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Abstract 

The original CHESS database of human genes was assembled from nearly 10,000 RNA 

sequencing experiments in 53 human body sites produced by the Genotype-Tissue Expression 

(GTEx) project, and then augmented with genes from other databases to yield a comprehensive 

collection of protein-coding and noncoding transcripts. The construction of the new CHESS 3 

database employed improved transcript assembly algorithms, a new machine learning classifier, 

and protein structure predictions to identify genes and transcripts likely to be functional and to 

eliminate those that appeared more likely to represent noise. The new catalog contains 41,356 

genes on the GRCh38 reference human genome, of which 19,839 are protein-coding, and a 

total of 158,377 transcripts. These include 14,863 novel protein-coding transcripts. The total 

number of transcripts is substantially smaller than earlier versions due to improved 

transcriptome assembly methods and to a stricter protocol for filtering out noisy transcripts. 

Notably, CHESS 3 contains all of the transcripts in the MANE database, and at least one 

transcript corresponding to the vast majority of protein-coding genes in the RefSeq and 

GENCODE databases. CHESS 3 has also been mapped onto the complete CHM13 human 

genome, which gives a more-complete gene count of 43,773 genes and 19,968 protein-coding 

genes. The CHESS database is available at http://ccb.jhu.edu/chess. 

 

Background 
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With the first release in 2021 of a truly complete human genome, designated CHM13 [1], the 

scientific community now has the opportunity to complete the Human Genome Project by 

identifying not only the sequence, but also all of the genes in the genome. The T2T 

Consortium’s assembly reported 2,226 additional copies of known human genes and a total of 

63,494 genes, including 19,969 protein-coding loci with 86,245 transcripts. That annotation was 

produced by mapping the annotation from GENCODE v35 [2] onto the CHM13 assembly, 

followed by using Liftoff [3] to identify extra gene copies. Thus although the CHM13 gene list is 

more complete than the corresponding GRCh38 annotation, it does not include all of the genes 

in RefSeq [4], CHESS [5], FANTOM [6], APPRIS [7], or other human gene databases. 

 

The CHESS human gene catalog, first published in 2018 [5], is an effort to provide a 

comprehensive database of human genes that includes all protein-coding and noncoding genes. 

Unlike other efforts, the basis of nearly all CHESS genes is direct experimental evidence from 

RNA sequencing experiments, in particular the large-scale Genotype-Tissue Expression (GTEx) 

project, which has generated thousands of deep RNA sequencing datasets from hundreds of 

individuals and dozens of tissue types [8]. The construction of CHESS begins with a large-scale 

assembly of all of these experiments, producing millions of transcripts that are then filtered to 

generate the final database. As described below, this process means that almost every gene in 

CHESS can be linked directly to experimental evidence for that gene’s expression. To ensure its 

completeness, and because GTEx does not capture 100% of human genes, we identify and add 

to CHESS any well-supported genes in other databases that were not assembled from the GTEx 

data. 

 

Despite decades of effort, the primary human gene databases still do not agree on the precise 

number or structure of human genes, reflecting the difficulty of this task. The latest release of 

CHESS includes substantially improved transcriptome assembly methods, a novel machine 

learning strategy to identify reliable introns, and new validation steps based on protein 

structure prediction, but nonetheless it is not expected to be the final, authoritative list of 

human genes. In an effort to make CHESS as complete as possible, we augmented the 

assembled gene list by ensuring that it contains all of the genes in the MANE database, a 

recently-developed (but still incomplete) catalog that has one high-quality transcript for nearly 

all protein-coding genes, and for which RefSeq and GENCODE agree precisely on the transcript 

boundaries and on the coding sequence [9]. 

 

CHESS 3 takes a stricter approach to including genes and transcripts than other human gene 

catalogs, including previous versions of CHESS. In particular, we do not include in the primary 

database any gene or transcript that appears to be non-functional, although we do provide 

separate sets of assembled transcripts for users who want them. This strategy means that 

aberrant transcripts, such as those created by erroneous splicing or those that create truncated 

and non-functional proteins, are not included in CHESS. Other catalogs include thousands of 

these transcripts, sometimes tagged to indicate they are non-functional, but sometimes merely 

included without any such warning. A growing body of evidence suggests that many alternative 

splicing events do not produce functional proteins [10]. We have described how these non-

functional transcripts, which usually occur at very low expression levels, are likely to confuse 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521274
http://creativecommons.org/licenses/by/4.0/


analysis software and produce misleading results [11], and annotation databases will be 

improved by excluding them.  

 

Results 

The CHESS 3 catalog is based principally on direct evidence from RNA-sequencing experiments, 

in particular the GTEx collection of transcripts from 53 body sites and hundreds of individuals 

[8]. All transcripts were processed through a complex alignment, assembly, and filtering process 

(see Methods), which eliminated millions of transcript fragments representing noise. 

 

CHESS 3 contains 19,839 protein-coding genes with a total of 99,202 transcripts, approximately 

5 transcripts per gene. If we exclude duplicate amino-acid sequences, the number of distinct 

protein sequences produced from these transcripts is 73,767 (Table 1). In total, including 

noncoding transcripts, CHESS 3 has 158,377 transcripts on the primary chromosomes. (Note 

that GRCh38 also has several hundred alternative scaffolds containing thousands of annotated 

genes, the vast majority of which are duplicates. For consistency, we are only counting genes 

placed on the primary chromosomes in this discussion.) 

 

By comparison, the latest version of GENCODE (release 41) contains 19,419 protein-coding gene 

loci on the primary chromosomes, containing 110,309 protein-coding transcripts that encode 

92,968 distinct protein sequences. RefSeq (release 110) has 19,884 protein-coding genes and 

129,740 protein-coding transcripts, encoding 88,662 different protein sequences (Table 1). 

 

Table 1. Total number of genes and protein-coding isoforms in current versions of CHESS, 

RefSeq, and GENCODE. Genes are counted on the primary chromosomes and unplaced 

scaffolds from the human reference genome GRCh38, excluding the alternative scaffolds. 

Pseudogenes, VDJ segments, and C regions are not included in the totals shown in the final 

column. 

Database Number of 

protein-coding 

gene loci 

Number of 

protein-coding 

transcripts 

Number of 

distinct protein 

sequences 

Number of gene 

loci (all types) 

CHESS v3 19,839 99,202 73,767 41,356 

RefSeq v110 19,884 129,740 88,662 43,380 

GENCODE v41 19,419 110,309 92,968 46,181 

 

In CHESS 3, all transcripts at protein-coding loci are required to have valid open reading frames 

(ORFs) corresponding to the protein sequences encoded by those transcripts. These are 

represented as CDS features in the annotation file. Any alternative splice variant or isoform that 

does not produce a functional protein is considered to be transcriptional noise, and is not 

annotated as a transcript. RefSeq follows a similar strategy, where nearly every transcript (with 

a few exceptions) at a protein-coding locus contains a valid ORF. In contrast, GENCODE contains 

thousands of transcripts at protein-coding loci that do not encode functional proteins for a 

variety of reasons, which are indicated by tags such as "retained intron" (33,750 transcripts) or 

"nonsense mediated decay" (20,933 transcripts). 
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In addition to removing assembled transcripts that did not contain a valid ORF, as part of the 

CHESS 3 refinement process we evaluated the relative lengths of all protein sequences at each 

locus. We assume that severely truncated proteins are highly unlikely to be functional, and 

therefore the transcripts encoding them should, with few exceptions, be classified as noise and 

removed. Based on analysis of protein lengths in RefSeq, we chose a threshold of one-fifth the 

maximum length at a locus, and any protein shorter than that was considered non-functional 

and removed from CHESS, unless there was independent evidence that it was functional (see 

Methods).   

 

Note that the CHESS 3 data release includes a separate catalog of transcripts that were 

assembled from the GTEx collection, but that were filtered out because they lack a valid 

translation or because the translated protein is too short. This provides a resource for those 

who wish to explore transcriptional noise itself, or to mine the data looking for transcripts that 

might be re-classified as functional. 

 

To illustrate the variability in protein lengths in different annotation databases, consider the 

Titin (TTN) protein, the longest in the human genome at 35,991 amino acids (aa). GENCODE v41 

includes 15 protein-coding transcripts for Titin, ranging from 48 to 35,991aa, with eight 

isoforms shorter than 1000aa (Table 2). The transcripts shorter than 1000aa at this locus are 

almost certainly non-functional, and indeed GENCODE annotates them as having incomplete 

coding sequences at either the 5' end, the 3' end, or both.  

Table 2. Isoforms of the protein-coding gene Titin (TTN), 

gene ID ENSG00000155657.29, in GENCODE v41, showing 

the length of the annotated proteins for each of 15 

isoforms. Isoforms whose lengths are marked with * are 

also present in both CHESS and RefSeq. 

Transcript ID Translated protein length (aa) 

ENST00000412264.1 48 

ENST00000448510.2 172 

ENST00000436599.1 213 

ENST00000425332.2 240 

ENST00000426232.5 255 

ENST00000634225.1 353 

ENST00000446966.1 372 

ENST00000414766.5 962 

ENST00000360870.10 5604* 

ENST00000460472.6 26926* 

ENST00000359218.10 27051* 

ENST00000342175.11 27118* 

ENST00000342992.11 33423* 

ENST00000591111.5 34350* 

ENST00000589042.5 35991* 
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By contrast, RefSeq’s (v110) 22 isoforms of the Titin gene range in length from 23564 to 35991 

aa, with one shorter isoform at 5604aa. That relatively short isoform, present in GENCODE as 

well, has been subject to experiments that show that it is both transcribed and translated, and 

that also demonstrate its possible function [12]. CHESS has 8 isoforms with the shortest also at 

5604aa. Worth noting here is that no isoform shorter than 1000aa exists in either RefSeq or 

CHESS, while all of the longer isoforms in GENCODE, including the 5604aa variant, are in both 

RefSeq and CHESS. 

 

To consider just one more example, in RefSeq the protein with the greatest ratio between 

longest and shortest isoforms is AHNAK, a 5890aa protein that has a 149aa isoform. The 

unusually short isoform has been shown experimentally to fulfill a self-regulatory role in muscle 

[13], thus despite the very short length, there is independent evidence to support it. While 

RefSeq and CHESS contain only this one short isoform of AHNAK, GENCODE contains six others, 

with lengths ranging from 85 to 149aa, in addition to the long isoform at 5890aa. Only the 

149aa and 5890aa isoforms are supported by experimental evidence.  

 

Extreme variation in length is seen among many other annotated transcripts in GENCODE, 

where we found 4089 protein-coding genes that have an isoform whose length is <10% of the 

length of the longest isoform, and 7269 protein-coding genes that have an isoform whose 

length is <20% of the longest isoform. In contrast, both RefSeq and CHESS contain far fewer 

protein-coding genes for which the isoforms vary so dramatically in length. RefSeq contains just 

79 genes for which the longest isoform is at least 10 times the length of the shortest, and 333 

genes where the longest isoform is at least 5 times longer than the shortest. CHESS only has 4 

such genes: the Titin and AHNAK genes mentioned above, and two genes (IQSEC2 and SYNE1) 

from the MANE database that are tagged as special isoforms of clinical significance. 

 

Also worth noting is that the shortest protein sequence (RPL41, ribosomal protein L41) in 

RefSeq is 25aa long, while GENCODE contains 1259 protein isoforms that are shorter than 25aa, 

including 20 annotated CDS features whose length is just 1aa. CHESS contains only 14 protein 

isoforms shorter than 25aa. 

 

Inclusion of MANE transcripts in CHESS. The creators of RefSeq and GENCODE have released a 

high-quality collection of protein-coding transcripts called MANE (Matched Annotation 

between NCBI and EMBL-EBI), which they have described as a "universal standard" for human 

gene annotation [9]. MANE is an effort to annotate one transcript for each human protein-

coding gene for which RefSeq and GENCODE agree perfectly, including the 5’ and 3’ boundaries 
of transcription, all exon and intron boundaries, as well as the coding sequence. The current 

release of MANE (v1.0) has 19,062 proteins and 19,120 transcripts, with the extra 58 transcripts 

included because of their clinical significance. MANE does not include any noncoding genes. 

 

Because MANE is both high-quality and stable, we wanted to ensure that every transcript in 

MANE was also included in CHESS 3. After comparing our near-final set of transcripts to MANE, 

we found that nearly all of them had a near-perfect match to one CHESS transcript, although a 

small number had differences in the precise boundaries at the beginning and end of 
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transcription. We then edited the 5’ and 3’ boundaries so that one CHESS transcript matches 

MANE perfectly for all 19,120 of the MANE transcripts, with no exceptions.  

 

Novel protein-coding genes in CHESS 2 and CHESS 3 

We reported previously [5] that the CHESS database (v2.2) had 224 novel proteins that were 

missing entirely from both RefSeq and GENCODE. We investigated the current releases of both 

databases (v110 and v41 respectively) and found 5 of the previously novel protein-coding genes 

that are now included in GENCODE, RefSeq, and MANE, shown in Table 3.  

 

Table 3. Protein-coding genes that were novel in CHESS release 1 and 2, and that are now part of the 

GENCODE, RefSeq, and MANE databases.  

CHESS 3 ID Coordinates (chr:position) Gene 

name 

GENCODE ID RefSeq ID 

CHS.3390 1:158125775-158130906 SMIM42 ENSG00000288460.1 NM_001395415.1 

CHS.7402 10:122657410-122679509  ENSG00000286135.1 NM_001364461.3 

CHS.8823 11:59880266-59896469 OOSP3 ENSG00000285231.2 NM_001395255.1 

CHS.11637 12:51813540-51814957 TMDD1 ENSG00000284730.2 NM_001386737.1 

CHS.58949 X:149414886-149415495  ENSG00000287585.2 NM_001395872.1 

 

Every protein-coding gene locus in CHESS 3 either matches or overlaps at least one transcript in 

either RefSeq or GENCODE, however there are many protein-coding transcripts that are unique 

to each of the databases.  We considered a pair of transcripts a match if all introns matched 

precisely; using this criterion, 14,863 out of 99,201 protein-coding transcripts in CHESS 3 are 

unique to CHESS (Figure 1). Another 46,585 of those transcripts are shared by all 3 databases, 

while 32,882 are shared by CHESS and RefSeq only, and 4871 are shared by CHESS and 

GENCODE only. RefSeq and GENCODE share 658 protein-coding transcripts that are not in 

CHESS. 

 

Comparisons to RefSeq and GENCODE 

In earlier releases of CHESS, we made a conscious decision to include all protein-coding gene 

loci (although not all transcripts) from RefSeq and GENCODE in the CHESS database. However, 

upon closer scrutiny, we discovered that some of these genes are likely not true protein-coding 

genes, but instead are legacy annotations from earlier versions of those databases. Both RefSeq 

and GENCODE have removed many of their genes over the years, but a few genes with very 

weak evidence still remain. 

 

We compared CHESS 3 to all RefSeq (v110) protein-coding genes, and identified 46 loci that are 

missing from CHESS. All of these have names beginning with "LOC," indicating that their 

function is unknown, and each is annotated with an "XM" designation by RefSeq, which means 

it is a low-confidence annotation (as opposed to "NM" genes, which are considered high-

confidence). Many are also contained within the introns of other genes; for example, 

LOC107984876 (XM_047434996.1) is contained within exon 4 of the protein-coding gene LMF1 

on chromosome 16, and a search of its putative sequence has no hits outside primates. This 
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evidence, combined with the fact that we did not assemble these genes from the GTEx data, led 

us to decide not to add them to CHESS 3.  

 

Overall, CHESS, RefSeq, and GENCODE are in closer agreement today than they were in 2018, 

when the previous major release (2.0) of CHESS appeared. Figure 1 illustrates the overlap 

between protein-coding transcripts among all three databases. Compared to the 2018 versions 

of CHESS (v2.2), GENCODE (v28), and RefSeq (v108), the number of transcripts shared among all 

three databases has increased substantially, from 36,943 to 46,585. Although still very high, the 

number of transcripts unique to any of the three databases has declined from 189,184 to 

122,614, largely due to the decline in the number of protein-coding transcripts in CHESS. 

 

Protein structure predictions for CHESS 3 

We used the AlphaFold2 [14] and ColabFold [15] programs to predict the three-dimensional 

structure of all but the largest protein isoforms in CHESS 3, making it the only human 

annotation database currently to include structure predictions for most of its proteins. 

Specifically, we used ColabFold (version d6b06) to predict the structures for >230,000 

transcripts from a preliminary version of CHESS 3, which was a superset of the final database. 

These included all proteins in CHESS 3 shorter than 1000aa. We then collected predictions for 

longer proteins from the AlphaFold Protein Structure Database v3 [16] that exactly matched 

isoforms in CHESS 3. This added 3302 structures, including predictions for selected isoforms as 

long as 2700aa. The isoform.io v1.2 database contains structures for 91,589 CHESS 3 transcripts 

representing 70,158 unique isoforms at 19,569 protein-coding loci in CHESS 3. In total, 

structures are predicted for >95% of all CHESS 3 proteins covering >98% of all human protein-

 
Figure 1. Overlap between the protein-coding transcripts in CHESS 3, RefSeq v110, and 

GENCODE v41. Transcripts were considered matching if all of their introns match precisely. 
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coding loci. All protein structures are freely available for searching or download at isoform.io, 

which contains cross-references to CHESS, RefSeq, GENCODE, and MANE for each structure. 

 

We evaluated the 14,683 protein-coding transcripts that are unique to CHESS 3 to identify 

those that have unique protein sequences and are highly expressed as well. We restricted our 

search to multi-exon protein-coding genes that had a protein-coding sequence that was non-

identical to any other annotated protein. We also required that these novel transcripts had a 

cumulative TPM of >1000 across all GTEx samples. Most important, we searched for transcripts 

where the novel proteins accounted for >50% of the total expression across all samples. These 

criteria yielded 261 genes with novel protein isoforms, two of which are shown in Figure 2. 

 

 
Figure 2. Expression levels, exon-intron structures, and protein structures for (A) TMEM11 and (B) 

GP6. The upper panel is a 'Sashimi' plot showing the total depth of RNA-seq read coverage across all 

tissues, with labeled arcs showing the number of spliced reads supporting each possible intron. Below 

that are the exon-intron structures, with the MANE isoform at the top, highlighted in pink. Protein-

coding regions of exons are shown in blue and orange, where orange indicates sequence that is in a 

different reading frame from the MANE isoform. (A) The alternative isoform for TMEM11, 

CHS.21604.2, is unique to CHESS. The bottom shows the protein structure of both isoforms as 

predicted by ColabFold/Alphafold2, showing that the extra sequence in the MANE isoform is an 

unstructured loop. (B) Similar plots for 3 isoforms of GP6. An additional panel shows a zoomed-in view 

of the region spanning the last intron, where 15,254 spliced reads support the longer intron (in 

CHS.27581.1 and CHS.27581.2), while 1177 reads support the shorter intron used in the MANE 

isoform, CHS.27581.3. The structures at bottom show that the MANE isoform (left) has a highly 

disordered structure, which explains its low pLDDT score of 49.3, while the CHESS isoform on the 

right, which is also the highest-expressed transcript at this locus, has a score of 74.5. 

CHS.27581.2CHS.21604.1 CHS.21604.2

TMEM11

GP6

CHS.27581.3

A B

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521274
http://creativecommons.org/licenses/by/4.0/


The novel TMEM11 isoform shown in Figure 2A is slightly shorter than the canonical (MANE) 

protein, caused by an additional exon that shifts the start codon downstream. ColabFold 

assigns a pLDDT score of 78.6 to novel CHESS protein, versus the substantially lower score of 

68.3 for the longer MANE protein, whose lower score is due to the presence of an unstructured 

loop. This suggests that the novel isoform might function more effectively, but answering this 

question will require targeted experiments. Figure 2B shows the exon-intron structures for 

three isoforms of GP6, where the MANE isoform has a much lower-scoring structure than the 

other two CHESS isoforms. The only difference between the MANE transcript and CHS.27581.2 

is a 4-base shift in the last intron. The shorter intron (MANE) yields a protein that is 281aa 

longer (620aa versus 339aa), but the AlphaFold2 result indicates that the additional sequence is 

entirely unstructured, resulting in a dramatically lower pLDDT score of 49.3, versus 74.5 for the 

longer CHS.27581.2 protein. In addition, the longer intron (CHS.27581.2) has 13 times deeper 

support in spliced reads, as shown in the Sashimi plots. Note that both RefSeq and GENCODE 

contain isoforms matching CHS.27581.1 and CHS.27581.2. The full list of 261 novel, highly-

expressed protein-coding transcripts, along with sashimi plots similar to Figure 2, is available in 

Supplementary Table S1. 

 

Noncoding genes and transcripts 

CHESS 3 contains 17,623 lncRNAs which encompass 34,708 transcripts, as well as many other 

types of noncoding transcripts (Table 4). RefSeq has 17,793 lncRNAs containing 29,048 

transcripts, while GENCODE has 19,095 lncRNA loci and 53,216 transcripts, many more than 

either CHESS or RefSeq.  

Table 4. The number of genes and transcripts on the primary chromosomes (excluding 

alternative scaffolds) of GRCh38 in the CHESS 3, RefSeq v110, and GENCODE v41 catalogs. 

lncRNA: long noncoding RNA gene; snoRNA: small nucleolar RNA; snRNA: small nuclear RNA; 

rRNA: ribosomal RNA; tRNA: transfer RNA.  

Gene type CHESS  RefSeq GENCODE 

Protein-coding genes 19,839 19,884 19,419 

lncRNA genes 17,623 17,793 18,041 

microRNA 1,914 1,914 1,879 

Transcript type    

Protein-coding transcript 99,202 129,740 169,195* 

lncRNA transcript 34,708 29,048 53,216 

pseudogene 16,572 15,357 20,234 

tRNA 453 453 535 

snoRNA 1,195 1,195 942 

snRNA 153 153 1,901 

rRNA 40 40 47 

VDJ segments 565 565 200 

Other 213 12,493 3,822 

Total transcripts 158,377 191,917 251,236 

 *Protein-coding transcripts for GENCODE include all transcripts for genes with the biotype protein_coding, 

including those with tags such as "retained_intron, "mRNA_start_NF," "nonsense_mediated_decay," and 

others. 
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The number of reported RNA genes has grown dramatically in recent years, with catalogs such 

as NONCODE [17], LNCipedia [18], lncRNAKB [19], and RNAcentral [20] containing a wide 

variety of gene counts. For example, as of mid-2021 NONCODE V6 had 173,112, LNCipedia had 

127,802, and lncRNAKB had 77,199 human lncRNAs. Most of the lncRNAs currently annotated 

in these various databases represent computational predictions, and it is not known how many 

of them are truly genes rather than transcriptional noise. As we reported in the original 

description of CHESS [21], ~98% of the transcripts initially assembled from the GTEx data 

appeared to be noise, and the vast majority of these were present at very low expression levels. 

Others have recently argued that most lncRNAs are likely to be nonfunctional, for multiple 

scientific reasons [22]. For CHESS 3, we attempted to use stricter criteria for including a lncRNA 

than for a protein, but the filtering task is made much more difficult by the fact that lncRNAs do 

not have open reading frames, making it harder to find sequence conservation in other species 

that would increase our confidence that the lncRNA is functional. 

 

Conservation of introns across species. To evaluate the consistency of annotation in light of 

evolutionary conversation, we used a 30-species alignment [23] that contained 27 primates 

(including human) plus mouse, dog, and armadillo. For every intron in CHESS, RefSeq, 

GENCODE, and MANE, we then computed how many species preserved the consensus 

dinucleotides (GT and AG) at either end of that intron. 

 

As shown in Figure 3, a large majority of introns in protein-coding genes are conserved across 

all or nearly all 30 species. All four annotation databases show very similar profiles. However, 

the conservation profile of lncRNAs is quite different from that of protein coding genes, in at 

least two ways: first, very few introns are conserved across all 30 species, with the largest peak 

at 20-21 species; and second, the distribution shows a clear secondary peak in introns 

conserved among 4-7 species. We then computed the most frequent species in which introns 

from the secondary peak are conserved.  

Table 5 shows the ten most frequent such species, where the top five species account for most 

of the conserved introns. Notably, these lncRNA introns are mostly conserved in apes, with a 

sharp drop in the number of introns remaining intact outside of this clade. A similar pattern was 

observed in lncRNAs from the RefSeq and GENCODE databases as well. 
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Figure 3. Histogram showing how many introns have both boundaries conserved in a multiple alignment 

of 27 primates plus 3 additional mammalian species (mouse, dog, and armadillo). 

 
Table 5. The most common species in which lncRNA introns from the 

secondary peak of 4-7 species in Figure 3 are conserved. Data shown 

only for the CHESS database; other annotation databases display 

highly similar patterns of conservation. 

Species Number of conserved introns 

Chimpanzee 7801 

Gorilla 7602 

Pygmy chimpanzee (Bonobo) 7492 

Sumatran orangutan 3676 

Northern white-cheeked gibbon 3517 

White-tufted-ear marmoset 264 

Bolivian squirrel monkey 254 

White-faced sapajou 225 

Green monkey 208 

Baboon 201 

 

CHESS annotation on CHM13 

Although GRCh38 is nearly universally used as the human reference genome, the recently-

published CHM13 genome is the first truly complete human genome, adding nearly 200 Mbp of 

DNA, closing over 900 gaps, and adding thousands of new transcripts, based on the initial 

annotation [1]. As mentioned above, the annotation of CHM13 was based on GENCODE v35, for 

which the authors reported 140 new protein-coding genes, and a net increase of 79 protein-

coding genes after subtracting genes that were missing in CHM13 (including 23 protein-coding 

genes that are the result of false duplications in GRCh38). 
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To produce a more accurate human gene count, and to provide better support for CHM13 as a 

human reference genome in the future, we mapped all CHESS 3 transcripts onto CHM13 using 

Liftoff [24], including a routine to find additional gene copies. The resulting annotation, 

summarized in Supplementary Table S2, contains a total of 43,773 genes and 161,410 

transcripts, including 2,510 additional gene copies of which 129 are protein coding. In the 

CHM13 annotation, 19,968 genes are protein coding containing 99,410 transcripts. To 

summarize the effects of variants in these protein coding genes compared to their GRCh38 

sequences, we compared the annotation with LiftoffTools, which identified thousands of 

synonymous and nonsynonymous changes as well as smaller numbers of frameshifts and indels 

(Suppl. Table S3). 

 

69 protein coding genes in CHESS 3 failed to map from GRCh38 to CHM 13. Further 

investigation revealed that all of these genes fell within regions of segmental duplications 

(typically with >90% identity) in GRCh38, as defined in [25]. This suggests that these gene 

represent cases where CHM13 has fewer copies of a gene than GRCh38. 

 

CHESS annotation on chimpanzee 

We also mapped the CHESS 3 annotation onto the chimpanzee (Pan troglodytes) genome, 

Clint_PTRv2 (GenBank accession GCF_002880755.1). A total of 19,343 protein-coding genes 

mapped over successfully, with an average sequence identity of 98.3% in exons and average 

coverage of 99.4% of the length of each transcript. A total of 17,227 LncRNA genes mapped to 

chimpanzee, with an average sequence identity in exons of 96.9% and average coverage of 

98.8%. In addition, 95.6% of the introns across all multi-exon genes had perfect agreement on 

the positions of their splice sites. 

 

CONCLUSION 

The CHESS database uses thousands of RNA sequencing experiments to assemble a 

comprehensive picture of all human transcripts, each of which has direct experimental 

evidence of its expression levels. CHESS 3.0 augments this collection with selected, well-

annotated genes from the RefSeq, GENCODE, and MANE databases to create a more-complete 

representation of all genes. The new release of CHESS described here reflects a stricter 

approach to annotation than in the past, with a greater emphasis on removing transcripts that 

likely represent non-functional isoforms, and which in turn can hinder downstream analysis 

when provided to automated genome analysis programs. The result is that CHESS 3.0 has fewer 

than half as many transcripts as CHESS 2.0, although it has approximately the same number of 

protein-coding genes. A unique feature of CHESS 3.0 is a complete set of predicted 3D protein 

structures for >98% of protein-coding genes, which allows users to ask directly how well-

ordered these proteins are. Another novel feature is that CHESS 3.0 genes are available on both 

the older GRCh38 human reference genome and the new, complete CHM13 genome, which 

contains ~2,500 more genes. Although the total number of protein-coding genes in CHESS and 

in other major databases is converging, the number of transcripts remain quite divergent, and 

much more work is needed before we are likely to have a final picture of all human genes. 
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Methods 

The pipeline used to create CHESS 3 is presented in Figure 4. In summary, 9,795 samples 

collected across 31 histological types were initially obtained from the GTEx consortium project 

[26] for the construction of the CHESS catalog version 2.2 [5]. After adding 132 samples that 

were released by the GTEx consortium in 2018, we aligned the reads with the latest HISAT2 

software [27], using an X-only reference genome for female samples to avoid erroneous 

mapping of reads to the Y chromosome [28], and then assembled aligned reads from the 9,927 

samples using StringTie2 [29]. Samples were grouped by tissue type and merged together, as 

described previously [5]. These initial steps generated 26,335,900 transcripts, the vast majority 

of which were expressed at low levels.  

 

 

Figure 4. Computational pipeline used to create CHESS 3. First, 9,814 GTEx samples were aligned 

with HISAT2. Second, the alignments were either directly assembled with StringTie2 or aggregated 

by tissue with TieBrush. StringTie2's resulting transcripts were merged and compared to the 

reference annotation using gffcompare. Low coverage alignments in the <TieBrush=-ed files were 

filtered out, and the remaining alignments were assembled with StringTie2. Only transcripts that 

were assembled directly from the individual samples or from <TieBrush=-ed files were retained, and 

further filtered with an intron classifier designed to recognize introns that resemble most the 

introns in the reference annotation. ORFanage and ColabFold were used to assign and score ORFs 

to protein coding transcripts, and pLDDT scores produced by ColabFold were used to filter out low-

scoring protein coding transcripts.   
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We then proceeded through a series of data cleaning and filtering steps, which are described in 

the Supplementary Methods. These steps were designed to remove transcriptional noise, 

including transcripts expressed at very low levels as well as fragmented transcripts. To filter out 

transcripts expressed at very low levels and only in a few samples from a tissue, we aggregated 

all available alignments from each tissue using TieBrush [30], and reassembled each tissue with 

StringTie2. We only kept transcripts that were assembled in the initial samples, as well as after 

aggregating the alignments with TieBrush. We applied further stringent filtering steps to 

remove noisy transcripts, including only retaining transcripts with well-supported introns. These 

steps reduced the dataset to 160,482 transcripts, of which 97,661 were protein-coding. All of 

the protein-coding transcripts were assigned coding sequence (CDS) features either by copying 

them from matching RefSeq transcripts, where available, or by the ORFanage program as 

described in Supplementary Methods. For the sake of discussion, we call these the "Beta" 

proteins here. 

 

We then employed a method not used systematically in previous human gene annotation 

databases: protein structure prediction by AlphaFold2, which produces highly accurate 

structures for most proteins [14]. In particular, when the AlphaFold2 pLDDT score is greater 

than 70, the prediction is considered confident except for short proteins [31]. 

 

We began with a less-stringently filtered superset of the assembled transcripts from GTEx, and 

predicted structures for all proteins shorter than 1000aa using ColabFold [15], a version of 

AlphaFold2 that runs on public cloud-computing resources, as described in a separate study 

[32]. This dataset had 194,780 structures. We identified those structures that had pLDDT scores 

of 70 or above, and we further filtered the set to identify transcripts whose proteins did not 

match any of the 97,661 "beta" set of proteins. This gave us 54,205 "candidate" transcripts for 

potential inclusion in CHESS, all of which encoded proteins with scores >= 70 that were not in 

the Beta set. 

 

We then ran gffcompare to compare the candidate transcripts to the Beta transcripts, and we 

also ran custom scripts to compare the protein sequences directly. Any proteins that were 

substrings of the Beta proteins were removed. For proteins that completely contained the Beta 

proteins (i.e., were longer), we evaluated them based on ColabFold scores: if the ColabFold 

score was the highest-scoring isoform for a given gene locus, we retained the transcript, 

otherwise we removed it. These steps reduced the number of candidate transcripts to 31,772. 

We also noted that if a protein fragment consists largely of well-structured amino acids, it 

sometimes scores higher than the full-length functional protein, even if it is much shorter. 

Therefore we removed any predicted proteins that were either (a) shorter than 70aa or (b) less 

than 2/3 of the length of the longest protein at the same locus. This filtering step reduced the 

number of candidates to 13,133.  

 

From this set, we removed duplicates in several ways. First, we identified all transcripts that 

encoded identical proteins at a given gene locus, and if one of the transcripts matched a RefSeq 

or Gencode transcript, we retained only that one. From the remaining duplicates, we retained 
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the transcript that was assembled in the largest number of GTEx samples. These steps reduced 

the candidate list to 12,075 transcripts. 

 

Finally, we identified possible conflicting transcripts that overlapped more than one locus, and 

that might represent read-through transcription. We removed these as well, yielding 11,225 

protein-coding transcripts that were then added to the Beta set. Each of these additional 

transcripts encodes a protein that scored at least 70 and that was not otherwise present in the 

Beta set. 

 

Annotation of CHM13 used Liftoff [3] to map genes from the primary chromosomes, excluding 

the alternative scaffolds, onto the complete CHM13 genome. GRCh38 contains a number of 

regions, mostly on chromosome 21, that are known to be erroneous duplications [33, 34]. 

These regions contain 15 genes on chr21 that are spurious copies, as well as other spurious 

genes, and we therefore masked out these genes before mapping the remaining genes onto 

CHM13. The only exception was TRPM3, which we did not mask out because its erroneous 

duplications are restricted to intronic regions of GRCh38.  

 

Other than the erroneous duplications, the near-identical ribosomal DNA (rDNA) arrays also 

present a problem. An rDNA array is composed of several rDNA units, where each unit 

comprises three ribosomal RNA genes, 18S, 5.8S, and 28S, separated by transcribed spacers and 

follow by intergenic sequence (IGS) at the end [35]. In CHM13, there are 219 copies of rDNA 

units located on the acrocentric chromosomes 13, 14, 15, 21 and 22.  

 

We adopted a 2-pass approach to lift over CHESS annotations from GRCh38 to CHM13. First, we 

masked out all rDNA regions on the CHM13 using bedtools [36] and then mapped all 

annotations except the rDNA genes onto the masked CHM13 genome, to prevent annotations 

from being mapped into these complex regions. We used a minimum sequence identity 

threshold of 95% for identifying additional copies of genes in CHM13. After this initial lift-over 

process, we merged the rDNA annotations from the CHM13 v2.0 genome into our CHM13 

annotations. We used essentially the same Liftoff process (separately) to map the CHESS 3 

annotation onto the chimpanzee genome. 
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