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Abstract

Current major efforts in human neuroimaging research aim to understand individual

differences and identify biomarkers for clinical applications. One particularly promising

approach is the prediction of individual-level behavioural phenotypes (e.g. treatment

response, cognition) from brain imaging data. An essential prerequisite to identify replicable

brain-behaviour prediction models is sufficient measurement reliability. By attenuating the

relationship between two variables, low reliability increases the sample size necessary to

identify an effect, making large datasets a necessity rather than an advantage. While

previous work has evaluated the reliability of brain-based measures, the impact of the

reliability of behavioural phenotypes has been largely neglected, as target selection for

prediction is often guided by scientific interest or data availability. Here we demonstrate the

impact of low phenotypic reliability on individual-level prediction performance. Using

simulated and empirical data from the Human Connectome Projects, we found that even

moderate reliability levels of commonly used behavioural phenotypes can markedly limit the

ability to link brain and behaviour when underlying relations are weak. Next, using 5000

subjects from the UK Biobank, we show that highly reliable data in smaller samples

outperform large amounts of moderately reliable data. These findings suggest that research

programmes focused on identifying generalizable brain–behaviour associations must

seriously consider the reliability of outcome measures. Ultimately, a stronger focus on

reliability will help reduce the financial and societal costs incurred in acquiring large-scale

datasets with unreliable "markers" of behaviour.
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Introduction

Major ongoing efforts in human neuroimaging research aim to understand individual

differences and identify biomarkers for clinical applications. One particularly promising

approach in this regard is the prediction of clinically relevant phenotypes in individuals (e.g.

symptoms, treatment response, intellectual abilities) from functional and structural brain

measurements (Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015; Woo, Chang, Lindquist, &

Wager, 2017; Varoquaux & Poldrack, 2019). Patterns of (resting-state) functional

connectivity, the statistical relationship between regional time courses of brain activity (most

often expressed as Pearson’s correlation), have been among prominent brain features used

for prediction of such phenotypes (Castellanos, Di Martino, Craddock, Mehta, & Milham,

2013; Finn et al., 2015). A large amount of research has focused on the development and

improvement of approaches to brain-behaviour predictions (Shen et al., 2017; Pervaiz,

Vidaurre, Woolrich, & Smith, 2020; Kong et al., 2021). Thus far, however, accuracies have

remained too low to provide major insights into neural substrates of individual differences or

reach clinical relevance (Eickhoff & Langner, 2019; Sui, Jiang, Bustillo, & Calhoun, 2020;

Finn, 2021; Tian & Zalesky, 2021; He et al., 2022).

An essential prerequisite for identifying replicable brain-behaviour associations is sufficient

reliability of measurements (Milham, Vogelstein, & Xu, 2021). In psychometrics, reliability

reflects how accurately a test can measure a specific construct. In the context of individual

differences, test-retest reliability has received the most attention. It is understood as the

degree to which a measure ranks individuals consistently across multiple occasions (i.e. low

performers remain low performers on repeated testing). Note that this assumes the measure

in question assesses a stable characteristic of the individual or the amount of change

between occasions does not differ between individuals (e.g., due to practice from repeated

testing). Test-retest reliability is typically investigated by intraclass correlation (ICC; see

McGraw and Wong (1996) for a detailed discussion), which is often interpreted as excellent

for ICC > 0.8, good for 0.6 - 0.8, moderate for 0.4 - 0.6 and poor for < 0.4 (Landis & Koch,

1977; Hedge, Powell, & Sumner, 2018). Reliability is tightly related to measurement noise,

understood as the random variability that produces a discrepancy between observed and

true values (or repeated observations), in that a high level of noise results in low reliability.

While a large amount of focus has been put on assessing the reliability of brain-based

measures (Elliott et al., 2020; Hedges et al., 2022; Noble, Scheinost, & Constable, 2019)

and ways to improve it (Finn et al., 2017; Vanderwal et al., 2017; Amico & Goñi, 2018; Li et

al., 2019; Pervaiz et al., 2020; Noble, Scheinost, & Constable, 2021), the reliability of
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behavioural phenotypes used as prediction targets has been largely neglected. Selecting

scientifically or clinically relevant targets for prediction is often guided by pragmatism and

logistic constraints (e.g., dataset availability), rather than reliability considerations.

Furthermore, classical experimental paradigms may not be well suited for the investigation of

individual differences as between-subject variance in such paradigms is often low by design,

resulting in low reliability (Hedge et al., 2018). Finally, current assessments of the test-retest

reliability of behavioural measures commonly used in the literature show that most fall below

the ‘excellent’ reliability (Enkavi et al., 2019; Hedge et al., 2018) that is required for clinical

applications (Landis & Koch, 1977; Cicchetti & Sparrow, 1981; Barch & Carter, 2008;

Streiner, Norman, & Cairney, 2015). A recent meta-analysis of published studies by Enkavi

and colleagues (2019) showed the average reliability of 36 tasks assessing self-regulation

was on the border between good and moderate (ICC = 0.61), and newly collected data for

the same tasks showed even poor reliability (ICC = 0.31). Similarly, assessments of reliability

in large datasets and longitudinal samples have reported lower estimates than those

reported in test manuals, which often report reliability assessed over relatively short retest

intervals (Han & Adolphs, 2020; Taylor et al., 2020; Anokhin et al., 2022).

High measurement reliability is essential as it attenuates relationships between variables. In

classical statistics this is manifested by setting an upper bound on effect size (Spearman,

1910). In the context of machine learning, low reliability can have a profound impact on

model performance by lowering signal-to-noise ratio. Label or target noise (akin to

measurement noise) reduces the accuracy of classification algorithms (Frenay & Verleysen,

2014) and increases uncertainty in parameter estimates, training time (Zhu & Wu, 2004) as

well as the complexity of a given problem (Garcia, de Carvalho, & Lorena, 2015). Due to

inadequate reliability, models may fit variance of no interest (e.g., measurement noise)

during training. This results in poor generalisation performance or a failure to learn

altogether. Therefore, low out-of-sample prediction accuracy may be a consequence of

unreliable targets rather than genuinely low predictive validity. This, in turn, can hamper the

assessment of brain-behaviour relationships and strongly undermine efforts directed at

biomarker discovery.

Due to effect size attenuation, low reliability also increases the sample sizes necessary to

identify effects (Nunnally, 1970; Zuo, Xu, & Milham, 2019). Similarly, targets with higher

measurement noise require larger training sets to achieve comparable classification

accuracy to less noisy targets (Rolnick, Veit, Belongie, & Shavit, 2018; Wang & Tan, 2018).

As a consequence, the estimated strength of brain associations with many behavioural

phenotypes will be attenuated and require very large samples to become stable (Marek et

al., 2022). These considerations make large datasets for biomarker discovery a necessity
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rather than an advantage, which in turn poses undesirable logistical, financial and ethical

challenges.

Here we examined how the reliability of behavioural phenotypes affects their prediction

accuracy in investigations of brain-behaviour relationships and illustrate the tradeoff between

test-retest reliability and sample size. Using a simulation approach we systematically tested

the effect of reliability on prediction accuracy by incrementally increasing the proportion of

random noise in different phenotypes. Next, we used a sample of 5000 adults to

demonstrate that predicting highly reliable targets in smaller samples can outperform large

samples with limited reliability.

Methods

To investigate the impact of phenotypic reliability on brain-behaviour associations, we used

functional connectivity to predict empirical and simulated data with varying levels of

reliability. Reliability was manipulated by increasing the proportion of random noise

(representing error variance) in our prediction targets. Noise simulations were done using

data of the Human Connectome Project Aging dataset (HCP-A) due to its favourable ratio

between imaging data quality and variance in phenotypic data with high reliability. As

increasing noise for the purposes of our analyses may only be meaningful in highly reliable

phenotypes, we selected prediction targets based on their published estimates of reliability:

age (ICC ≈ 1.0), grip strength (ICC = 0.93; Reuben et al. (2013)), total cognition composite

(ICC = 0.9 - 0.95; Akshoomoff et al. (2013); Heaton et al. (2014)) and crystallised cognition

composite (ICC = 0.9; Akshoomoff et al. (2013); Heaton et al. (2014)). Next, two datasets -

The Human Connectome Project dataset Young Adult (HCP-YA) and UK Biobank (UKB)

were used to investigate the association between reliability and prediction accuracy as

test-retest data was available in both datasets (and not in HCP-A). Lastly, the UKB sample

was used to investigate the interaction between reliability and sample size given the large

number of subjects available. To create simulated data, noise was only manipulated on the

most reliable phenotypes available in the dataset: age (ICC ≈ 1.0) and grip strength (ICC =

0.93 - 0.96; Bohanon et al. (2011); Hamilton et al. (1994)). Unfortunately, none of the

cognitive assessments exhibited reliability values that were high enough for our purpose,

with the highest reliability at r = 0.78 for the trail making task (Fawns-Ritchie & Deary, 2020).

For an overview of datasets see table 1.
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Table 1

Overview of datasets and samples

Dataset Analysis Sample (Female) Age Range

HCP-A Prediction of simulated data 647 (351) 36-89

HCP-YA Prediction of all phenotypes 771 (358) 22-35

Test-retest 46 (32) 22-35

UKB Prediction of simulated data and
all phenotypes

5000 (2714) 48-82

Test-retest 1890 (1012) 48-79

HCP-A, Human Connectome Project Aging; HCP-YA, Human Connectome Project dataset Young Adult; UKB, UK Biobank.

Datasets

Human Connectome Project Aging dataset

For our primary analysis, we used data from the Human Connectome Project Aging dataset

(Bookheimer et al., 2019; Harms et al., 2018), obtained from unrelated healthy adults. Only

subjects with all four complete runs of resting-state fMRI (rs-fMRI) scans and no excessive

head movement (framewise displacement < 0.25 mm, which corresponded to 3SD above the

mean) were analysed, resulting in a sample of 647 subjects for age prediction (351 female,

ages = 36-89) of which not all had all phenotypic data of interest available (see

supplementary methods for details on each phenotype). The rs-fMRI HCP scanning protocol

involved whole-brain multiband gradient-echo echo-planar images acquired on a Siemens

3T Prisma scanner with (TR = 800 ms, 2 mm isotropic voxels). Four rs-fMRI sessions with

488 volumes each (6 min and 41 s) were acquired on two consecutive days, with one

anterior-to-posterior and one posterior-to-anterior encoding direction acquired on each day.
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Human Connectome Young Adult dataset

To investigate the relationship between reliability and prediction accuracy we used data from

the Human Connectome Project Young Adult dataset (Van Essen et al., 2013), partly

consisting of related healthy subjects. Only subjects with with all four complete runs of

rs-fMRI, no excessive head movement (framewise displacement < 0.3 mm, which

corresponded to a displacement of 3SD above the mean) and all phenotypes of interest

were included (n = 713, 358 female, ages = 22-35). In total, 39 behavioural phenotypes that

were available for all subjects and did not display strong ceiling effects were selected for

prediction (see supplementary methods for a full list of phenotypes and their distributions).

Standardised scores were used when available. Additionally, a test-retest dataset for

subjects with all 39 assessments (n = 46, 32 female, ages = 22-35) was used to estimate

phenotypic reliability. The rs-fMRI HCP scanning protocol involved whole-brain multiband

gradient-echo echo-planar images acquired with a 32-channel head coil on a 3T Siemens

“Connectome Skyra” scanner (TR = 720 ms, 2 mm isotropic voxels). Four rs-fMRI sessions

with 1,200 volumes each (14 min and 24 s) were acquired on two consecutive days, with

one left-to-right and one right-to-left phase encoding direction acquired on each day.

UK Biobank

To investigate the association between prediction accuracy and reliability as well as how

reliability interacts with sample size, we randomly sampled n = 5000 (2714 female, ages =

48-82) participants from healthy subjects of the UK Biobank sample (Sudlow et al., 2015).

Healthy participants were defined as subjects without lifetime prevalence of cerebrovascular

diseases, infectious diseases affecting the nervous system, neuropsychiatric disorders or

neurological diseases based on ICD-10 diagnosis from hospital inpatient records and

self-report (see supplementary methods for all excluded data fields). All subjects had

complete rs-fMRI scans and displayed no excessive head movement (framewise

displacement < 0.28 mm, which corresponded to a displacement of 3SD above the mean).

Within this sample we selected 17 phenotypes that were available for all subjects and did not

display strong ceiling effects (see supplementary methods for a full list of phenotypes and

their distributions). Of those, age and grip strength were used for creating simulated data.

Additionally, a sample of 1890 (1012 female, ages = 48-79) subjects with available follow-up

data for all 17 phenotypes from the follow-up imaging session was used to estimate

phenotypic reliability. The mean interval between initial imaging session and follow-up

session was 2 years and 6 months. In brief, the UKB rs-fMRI protocol (Miller et al., 2016)
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included whole-brain multiband images acquired with a 3T Siemens Skyra system using a

32-channel head coil (TR = 735 ms, 2.4 mm isotropic voxels). One rs-fMRI session with 490

volumes each (6 min and 10 s) was acquired at 3 different assessment sites with identical

scanners and platforms.

Simulation of different levels of reliability of selected

phenotypes

For each of the selected prediction targets we created simulated datasets with varying

amounts of noise. According to classical measurement theory (Novick, 1966), any

measurement reflects a mixture of the measured entity and random (as well as systematic)

measurement noise. The reliability of a variable can thus be reduced by increasing the

proportion of error or noise variance while holding between-subject variance constant,

thereby reducing the signal-to-noise ratio. Here we manipulated only the unsystematic

measurement noise, defined as random variability that produces a discrepancy between

observed and true values (or repeated observations). Increasing random noise is ideal for

investigating test-retest reliability as it only affects the variability of measurements around

the average and thus manipulates the ranking across individuals.

In order to induce increasing levels of noise in the target variable, we created datasets

sampled from a standard normal distribution with the same mean and standard deviation as

the original empirically acquired data (which were age adjusted and normalised to mean =

100 and SD = 15 by the HCP consortium). Importantly, the sampled datasets correlated with

the originally observed (empirical) targets at a pre-specified Pearson’s correlation. For

HCP-A, simulated data were set to correlate with the original data at r = 0.99, 0.95, 0.9, 0.85,

0.8, 0.75, 0.7, 0.65, 0.6, 0.55 and 0.5. Given the high computational load for large samples,

simulated UKB data were set to correlate at r = 0.9, 0.8, 0.7, 0.6 and 0.5 with the original

data. For each level of correlation, simulation was repeated 100 times, thus totalling 4400

simulated datasets for HCP-A (4 assessed phenotypes x 11 noise levels x 100 repeats) and

1500 simulated datasets for UKB (3 assessed phenotypes x 5 noise levels x 100 repeats).

We note that only for variables with already perfect reliability (e.g. age) the magnitude of

correlation with the original values directly reflects its new reliability. For variables with

empirical reliability < 1 (i.e. all measures other than age), the actual reliability of simulated

data is lower than the preset correlation between simulated and original data as it will be

attenuated by the variable's true reliability. Simulated datasets were scaled and offset to
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have approximately the same mean and standard deviation as the original measurements to

facilitate absolute agreement (i.e. stability across repeated measurements) between original

‘test’ and simulated ‘retest’ data (for distribution of mean and SD for each dataset see

https://github.com/MartinGell/Reliability/plots). As age did not follow a normal distribution, we

first estimated its probability density from the original data and then sampled simulated data

from this distribution instead.

Phenotype preprocessing

As we used linear ridge regression for prediction, all phenotypes that displayed a

right-skewed distribution were transformed with a natural log transform. As this procedure

manipulated data within participants, there was no data leakage across participants.

fMRI Preprocessing

Both HCP datasets provided minimally preprocessed data. The preprocessing pipeline has

been described in detail elsewhere (Glasser et al., 2013). Briefly, this included gradient

distortion correction, image distortion correction, registration to subjects’ T1w image and to

MNI standard space followed by intensity normalisation of the acquired rs-fMRI images, and

Independent Component Analysis (ICA) followed by an ICA-based X-noiseifier (ICA-FIX)

denoising (Beckmann & Smith, 2004; Salimi-Khorshidi et al., 2014) Additional denoising

steps were conducted by regressing mean time courses of white matter and cerebrospinal

fluid and the global signal, which has been shown to reduce motion-related artefacts (Ciric et

al., 2017). Next, data were linearly detrended and bandpass filtered at 0.01 – 0.1 Hz.

The UKB data were preprocessed through a pipeline developed and run on behalf of UK

Biobank and included the following steps (Alfaro-Almagro et al., 2018): motion correction

using MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002); grand-mean intensity

normalisation of the entire 4D fMRI dataset by a single multiplicative factor; highpass

temporal filtering using Gaussian-weighted least-squares straight line fitting with sigma = 50

sec; Echo Planar Imaging unwarping; Gradient Distortion Correction unwarping; structured

artefact removal through ICA-FIX (Beckmann & Smith, 2004; Salimi-Khorshidi et al., 2014).

No low-pass temporal or spatial smoothing was applied. The preprocessed datasets (named
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as filtered_func_data_clean.nii in the UK Biobank database) were normalised to MNI space

using FSL's applywarp command.

Functional connectivity

The denoised time courses from all datasets were parcellated using the Schaefer et al.

(2018) atlas with 400 cortical regions of interest. The signal time courses were averaged

across all voxels of each parcel. Parcel-wise time-series were used for calculating functional

connectivity between all parcels using Pearson correlation. For HCP datasets, the

correlation coefficients of individual sessions (4 per participant) were transformed into

Fisher-Z scores, and for each connection, an average across sessions was calculated. To

investigate the robustness of our results to granularity and parcellation selection, functional

connectivity between denoised time courses of 300 cortical, subcortical and cerebellar

regions of interest defined by Seitzman et al. (2020) were calculated. Regions were

modelled as 6-mm spheres and calculated from resting state data from the HCP Aging

dataset (results presented in the supplemental material).

Prediction

We used the scikit-learn library [version 0.24.2, (Pedregosa et al., 2011)] to predict all target

variables from functional connectivity (code including exemplary data available online:

https://github.com/MartinGell/Prediction_Reliability). Accuracy was measured using R2

(percentage of variance explained), mean absolute error (MAE) and Pearson correlation

between predicted and observed target values. All predictions were performed using linear

ridge regression as it showed a favourable ratio of computation time to accuracy in previous

work (Cui & Gong, 2018) and preliminary testing (see supplementary methods).

Out-of-sample prediction accuracy was evaluated using a nested cross-validation with 10

outer folds and 5 repeats. Hyperparameter optimization (inner training folds) of the 𝛼

regularisation parameter for ridge regression was done using efficient leave-one-out

cross-validation (Rifkin & Lippert, 2007). The model with the best 𝛼 parameter was then fitted

on the training folds and tested on outer test folds. Within each training fold, neuroimaging

features were standardised by z-scoring across participants before models were trained in

order to ensure that individual features with large variance would not dominate the objective

function. Before prediction (of both original and simulated data), subjects with target values 3
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SD from the sample mean were removed from the complete sample to minimise the impact

of extreme values resulting from random sampling in simulated data. As a preprocessing

step prior to training, neuroimaging features were z-scored within participants.

Control analyses for simulation results in HCP-A

To verify our analyses were robust to analytical degrees of freedom, we repeated our

analyses of the HCP-A dataset using support vector regression, an alternative node

definition for functional connectivity features (using ROIs from Seitzman et al., 2020) and

feature-wise confound removal. For algorithm comparison, we trained a support vector

regression with a linear kernel on neuroimaging features. Out-of-sample prediction accuracy

was evaluated using a non-nested cross-validation with 10 outer folds and 5 repeats. A

heuristic was used to efficiently calculate the hyperparameter C (Helleputte, Paul, &

Gramme, 2021): where G is the matrix multiplication of features and𝑐 =  1

1
𝑛

𝑖 =1

𝑛

∑ 𝐺[𝑖,𝑖]

transposition of features (here: functional connectivity). To investigate whether confounding

effects impacted our results, standard confound variables (age and sex for the prediction of

all phenotypes) were removed from the connectivity features using linear regression.

Confound removal was performed within each training fold and the confound models were

subsequently applied to test data to prevent data leakage (More, Eickhoff, Caspers, & Patil,

2021). All control analyses are presented in the supplemental material.

Association between reliability and prediction accuracy

The relationship between target reliability and prediction accuracy (measured as R2) was

investigated using the HCP-YA dataset. First, the test-retest data of 46 participants was used

to estimate measurement reliability for 39 different behavioural phenotypes by calculating

ICC between the scores from first and second visit. ICC was calculated using a two-way

random effects model for absolute agreement, often referred to as ICC[2,1] (Shrout & Fleiss,

1979). Next, all selected measures were predicted in a sample of 713 subjects from the

HCP-YA dataset using linear ridge regression. As the HCP-YA dataset includes related

subjects, cross-validation was done using a 5 times repeated leave 30% of families out

approach, instead of the 10-fold random split used in other analyses. Family members were

always kept within the same fold in order to maintain independence between the folds.

Confounding effects of age and sex on features were removed using linear regression

trained on the training set and applied to test data within the cross-validation. Finally, the

resulting prediction accuracies (R2) of the 39 different phenotypes were correlated with their
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corresponding reliability (calculated from the test-retest data). To validate our findings, the

above-described approach (with the exception of cross-validation) was repeated using the

UKB dataset. Reliability was estimated for 17 different behavioural assessments using ICC2

between measurements collected during the first and follow-up imaging visits in 1893

subjects. All phenotypes were predicted in a set of 5000 subjects from the UKB using ridge

regression in a nested cross-validation with 10 outer folds and 5 repeats used for our main

analyses.

Subsampling procedure and prediction in the UKB dataset

To examine how the effects of reliability on prediction performance interact with increasing

sample size, we randomly sampled geometrically spaced samples (series with a constant

ratio between successive elements) from 5000 subjects of the UK Biobank starting from n =

250 (250, 403, 652, 1054, 1704, 2753, 4450). By doing so, we aimed to cover sample sizes

ranging from those available in larger neuroimaging studies to international consortia levels.

To be able to compare prediction accuracy between different sample sizes we used a

learning curve function from Sklearn (`learning_curve`). In this approach we first partitioned

a test set of 10% of the full sample (500 subjects). From the remaining data, geometrically

spaced samples of subjects (250, 403, 652, 1054, 1704, 2753, 4450) were sampled without

replacement. Each subsample was then used to train a ridge regression model with

hyperparameter optimization using the same cross-validation set-up with 10 outer folds and

5 repeats used in previous analyses. This approach made the comparison of accuracy

between different sample sizes possible as the test set is held constant for all samples of

training subjects. The entire procedure was repeated 100 times for all simulated and

empirical data.

Results

To investigate the impact of phenotypic reliability on prediction accuracy, we predicted both

the original (empirically acquired) and simulated target data using functional connectivity as

features. Simulated data were manipulated to have reduced reliability (by increased levels of

noise) with regard to the original data. For our main analyses, we used a selection of the

most reliable measures available in the given datasets: total cognition, crystallised cognition

and grip strength (see Methods for details). As a proof of principle, we first present results for

participant age prediction where inducing noise directly corresponds to reducing reliability
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(given that age can be measured with near perfect reliability). For all other target variables,

simulated data reflects data with a reduced correlation with the original empirically acquired

variable. Thus, the ‘true’ reliability of simulated phenotypes is lower than the preset level of

correlation between simulated and original data, as this preset level will be attenuated by

each variable's original reliability.

Low phenotypic reliability reduces accuracy of brain-behaviour

predictions

In the HCP-A dataset, age could be well predicted using functional connectivity features (R2

= 0.64, MAE = 86.45 months). As expected, systematically reducing its reliability resulted in

a sharp decrease in accuracy as measurement noise increased (Fig. 1A). Crucially,

decreasing reliability to levels considered to be good (r = 0.8) reduced prediction accuracy

on average by half (R2 = 0.33, MAE = 117.89 months; for correlation between predicted and

observed values, see supplementary results figure 1). This pattern was robust to variations

in parcellation and algorithm choice (Supplementary results figures 2-3).

From the most reliable phenotypes in the HCP-A dataset, total cognition could be predicted

with an accuracy of R2 = 0.23 (MAE = 10.37), crystallised cognition with R2 = 0.22 (MAE =

10.24) and grip strength with R2 = 0.19 (MAE = 9.79). Similarly to age, reducing the

correlation between the original and simulated scores resulted in a decrease in prediction

accuracy (Fig. 1B). For all three phenotypes, R2 halved at r = 0.8 between original and

simulated data (R2
total cog. = 0.12; R2

crystalized cog. = 0.1; R2
grip strength = 0.1), and reached near 0% of

variance explained at r = 0.6 (R2
total cog. = 0.03; R2

crystalized cog. = 0.02; R2
grip strength = 0.02). MAE

and correlation between predicted and observed scores followed the same pattern

(Supplementary results figure 4). When confounds (age and sex) were removed from

functional connectivity, prediction accuracies decreased overall but still halved at r = 0.8 and

reached 0% of explained variance at r = 0.6 (Supplementary results figure 5).

We note that prediction accuracy could vary by 0.1 - 0.2 of R2 between the best and

worst-performing simulated datasets for the same level of noise depending on the sampling

variability. At moderate levels of reliability (r = 0.7), such variability could result in accuracies

between 0% and 12% of variance explained (Fig. 1C).
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Figure 1. Impact of reliability on prediction accuracy in the HCP-A dataset. (A) Impact

of directly reducing reliability of Age on prediction accuracy (amount of target score variance

explained by predicted scores as indicated by R2). (B) Impact of reducing the correlation

between original and simulated target scores (reflecting reduced reliability) on accuracy in

prediction of total cognition composite score, crystallised cognition composite score and grip

strength. Solid lines represent the mean across all 100 simulated datasets in each

correlation band, shaded areas represent 2 standard deviations in prediction accuracies. (C)

Effect of random noise on variability in prediction accuracy. Colour legend is common for

panels B and C.

Next, we directly investigated the relationship between reliability and brain-phenotype

prediction accuracy in empirical data where reliability could be estimated. Using test-retest

data from the HCP-YA dataset, we estimated the reliability of 39 variables (ICCs = 0.2 - 0.89;

see supplementary figure 6) and correlated these with their prediction accuracy (Fig. 2). R2

displayed a substantial correlation with reliability (r = 0.63, p < 0.001). Given the small

number of subjects, we also correlated R2 with the lower and upper bounds of the ICC and
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observed the same relationship (r = 0.63, p < 0.001 and r = 0.55, p < 0.001, respectively). As

models with negative R2 values may not be comparable in accuracy, we also correlated only

models with positive R2 with reliability and found an even stronger correlation (r = 0.7, p =

0.016). Similar to our main analysis, none of the variables with moderate reliability or lower (r

< 0.5) were predictable. Conversely, only variables with excellent reliability (the picture

vocabulary task, total cognition, grip strength, reading English and crystallised cognition)

could achieve R2 > 0.05. Of these only grip strength was not successfully predicted. The

association between reliability and accuracy replicated in 17 phenotypes (ICCs = 0.22 - 0.81;

see supplementary results figure 7) predicted in the UKB dataset (r = 0.65, p = 0.005;

supplementary results figure 8).

Figure 2. Association between reliability and prediction accuracy. Each datapoint

represents one of 39 phenotypes provided by the HCP-YA dataset.

Influence of reliability on accuracy scales with sample size

Next, we sought to investigate how the interaction between reliability and sample size

impacts brain-behaviour prediction. In general, larger samples resulted in higher prediction

accuracy. As seen in our previous analyses, systematically reducing reliability in both age

and grip strength resulted in reduced accuracy for all training set sizes and followed the
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same pattern of R2 halving at r = 0.8 (Fig. 3A). Crucially, smaller samples with excellent

reliability outperformed larger samples with good to moderate reliability (Fig. 3A). For age

prediction, even samples of 400 subjects with excellent reliability (r = 0.9; R2
mean = 0.12, R2

sd

= 0.004) could outperform the full sample (n = 4450) with a moderate level of phenotypic

reliability common for behavioural assessments (r = 0.6; R2
mean = 0.09, R2

sd = 0.01).

Furthermore, an increase in sample size produced the largest improvement in prediction

accuracy for highly reliable data, while data with moderate reliability showed no or only minor

gains (Fig. 3B). This effect was particularly pronounced at smaller sample sizes

(Supplementary results figure 9).

Figure 3. Prediction and subsampling in UKB. (A) Impact of training set size on original

and simulated data with reduced reliability. Results for age prediction displayed in the left

panel and hand grip strength in the right. Results were fitted with an exponential function for

illustration purposes. (B) Improvement in prediction accuracy scales with sample size.

Visualisations were restricted to sample sizes from 250 to 1700 for illustration of large
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accuracy increases in smaller sample sizes. Solid lines represent the mean across all 100

simulated datasets in each correlation band and shaded areas represent 2 standard

deviations in prediction accuracies. For the full range, see supplementary figure 9. Please

note that panels A and B are based on the same data.

Discussion

Here we demonstrated the burden of low phenotypic reliability on brain-based prediction

performance. Our results suggest that especially when associations between brain features

and behavioural assessments are weak to moderate, levels of reliability that are common for

behavioural phenotypes can substantially attenuate most of the shared variance.

Importantly, this attenuation holds irrespective of feature definition, prediction algorithm or

dataset. Furthermore, we show that while a larger sample size increases the accuracy of

brain-behaviour predictions, highly reliable data in smaller samples can outperform large

amounts of moderately reliable data. Importantly, our results indicate that highly reliable data

can benefit the most from increasing sample size.

Phenotypic reliability is important for robust results

The attenuation of a correlation between two variables by their reliability was already

described by Charles Spearman in 1910. Here we aimed to demonstrate that sophisticated

machine learning approaches also suffer from the impact of low reliability when learning

brain-behaviour associations. Generally, we found phenotypic reliability attenuated prediction

accuracy in a similar manner to what has been described for correlation (Nunnally, 1970;

Zuo et al., 2019). Our results show that high reliability of phenotypes is paramount for the

prediction of individual differences from neuroimaging. Importantly, we observed that

reliability levels lower than 0.6 can make the investigation of predictive validity (e.g. is

functional connectivity a good predictor of phenotype X) meaningless, as explainable

variance is overshadowed by variance of no interest. Even reliability of r = 0.8, which is at

the border of what is considered good (0.6 - 0.8) and excellent (> 0.8), was found to

substantially attenuate brain-behaviour relationships. This is particularly worrying as many

behavioural assessments available in large neuroimaging datasets routinely used for

prediction exhibit reliabilities within the ‘good' range (Hedge et al., 2018; Scott, Sorrell, &
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Benitez, 2019; Enkavi et al., 2019; Taylor et al., 2020; Fawns-Ritchie & Deary, 2020; Anokhin

et al., 2022). Strong relationships (e.g. age) were less susceptible to fatal attenuation by low

reliabilities; however, current estimates indicate that such large effect sizes for

brain-phenotype associations are the exception rather than the rule (Button et al., 2013;

Marek et al., 2022).

Overall, our results suggest that many behavioural assessments currently collected may be

unsuitable for individualised predictions due to their suboptimal test-retest reliability. Low

prediction accuracies observed in many recent reports (Dubois, Galdi, Han, Paul, & Adolphs,

2018; Li et al., 2019; Pervaiz et al., 2020; Mansour, Tian, Yeo, Cropley, & Zalesky, 2021; Wu

et al., 2021; McCormick, Arnemann, Ito, Hanson, & Cole, 2022; Heckner et al., 2023),

relative to desirable levels for medical applications (Barch & Carter, 2008; Streiner et al.,

2015) may thus be partly driven by the low reliability of targets. This in turn limits further

insights into interindividual differences in brain function and the search for

neuroimaging-based biomarkers for clinical application. Importantly, the final attenuation of

relationships depends on the reliability of both brain features and behavioural targets

(Nunnally, 1970) and may partly explain the difference in prediction accuracy of age and grip

strength between HCP and UKB. That said, the results presented here are likely to hold for

functional connectivity-based predictions in general as our findings were replicated across

datasets with different reliabilities (Marek et al., 2022) and acquisition times, shown to

influence the robustness of connectivity estimates (Noble et al., 2017). Lastly, we also note

that while high reliability is necessary for meaningful investigations of predictive validity, it is

not sufficient. Blindly optimising for reliability will thus not guarantee better prediction

accuracy (Finn & Rosenberg, 2021).

In addition to overall low prediction performance for data with less than excellent reliabilities,

we observed large variance in prediction accuracy in simulated data. Specifically, datasets

with good reliability (r = 0.6 - 0.8) showed accuracies that could result in opposite

conclusions. For example, at r = 0.7, the highest accuracies (R2 ≈ 0.1) were comparable to

those reported for many behavioural assessments (Ooi et al., 2022; Sasse et al., 2022),

while the worst observed accuracy represented a failure of prediction (i.e., R2 < 0). As in our

simulations, measurement noise was randomly distributed; these results suggest that even

phenotypes with good reliability may contain enough noise to produce results that will not

replicate. Conversely, the higher the reliability, the lower the risk of the variance in results

caused by random noise to reach R2 = 0. Our findings therefore reinforce the necessity for

authors to replicate their prediction results across datasets or validate their models in truly

independent samples (Poldrack, Huckins, & Varoquaux, 2020).
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Large samples are necessary but not sufficient

In a recent study, Marek and colleagues (2022) have suggested that investigating

brain-phenotype associations requires sample sizes of n > 2000, as sampling variability in

small effects can result in imprecise effect size estimates. While cognitive ability and total

psychopathology used by the authors as exemplary phenotypes have been reported to have

excellent reliability (ICC > 0.9; however, see Tiego et al. (2022) for a discussion), the

remaining phenotypes that were assessed have more modest reliabilities (ICC = 0.31 - 0.82)

(Han & Adolphs, 2020; Taylor et al., 2020; Fawns-Ritchie & Deary, 2020; Fox, Manly, Slotkin,

Devin Peipert, & Gershon, 2021; Anokhin et al., 2022). Given this large variation in reliability,

the reported sample size requirement may not be a one-size-fits-all recommendation

(Rosenberg & Finn, 2022). Here we demonstrate that compared to less reliable data from

thousands of participants, highly reliable targets may be predicted equally well in samples of

few hundred to few thousand, depending on the effect size. Such sample sizes are already

achieved by many consortia to date. For highly reliable measurements, true effects may thus

be actually higher than what current estimates show as effects will be less attenuated by low

reliability (Zuo et al., 2019). We therefore suggest that exploratory studies of individual

differences may be more feasible if target selection and data acquisition put stronger focus

on phenotypic measurement reliability. Research questions where samples of thousands of

participants are difficult to acquire (e.g. specific conditions) may thus benefit from optimising

for greater measurement reliability before embarking on big data collection.

Our results showed that larger samples always resulted in better prediction accuracy, as has

been previously reported (Traut et al., 2022); however, only highly reliable data could fully

benefit from increases in sample size. Across a broad range of tested variables, empirical

reliability (estimated from the test-retest data) was rarely excellent (5 out of 39 tested in

HCP-YA, 0 out of 17 in UKB), replicating observations from other large datasets (Anokhin et

al., 2022). Furthermore, empirical reliability was generally lower than that reported at test

development (Akshoomoff et al., 2013; Reuben et al., 2013; Weintraub et al., 2013; Heaton

et al., 2014). Similar differences in reliability between datasets are not uncommon and may

be due to differences in retest intervals (Scott et al., 2019; Taylor et al., 2020; Han &

Adolphs, 2020; Anokhin et al., 2022). However, assessments of behaviour in large datasets

in particular may be subject to other sources of measurement noise resulting from specifics

of big data collection such as site differences, coordinator training, relatively low number of

trials per task or shortened versions of validated tests, and participant fatigue from lengthy
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acquisition protocols. If this is indeed true and reliabilities of phenotypes in large datasets

are lower than those reported at test development, many available datasets may be of

limited use for individual-differences research and further increasing sample size (e.g. to

biobank levels) will be of little benefit. We therefore urge that any attempts at identifying

biomarkers must involve a careful consideration and thorough assessment of the reliability of

behavioural measurements before data is collected at larger scales and evaluated for

validity.

Conclusion

Excellent reliability of phenotypic assessments is paramount for investigating

brain-behaviour associations. Our results indicate that poor reliability may strongly attenuate

or even conceal actual associations, leading to scientifically questionable conclusions about

the predictive validity of neuroimaging. Moreover, low reliability is highly undesirable in

practice as it reduces precision and thus obstructs clinical translation. Finally, it is societally

unacceptable when resources are spent on acquiring large-scale datasets with unreliable

"markers" of behaviour. An optimal choice of targets or increasing reliability via more

rigorous testing strategies (Zorowitz & Niv, 2022) is necessary to fully exploit the potential

benefits from big data initiatives in neuroscience.
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