

The Burden of Reliability: How Measurement Noise Limits Brain-Behaviour Predictions

Martin Gell^{1,2*}, Simon B. Eickhoff^{2,3}, Amir Omidvarnia^{2,3}, Vincent Küppers², Kaustubh R. Patil^{2,3}, Theodore D. Satterthwaite⁴, Veronika I. Müller^{2,3 †} & Robert Langner^{2,3 †}

* corresponding author

† authors contributed equally

1 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany

2 Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany

3 Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

4 Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Abstract

Current major efforts in human neuroimaging research aim to understand individual differences and identify biomarkers for clinical applications. One particularly promising approach is the prediction of individual-level behavioural phenotypes (e.g. treatment response, cognition) from brain imaging data. An essential prerequisite to identify replicable brain-behaviour prediction models is sufficient measurement reliability. By attenuating the relationship between two variables, low reliability increases the sample size necessary to identify an effect, making large datasets a necessity rather than an advantage. While previous work has evaluated the reliability of brain-based measures, the impact of the reliability of behavioural phenotypes has been largely neglected, as target selection for prediction is often guided by scientific interest or data availability. Here we demonstrate the impact of low phenotypic reliability on individual-level prediction performance. Using simulated and empirical data from the Human Connectome Projects, we found that even moderate reliability levels of commonly used behavioural phenotypes can markedly limit the ability to link brain and behaviour when underlying relations are weak. Next, using 5000 subjects from the UK Biobank, we show that highly reliable data in smaller samples outperform large amounts of moderately reliable data. These findings suggest that research programmes focused on identifying generalizable brain-behaviour associations must seriously consider the reliability of outcome measures. Ultimately, a stronger focus on reliability will help reduce the financial and societal costs incurred in acquiring large-scale datasets with unreliable "markers" of behaviour.

Introduction

Major ongoing efforts in human neuroimaging research aim to understand individual differences and identify biomarkers for clinical applications. One particularly promising approach in this regard is the prediction of clinically relevant phenotypes in individuals (e.g. symptoms, treatment response, intellectual abilities) from functional and structural brain measurements (Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015; Woo, Chang, Lindquist, & Wager, 2017; Varoquaux & Poldrack, 2019). Patterns of (resting-state) functional connectivity, the statistical relationship between regional time courses of brain activity (most often expressed as Pearson's correlation), have been among prominent brain features used for prediction of such phenotypes (Castellanos, Di Martino, Craddock, Mehta, & Milham, 2013; Finn et al., 2015). A large amount of research has focused on the development and improvement of approaches to brain-behaviour predictions (Shen et al., 2017; Pervaiz, Vidaurre, Woolrich, & Smith, 2020; Kong et al., 2021). Thus far, however, accuracies have remained too low to provide major insights into neural substrates of individual differences or reach clinical relevance (Eickhoff & Langner, 2019; Sui, Jiang, Bustillo, & Calhoun, 2020; Finn, 2021; Tian & Zalesky, 2021; He et al., 2022).

An essential prerequisite for identifying replicable brain-behaviour associations is sufficient reliability of measurements (Milham, Vogelstein, & Xu, 2021). In psychometrics, reliability reflects how accurately a test can measure a specific construct. In the context of individual differences, test-retest reliability has received the most attention. It is understood as the degree to which a measure ranks individuals consistently across multiple occasions (i.e. low performers remain low performers on repeated testing). Note that this assumes the measure in question assesses a stable characteristic of the individual or the amount of change between occasions does not differ between individuals (e.g., due to practice from repeated testing). Test-retest reliability is typically investigated by intraclass correlation (ICC; see McGraw and Wong (1996) for a detailed discussion), which is often interpreted as excellent for $ICC > 0.8$, good for $0.6 - 0.8$, moderate for $0.4 - 0.6$ and poor for < 0.4 (Landis & Koch, 1977; Hedge, Powell, & Sumner, 2018). Reliability is tightly related to measurement noise, understood as the random variability that produces a discrepancy between observed and true values (or repeated observations), in that a high level of noise results in low reliability.

While a large amount of focus has been put on assessing the reliability of brain-based measures (Elliott et al., 2020; Hedges et al., 2022; Noble, Scheinost, & Constable, 2019) and ways to improve it (Finn et al., 2017; Vanderwal et al., 2017; Amico & Goñi, 2018; Li et al., 2019; Pervaiz et al., 2020; Noble, Scheinost, & Constable, 2021), the reliability of

behavioural phenotypes used as prediction targets has been largely neglected. Selecting scientifically or clinically relevant targets for prediction is often guided by pragmatism and logistic constraints (e.g., dataset availability), rather than reliability considerations. Furthermore, classical experimental paradigms may not be well suited for the investigation of individual differences as between-subject variance in such paradigms is often low by design, resulting in low reliability (Hedge et al., 2018). Finally, current assessments of the test-retest reliability of behavioural measures commonly used in the literature show that most fall below the 'excellent' reliability (Enkavi et al., 2019; Hedge et al., 2018) that is required for clinical applications (Landis & Koch, 1977; Cicchetti & Sparrow, 1981; Barch & Carter, 2008; Streiner, Norman, & Cairney, 2015). A recent meta-analysis of published studies by Enkavi and colleagues (2019) showed the average reliability of 36 tasks assessing self-regulation was on the border between good and moderate ($ICC = 0.61$), and newly collected data for the same tasks showed even poor reliability ($ICC = 0.31$). Similarly, assessments of reliability in large datasets and longitudinal samples have reported lower estimates than those reported in test manuals, which often report reliability assessed over relatively short retest intervals (Han & Adolphs, 2020; Taylor et al., 2020; Anokhin et al., 2022).

High measurement reliability is essential as it attenuates relationships between variables. In classical statistics this is manifested by setting an upper bound on effect size (Spearman, 1910). In the context of machine learning, low reliability can have a profound impact on model performance by lowering signal-to-noise ratio. Label or target noise (akin to measurement noise) reduces the accuracy of classification algorithms (Frenay & Verleysen, 2014) and increases uncertainty in parameter estimates, training time (Zhu & Wu, 2004) as well as the complexity of a given problem (Garcia, de Carvalho, & Lorena, 2015). Due to inadequate reliability, models may fit variance of no interest (e.g., measurement noise) during training. This results in poor generalisation performance or a failure to learn altogether. Therefore, low out-of-sample prediction accuracy may be a consequence of unreliable targets rather than genuinely low predictive validity. This, in turn, can hamper the assessment of brain-behaviour relationships and strongly undermine efforts directed at biomarker discovery.

Due to effect size attenuation, low reliability also increases the sample sizes necessary to identify effects (Nunnally, 1970; Zuo, Xu, & Milham, 2019). Similarly, targets with higher measurement noise require larger training sets to achieve comparable classification accuracy to less noisy targets (Rolnick, Veit, Belongie, & Shavit, 2018; Wang & Tan, 2018). As a consequence, the estimated strength of brain associations with many behavioural phenotypes will be attenuated and require very large samples to become stable (Marek et al., 2022). These considerations make large datasets for biomarker discovery a necessity

rather than an advantage, which in turn poses undesirable logistical, financial and ethical challenges.

Here we examined how the reliability of behavioural phenotypes affects their prediction accuracy in investigations of brain-behaviour relationships and illustrate the tradeoff between test-retest reliability and sample size. Using a simulation approach we systematically tested the effect of reliability on prediction accuracy by incrementally increasing the proportion of random noise in different phenotypes. Next, we used a sample of 5000 adults to demonstrate that predicting highly reliable targets in smaller samples can outperform large samples with limited reliability.

Methods

To investigate the impact of phenotypic reliability on brain-behaviour associations, we used functional connectivity to predict empirical and simulated data with varying levels of reliability. Reliability was manipulated by increasing the proportion of random noise (representing error variance) in our prediction targets. Noise simulations were done using data of the Human Connectome Project Aging dataset (HCP-A) due to its favourable ratio between imaging data quality and variance in phenotypic data with high reliability. As increasing noise for the purposes of our analyses may only be meaningful in highly reliable phenotypes, we selected prediction targets based on their published estimates of reliability: age (ICC \approx 1.0), grip strength (ICC = 0.93; Reuben et al. (2013)), total cognition composite (ICC = 0.9 - 0.95; Akshoomoff et al. (2013); Heaton et al. (2014)) and crystallised cognition composite (ICC = 0.9; Akshoomoff et al. (2013); Heaton et al. (2014)). Next, two datasets - The Human Connectome Project dataset Young Adult (HCP-YA) and UK Biobank (UKB) were used to investigate the association between reliability and prediction accuracy as test-retest data was available in both datasets (and not in HCP-A). Lastly, the UKB sample was used to investigate the interaction between reliability and sample size given the large number of subjects available. To create simulated data, noise was only manipulated on the most reliable phenotypes available in the dataset: age (ICC \approx 1.0) and grip strength (ICC = 0.93 - 0.96; Bohanon et al. (2011); Hamilton et al. (1994)). Unfortunately, none of the cognitive assessments exhibited reliability values that were high enough for our purpose, with the highest reliability at $r = 0.78$ for the trail making task (Fawns-Ritchie & Deary, 2020). For an overview of datasets see table 1.

Table 1

Overview of datasets and samples

Dataset	Analysis	Sample (Female)	Age Range
HCP-A	Prediction of simulated data	647 (351)	36-89
HCP-YA	Prediction of all phenotypes	771 (358)	22-35
	Test-retest	46 (32)	22-35
UKB	Prediction of simulated data and all phenotypes	5000 (2714)	48-82
	Test-retest	1890 (1012)	48-79

HCP-A, Human Connectome Project Aging; HCP-YA, Human Connectome Project dataset Young Adult; UKB, UK Biobank.

Datasets

Human Connectome Project Aging dataset

For our primary analysis, we used data from the Human Connectome Project Aging dataset (Bookheimer et al., 2019; Harms et al., 2018), obtained from unrelated healthy adults. Only subjects with all four complete runs of resting-state fMRI (rs-fMRI) scans and no excessive head movement (framewise displacement < 0.25 mm, which corresponded to 3SD above the mean) were analysed, resulting in a sample of 647 subjects for age prediction (351 female, ages = 36-89) of which not all had all phenotypic data of interest available (see supplementary methods for details on each phenotype). The rs-fMRI HCP scanning protocol involved whole-brain multiband gradient-echo echo-planar images acquired on a Siemens 3T Prisma scanner with (TR = 800 ms, 2 mm isotropic voxels). Four rs-fMRI sessions with 488 volumes each (6 min and 41 s) were acquired on two consecutive days, with one anterior-to-posterior and one posterior-to-anterior encoding direction acquired on each day.

Human Connectome Young Adult dataset

To investigate the relationship between reliability and prediction accuracy we used data from the Human Connectome Project Young Adult dataset (Van Essen et al., 2013), partly consisting of related healthy subjects. Only subjects with all four complete runs of rs-fMRI, no excessive head movement (framewise displacement < 0.3 mm, which corresponded to a displacement of 3SD above the mean) and all phenotypes of interest were included ($n = 713$, 358 female, ages = 22-35). In total, 39 behavioural phenotypes that were available for all subjects and did not display strong ceiling effects were selected for prediction (see supplementary methods for a full list of phenotypes and their distributions). Standardised scores were used when available. Additionally, a test-retest dataset for subjects with all 39 assessments ($n = 46$, 32 female, ages = 22-35) was used to estimate phenotypic reliability. The rs-fMRI HCP scanning protocol involved whole-brain multiband gradient-echo echo-planar images acquired with a 32-channel head coil on a 3T Siemens “Connectome Skyra” scanner (TR = 720 ms, 2 mm isotropic voxels). Four rs-fMRI sessions with 1,200 volumes each (14 min and 24 s) were acquired on two consecutive days, with one left-to-right and one right-to-left phase encoding direction acquired on each day.

UK Biobank

To investigate the association between prediction accuracy and reliability as well as how reliability interacts with sample size, we randomly sampled $n = 5000$ (2714 female, ages = 48-82) participants from healthy subjects of the UK Biobank sample (Sudlow et al., 2015). Healthy participants were defined as subjects without lifetime prevalence of cerebrovascular diseases, infectious diseases affecting the nervous system, neuropsychiatric disorders or neurological diseases based on ICD-10 diagnosis from hospital inpatient records and self-report (see supplementary methods for all excluded data fields). All subjects had complete rs-fMRI scans and displayed no excessive head movement (framewise displacement < 0.28 mm, which corresponded to a displacement of 3SD above the mean). Within this sample we selected 17 phenotypes that were available for all subjects and did not display strong ceiling effects (see supplementary methods for a full list of phenotypes and their distributions). Of those, age and grip strength were used for creating simulated data. Additionally, a sample of 1890 (1012 female, ages = 48-79) subjects with available follow-up data for all 17 phenotypes from the follow-up imaging session was used to estimate phenotypic reliability. The mean interval between initial imaging session and follow-up session was 2 years and 6 months. In brief, the UKB rs-fMRI protocol (Miller et al., 2016)

included whole-brain multiband images acquired with a 3T Siemens Skyra system using a 32-channel head coil (TR = 735 ms, 2.4 mm isotropic voxels). One rs-fMRI session with 490 volumes each (6 min and 10 s) was acquired at 3 different assessment sites with identical scanners and platforms.

Simulation of different levels of reliability of selected phenotypes

For each of the selected prediction targets we created simulated datasets with varying amounts of noise. According to classical measurement theory (Novick, 1966), any measurement reflects a mixture of the measured entity and random (as well as systematic) measurement noise. The reliability of a variable can thus be reduced by increasing the proportion of error or noise variance while holding between-subject variance constant, thereby reducing the signal-to-noise ratio. Here we manipulated only the unsystematic measurement noise, defined as random variability that produces a discrepancy between observed and true values (or repeated observations). Increasing random noise is ideal for investigating test-retest reliability as it only affects the variability of measurements around the average and thus manipulates the ranking across individuals.

In order to induce increasing levels of noise in the target variable, we created datasets sampled from a standard normal distribution with the same mean and standard deviation as the original empirically acquired data (which were age adjusted and normalised to mean = 100 and SD = 15 by the HCP consortium). Importantly, the sampled datasets correlated with the originally observed (empirical) targets at a pre-specified Pearson's correlation. For HCP-A, simulated data were set to correlate with the original data at $r = 0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55$ and 0.5. Given the high computational load for large samples, simulated UKB data were set to correlate at $r = 0.9, 0.8, 0.7, 0.6$ and 0.5 with the original data. For each level of correlation, simulation was repeated 100 times, thus totalling 4400 simulated datasets for HCP-A (4 assessed phenotypes x 11 noise levels x 100 repeats) and 1500 simulated datasets for UKB (3 assessed phenotypes x 5 noise levels x 100 repeats). We note that only for variables with already perfect reliability (e.g. age) the magnitude of correlation with the original values directly reflects its new reliability. For variables with empirical reliability < 1 (i.e. all measures other than age), the actual reliability of simulated data is lower than the preset correlation between simulated and original data as it will be attenuated by the variable's true reliability. Simulated datasets were scaled and offset to

have approximately the same mean and standard deviation as the original measurements to facilitate absolute agreement (i.e. stability across repeated measurements) between original ‘test’ and simulated ‘retest’ data (for distribution of mean and SD for each dataset see <https://github.com/MartinGell/Reliability/plots>). As age did not follow a normal distribution, we first estimated its probability density from the original data and then sampled simulated data from this distribution instead.

Phenotype preprocessing

As we used linear ridge regression for prediction, all phenotypes that displayed a right-skewed distribution were transformed with a natural log transform. As this procedure manipulated data within participants, there was no data leakage across participants.

fMRI Preprocessing

Both HCP datasets provided minimally preprocessed data. The preprocessing pipeline has been described in detail elsewhere (Glasser et al., 2013). Briefly, this included gradient distortion correction, image distortion correction, registration to subjects’ T1w image and to MNI standard space followed by intensity normalisation of the acquired rs-fMRI images, and Independent Component Analysis (ICA) followed by an ICA-based X-noiseifier (ICA-FIX) denoising (Beckmann & Smith, 2004; Salimi-Khorshidi et al., 2014). Additional denoising steps were conducted by regressing mean time courses of white matter and cerebrospinal fluid and the global signal, which has been shown to reduce motion-related artefacts (Ciric et al., 2017). Next, data were linearly detrended and bandpass filtered at 0.01 – 0.1 Hz.

The UKB data were preprocessed through a pipeline developed and run on behalf of UK Biobank and included the following steps (Alfaro-Almagro et al., 2018): motion correction using MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002); grand-mean intensity normalisation of the entire 4D fMRI dataset by a single multiplicative factor; highpass temporal filtering using Gaussian-weighted least-squares straight line fitting with sigma = 50 sec; Echo Planar Imaging unwarping; Gradient Distortion Correction unwarping; structured artefact removal through ICA-FIX (Beckmann & Smith, 2004; Salimi-Khorshidi et al., 2014). No low-pass temporal or spatial smoothing was applied. The preprocessed datasets (named

as *filtered_func_data_clean.nii* in the UK Biobank database) were normalised to MNI space using FSL's *applywarp* command.

Functional connectivity

The denoised time courses from all datasets were parcellated using the Schaefer et al. (2018) atlas with 400 cortical regions of interest. The signal time courses were averaged across all voxels of each parcel. Parcel-wise time-series were used for calculating functional connectivity between all parcels using Pearson correlation. For HCP datasets, the correlation coefficients of individual sessions (4 per participant) were transformed into Fisher-Z scores, and for each connection, an average across sessions was calculated. To investigate the robustness of our results to granularity and parcellation selection, functional connectivity between denoised time courses of 300 cortical, subcortical and cerebellar regions of interest defined by Seitzman et al. (2020) were calculated. Regions were modelled as 6-mm spheres and calculated from resting state data from the HCP Aging dataset (results presented in the supplemental material).

Prediction

We used the scikit-learn library [version 0.24.2, (Pedregosa et al., 2011)] to predict all target variables from functional connectivity (code including exemplary data available online: https://github.com/MartinGell/Prediction_Reliability). Accuracy was measured using R^2 (percentage of variance explained), mean absolute error (MAE) and Pearson correlation between predicted and observed target values. All predictions were performed using linear ridge regression as it showed a favourable ratio of computation time to accuracy in previous work (Cui & Gong, 2018) and preliminary testing (see supplementary methods). Out-of-sample prediction accuracy was evaluated using a nested cross-validation with 10 outer folds and 5 repeats. Hyperparameter optimization (inner training folds) of the α regularisation parameter for ridge regression was done using efficient leave-one-out cross-validation (Rifkin & Lippert, 2007). The model with the best α parameter was then fitted on the training folds and tested on outer test folds. Within each training fold, neuroimaging features were standardised by z-scoring across participants before models were trained in order to ensure that individual features with large variance would not dominate the objective function. Before prediction (of both original and simulated data), subjects with target values 3

SD from the sample mean were removed from the complete sample to minimise the impact of extreme values resulting from random sampling in simulated data. As a preprocessing step prior to training, neuroimaging features were z-scored within participants.

Control analyses for simulation results in HCP-A

To verify our analyses were robust to analytical degrees of freedom, we repeated our analyses of the HCP-A dataset using support vector regression, an alternative node definition for functional connectivity features (using ROIs from Seitzman et al., 2020) and feature-wise confound removal. For algorithm comparison, we trained a support vector regression with a linear kernel on neuroimaging features. Out-of-sample prediction accuracy was evaluated using a non-nested cross-validation with 10 outer folds and 5 repeats. A heuristic was used to efficiently calculate the hyperparameter C (Helleputte, Paul, &

Gramme, 2021): $c = \frac{1}{\frac{1}{n} \sum_{i=1}^n \sqrt{G[i,i]}}$ where G is the matrix multiplication of features and

transposition of features (here: functional connectivity). To investigate whether confounding effects impacted our results, standard confound variables (age and sex for the prediction of all phenotypes) were removed from the connectivity features using linear regression.

Confound removal was performed within each training fold and the confound models were subsequently applied to test data to prevent data leakage (More, Eickhoff, Caspers, & Patil, 2021). All control analyses are presented in the supplemental material.

Association between reliability and prediction accuracy

The relationship between target reliability and prediction accuracy (measured as R^2) was investigated using the HCP-YA dataset. First, the test-retest data of 46 participants was used to estimate measurement reliability for 39 different behavioural phenotypes by calculating ICC between the scores from first and second visit. ICC was calculated using a two-way random effects model for absolute agreement, often referred to as ICC[2,1] (Shrout & Fleiss, 1979). Next, all selected measures were predicted in a sample of 713 subjects from the HCP-YA dataset using linear ridge regression. As the HCP-YA dataset includes related subjects, cross-validation was done using a 5 times repeated leave 30% of families out approach, instead of the 10-fold random split used in other analyses. Family members were always kept within the same fold in order to maintain independence between the folds. Confounding effects of age and sex on features were removed using linear regression trained on the training set and applied to test data within the cross-validation. Finally, the resulting prediction accuracies (R^2) of the 39 different phenotypes were correlated with their

corresponding reliability (calculated from the test-retest data). To validate our findings, the above-described approach (with the exception of cross-validation) was repeated using the UKB dataset. Reliability was estimated for 17 different behavioural assessments using ICC2 between measurements collected during the first and follow-up imaging visits in 1893 subjects. All phenotypes were predicted in a set of 5000 subjects from the UKB using ridge regression in a nested cross-validation with 10 outer folds and 5 repeats used for our main analyses.

Subsampling procedure and prediction in the UKB dataset

To examine how the effects of reliability on prediction performance interact with increasing sample size, we randomly sampled geometrically spaced samples (series with a constant ratio between successive elements) from 5000 subjects of the UK Biobank starting from $n = 250$ (250, 403, 652, 1054, 1704, 2753, 4450). By doing so, we aimed to cover sample sizes ranging from those available in larger neuroimaging studies to international consortia levels. To be able to compare prediction accuracy between different sample sizes we used a learning curve function from Sklearn ('learning_curve'). In this approach we first partitioned a test set of 10% of the full sample (500 subjects). From the remaining data, geometrically spaced samples of subjects (250, 403, 652, 1054, 1704, 2753, 4450) were sampled without replacement. Each subsample was then used to train a ridge regression model with hyperparameter optimization using the same cross-validation set-up with 10 outer folds and 5 repeats used in previous analyses. This approach made the comparison of accuracy between different sample sizes possible as the test set is held constant for all samples of training subjects. The entire procedure was repeated 100 times for all simulated and empirical data.

Results

To investigate the impact of phenotypic reliability on prediction accuracy, we predicted both the original (empirically acquired) and simulated target data using functional connectivity as features. Simulated data were manipulated to have reduced reliability (by increased levels of noise) with regard to the original data. For our main analyses, we used a selection of the most reliable measures available in the given datasets: total cognition, crystallised cognition and grip strength (see Methods for details). As a proof of principle, we first present results for participant age prediction where inducing noise directly corresponds to reducing reliability

(given that age can be measured with near perfect reliability). For all other target variables, simulated data reflects data with a reduced correlation with the original empirically acquired variable. Thus, the ‘true’ reliability of simulated phenotypes is lower than the preset level of correlation between simulated and original data, as this preset level will be attenuated by each variable’s original reliability.

Low phenotypic reliability reduces accuracy of brain-behaviour predictions

In the HCP-A dataset, age could be well predicted using functional connectivity features ($R^2 = 0.64$, $MAE = 86.45$ months). As expected, systematically reducing its reliability resulted in a sharp decrease in accuracy as measurement noise increased (Fig. 1A). Crucially, decreasing reliability to levels considered to be good ($r = 0.8$) reduced prediction accuracy on average by half ($R^2 = 0.33$, $MAE = 117.89$ months; for correlation between predicted and observed values, see supplementary results figure 1). This pattern was robust to variations in parcellation and algorithm choice (Supplementary results figures 2-3).

From the most reliable phenotypes in the HCP-A dataset, total cognition could be predicted with an accuracy of $R^2 = 0.23$ ($MAE = 10.37$), crystallised cognition with $R^2 = 0.22$ ($MAE = 10.24$) and grip strength with $R^2 = 0.19$ ($MAE = 9.79$). Similarly to age, reducing the correlation between the original and simulated scores resulted in a decrease in prediction accuracy (Fig. 1B). For all three phenotypes, R^2 halved at $r = 0.8$ between original and simulated data ($R^2_{\text{total cog.}} = 0.12$; $R^2_{\text{crystallized cog.}} = 0.1$; $R^2_{\text{grip strength}} = 0.1$), and reached near 0% of variance explained at $r = 0.6$ ($R^2_{\text{total cog.}} = 0.03$; $R^2_{\text{crystallized cog.}} = 0.02$; $R^2_{\text{grip strength}} = 0.02$). MAE and correlation between predicted and observed scores followed the same pattern (Supplementary results figure 4). When confounds (age and sex) were removed from functional connectivity, prediction accuracies decreased overall but still halved at $r = 0.8$ and reached 0% of explained variance at $r = 0.6$ (Supplementary results figure 5).

We note that prediction accuracy could vary by 0.1 - 0.2 of R^2 between the best and worst-performing simulated datasets for the same level of noise depending on the sampling variability. At moderate levels of reliability ($r = 0.7$), such variability could result in accuracies between 0% and 12% of variance explained (Fig. 1C).

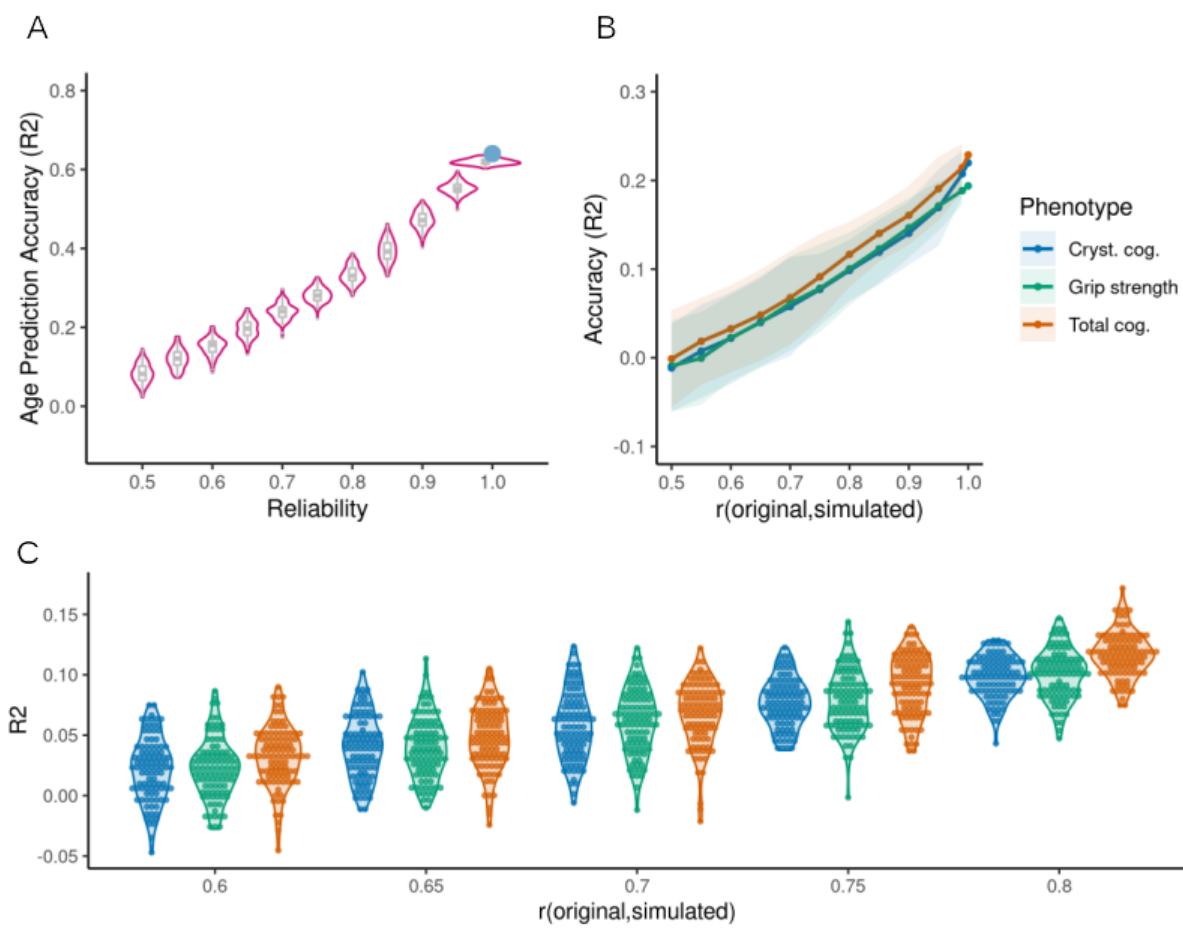


Figure 1. Impact of reliability on prediction accuracy in the HCP-A dataset. (A) Impact of directly reducing reliability of Age on prediction accuracy (amount of target score variance explained by predicted scores as indicated by R^2). (B) Impact of reducing the correlation between original and simulated target scores (reflecting reduced reliability) on accuracy in prediction of total cognition composite score, crystallised cognition composite score and grip strength. Solid lines represent the mean across all 100 simulated datasets in each correlation band, shaded areas represent 2 standard deviations in prediction accuracies. (C) Effect of random noise on variability in prediction accuracy. Colour legend is common for panels B and C.

Next, we directly investigated the relationship between reliability and brain-phenotype prediction accuracy in empirical data where reliability could be estimated. Using test-retest data from the HCP-YA dataset, we estimated the reliability of 39 variables (ICCs = 0.2 - 0.89; see supplementary figure 6) and correlated these with their prediction accuracy (Fig. 2). R^2 displayed a substantial correlation with reliability ($r = 0.63$, $p < 0.001$). Given the small number of subjects, we also correlated R^2 with the lower and upper bounds of the ICC and

observed the same relationship ($r = 0.63$, $p < 0.001$ and $r = 0.55$, $p < 0.001$, respectively). As models with negative R^2 values may not be comparable in accuracy, we also correlated only models with positive R^2 with reliability and found an even stronger correlation ($r = 0.7$, $p = 0.016$). Similar to our main analysis, none of the variables with moderate reliability or lower ($r < 0.5$) were predictable. Conversely, only variables with excellent reliability (the picture vocabulary task, total cognition, grip strength, reading English and crystallised cognition) could achieve $R^2 > 0.05$. Of these only grip strength was not successfully predicted. The association between reliability and accuracy replicated in 17 phenotypes (ICCs = 0.22 - 0.81; see supplementary results figure 7) predicted in the UKB dataset ($r = 0.65$, $p = 0.005$; supplementary results figure 8).

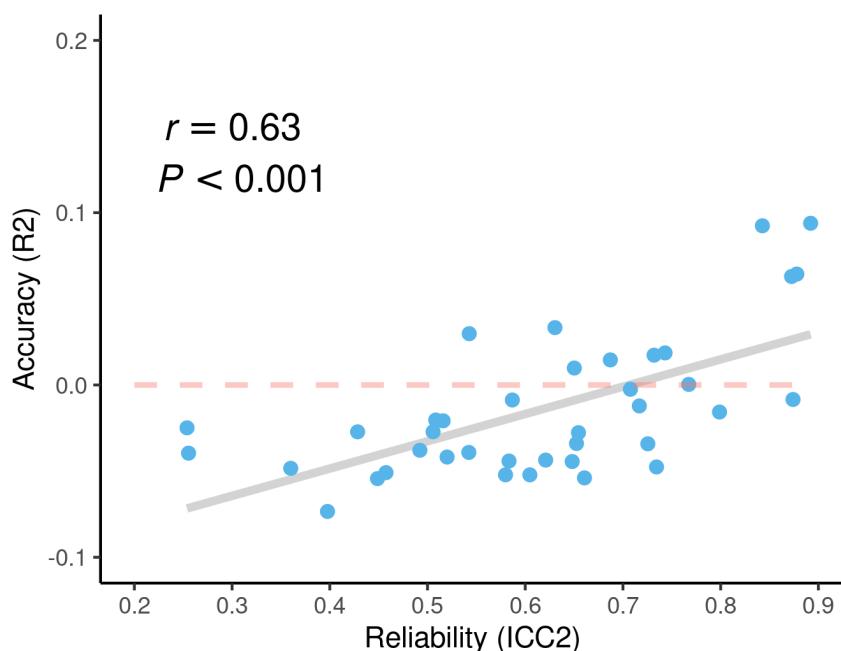


Figure 2. Association between reliability and prediction accuracy. Each datapoint represents one of 39 phenotypes provided by the HCP-YA dataset.

Influence of reliability on accuracy scales with sample size

Next, we sought to investigate how the interaction between reliability and sample size impacts brain-behaviour prediction. In general, larger samples resulted in higher prediction accuracy. As seen in our previous analyses, systematically reducing reliability in both age and grip strength resulted in reduced accuracy for all training set sizes and followed the

same pattern of R^2 halving at $r = 0.8$ (Fig. 3A). Crucially, smaller samples with excellent reliability outperformed larger samples with good to moderate reliability (Fig. 3A). For age prediction, even samples of 400 subjects with excellent reliability ($r = 0.9$; $R^2_{\text{mean}} = 0.12$, $R^2_{\text{sd}} = 0.004$) could outperform the full sample ($n = 4450$) with a moderate level of phenotypic reliability common for behavioural assessments ($r = 0.6$; $R^2_{\text{mean}} = 0.09$, $R^2_{\text{sd}} = 0.01$). Furthermore, an increase in sample size produced the largest improvement in prediction accuracy for highly reliable data, while data with moderate reliability showed no or only minor gains (Fig. 3B). This effect was particularly pronounced at smaller sample sizes (Supplementary results figure 9).

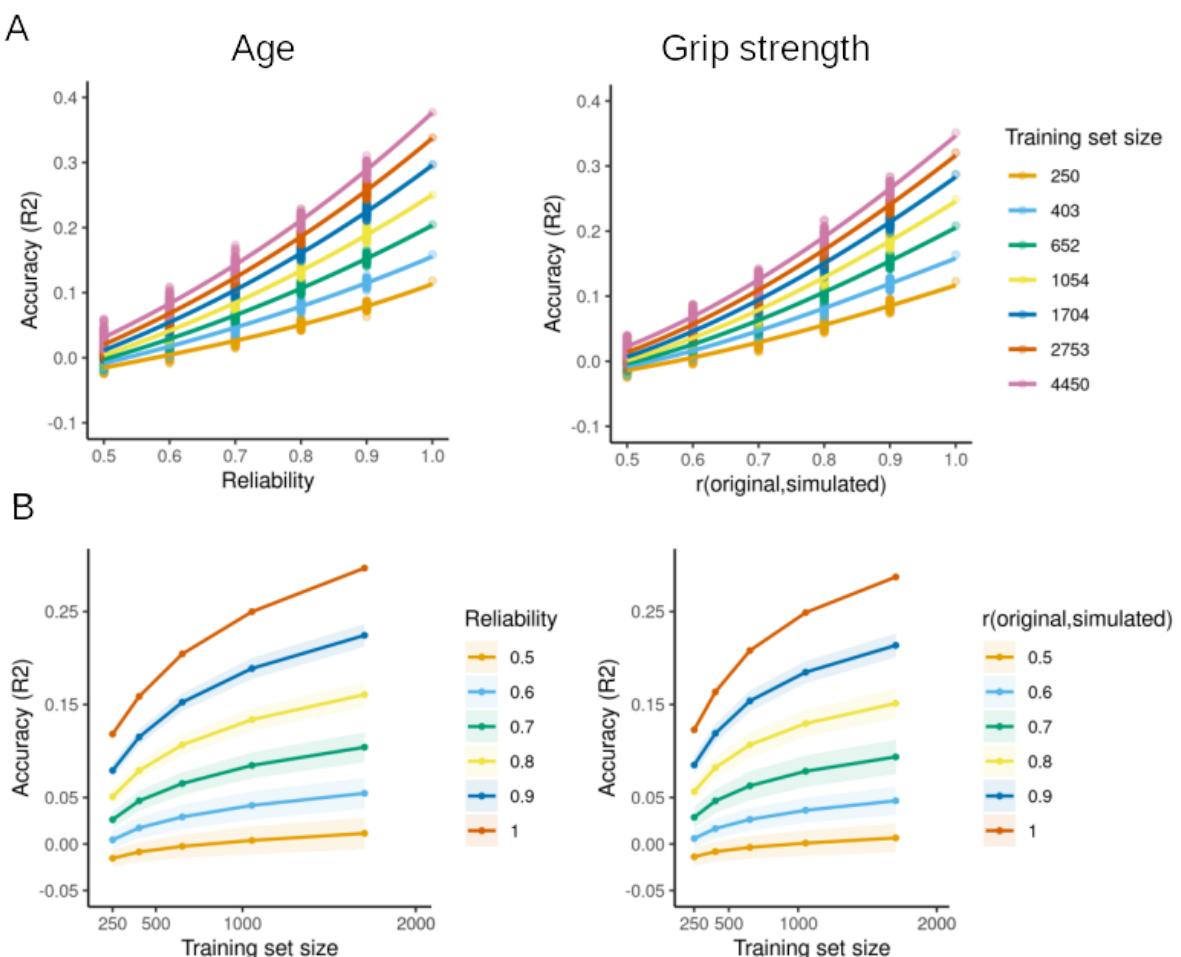


Figure 3. Prediction and subsampling in UKB. (A) Impact of training set size on original and simulated data with reduced reliability. Results for age prediction displayed in the left panel and hand grip strength in the right. Results were fitted with an exponential function for illustration purposes. (B) Improvement in prediction accuracy scales with sample size. Visualisations were restricted to sample sizes from 250 to 1700 for illustration of large

accuracy increases in smaller sample sizes. Solid lines represent the mean across all 100 simulated datasets in each correlation band and shaded areas represent 2 standard deviations in prediction accuracies. For the full range, see supplementary figure 9. Please note that panels A and B are based on the same data.

Discussion

Here we demonstrated the burden of low phenotypic reliability on brain-based prediction performance. Our results suggest that especially when associations between brain features and behavioural assessments are weak to moderate, levels of reliability that are common for behavioural phenotypes can substantially attenuate most of the shared variance. Importantly, this attenuation holds irrespective of feature definition, prediction algorithm or dataset. Furthermore, we show that while a larger sample size increases the accuracy of brain-behaviour predictions, highly reliable data in smaller samples can outperform large amounts of moderately reliable data. Importantly, our results indicate that highly reliable data can benefit the most from increasing sample size.

Phenotypic reliability is important for robust results

The attenuation of a correlation between two variables by their reliability was already described by Charles Spearman in 1910. Here we aimed to demonstrate that sophisticated machine learning approaches also suffer from the impact of low reliability when learning brain-behaviour associations. Generally, we found phenotypic reliability attenuated prediction accuracy in a similar manner to what has been described for correlation (Nunnally, 1970; Zuo et al., 2019). Our results show that high reliability of phenotypes is paramount for the prediction of individual differences from neuroimaging. Importantly, we observed that reliability levels lower than 0.6 can make the investigation of predictive validity (e.g. is functional connectivity a good predictor of phenotype X) meaningless, as explainable variance is overshadowed by variance of no interest. Even reliability of $r = 0.8$, which is at the border of what is considered good (0.6 - 0.8) and excellent (> 0.8), was found to substantially attenuate brain-behaviour relationships. This is particularly worrying as many behavioural assessments available in large neuroimaging datasets routinely used for prediction exhibit reliabilities within the 'good' range (Hedge et al., 2018; Scott, Sorrell, &

Benitez, 2019; Enkavi et al., 2019; Taylor et al., 2020; Fawns-Ritchie & Deary, 2020; Anokhin et al., 2022). Strong relationships (e.g. age) were less susceptible to fatal attenuation by low reliabilities; however, current estimates indicate that such large effect sizes for brain-phenotype associations are the exception rather than the rule (Button et al., 2013; Marek et al., 2022).

Overall, our results suggest that many behavioural assessments currently collected may be unsuitable for individualised predictions due to their suboptimal test-retest reliability. Low prediction accuracies observed in many recent reports (Dubois, Galdi, Han, Paul, & Adolphs, 2018; Li et al., 2019; Pervaiz et al., 2020; Mansour, Tian, Yeo, Cropley, & Zalesky, 2021; Wu et al., 2021; McCormick, Arnemann, Ito, Hanson, & Cole, 2022; Heckner et al., 2023), relative to desirable levels for medical applications (Barch & Carter, 2008; Streiner et al., 2015) may thus be partly driven by the low reliability of targets. This in turn limits further insights into interindividual differences in brain function and the search for neuroimaging-based biomarkers for clinical application. Importantly, the final attenuation of relationships depends on the reliability of both brain features and behavioural targets (Nunnally, 1970) and may partly explain the difference in prediction accuracy of age and grip strength between HCP and UKB. That said, the results presented here are likely to hold for functional connectivity-based predictions in general as our findings were replicated across datasets with different reliabilities (Marek et al., 2022) and acquisition times, shown to influence the robustness of connectivity estimates (Noble et al., 2017). Lastly, we also note that while high reliability is necessary for meaningful investigations of predictive validity, it is not sufficient. Blindly optimising for reliability will thus not guarantee better prediction accuracy (Finn & Rosenberg, 2021).

In addition to overall low prediction performance for data with less than excellent reliabilities, we observed large variance in prediction accuracy in simulated data. Specifically, datasets with good reliability ($r = 0.6 - 0.8$) showed accuracies that could result in opposite conclusions. For example, at $r = 0.7$, the highest accuracies ($R^2 \approx 0.1$) were comparable to those reported for many behavioural assessments (Ooi et al., 2022; Sasse et al., 2022), while the worst observed accuracy represented a failure of prediction (i.e., $R^2 < 0$). As in our simulations, measurement noise was randomly distributed; these results suggest that even phenotypes with good reliability may contain enough noise to produce results that will not replicate. Conversely, the higher the reliability, the lower the risk of the variance in results caused by random noise to reach $R^2 = 0$. Our findings therefore reinforce the necessity for authors to replicate their prediction results across datasets or validate their models in truly independent samples (Poldrack, Huckins, & Varoquaux, 2020).

Large samples are necessary but not sufficient

In a recent study, Marek and colleagues (2022) have suggested that investigating brain-phenotype associations requires sample sizes of $n > 2000$, as sampling variability in small effects can result in imprecise effect size estimates. While cognitive ability and total psychopathology used by the authors as exemplary phenotypes have been reported to have excellent reliability ($ICC > 0.9$; however, see Tiego et al. (2022) for a discussion), the remaining phenotypes that were assessed have more modest reliabilities ($ICC = 0.31 - 0.82$) (Han & Adolphs, 2020; Taylor et al., 2020; Fawns-Ritchie & Deary, 2020; Fox, Manly, Slotkin, Devin Peipert, & Gershon, 2021; Anokhin et al., 2022). Given this large variation in reliability, the reported sample size requirement may not be a one-size-fits-all recommendation (Rosenberg & Finn, 2022). Here we demonstrate that compared to less reliable data from thousands of participants, highly reliable targets may be predicted equally well in samples of few hundred to few thousand, depending on the effect size. Such sample sizes are already achieved by many consortia to date. For highly reliable measurements, true effects may thus be actually higher than what current estimates show as effects will be less attenuated by low reliability (Zuo et al., 2019). We therefore suggest that exploratory studies of individual differences may be more feasible if target selection and data acquisition put stronger focus on phenotypic measurement reliability. Research questions where samples of thousands of participants are difficult to acquire (e.g. specific conditions) may thus benefit from optimising for greater measurement reliability before embarking on big data collection.

Our results showed that larger samples always resulted in better prediction accuracy, as has been previously reported (Traut et al., 2022); however, only highly reliable data could fully benefit from increases in sample size. Across a broad range of tested variables, empirical reliability (estimated from the test-retest data) was rarely excellent (5 out of 39 tested in HCP-YA, 0 out of 17 in UKB), replicating observations from other large datasets (Anokhin et al., 2022). Furthermore, empirical reliability was generally lower than that reported at test development (Akshoomoff et al., 2013; Reuben et al., 2013; Weintraub et al., 2013; Heaton et al., 2014). Similar differences in reliability between datasets are not uncommon and may be due to differences in retest intervals (Scott et al., 2019; Taylor et al., 2020; Han & Adolphs, 2020; Anokhin et al., 2022). However, assessments of behaviour in large datasets in particular may be subject to other sources of measurement noise resulting from specifics of big data collection such as site differences, coordinator training, relatively low number of trials per task or shortened versions of validated tests, and participant fatigue from lengthy

acquisition protocols. If this is indeed true and reliabilities of phenotypes in large datasets are lower than those reported at test development, many available datasets may be of limited use for individual-differences research and further increasing sample size (e.g. to biobank levels) will be of little benefit. We therefore urge that any attempts at identifying biomarkers must involve a careful consideration and thorough assessment of the reliability of behavioural measurements before data is collected at larger scales and evaluated for validity.

Conclusion

Excellent reliability of phenotypic assessments is paramount for investigating brain-behaviour associations. Our results indicate that poor reliability may strongly attenuate or even conceal actual associations, leading to scientifically questionable conclusions about the predictive validity of neuroimaging. Moreover, low reliability is highly undesirable in practice as it reduces precision and thus obstructs clinical translation. Finally, it is societally unacceptable when resources are spent on acquiring large-scale datasets with unreliable "markers" of behaviour. An optimal choice of targets or increasing reliability via more rigorous testing strategies (Zorowitz & Niv, 2022) is necessary to fully exploit the potential benefits from big data initiatives in neuroscience.

References

Akshoomoff, N., Beaumont, J. L., Bauer, P. J., Dikmen, S. S., Gershon, R. C., Mungas, D., ... Heaton, R. K. (2013). Viii. Nih Toolbox Cognition Battery (cb): Composite Scores of Crystallized, Fluid, and Overall Cognition. *Monographs of the Society for Research in Child Development*, 78(4), 119–132. doi: 10.1111/mono.12038

Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L. R., Griffanti, L., Douaud, G., ... Smith, S. M. (2018). Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. *NeuroImage*, 166, 400–424. doi: 10.1016/j.neuroimage.2017.10.034

Amico, E., & Goñi, J. (2018). The quest for identifiability in human functional connectomes. *Scientific Reports*, 8(1), 1–14. doi: 10.1038/s41598-018-25089-1

Anokhin, A. P., Luciana, M., Banich, M., Barch, D., Bjork, J. M., Gonzalez, M. R., ... Thompson, W. (2022). Age-related changes and longitudinal stability of individual differences in ABCD Neurocognition measures. *Developmental Cognitive Neuroscience*, 54, 101078. doi: 10.1016/j.dcn.2022.101078

Barch, D. M., & Carter, C. S. (2008). Measurement Issues in the Use of Cognitive Neuroscience Tasks in Drug Development for Impaired Cognition in Schizophrenia: A Report of the Second Consensus Building Conference of the CNTRICS Initiative. *Schizophrenia Bulletin*, 34(4), 613–618. doi: 10.1093/schbul/sbn037

Beckmann, C. F., & Smith, S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. *IEEE Transactions on Medical Imaging*, 23(2), 137–152. doi: 10.1109/TMI.2003.822821

Bohannon, R. W., Bubela, D. J., Magasi, S. R., & Gershon, R. C. (2011). Relative reliability of three objective tests of limb muscle strength. *Isokinetics and Exercise Science*, 19(2). doi: 10.3233/IES-2011-0400

Bookheimer, S. Y., Salat, D. H., Terpstra, M., Ances, B. M., Barch, D. M., Buckner, R. L., ... Yacoub, E. (2019). The Lifespan Human Connectome Project in Aging: An overview.

NeuroImage, 185, 335–348. doi: 10.1016/j.neuroimage.2018.10.009

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. *Nature Reviews Neuroscience*, 14(5), 365–376. doi: 10.1038/nrn3475

Castellanos, F. X., Di Martino, A., Craddock, R. C., Mehta, A. D., & Milham, M. P. (2013). Clinical applications of the functional connectome. *NeuroImage*, 80, 527–540. doi: 10.1016/j.neuroimage.2013.04.083

Cicchetti, D. V., & Sparrow, S. A. (1981). Developing criteria for establishing interrater reliability of specific items: Applications to assessment of adaptive behavior. *American Journal of Mental Deficiency*, 86, 127–137.

Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., ... Satterthwaite, T. D. (2017). Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. *NeuroImage*, 154, 174–187. doi: 10.1016/j.neuroimage.2017.03.020

Cui, Z., & Gong, G. (2018). The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. *NeuroImage*, 178, 622–637. doi: 10.1016/j.neuroimage.2018.06.001

Dubois, J., Galdi, P., Han, Y., Paul, L. K., & Adolphs, R. (2018). Resting-State Functional Brain Connectivity Best Predicts the Personality Dimension of Openness to Experience. *Personality Neuroscience*, 1, e6. doi: 10.1017/pen.2018.8

Eickhoff, S. B., & Langner, R. (2019). Neuroimaging-based prediction of mental traits: Road to utopia or Orwell? *PLOS Biology*, 17(11), e3000497. doi: 10.1371/journal.pbio.3000497

Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, S., ... Hariri, A. R. (2020). What Is the Test-Retest Reliability of Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-Analysis. *Psychological Science*, 31(7), 792–806. doi: 10.1177/0956797620916786

Enkavi, A. Z., Eisenberg, I. W., Bissett, P. G., Mazza, G. L., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Large-scale analysis of test–retest reliabilities of self-regulation measures. *Proceedings of the National Academy of Sciences*, 116(12), 5472–5477. doi: 10.1073/pnas.1818430116

Fawns-Ritchie, C., & Deary, I. J. (2020). Reliability and validity of the UK Biobank cognitive tests. *PLOS ONE*, 15(4), e0231627. doi: 10.1371/journal.pone.0231627

Finn, E. S. (2021). Is it time to put rest to rest? *Trends in Cognitive Sciences*, 25(12), 1021–1032. doi: 10.1016/j.tics.2021.09.005

Finn, E. S., & Rosenberg, M. D. (2021). Beyond fingerprinting: Choosing predictive connectomes over reliable connectomes. *NeuroImage*, 239, 118254. doi: 10.1016/j.neuroimage.2021.118254

Finn, E. S., Scheinost, D., Finn, D. M., Shen, X., Papademetris, X., & Constable, R. T. (2017). Can brain state be manipulated to emphasize individual differences in functional connectivity? *NeuroImage*, 160, 140–151. doi: 10.1016/j.neuroimage.2017.03.064

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., ... Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. *Nature Neuroscience*, 18(11), 1664–1671. doi: 10.1038/nn.4135

Fox, R. S., Manly, J. J., Slotkin, J., Devin Peipert, J., & Gershon, R. C. (2021). Reliability and Validity of the Spanish-Language Version of the NIH Toolbox. *Assessment*, 28(2), 457–471. doi: 10.1177/1073191120913943

Frenay, B., & Verleysen, M. (2014). Classification in the Presence of Label Noise: A Survey. *IEEE Transactions on Neural Networks and Learning Systems*, 25(5), 845–869. doi: 10.1109/TNNLS.2013.2292894

Gabrieli, J. D. E., Ghosh, S. S., & Whitfield-Gabrieli, S. (2015). Prediction as a Humanitarian and Pragmatic Contribution from Human Cognitive Neuroscience. *Neuron*, 85(1), 11–26. doi: 10.1016/j.neuron.2014.10.047

Garcia, L. P. F., de Carvalho, A. C. P. L. F., & Lorena, A. C. (2015). Effect of label noise in the complexity of classification problems. *Neurocomputing*, 160, 108–119. doi: 10.1016/j.neucom.2014.10.085

Glasser, M. F., Sotiroopoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., ... Jenkinson, M. (2013). The minimal preprocessing pipelines for the Human Connectome Project. *NeuroImage*, 80, 105–124. doi: 10.1016/j.neuroimage.2013.04.127

Hamilton, A., Balnave, R., & Adams, R. (1994). Grip Strength Testing Reliability. *Journal of Hand Therapy*, 7(3), 163–170. doi: 10.1016/S0894-1130(12)80058-5

Han, Y., & Adolphs, R. (2020). Estimating the heritability of psychological measures in the Human Connectome Project dataset. *PLOS ONE*, 15(7), e0235860. doi: 10.1371/journal.pone.0235860

Harms, M. P., Somerville, L. H., Ances, B. M., Andersson, J., Barch, D. M., Bastiani, M., ... Yacoub, E. (2018). Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. *NeuroImage*, 183, 972–984. doi: 10.1016/j.neuroimage.2018.09.060

He, T., An, L., Chen, P., Chen, J., Feng, J., Bzdok, D., ... Yeo, B. T. T. (2022). Meta-matching as a simple framework to translate phenotypic predictive models from big to small data. *Nature Neuroscience*, 25(6), 795–804. doi: 10.1038/s41593-022-01059-9

Heaton, R. K., Akshoomoff, N., Tulsky, D., Mungas, D., Weintraub, S., Dikmen, S., ... Gershon, R. (2014). Reliability and Validity of Composite Scores from the NIH Toolbox Cognition Battery in Adults. *Journal of the International Neuropsychological Society*, 20(6), 588–598. doi: 10.1017/S1355617714000241

Heckner, M. K., Cieslik, E. C., Patil, K. R., Gell, M., Eickhoff, S. B., Hoffstädter, F., & Langner, R. (2023). Predicting executive functioning from functional brain connectivity: Network specificity and age effects. *Cerebral Cortex*, bhac520. doi: 10.1093/cercor/bhac520

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive

tasks do not produce reliable individual differences. *Behavior Research Methods*, 50(3), 1166–1186. doi: 10.3758/s13428-017-0935-1

Hedges, E. P., Dimitrov, M., Zahid, U., Brito Vega, B., Si, S., Dickson, H., ... Kempton, M. J. (2022). Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream. *NeuroImage*, 246, 118751. doi: 10.1016/j.neuroimage.2021.118751

Helleputte, T., Paul, J., & Gramme, P. (2021). *LiblineaR*. Retrieved from <https://search.r-project.org/CRAN/refmans/LiblineaR/html/heuristicC.html>

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. *NeuroImage*, 17(2), 825–841. doi: 10.1006/nimg.2002.1132

Kong, R., Yang, Q., Gordon, E., Xue, A., Yan, X., Orban, C., ... Yeo, B. T. T. (2021). Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior. *Cerebral Cortex*, 31(10), 4477–4500. doi: 10.1093/cercor/bhab101

Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. *Biometrics*, 33(1), 159–174. doi: 10.2307/2529310

Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., ... Yeo, B. T. T. (2019). Global signal regression strengthens association between resting-state functional connectivity and behavior. *NeuroImage*, 196, 126–141. doi: 10.1016/j.neuroimage.2019.04.016

Mansour, S., Tian, Y., Yeo, B. T. T., Cropley, V., & Zalesky, A. (2021). High-resolution connectomic fingerprints: Mapping neural identity and behavior. *NeuroImage*, 229, 117695. doi: 10.1016/j.neuroimage.2020.117695

Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., ... Dosenbach, N. U. F. (2022). Reproducible brain-wide association studies require thousands of individuals. *Nature*, 603(7902), 654–660. doi: 10.1038/s41586-022-04492-9

McCormick, E. M., Arnemann, K. L., Ito, T., Hanson, S. J., & Cole, M. W. (2022). Latent functional connectivity underlying multiple brain states. *Network Neuroscience*, 6(2), 570–590. doi: 10.1162/netn_a_00234

McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. *Psychological Methods*, 1, 30–46. doi: 10.1037/1082-989X.1.1.30

Milham, M. P., Vogelstein, J., & Xu, T. (2021). Removing the Reliability Bottleneck in Functional Magnetic Resonance Imaging Research to Achieve Clinical Utility. *JAMA Psychiatry*. doi: 10.1001/jamapsychiatry.2020.4272

Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., ... Smith, S. M. (2016). Multimodal population brain imaging in the UK Biobank prospective epidemiological study. *Nature Neuroscience*, 19(11), 1523–1536. doi: 10.1038/nn.4393

More, S., Eickhoff, S. B., Caspers, J., & Patil, K. R. (2021). Confound Removal and Normalization in Practice: A Neuroimaging Based Sex Prediction Case Study. In Y. Dong, G. Ifrim, D. Mladenović, C. Saunders, & S. Van Hoecke (Eds.), *Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track* (pp. 3–18). Cham: Springer International Publishing. doi: 10.1007/978-3-030-67670-4_1

Noble, S., Scheinost, D., & Constable, R. T. (2019). A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis. *NeuroImage*, 203, 116157. doi: 10.1016/j.neuroimage.2019.116157

Noble, S., Scheinost, D., & Constable, R. T. (2021). A guide to the measurement and interpretation of fMRI test-retest reliability. *Current Opinion in Behavioral Sciences*, 40, 27–32. doi: 10.1016/j.cobeha.2020.12.012

Noble, S., Spann, M. N., Tokoglu, F., Shen, X., Constable, R. T., & Scheinost, D. (2017). Influences on the Test–Retest Reliability of Functional Connectivity MRI and its Relationship with Behavioral Utility. *Cerebral Cortex*, 27(11), 5415–5429. doi: 10.1093/cercor/bhx230

Novick, M. R. (1966). The axioms and principal results of classical test theory. *Journal of*

Mathematical Psychology, 3(1), 1–18. doi: 10.1016/0022-2496(66)90002-2

Nunnally, J. C. (1970). *Introduction to psychological measurement* (pp. xv, 572). New York, NY, US: McGraw-Hill.

Ooi, L. Q. R., Chen, J., Zhang, S., Kong, R., Tam, A., Li, J., ... Yeo, B. T. T. (2022).

Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI. *NeuroImage*, 263, 119636. doi: 10.1016/j.neuroimage.2022.119636

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. *The Journal of Machine Learning Research*, 12(null), 2825–2830.

Pervaiz, U., Vidaurre, D., Woolrich, M. W., & Smith, S. M. (2020). Optimising network modelling methods for fMRI. *NeuroImage*, 211, 116604. doi: 10.1016/j.neuroimage.2020.116604

Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of Best Practices for Evidence for Prediction: A Review. *JAMA Psychiatry*, 77(5), 534–540. doi: 10.1001/jamapsychiatry.2019.3671

Reuben, D. B., Magasi, S., McCreath, H. E., Bohannon, R. W., Wang, Y.-C., Bubela, D. J., ... Gershon, R. C. (2013). Motor assessment using the NIH Toolbox. *Neurology*, 80(11 Supplement 3), S65–S75. doi: 10.1212/WNL.0b013e3182872e01

Rifkin, R. M., & Lippert, R. A. (2007). *Notes on Regularized Least Squares*. Retrieved from <https://dspace.mit.edu/handle/1721.1/37318>

Rolnick, D., Veit, A., Belongie, S., & Shavit, N. (2018, February 26). *Deep Learning is Robust to Massive Label Noise*. arXiv. doi: 10.48550/arXiv.1705.10694

Rosenberg, M. D., & Finn, E. S. (2022). How to establish robust brain–behavior relationships without thousands of individuals. *Nature Neuroscience*, 1–3. doi: 10.1038/s41593-022-01110-9

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional MRI data: Combining independent

component analysis and hierarchical fusion of classifiers. *NeuroImage*, 90, 449–468. doi: 10.1016/j.neuroimage.2013.11.046

Sasse, L., Larabi, D. I., Omidvarnia, A., Jung, K., Hoffstaedter, F., Jocham, G., ... Patil, K. R. (2022, October 3). *Intermediately Synchronised Brain States optimise trade-off between Subject Identifiability and Predictive Capacity* (p. 2022.09.30.510304). p. 2022.09.30.510304. bioRxiv. doi: 10.1101/2022.09.30.510304

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., ... Yeo, B. T. T. (2018). Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. *Cerebral Cortex*, 28(9), 3095–3114. doi: 10.1093/cercor/bhx179

Scott, E. P., Sorrell, A., & Benitez, A. (2019). Psychometric Properties of the NIH Toolbox Cognition Battery in Healthy Older Adults: Reliability, Validity, and Agreement with Standard Neuropsychological Tests. *Journal of the International Neuropsychological Society: JINS*, 25(8), 857–867. doi: 10.1017/S1355617719000614

Seitzman, B. A., Gratton, C., Marek, S., Raut, R. V., Dosenbach, N. U. F., Schlaggar, B. L., ... Greene, D. J. (2020). A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. *NeuroImage*, 206, 116290. doi: 10.1016/j.neuroimage.2019.116290

Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X., & Constable, R. T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. *Nature Protocols*, 12(3), 506–518. doi: 10.1038/nprot.2016.178

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. *Psychological Bulletin*, 86, 420–428. doi: 10.1037/0033-2909.86.2.420

Spearman, C. (1910). Correlation calculated from faulty data. *British Journal of Psychology*, 3(3), 271–295.

Streiner, D. L., Norman, G. R., & Cairney, J. (2015). *Health Measurement Scales: A Practical Guide to Their Development and Use*. Oxford University Press.

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., ... Collins, R. (2015). UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. *PLOS Medicine*, 12(3), e1001779. doi: 10.1371/journal.pmed.1001779

Sui, J., Jiang, R., Bustillo, J., & Calhoun, V. (2020). Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and Promises. *Biological Psychiatry*, 0(0). doi: 10.1016/j.biopsych.2020.02.016

Taylor, B. K., Frenzel, M. R., Eastman, J. A., Wiesman, A. I., Wang, Y.-P., Calhoun, V. D., ... Wilson, T. W. (2020). Reliability of the NIH toolbox cognitive battery in children and adolescents: A 3-year longitudinal examination. *Psychological Medicine*, 1–10. doi: 10.1017/S0033291720003487

Tian, Y., & Zalesky, A. (2021). Machine learning prediction of cognition from functional connectivity: Are feature weights reliable? *NeuroImage*, 245, 118648. doi: 10.1016/j.neuroimage.2021.118648

Tiego, J., & Fornito, A. (2022). *Putting behaviour back into brain-behaviour correlation analyses—Commentary on Marek et al. (2022)*. Retrieved from <https://osf.io/srcbm/>

Traut, N., Heuer, K., Lemaître, G., Beggiato, A., Germanaud, D., Elmaleh, M., ... Varoquaux, G. (2022). Insights from an autism imaging biomarker challenge: Promises and threats to biomarker discovery. *NeuroImage*, 255, 119171. doi: 10.1016/j.neuroimage.2022.119171

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., Ugurbil, K., & WU-Minn HCP Consortium. (2013). The WU-Minn Human Connectome Project: An overview. *NeuroImage*, 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041

Vanderwal, T., Eilbott, J., Finn, E. S., Craddock, R. C., Turnbull, A., & Castellanos, F. X. (2017). Individual differences in functional connectivity during naturalistic viewing conditions. *NeuroImage*, 157, 521–530. doi: 10.1016/j.neuroimage.2017.06.027

Varoquaux, G., & Poldrack, R. A. (2019). Predictive models avoid excessive reductionism in cognitive neuroimaging. *Current Opinion in Neurobiology*, 55, 1–6. doi:

10.1016/j.conb.2018.11.002

Wang, D., & Tan, X. (2018). Robust Distance Metric Learning via Bayesian Inference. *IEEE Transactions on Image Processing*, 27(3), 1542–1553. doi: 10.1109/TIP.2017.2782366

Weintraub, S., Dikmen, S. S., Heaton, R. K., Tulsky, D. S., Zelazo, P. D., Bauer, P. J., ...

Gershon, R. C. (2013). Cognition assessment using the NIH Toolbox. *Neurology*, 80(11 Supplement 3), S54–S64. doi: 10.1212/WNL.0b013e3182872ded

Woo, C.-W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. *Nature Neuroscience*, 20(3), 365–377. doi: 10.1038/nn.4478

Wu, J., Eickhoff, S. B., Hoffstaedter, F., Patil, K. R., Schwender, H., Yeo, B. T. T., & Genon, S. (2021). A Connectivity-Based Psychometric Prediction Framework for Brain–Behavior Relationship Studies. *Cerebral Cortex*, 31(8), 3732–3751. doi: 10.1093/cercor/bhab044

Zhu, X., & Wu, X. (2004). Class Noise vs. Attribute Noise: A Quantitative Study. *Artificial Intelligence Review*, 22(3), 177–210. doi: 10.1007/s10462-004-0751-8

Zorowitz, S., & Niv, Y. (2022, October 31). *Improving the reliability of cognitive task measures: A narrative review*. PsyArXiv. doi: 10.31234/osf.io/phzrb

Zuo, X.-N., Xu, T., & Milham, M. P. (2019). Harnessing reliability for neuroscience research. *Nature Human Behaviour*, 3(8), 768–771. doi: 10.1038/s41562-019-0655-x