the C-terminal repressor domain of
gasdermin, releasing the N-terminal domain to assemble into large pores in the cell
membrane®. The predicted gasdermin structures from all three groups exhibited the structural
characteristic conservation of a twisted central antiparallel -sheet and the shared placement of
connecting helices and strands of gasdermin. The structures enriched in the gasdermin Pfam
annotation adopted a similar conformation as that of the mammalian gasdermin N-terminus,
especially of gasdermin E, which is considered evolutionary ancient®*. In the inactive structure of
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mammalian gasdermin (A,B,D,E), the N-terminus forms interfaces with the repressor C-terminal
domain mediating auto-inhibition, one of this is the primary interface at the ol helix®.
Gasdermin is activated by proteolytic cleavage, which results in the N-terminal activation
through the lengthening of strands B3, B5, B7, and B8 and oligomerization®. Indeed, gasdermin
domains from the Pfam annotated group had both the al helix as well as the corresponding -
sheets necessary for the active form of gasdermin. Gasdermin was also recently discovered in
bacteria and archaea, where it is similarly activated by dedicated proteases and defends against
phages by pore-mediated cell death®. Interestingly, the non-annotated group 1 of gasdermin
domains displayed strong similarity with the bacterial gasdermin structure (Fig 5C). The other
non-annotated group (cluster 3) showed a large degree of diversity and exhibited features of
both mammalian and bacterial gasdermin. In some cases, we observed that the N-terminal
gasdermin domain was fused to other domains including proteases (Fig 5C, AOA2C5ZLK3). As
gasdermin is activated by proteolytic cleavage such protein fusion hints at a similar activation
mechanism for the novel gasdermin domains.
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Figure 5 - Examples of non-annotated domain families with structural similarity to annotated
domain families. (A) Fragl like domains, 3 clusters were found enriched for the Fragl Pfam annotation,
that had structural similarity with 1 cluster enriched for a domain of unknown significance (DUF998) and 1
cluster without annotations. (B) Anthrax_toxA like domains, a cluster enriched for the Anthrax_toxA Pfam
annotation was found with structural similarity with a cluster having no annotations. (C) Two clusters
without annotations were found with structural similarity with a cluster enriched for the gasdermin Pfam
annotations. Human Gasdermin E and cluster 2 - Gasdermin N-terminal domain structures reveal
homology to gasdermin from humans with the corresponding structural characteristics highlighted. Some
gasdermin domains were found fused to protease domains (AOA2C5ZLK3). The bacterial gasdermin
structure (PDB ID 7n51) is similar to novel gasdermin domains from non-annotated cluster 2. The third
cluster revealed homology to both animal and bacterial gasdermins.

Discussion

The orders-of-magnitude increase in available structural models raises challenges in data
management and analysis of such large volumes. For this reason, we developed a clustering
procedure that can scale to hundreds of millions of structures, identifying 2.27 million non-
singleton clusters with 31% not having similarity to previously known structures or domain
annotations. These clusters only annotate 4% of protein sequences indicating that the vast
majority of the protein structural space has been, at least partially, annotated. As the criteria
used include partial hits to known structures or domain annotations, the degree of understudied
structural space is likely underestimated. As we illustrate, our analysis can guide the
prioritization of predicted novel protein families for future computational and experimental
characterization.

Structural clustering is a powerful tool for identifying homologous proteins, but its accuracy can
be affected by certain limitations. In this study, we set a 90% alignment overlap as the
requirement for assigning a structure to a cluster, which may exclude homologs with significant
insertions or unique repeat arrangements. Additionally, our strict e-value threshold of 0.01 may
result in missed homologs. Another limitation is that the current AlphaFold database does not
contain the full extent of protein sequences from metagenomics studies or viral proteins, limiting
the potential to detect retroviral proteins.

In addition to the full-length protein clustering we used Foldseek’s local hit matches to predict
and cluster protein regions into putative domain families. The protein region clusters tend to
overlap well with previous definitions of domain families as annotated in the Pfam database and
led to the identification of over 10,000 unassigned clusters that should be enriched in putative
novel domain families. We did not perform exhaustive searches with other sequence based
domain family annotations that could annotate additional clusters with prior knowledge. It is
important to note that we only considered the representatives of Foldseek clusters when
performing the domain prediction. As the domain prediction requires multiple observations on
the same structural region, additional domains are expected to be detected if each structure
was searched against a larger set of structures.
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As protein structure is conserved for longer periods of evolutionary time than protein sequences,
we expect that AlphaFoldDB will empower the identification of remote homology. While some
advanced sequence-based methods can already assist in this task®° the availability of
predicted structures helps identify meaningful evolutionary relationships. Our analysis here
provides several examples of structural similarity across kingdoms that is indicative of remote
homology. In particular, we focused on several examples relating human immunity with bacterial
structures, emphasizing how some ancient systems have been co-opted for use in the
mammalian immune response system. We expect that many more examples can be derived
from the clustering results provided here.

Methods

Structural clustering algorithm

The clustering procedure is similar to MMseqs2's clustering but instead of using sequences,
Foldseek's 3Di alphabet (see Fig 6) was employed to represent the structures as 1-dimensional
sequences. The clustering algorithm combines Linclust® and cascaded MMseqs* clustering.
The pipeline applies this strategy to allow for efficient clustering of millions of structures. First,
protein structures are converted to 3Di sequences and processed according to the Linclust
workflow. This includes extracting m k-mers (default m=300) of length 10 from each sequence
and grouping them based on their hash value. The k-mer groups are then used to assign each
structure to the longest sequence (representative) within the group. The shared diagonal i—j on
which the k-mer is found is also stored for further use in the alignment step.

The pipeline then proceeds with an ungapped alignment algorithm that rescores the structures
based on the shared diagonal between members and representatives using 3Di and amino acid
information. The sequences that meet the defined alignment criteria, such as E-value, sequence
identity, alignment LDDT or TMscore, are clustered using the MMseqs2 clustering module
(default using the set-cover algorithm). After this step, the already assigned structures are
removed from the set and the remaining representative member hits are aligned using
Foldseek's structural Gotoh-Smith-Waterman®, and all passing hits are clustered as well. The
remaining cluster representatives are successively clustered by three cascaded steps of
prefiltering, structural Smith-Waterman alignment and clustering.
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Figure 6 - The five-step clustering pipeline for efficient clustering of millions of protein structures
using Foldseek's 3Di alphabet. (1) Protein structures are converted to 3Di sequences and processed
through the Linclust workflow. (2) For each sequence 300 min-hasing k-mers are extracted and sorted.
(3) The longest structure is assigned to be the center of each k-mer cluster. (4) Structural alignment is
performed in two stages: first an ungapped alignment based on shared diagonal information is performed,
hits are pre-clustered and second the remaining sequences are aligned using Foldseek's structural smith-
waterman . (5) The remaining structures meeting alignment criteria are clustered using MMseqs2's
clustering module. After the Linclust step the centriods are successively clustered by three cascaded
steps of prefiltering, structural Smith-Waterman alignment and clustering using Foldseek's search.

Cluster purity analysis

To assess cluster purity, we followed a two-step approach. First, we calculated the average
LDDT and average TMscore per cluster to assess the structural similarity. For this, we aligned
the representative to the cluster members using the "structurealign -e INF -a" module in
Foldseek and reported the alignment LDDT and TMscore using --format-output Iddt,alntmscore.
For each cluster we compute the mean illustrated in Figure 1C.

Secondly, we evaluated the Pfam consistency of each cluster by using Pfam labels obtained
from UniProt/KB. We have only taken into account the clusters that have at least two sequences
with Pfam annotations and we calculated the fraction of correctly covered Pfam domains for all
Pfam sequence pairs ignoring self-comparison. We define true positives as a pair of Pfam
domains belonging to the same clan. For each pair, we compute the consistency scores by true
positive count divided by the count of Pfams in the reference sequence. Finally, we computed
the mean overall pair scores. This approach enabled us to determine the proportion of
sequences within a given cluster that shared the same Pfam annotation.

Identification of “dark” clusters and the lowest common ancestor

To eliminate clusters similar to previously known experimental structures, we conducted a
search using Foldseek against the PDB (version 2022-10-14) for each cluster representative,
with an e-value threshold of 0.1. We then excluded clusters annotated with Pfam domains by
searching the cluster representatives using MMseqs2 with parameters -s 7.5 --max-seqs
100000 -e 0.001 against the Pfam database. Finally, we removed clusters with members
annotated with PFAM or TIGRFAM20 annotations in the UniProt/TrEMBL and SwissProt
database. To determine the lowest common ancestor of each cluster, we used the Ica module
in MMseqs2* ignoring the two taxa (1) 12908 "unclassified sequences" and (2) 28384 "other
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sequences”. We visualized the lowest common ancestor (LCA) results using a Sankey plot
generated by Pavian®.

Pocket and functional activity predictions for dark clusters

We predicted small molecule binding sites for representative dark cluster members by adapting
the approach from Akdel, M. et al. °. We used AutoSite to predict pockets*, and selected
pockets with an AutoSite empirical composite score >60 and mean pocket residue pLDDT >90
for additional analyses. To assign putative function and predict catalytic residues, we used
DeepFRI* to predict enriched GO/EC terms and residue-level saliency weights across available
GO/EC categories (BP, CC, EC, MF). Pocket and functional predictions were then visually
examined using a web app we developed (https://github.com/jurgjn/af-protein-universe).

Domain prediction from Foldseek local hits

First, we filtered out low scoring Foldseek hits using an e-value of 10 as threshold. We defined
potential domain boundary positions for each protein sequence by clustering start-stop positions
(hierarchical clustering, height parameter of 250 to establish clusters). Predicted domains are
then linked to others based on structural similarities, keeping the highest scores when
duplicates are found. Then the resulting network is trimmed excluding connections with e-value
higher than 10°, predicted domains with more than 350 amino acids and connected
components with less than 5 nodes. We applied graph based clustering (walktrap, 6 steps),
keeping communities with at least 5 members. Each predicted domain inside the selected
communities was annotated using Pfam-A regions mapped to UniProt identifiers (v35.0), more
than 75% of the Pfam domain has to overlap with the predicted domain. We calculated inside
each community the frequency of Pfam annotations and defined them based on the highest
one. Due to its size, we decided to keep out of the following analysis one community with
152,959 structures (group ID 1;1, see supplementary files in cluster.foldseek.com). We
connected the remaining communities based on the structure similarities, allowing connections
with a p-value smaller than 107,
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Supplementary Figure 1 - Relationship of cluster member size to mean pairwise Pfam
coverage.
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Supplementary Figure 2 - Examples of non-compact AlphaFold2 predicted structures.
Examples of representative structures of clusters without annotations having pLDDT>90 and a
predicted pocket covering over 80% of the residues of the structure.
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Supplementary Figure 3 - LCA plot of the clusters that contain Homo Sapiens proteins.
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Supplementary Figure 4 - Additional examples of human related proteins in structural
clusters with representatives or partial matches in bacterial species.
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Supplementary Figure 5 - Comparison of predicted structures of homologous proteins:
Lachnospiraceae bacterium to Clostridium (A) pLDDT and multiple-sequence-alignment
coverage output produced by ColabFold for the prediction of the protein sequence of
Lachnospiraceae. (B) The predicted structure of RJW57900.1. (C) Superposition of the
Clostridium protein structure with Lachnospiraceae with the DNA binding domain being well
superposable.
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