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Abstract

Proteins are key to all cellular processes and their structure is important in understanding their

function  and evolution.  Sequence-based predictions  of  protein  structures  have increased  in

accuracy with over 214 million predicted structures available in the AlphaFold database (AFDB).

However, studying protein structures at this scale requires highly efficient methods. Here, we

developed a structural-alignment based clustering algorithm - Foldseek cluster - that can cluster

hundreds of millions of structures. Using this method we have clustered all structures in AFDB,

identifying 2.27M non-singleton structural clusters, of which 31% lack annotations representing

likely novel structures. Clusters without annotation tend to have few representatives covering

only  4% of  all  proteins in  the AFDB.  Evolutionary analysis  suggests that  most  clusters are

ancient  in  origin  but  4%  seem  species  specific,  representing  lower  quality  predictions  or

examples of de-novo gene birth. Additionally, we show how structural comparisons can be used

to predict  domain families and their  relationships,  identifying examples of remote homology.

Based on these analyses we identify several examples of human immune related proteins with

remote homology in prokaryotic species which illustrates the value of this resource for studying

protein function and evolution across the tree of life.

Availability: Methods and data are available at cluster.foldseek.com
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Introduction

Proteins are the major actors in all  cellular processes, from the generation of energy to the

division of the cell. Knowing their structure is relevant for studying their function, their evolution

and potentially for the design of drugs. While our knowledge of protein sequences has grown

dramatically  over  the  last  years,  reaching  over  hundreds  of  millions  of  sequences,  the

knowledge  of  their  3D  structures  has  lagged  behind  due  to  the  lack  of  highly  scalable

experimental methods. Improvements in methods for predicting structure from sequence1–3 now

allow  for  the  scalable  prediction  of  protein  structures  for  the  known  protein  universe.  The

AlphaFold Protein Structure Database (AlphaFold DB) is a publicly available data repository of

protein structures and their confidence metrics, predicted using the AlphaFold2 AI system1,4.

The AlphaFold predicted structures have been generally assessed to be of high quality when

the  confidence  metrics  are  accounted  for,  despite  remaining  inferior  to  experimentally

determined structures5. AlphaFold2 and its predicted structures have now been used for diverse

applications,  including  studies  of  protein  pockets6,  prediction  of  structures  of  complexes7,8,

studies  of  structural  similarity9,  novel  fold  predictions10 and  even  improvement  of  genomic

annotation11. 

The large increase in available predicted protein structures has spurred the development of

more efficient computational approaches, including structural data file compressions12, methods

for pocket predictions13,14 and comparison of protein structures through structural alignments.

For the latter, Foldseek has been developed that can increase the speed of comparisons of

structures by four to five orders of magnitudes relative to previous approaches while maintaining

sensitivity15 that  makes  it  possible  to  perform  structural  comparisons  on  a  large  scale.

Clustering proteins by their structure is a crucial tool for analyzing structural databases as it

allows to group remotely related proteins. Identifying distant relationships might provide valuable

insights into protein structure evolution and function. For example, protein family analysis of the

initial release of about 365,000 structures16,17, covering the proteomes of humans and 20 model

organisms, suggested that  92% of  predicted domains within this set  match existing domain

superfamilies. However, comparing all 214 million structures against each other using current

methods would take approximately 10 years on a 64-core machine. To speed up the process of

clustering amino acid sequences, a linear time algorithm Linclust18 has been proposed to reduce

the computational time significantly. However, such methods have yet to be applied to clustering

by protein structural similarity.

Here, we analyze the AlphaFold Protein Structure Database that contains predicted structures

for 214 million proteins across the tree of life. To be able to explore this resource, we developed

a highly scalable structure-based clustering algorithm based on Linclust18 that structurally aligns

and clusters 52 million structures in 5 days on 64 cores. We clustered the AlphaFold structural

database into 2.27 million clusters with 31% of clusters - representing 4% of protein sequences

- not matching previously known structural or domain family annotations. We find that 532,478

clusters have representatives present  in  all  of  the tree of  life  and we find several  species-

specific structural clusters that could contain examples of de novo gene birth events. Finally, we

used structural comparisons to predict domain families and their relationships identifying remote

homologies that expand the evolutionary coverage of previously known families.
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Results

Structure-based clustering of the AlphaFold Protein Structure Database

The AlphaFold DB covers over 214 million predicted protein structures and has grown in several

stages (Fig. 1A).  The initial  release focused on 20 key model organisms, while  subsequent

updates provided predictions for the Swiss-Prot  dataset  of  the Universal  Protein Resource19

(UniProt)  and proteomes relevant  to  global  health,  taken from priority  lists  compiled by the

World Health Organisation. The current update covers most of the TrEMBL dataset of UniProt.

AlphaFold  DB  parses  and  archives  these  data  and  makes  them  accessible  through  bulk

download  options,  programmatic  access  endpoints  and  interactive  web  pages.  The

programmatic access, in particular,  facilitated the integration of AlphaFold models into other

biological data repositories, such as PDBe20, UniProt19, Pfam21, InterPro22 and Ensembl23.

In order to gain insights into the 214,684,311 structures of the AlphaFold Uniprot v3 database

we developed a scalable clustering approach in two steps as depicted in Fig. 1B. The first step

involved using MMseqs2 24 to cluster the database based on 50% sequence identity and a 90%

sequence  alignment  overlap  of  both  sequences,  resulting  in  52,327,413 clusters.  For  each

cluster, the protein structure with the highest pLDDT score was selected as the representative.

Clustering  proteins  by  structural  similarity  remains  computationally  intensive  and  difficult  to

scale  to  the  sizes  of  protein  structures  predicted  in  AlphaFold  DB.  For  this  reason,  we

developed  a  novel  structure-based  clustering  algorithm  based  on  Foldseek  (see  Methods).

Briefly, we adapted Linclust and MMseqs2 sequence clustering algorithms to the 3Di structural

alphabet  used  in  Foldseek  to  allow  structural  clusters  in  linear  time  complexity.  Our  novel

structural clustering method resulted in the identification of 18,661,407 clusters, using an E-

value of 0.01 and structural alignment overlap of 90% of both sequence criteria. It took 129

hours on 64 cores to finish the clustering. As the final step, we removed every sequence labeled

as “fragment” in Uniprot.  This identified 2,278,854 non-singleton clusters having on average

13.2 proteins per cluster with an average pLDDT of 71.59. The remaining 12,951,691 singleton

clusters have an average pLDDT of 58.87.

We measure the quality of our AFDB clusters (Fig. 1C) by assessing their structural and Pfam

consistency.  First,  we  align  each  cluster  member  with  a  representative  and  calculate  the

average LDDT and TM-score per cluster (see Methods). The TM-score measure is based on

superpositioning  the structures,  while  LDDT is  a superposition-free measure that  allows for

flexibility, which helps to judge the similarity of e.g. multi-domain proteins with flexible domains.

Across all clusters, we found a median LDDT of 0.77 and a median TM-score of 0.71.

We also evaluate the clusters for Pfam consistency. We examine clusters with at least  two

sequences  annotated  with  a  Pfam  domain  in  the  UniProtKB  and  calculate  pairwise  Pfam

consistency among all  annotated sequences within each cluster.  Our analysis revealed that

64% of these clusters have a perfect consistency score. Supplementary Figure 1 depicts the

relationship between cluster members and consistency score, revealing clusters with thousands

of members that have perfect consistency. 
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Figure 1 -  The AlphaFold database, structural clustering workflow, and summary of the clusters.

(A) The AlphaFold DB started as a collaborative effort between EMBL-EBI and DeepMind in 2021. The

database grew in multiple stages, with the latest version of 2022 containing over 214 million predicted

protein structures and their confidence metrics. (B) A two-step approach was used to cluster proteins in

the database. Firstly, MMseqs2 was utilized to cluster 214 million UniprotKB protein sequences (AFDB)

based on 50% sequence identity and 90% sequence overlap, resulting in a reduction of the database size

to 52 million clusters (AFDB50). For each cluster, the protein with the highest pLDDT score was selected

as the representative. Next, using Foldseek, the representative structures were clustered into 18.8 million

clusters (Foldseek clusters) without a sequence identity threshold, but still  enforcing a 90% sequence

overlap and an E-value of less than 0.01 for each structural alignment. As the last step, we remove all

sequences labeled as fragments from the clustering ending up with 2.27 million clusters with at least two

structures (AFDB clusters).  (C) AFDB clusters structural and Pfam consistency. Our clusters have an

average LDDT of 0.75 and an average TM-score of 0.69 across all clusters and 64% of clusters with

Pfam annotations are 100% consistent. (D) Summary graph of sequences and clusters with and without
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annotation (left panel) and the relationship of cluster sizes to annotation (right panel). Each bin occupies

AFDB clusters at rates of  12.0%, 10.5%, 9.2%, 10.2%, 10.5%, 10.1%, 9.1%, 9.2%, 9.2% and 9.9%

from left to right respectively. 

Structurally and functionally unknown clusters in the protein universe

The availability of predicted structures covering a large fraction of the known protein universe

allows us to ask what fraction of this structural space is novel. We tried to uncover structurally

and functionally unknown protein clusters in the AFDB dataset - defined as "dark clusters". We

first identified 1,132,440 (50% of AFDB clusters) clusters that were found to be, at least partially,

similar  to  previously  known structures  in  the  PDB (see  Methods).  Next,  the  representative

proteins of the remaining clusters were annotated to the Pfam database by MMseqs2 search,

resulting in 882,608 (39% of AFDB clusters) dark clusters (see Methods). Lastly, we identified

clusters containing members with Pfam or TIGRFAM25 annotations in the Uniprot/TrEMBL and

SwissProt database. This resulted in the identification of 705,936 (31% of AFDB clusters) dark

clusters, likely enriched for novel structures. 

The distribution of the known and unknown clusters as a function of their size is shown in Fig.

1D. The sizes of clusters that lack annotations are smaller compared to the annotated clusters.

For this reason, the dark clusters map to a proportionally smaller fraction of the protein universe.

While these clusters comprise approximately 31.0% of the AFDB clusters, they only represent

3.85% of the AFDB. This is inline with the expectation that structures with many representatives

in the protein universe are more well studied and that the vast majority of protein structures can

be annotated with at least partial similarity to a known structure of domain family annotation. 

Prediction of putative novel enzymes and small molecule binding proteins

From the 705,936 clusters without  annotations  (“dark clusters"),  we selected 46,997 with  a

representative structure having an average pLDDT score of over 90 for further investigation. To

focus  on  predicting  potential  novel  enzymes,  we  searched  each  structure  for  pockets  and

predicted gene ontology and Enzyme Commission (EC) number using DeepFRI,  a structure

based function prediction method (see Methods). In total, we identified 1,723 pockets in 1,660

structures. We then predicted 5,324 functional assignments within the structures with predicted

pockets. The pocket prediction led to the identification of high confidence structure predictions

(pLDDT>90) that don’t appear to be correct. From 1723 pockets, 559 (32%) encompass more

than 40% of the total  protein (examples are shown in  SFig. 2),  indicating a general lack of

compactness.

The top most often predicted molecular functions are shown in Fig. 2A with the top 3 including

the  term  “transporter  activity”.  Similarly,  the  most  often  predicted  cellular  component  was

“intrinsic  component  of  membrane”  (391 annotations).  This  indicates  that  structures  without

annotations may be enriched for membrane-bound proteins which have been historically difficult

to  determine  experimentally.  Two examples  of  putative  transporters  are  shown in  Fig.  2B,

including the top predicted pocket and coloured by the residue importance given by DeepFRI for

this predicted function. In addition to the putative transporters, there are a wide diversity of other

predicted  functions.  For  example,  A0A849ZK06  (Fig.  2C)  is  predicted  as  a  ribonucleotide
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binding protein with the overall structure having an organization that resembles a protein kinase

fold. The residues contributing the most to the DeepFRI prediction are directly in contact with

the top scoring pocket  (Fig.  2C),  suggesting  a potential  nucleotide  binding function for  this

pocket. Finally, S0EUL8 (Fig. 2D), has a top prediction of EC:5.6.2.-, which annotates enzymes

that can alter nucleic acid conformations. The structure resembles members of the Structural

Maintenance of Chromosomes (SMC) family but it is missing several characteristic elements.

The preceding gene in the genome encodes for a RecN homolog (an SMC family member),

giving additional evidence for a role of S0EUL8 in chromosome maintenance. 

Figure  2  - Putative  novel  enzymes and small  molecule  binding  proteins  in  structures  lacking

annotation. (A) Count of Gene Ontology Molecular Function terms most often predicted by DeepFRI on

the set of selected 1,660 structures with predicted pockets. (B - D) Examples of structures with predicted

pockets and functional annotations. Each example shows the UniProt ID (top), highest-scoring DeepFRI

function prediction (bottom)  and the top-scoring pocket (pink surface).  The structures are colored by

residue-level  contributions to the DeepFRI function predictions, ranging from blue (no contribution) to

yellow (strong contribution). 
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Evolutionary conservation of the structural clusters

To gain  insights  into  the  distribution  of  the  identified  structural  clusters  we  examined  their

taxonomic composition to determine the extent of protein machinery shared across different

super-kingdoms (see Fig. 3A). For this we mapped the members of the cluster in the tree of life

and identified the most recent common ancestor for all members of the cluster (see Methods).

Out of the non-singleton structural clusters, 532,478 (23.4%), 365,561 (16%), 307,365 (13.5%)

and 11,151 (0.5%) were found to be conserved at the Cellular organism (e.g. universal to all

life),  Bacterial,  Eukaryota,  and Archaea levels,  respectively.  Together this suggests that  the

majority of the structural clusters are likely to be very ancient in origin.

While the majority of protein clusters are mapped to the common ancestor of eukarya or older,

we found 88,828 (3.8%) species-specific structural clusters. Of these species-specific clusters,

81.65% only have two members, compared to the 35.59% of clusters found to have a more

ancient common ancestor. These species-specific clusters are also more likely to be "dark", with

the percentage increasing from 20.31% for those specific to cellular organisms (e.g. universal to

life) to 56.62% for species-specific clusters. On average, species-specific clusters tend to be

smaller proteins, with a median length of 161.5 and a mean length of 228.8, compared to the

remaining clusters with a median length of 207.9 and a mean length of 281.5. Of the 43,435

members of these clusters, nearly half have an average pLDDT of less than 70, suggesting low

confidence or higher disorder. However, the overall pLDDT of these clusters is comparable to

that of the remaining clusters, with an average of 73.42 compared to 73.97. The organisms with

the  largest  species-specific  clusters  are  Acidobacteria  bacterium,  Araneus  ventricosus,

Escherichia coli,  Sepia pharaonis, and  Chloroflexi bacterium, which account for 1,853, 1,764,

1,646, 1,396, and 1,375 clusters, respectively. 
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Figure  3  -   Evolutionary  distribution  of  clusters  and  human-centric  cluster  analysis.  (A)

Visualization of the lowest common ancestor of all non-singleton clusters as a Sankey plot produced by

Pavian. Only the largest 13 taxonomical nodes per rank are shown. (B) The distribution of selected GO

terms across the human lineage is shown based on the analysis of human protein-containing clusters

(abundance is normalized per GO category). (C) Three example structures from the human clusters that

are conserved across Human and bacteria, among the eukaryote GO-annotated clusters. The left panel

shows a histone protein with a nucleus GO annotation, which was found to be conserved at the cellular

organism level  and supports the previously  reported evolutionary connection between eukaryotic and

bacterial histones26. The middle and right panels display the human innate immunity genes BPI And AIM2
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having structurally similar proteins in bacterial species highlighting the potential for cross-kingdom sharing

of immunity-related proteins.

Evolutionary conservation of human-related structural clusters

As an example application, we studied human protein-containing clusters from an evolutionary

conservation perspective. We mapped the clusters containing human proteins to the tree of life

(see SFig. 3) and first looked for human-specific clusters (i.e. containing only human proteins).

Out of the 12 human-specific clusters identified, 8 are predicted non-confident with a pLDDT

score less than 70 and did not contain structural proteins. The remaining four clusters contained

a herpes virus U54 (A0A126LB04) unit, Annexin (A0A4D5RA95) with limited human homologs

in UniRef50, a U2 snRNP-specific A' protein (Q9UEN1) that appeared to be a fragment but is

not  labeled  as  one,  and  VPS53  (A0A7P0T9Z7),  a  single  long  coil  structure  that  was  not

clustered by Foldseek due to high random chances of observing such a structure. Our findings

do not support the presence of newly emerging human-specific structural clusters within the set

of  human sequences annotated in  UniProt.  However,  this  does take into account  singleton

clusters.  

Next, we extracted all clusters containing a human protein and associated each human cluster

with its corresponding GO terms and LCA (Lowest Common Ancestor). When multiple human

sequences were present in a cluster, the GO annotation of the human protein with the highest

pLDDT score was selected. A small selection of GO annotations that highlight the evolutionary

conservation of human structures is shown in  Fig. 3B. Human proteins with similar structures

across most  of  the  tree of  life  are annotated with  a diverse set  of  terms including  several

enzyme  activities  (e.g.  ligase  activity,  oxidoreductase  activity,  serine-type  endopeptidase

activity). Present in bacteria and eukarya include proteins linked with the microtubule organizing

center and voltage-gated potassium channel activity. Mostly restricted to eukarya include terms

such as nucleus, chromatin organization and microtubule motor activity. More recently evolved

structures include annotations such as immune response and hormone activity. 

Bacterial remote homology of human immunity related proteins

We noted that even if some biological processes were primarily restricted to eukarya or more

recently diverged clades, we could find cluster representatives that were present in bacterial

species. For example, most human proteins that are annotated to the nucleus (GO:0005634)

are in clusters mapped to eukarya as their  LCA. However,  we find exceptions including for

example a histone-related cluster (Fig. 3C) supporting the previously reported evolutionary link

between  eukaryotic  and  bacterial  histones26.  Similarly,  we  found  several  immunity  related

proteins with structural homologs present in bacteria. These include TNFRSF4 (P43489) with

similar structures in bacteria due to common cysteine-rich repeat regions which overlap with the

TNFR/NGFR cysteine-rich region domain annotations in InterPro (IPR001368). We also found

bacterial structures related to the human CD4 like protein B4E1T0 (SFig. 4A) although these

can  also  be  annotated  by  sequence  matching  to  the  Immunoglobulin-like  domain  family  in

InterPro (IPR013783).
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The structural similarity between human and bacterial proteins may also inform on their function

in bacteria. The human Bactericidal permeability-increasing (BPI) protein (B4DKH6), is a key

component of the innate immune system and is known to have a strong affinity for negatively

charged  lipopolysaccharides  found  in  Gram-negative  bacteria.  In  our  analyses,  this  protein

clusters with bacterial structures (Fig 3C), for example, the protein A0A2D5ZNG0, which aligns

with the human protein at a TM-score of 0.81 normalized by the length of the human protein.

Additionally, searching for partial hits by Foldseek identified the YceB from  E. coli and other

gram-negative bacteria, having structural similarity to the C-terminal region of human BPI (SFig

4B).  The  E.  coli YceB  protein  is  a  tubular  putative  lipid-binding  protein  without  a  well

characterized  function.  This  structural  similarity  may  suggest  a  role  of  YceB  homologs  in

regulating the outer-membrane.  

Our  analysis  identified  a  cluster  containing  the  human  protein,  AIM2  (O14862),  which

recognizes pathogenic dsDNA27 and leads to the formation of the AIM2 inflammasome. When

searching the NR database with NCBI BLAST28, we found no bacterial hits for the human AIM2

gene.  However,  three  structures  in  Candidatus  Lokiarchaeota  archaeon  and  one  in  the

bacterium Clostridium sp. from an uncultured source (A0A1C5UEQ5) were identified as similar

to human AIM2 in our analysis. The bacterial protein (A0A1C5UEQ5), encoded on a contig of

length 138,559 (GenBank FMFM01000010), is unlikely to be a contaminant due to its length29.

A0A1C5UEQ5 is not unique, as many homologous sequences, mostly labeled as "hypothetical

protein," were found in the NR database from mostly uncultured human gut bacterial sequences

with >90% sequence identity. We predicted the structure of one homologous protein that is 64%

identical  to  A0A1C5UEQ5 (see  SFig.  5),  which originates  from a cultured  Lachnospiraceae

bacterium that is part of Culturable Genome Reference30 of humans gut, using ColabFold31 and

confirmed that is has a similar structure of the DNA binding domain (TMscore of 0.97 and 0.56

in relation to A0A1C5UEQ5 and human AIM respectively. These results suggest that the AIM2

inflammasome may have been repurposed from ancient  DNA sensing related proteins.  It  is

possible  that  the  bacterial  versions  may  also  play  a  role  in  pathogen  DNA  sensing  and

response. 

These results exemplify how the structural clusters can inform the evolutionary origin of specific

biological processes and further illustrate the cross-kingdom similarities in immune systems. 

Prediction of domain families using structural similarity searches

The  clusters  defined  above  group  structurally  similar  proteins  at  full  length.  Proteins  are

sometimes  composed  of  different  regions  or  domains  that  can  fold  independently,  with  a

growing collection of such domain families being cataloged in databases such as Pfam21 or

InterPro22. Domain family prediction is done primarily by sequence searches, exploring the fact

that domain families have conserved sequence features. The vast increase in protein structures

and fast  algorithms to compare them opens the possibility  of  predicting  domain families by

structural  similarity.  Here,  we  devised  a  procedure  using  structural  similarity  matches  by

Foldseek to predict putative domain regions and families (see  Methods,  Fig. 4A).  Briefly,  a

representative structure from each of the Foldseek clusters defined above was used for an all-
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by-all structural similarity search using Foldseek. While these representative structures should

be structurally  non-redundant  at  the  full  protein  level,  they  will  still  share  many structurally

similar  domains.  For  each  sequence/structure  we  cluster  the  start  and  end positions  of  all

Foldseek hits and use these to define likely domain boundaries. The predicted domain regions

were then connected if they had structural similarity and a network clustering method was used

to cluster domain regions into putative domain families (see Methods). 

We used Pfam annotations to assess the quality of these predictions (Fig. 4B-G). For each

putative domain family with ≥5 representatives we determined the frequency of the first  and

second most frequent Pfam annotations, with the majority having homogeneous annotations

(Fig.  4B).  Each  Pfam  annotation  is  predominantly  found  within  a  single  domain  family

suggesting that these tend to be non-redundant. For domain families with ≥5 representatives,

7,599 families  match Pfam,  2,032 match Pfam Domains  of  Unknown Function  (DUFs)  and

10,722 do not match Pfam and are likely enriched in novel families. The median length of the

regions is similar for previously known or putative novel families (Fig. 4E). Given that we started

with mostly non-redundant structures, we don’t expect this approach to recover most domain

families. We found 5,388 non-redundant Pfam annotations for predicted domain families with ≥5

representatives, corresponding to ~29% of the 19,000 known Pfam families. 

In summary, clustering of local Foldseek hits can accurately predict domain families leading to

the prediction of many potential unexplored families. We provided a complete list of all predicted

domain families in cluster.foldseek.com.   

Figure 4 - Prediction of domain families by local structural similarity hits. (A) Diagram illustrating the

structure based domain family prediction method. Clustering of start and end positions for Foldseek hits of

one protein against  all  others is used to define potential  domain boundary positions.  Each predicted

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.531927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531927
http://creativecommons.org/licenses/by/4.0/


domain region is linked to others sharing structural similarities and graph based clustering is used to

define domain families and inter-domain similarity. (B) The boxplots contain the frequency distribution of

the most common and second most common Pfam annotations found members of all predicted domain

families. (C) Histogram for the counts of the number of clusters having a given Pfam as the most frequent.

(D) Number of domain family clusters annotated to a Pfam, DUF or no domain annotation. (E) Distribution

of protein region length in the predicted domain families, stratified by their annotations. (F) Non-redundant

count of Pfam and DUF domain families found in the structure based predicted families. (G) Distribution of

the number of structures found for each predicted domain family annotated with a known Pfam or DUF

domain.        

Structural similarity across distantly related domain families

The  network  clustering  procedure  used  above  also  allows  for  the  identification  of  pairs  of

predicted domain families that share some structural similarity. Among such pairs, we found

~500 connections between clusters enriched with a Pfam annotation and other domains without

clear  annotations,  providing  examples  of  potential  functional  annotations.  From  these  we

focused on connected domain families enriched in proteins from different kingdoms (Fig 5). The

Frag1  like  domains  exemplify  the  strength  of  structural-based  similarity  searching  (Fig 5A,

Frag1 like). The Frag1/DRAM/Sfk1 Pfam domain (PF10277) annotates proteins with a 6 alpha-

helix bundle transmembrane region that is observed in eukaryotic species. In our analysis a

domain family enriched for this Pfam annotation was linked to two additional families enriched in

bacterial  and  archeal  sequences,  one  enriched  for  a  domain  of  unknown  function

(DUF998/PF06197)  and  a  second  not  annotated.  The  3  families  are  structurally  identical,

typically forming a 6 alpha-helix bundle, despite the very low sequence similarity between the

sequences forming these. 

We  also  found  a  cluster  enriched  for  the  Anthrax_toxA  Pfam  (PF03497,  Fig  5B),  more

specifically,  the annotated domains contained structures similar to the Edema factor (EF), a

calmodulin-activated  adenylyl  cyclase32.  The  EF  is  one  of  the  3  components  forming  the

bacterial  anthrax  toxin  system.  Our  analysis  identified  a  structurally  similar  putative  domain

family enriched in eukaryotic proteins (Fig 5B). Specifically, several algae proteins were found

to have structures that had partial matches to the EF domain related structures. This raises the

possibility that algae might be using similar toxin systems.  

Identification of novel gasdermin like domains

Our search resulted in the discovery of 2 domain families with structural similarity with a cluster

enriched  for  the  gasdermin  domain  (Fig  5C).  In  human,  gasdermin  is  the  executor  of

inflammatory cell death called pyroptosis and is crucial for defense against pathogens. Upon

sensing a pathogen, caspases are activated that cleave off the C-terminal repressor domain of

gasdermin,  releasing  the  N-terminal  domain  to  assemble  into  large  pores  in  the  cell

membrane33. The predicted gasdermin structures from all three groups exhibited the structural

characteristic conservation of a twisted central antiparallel β-sheet and the shared placement of

connecting helices and strands of gasdermin. The structures enriched in the gasdermin Pfam

annotation adopted a similar  conformation as that of the mammalian gasdermin N-terminus,

especially of gasdermin E, which is considered evolutionary ancient34. In the inactive structure of
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mammalian gasdermin (A,B,D,E), the N-terminus forms interfaces with the repressor C-terminal

domain  mediating  auto-inhibition,  one  of  this  is  the  primary  interface  at  the  α1  helix35.

Gasdermin  is  activated  by  proteolytic  cleavage,  which  results  in  the  N-terminal  activation

through the lengthening of strands β3, β5, β7, and β8 and oligomerization36. Indeed, gasdermin

domains from the Pfam annotated group had both the α1 helix as well as the corresponding β-

sheets necessary for the active form of gasdermin. Gasdermin was also recently discovered in

bacteria and archaea, where it is similarly activated by dedicated proteases and defends against

phages by pore-mediated cell death37. Interestingly, the non-annotated group 1 of gasdermin

domains displayed strong similarity with the bacterial gasdermin structure (Fig 5C). The other

non-annotated group (cluster 3) showed a large degree of diversity and exhibited features of

both mammalian and bacterial  gasdermin.  In some cases,  we observed that  the N-terminal

gasdermin domain was fused to other domains including proteases (Fig 5C, A0A2C5ZLK3). As

gasdermin is activated by proteolytic cleavage such protein fusion hints at a similar activation

mechanism for the novel gasdermin domains. 
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Figure  5  -  Examples  of  non-annotated  domain  families  with  structural  similarity  to  annotated

domain families. (A) Frag1 like domains, 3 clusters were found enriched for the Frag1 Pfam annotation,

that had structural similarity with 1 cluster enriched for a domain of unknown significance (DUF998) and 1

cluster without annotations. (B) Anthrax_toxA like domains, a cluster enriched for the Anthrax_toxA Pfam

annotation was found with structural  similarity  with a cluster having no annotations.  (C) Two clusters

without annotations were found with structural similarity with a cluster enriched for the gasdermin Pfam

annotations.  Human  Gasdermin  E  and  cluster  2  -  Gasdermin  N-terminal  domain  structures  reveal

homology to gasdermin from humans with the corresponding structural characteristics highlighted. Some

gasdermin  domains were found fused to  protease domains (A0A2C5ZLK3).  The bacterial  gasdermin

structure (PDB ID 7n51) is similar to novel gasdermin domains from non-annotated cluster 2. The third

cluster revealed homology to both animal and bacterial gasdermins. 

Discussion 

The  orders-of-magnitude  increase  in  available  structural  models  raises  challenges  in  data

management and analysis of such large volumes. For this reason, we developed a clustering

procedure that  can scale to hundreds of  millions  of  structures,  identifying  2.27 million  non-

singleton  clusters  with  31% not  having  similarity  to  previously  known structures  or  domain

annotations.  These clusters only  annotate 4% of  protein sequences indicating  that  the vast

majority of the protein structural space has been, at least partially, annotated. As the criteria

used include partial hits to known structures or domain annotations, the degree of understudied

structural  space  is  likely  underestimated.  As  we  illustrate,  our  analysis  can  guide  the

prioritization  of  predicted  novel  protein  families  for  future  computational  and  experimental

characterization.

Structural clustering is a powerful tool for identifying homologous proteins, but its accuracy can

be  affected  by  certain  limitations.  In  this  study,  we  set  a  90%  alignment  overlap  as  the

requirement for assigning a structure to a cluster, which may exclude homologs with significant

insertions or unique repeat arrangements. Additionally, our strict e-value threshold of 0.01 may

result in missed homologs. Another limitation is that the current AlphaFold database does not

contain the full extent of protein sequences from metagenomics studies or viral proteins, limiting

the potential to detect retroviral proteins. 

In addition to the full-length protein clustering we used Foldseek’s local hit matches to predict

and cluster protein regions into putative domain families. The protein region clusters tend to

overlap well with previous definitions of domain families as annotated in the Pfam database and

led to the identification of over 10,000 unassigned clusters that should be enriched in putative

novel domain families.  We did not perform exhaustive searches with other sequence based

domain family annotations that  could annotate additional  clusters with prior  knowledge. It  is

important  to  note  that  we  only  considered  the  representatives  of  Foldseek  clusters  when

performing the domain prediction. As the domain prediction requires multiple observations on

the same structural region, additional domains are expected to be detected if each structure

was searched against a larger set of structures.  
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As protein structure is conserved for longer periods of evolutionary time than protein sequences,

we expect that AlphaFoldDB will empower the identification of remote homology. While some

advanced  sequence-based  methods  can  already  assist  in  this  task38–40,  the  availability  of

predicted  structures  helps  identify  meaningful  evolutionary  relationships.  Our  analysis  here

provides several examples of structural similarity across kingdoms that is indicative of remote

homology. In particular, we focused on several examples relating human immunity with bacterial

structures,  emphasizing  how  some  ancient  systems  have  been  co-opted  for  use  in  the

mammalian immune response system. We expect that many more examples can be derived

from the clustering results provided here.    

Methods

Structural clustering algorithm 

The clustering procedure is similar to MMseqs2's clustering but instead of using sequences,

Foldseek's 3Di alphabet (see Fig 6)  was employed to represent the structures as 1-dimensional

sequences. The clustering algorithm combines Linclust18 and cascaded MMseqs41 clustering.

The pipeline applies this strategy to allow for efficient clustering of millions of structures. First,

protein  structures are converted to 3Di  sequences and processed according to the Linclust

workflow. This includes extracting m k-mers (default m=300) of length 10 from each sequence

and grouping them based on their hash value. The k-mer groups are then used to assign each

structure to the longest sequence (representative) within the group. The shared diagonal i−j on

which the k-mer is found is also stored for further use in the alignment step.

The pipeline then proceeds with an ungapped alignment algorithm that rescores the structures
based on the shared diagonal between members and representatives using 3Di and amino acid
information. The sequences that meet the defined alignment criteria, such as E-value, sequence
identity,  alignment  LDDT or  TMscore,  are  clustered  using  the  MMseqs2  clustering  module
(default  using  the set-cover  algorithm).  After  this  step,  the  already  assigned  structures  are
removed  from  the  set  and  the  remaining  representative  member  hits  are  aligned  using
Foldseek's structural Gotoh-Smith-Waterman15, and all passing hits are clustered as well. The
remaining  cluster  representatives  are  successively  clustered  by  three  cascaded  steps  of
prefiltering, structural Smith-Waterman alignment and clustering.
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Figure 6 -  The five-step clustering pipeline for efficient clustering of millions of protein structures

using Foldseek's 3Di alphabet. (1) Protein structures are converted to 3Di sequences and processed

through the Linclust workflow. (2) For each sequence 300 min-hasing k-mers are extracted and sorted.

(3) The longest structure is assigned to be the center of each k-mer cluster. (4) Structural alignment is

performed in two stages: first an ungapped alignment based on shared diagonal information is performed,

hits are pre-clustered and second the remaining sequences are aligned using Foldseek's structural smith-

waterman  .  (5)  The  remaining  structures  meeting  alignment  criteria  are  clustered  using  MMseqs2's

clustering module. After the Linclust step the centriods are successively clustered by three cascaded

steps of prefiltering, structural Smith-Waterman alignment and clustering using Foldseek's search.

Cluster purity analysis

To assess cluster purity, we followed a two-step approach. First, we calculated the average
LDDT and average TMscore per cluster to assess the structural similarity. For this, we aligned
the  representative  to  the  cluster  members  using  the  "structurealign  -e  INF  -a"  module  in
Foldseek and reported the alignment LDDT and TMscore using --format-output lddt,alntmscore.
For each cluster we compute the mean illustrated in Figure 1C.

Secondly, we evaluated the Pfam consistency of each cluster by using Pfam labels obtained
from UniProt/KB. We have only taken into account the clusters that have at least two sequences
with Pfam annotations and we calculated the fraction of correctly covered Pfam domains for all
Pfam sequence pairs  ignoring  self-comparison.  We define true positives  as a  pair  of  Pfam
domains belonging to the same clan. For each pair, we compute the consistency scores by true
positive count divided by the count of Pfams in the reference sequence. Finally, we computed
the  mean  overall  pair  scores.  This  approach  enabled  us  to  determine  the  proportion  of
sequences within a given cluster that shared the same Pfam annotation.

Identification of “dark” clusters and the lowest common ancestor

To  eliminate  clusters  similar  to  previously  known  experimental  structures,  we  conducted  a
search using Foldseek against the PDB (version 2022-10-14) for each cluster representative,
with an e-value threshold of 0.1. We then excluded clusters annotated with Pfam domains by
searching  the  cluster  representatives  using  MMseqs2  with  parameters  -s  7.5  --max-seqs
100000  -e  0.001 against  the  Pfam  database.  Finally,  we  removed  clusters  with  members
annotated  with   PFAM  or  TIGRFAM20  annotations  in  the  UniProt/TrEMBL  and  SwissProt
database.  To determine the lowest common ancestor of each cluster, we used the lca module
in MMseqs242 ignoring the two taxa (1) 12908 "unclassified sequences" and (2) 28384 "other
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sequences".  We visualized the lowest  common ancestor  (LCA) results using a Sankey plot
generated by Pavian43.

Pocket and functional activity predictions for dark clusters

We predicted small molecule binding sites for representative dark cluster members by adapting

the approach from Akdel,  M.  et  al. 9.  We used AutoSite to predict  pockets44,  and selected

pockets with an AutoSite empirical composite score >60 and mean pocket residue pLDDT >90

for  additional  analyses.  To assign putative  function  and predict  catalytic  residues,  we used

DeepFRI45 to predict enriched GO/EC terms and residue-level saliency weights across available

GO/EC categories  (BP,  CC,  EC,  MF).  Pocket  and functional  predictions  were then visually

examined using a web app we developed (https://github.com/jurgjn/af-protein-universe).

Domain prediction from Foldseek local hits

First, we filtered out low scoring Foldseek hits using an e-value of 10-3 as threshold. We defined

potential domain boundary positions for each protein sequence by clustering start-stop positions

(hierarchical clustering, height parameter of 250 to establish clusters). Predicted domains are

then  linked  to  others  based  on  structural  similarities,  keeping  the  highest  scores  when

duplicates are found. Then the resulting network is trimmed excluding connections with e-value

higher  than  10-5,  predicted  domains  with  more  than  350  amino  acids  and  connected

components with less than 5 nodes. We applied graph based clustering (walktrap, 6 steps),

keeping  communities  with  at  least  5  members.  Each  predicted  domain  inside  the selected

communities was annotated using Pfam-A regions mapped to UniProt identifiers (v35.0), more

than 75% of the Pfam domain has to overlap with the predicted domain. We calculated inside

each community the frequency of Pfam annotations and defined them based on the highest

one.  Due to its size,  we decided to keep out  of  the following analysis  one community  with

152,959  structures  (group  ID  1;1,  see  supplementary  files  in  cluster.foldseek.com).  We

connected the remaining communities based on the structure similarities, allowing connections

with a p-value smaller than 10-3.

Acknowledgments 

MS acknowledges the support by the National Research Foundation of Korea, grants [ 2020M3-

A9G7-103933, 2021-R1C1-C102065, 2021-M3A9-I4021220], Samsung DS research fund and

the  Creative-Pioneering  Researchers  Program  through  Seoul  National  University.  PB  is

supported by the Helmut Horten Stiftung and the ETH Zurich Foundation. 

Availability

Data is freely and publicly available (CC-BY) at cluster.foldseek.com and the cluster method is

available as free and open source software (GPLv3) at foldseek.com.

References

1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 

583–589 (2021).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.531927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531927
http://creativecommons.org/licenses/by/4.0/


2. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track 

neural network. Science 373, 871–876 (2021).

3. Chowdhury, R. et al. Single-sequence protein structure prediction using a language model 

and deep learning. Nat. Biotechnol. 40, 1617–1623 (2022).

4. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural 

coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, 

D439–D444 (2022).

5. Terwilliger, T. C. et al. AlphaFold predictions: great hypotheses but no match for 

experiment. bioRxiv 2022.11.21.517405 (2022) doi:10.1101/2022.11.21.517405.

6. Wong, F. et al. Benchmarking AlphaFold-enabled molecular docking predictions for 

antibiotic discovery. Mol. Syst. Biol. 18, e11081 (2022).

7. Humphreys, I. R. et al. Computed structures of core eukaryotic protein complexes. Science 

374, eabm4805 (2021).

8. Burke, D. F. et al. Towards a structurally resolved human protein interaction network. Nat. 

Struct. Mol. Biol. 1–10 (2023).

9. Akdel, M. et al. A structural biology community assessment of AlphaFold2 applications. Nat.

Struct. Mol. Biol. 29, 1056–1067 (2022).

10. Bordin, N. et al. AlphaFold2 reveals commonalities and novelties in protein structure space 

for 21 model organisms. bioRxiv 2022.06. 02.494367 (2022).

11. Sommer, M. J. et al. Structure-guided isoform identification for the human transcriptome. 

Elife 11, (2022).

12. Kim, H., Mirdita, M. & Steinegger, M. Foldcomp: a library and format for compressing and 

indexing large protein structure sets. bioRxiv 2022.12.09.519715 (2022) 

doi:10.1101/2022.12.09.519715.

13. Sim, J., Kwon, S. & Seok, C. HProteome-BSite: predicted binding sites and ligands in 

human 3D proteome. Nucleic Acids Res. 51, D403–D408 (2023).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.531927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531927
http://creativecommons.org/licenses/by/4.0/


14. Jakubec, D., Skoda, P., Krivak, R., Novotny, M. & Hoksza, D. PrankWeb 3: accelerated 

ligand-binding site predictions for experimental and modelled protein structures. Nucleic 

Acids Res. (2022) doi:10.1093/nar/gkac389.

15. van Kempen, M. et al. Foldseek: fast and accurate protein structure search. bioRxiv 

2022.02.07.479398 (2022) doi:10.1101/2022.02.07.479398.

16. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human 

proteome. Nature 1–9 (2021).

17. Bordin, N. et al. AlphaFold2 reveals commonalities and novelties in protein structure space 

for 21 model organisms. Commun Biol 6, 160 (2023).

18. Steinegger, M. & Söding, J. Clustering huge protein sequence sets in linear time. Nat. 

Commun. 9, 2542 (2018).

19. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids 

Res. 49, D480–D489 (2021).

20. Varadi, M. et al. PDBe and PDBe-KB: Providing high-quality, up-to-date and integrated 

resources of macromolecular structures to support basic and applied research and 

education. Protein Sci. 31, e4439 (2022).

21. Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–

D419 (2021).

22. Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic 

Acids Res. 49, D344–D354 (2021).

23. Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995 (2022).

24. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the

analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

25. Haft, D. H. et al. TIGRFAMs and Genome Properties in 2013. Nucleic Acids Res. 41, 

D387–95 (2013).

26. Alva, V. & Lupas, A. N. Histones predate the split between bacteria and archaea. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.531927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531927
http://creativecommons.org/licenses/by/4.0/


Bioinformatics 35, 2349–2353 (2019).

27. Man, S. M., Karki, R. & Kanneganti, T.-D. AIM2 inflammasome in infection, cancer, and 

autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur. J. Immunol. 

46, 269–280 (2016).

28. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 

(2009).

29. Steinegger, M. & Salzberg, S. L. Terminating contamination: large-scale search identifies 

more than 2,000,000 contaminated entries in GenBank. Genome Biol. 21, 115 (2020).

30. Zou, Y. et al. 1,520 reference genomes from cultivated human gut bacteria enable 

functional microbiome analyses. Nat. Biotechnol. 37, 179–185 (2019).

31. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–

682 (2022).

32. Drum, C. L. et al. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by 

calmodulin. Nature 415, 396–402 (2002).

33. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming 

membrane pores. Nature 535, 153–158 (2016).

34. De Schutter, E. et al. Punching Holes in Cellular Membranes: Biology and Evolution of 

Gasdermins. Trends Cell Biol. 31, 500–513 (2021).

35. Liu, Z. et al. Crystal Structures of the Full-Length Murine and Human Gasdermin D Reveal 

Mechanisms of Autoinhibition, Lipid Binding, and Oligomerization. Immunity 51, 43–49.e4 

(2019).

36. Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 

membrane pore. Nature 557, 62–67 (2018).

37. Johnson, A. G. et al. Bacterial gasdermins reveal an ancient mechanism of cell death. 

Science 375, 221–225 (2022).

38. Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.531927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531927
http://creativecommons.org/licenses/by/4.0/


annotation. BMC Bioinformatics 20, 473 (2019).

39. Eddy, S. R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195 (2011).

40. Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein 

sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2011).

41. Hauser, M., Steinegger, M. & Söding, J. MMseqs software suite for fast and deep clustering

and searching of large protein sequence sets. Bioinformatics 32, 1323–1330 (2016).

42. Mirdita, M., Steinegger, M., Breitwieser, F., Söding, J. & Levy Karin, E. Fast and sensitive 

taxonomic assignment to metagenomic contigs. Bioinformatics (2021) 

doi:10.1093/bioinformatics/btab184.

43. Breitwieser, F. P. & Salzberg, S. L. Pavian: Interactive analysis of metagenomics data for 

microbiome studies and pathogen identification. Bioinformatics (2019) 

doi:10.1093/bioinformatics/btz715.

44. Ravindranath, P. A. & Sanner, M. F. AutoSite: an automated approach for pseudo-ligands 

prediction-from ligand-binding sites identification to predicting key ligand atoms. 

Bioinformatics 32, 3142–3149 (2016).

45. Gligorijević, V. et al. Structure-based protein function prediction using graph convolutional 

networks. Nat. Commun. 12, 1–14 (2021).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.531927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531927
http://creativecommons.org/licenses/by/4.0/


Supplementary figures

 

Supplementary  Figure  1 - Relationship of  cluster  member  size to  mean pairwise Pfam
coverage. 
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Supplementary  Figure  2  -  Examples  of  non-compact  AlphaFold2  predicted  structures.
Examples of representative structures of clusters without annotations having pLDDT>90 and a
predicted pocket covering over 80% of the residues of the structure.  
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Supplementary Figure 3 - LCA plot of the clusters that contain Homo Sapiens proteins.
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Supplementary  Figure  4  -  Additional  examples of  human related  proteins in  structural
clusters with representatives or partial matches in bacterial species.
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Supplementary Figure 5 -  Comparison of predicted structures of homologous proteins:
Lachnospiraceae  bacterium  to  Clostridium  (A)  pLDDT  and  multiple-sequence-alignment
coverage  output  produced  by  ColabFold  for  the  prediction  of  the  protein  sequence  of
Lachnospiraceae.  (B)  The  predicted  structure  of  RJW57900.1.  (C)  Superposition  of  the
Clostridium protein structure with  Lachnospiraceae with the DNA binding domain being well
superposable.
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