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Abstract

Sample multiplexing is often used to reduce cost and limit batch effects in single-cell RNA (scRNA-seq)

sequencing experiments. A commonly used multiplexing technique involves tagging cells prior to pooling with a

hashtag oligo (HTO) that can be sequenced along with the cells’ RNA to determine their sample of origin. Several

tools have been developed to demultiplex HTO sequencing data and assign cells to samples. In this study, we

critically assess the performance of seven HTO demultiplexing tools: hashedDrops, HTODemux, GMM-Demux,

demuxmix, deMULTIplex, BFF and HashSolo. The comparison uses data sets where each sample has also

been demultiplexed using genetic variants from the RNA, enabling comparison of HTO demultiplexing techniques

against complementary data from the genetic “ground truth”. We find that all methods perform similarly where

HTO labelling is of high quality, but methods that assume a bimodal counts distribution perform poorly on lower

quality data. We also provide heuristic approaches for assessing the quality of HTO counts in a scRNA-seq

experiment.
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Introduction

Improvements in droplet-based single-cell RNA sequencing (scRNA-seq)

technologies have prompted growing interest in exploring variation in gene

expression at cellular resolution. While costs continue to decrease, it remains

expensive to separately capture and sequence individual samples. Batch

effects also confound meaningful differences in gene expression between

samples, and robust detection of multiplets (droplets containing two or more

cells) solely from the transcriptome remains an issue [12]. One solution to

address these problems is to design multiplexed experiments, where samples

are pooled prior to droplet capture and sequencing. The cost per sample is

reduced by a factor of the number of samples sequenced, while major sample

preparation batch effects within the pool are eliminated. Importantly, droplets

containing cells from two or more samples can be identified. In addition, the

number of cross-sample doublets can be used to estimate the expected number

of within-sample doublets and thereby inform the application of other doublet

detection algorithms such as scds [2] and scDblFinder [5].

Despite these advantages, it is important to carefully consider the most

appropriate multiplexing protocol for the sample type(s), and if additional

information is required to associate the cells with their sample of origin.

For genetically distinct samples, demultiplexing can be performed based on

genetic variants identified from the transcriptome using a variety of tools

such as vireo and demuxlet [7, 8]. However, genetic demultiplexing is not

possible where samples from the same individual are sequenced together

(e.g. before and after treatment or different tissues from the same individual),
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or in model organisms, where there is typically little genetic variation

between individuals. Additionally, although genetic demultiplexing is able

to distinguish cells from genetically distinct individuals, it cannot provide

absolute identification of the individual sample within the pool without further

information about the samples, such as SNP genotyping.

Cell hashing is an alternative multiplexing technique. Prior to pooling, a

barcoded label called a hashtag oligo (HTO) is added, one to each sample.

The HTOs attach to either antibodies or lipids on the surface of the cells and

the HTOs are captured and sequenced in parallel to the RNA. The antibodies

used bind to ubiquitous cell surface proteins [14] whilst the lipids incorporate

into the plasma cell membrane [11].

Sequencing of the HTOs produces a HTO counts matrix, an ĊHTOs ×

Ċdroplets matrix consisting of the read counts for each HTO in each droplet.

In an ideal scenario, each droplet contains only one cell and each cell contains

only counts for the HTO corresponding to its sample of origin. In this ideal

case, the demultiplexing algorithm involves simply identifying the non-empty

entries in each column of the HTO counts matrix. In practice, the data is

noisy; droplets may contain multiple cells, HTO conjugated antibodies/lipid

molecules may not bind well to the cells or may dissociate and bind to

cells from another sample in the pooling stage, or unbound HTOs may be

present in droplets [14, 11]. Therefore, some sophistication is required for

demultiplexing algorithms to distinguish the counts from the “true” HTO

against a background of “false” counts.

In this study, we present a comparison of seven HTO demultiplexing

methods: hashedDrops, HTODemux, deMULTIplex, GMM-Demux,

demuxmix, BFF and HashSolo. We discuss the details of each in the

Methods section. In all cases, the fundamental goal of each method is the

same: to examine the counts of each HTO in a droplet and determine the

sample of origin of each cell. Conceptually, this is achieved by separating

the signal from the oligo bound to the cell in the sample preparation

stage (‘positive’ HTOs) with ambient counts that arise from contamination

(‘negative’ HTOs). Droplets with no positive HTOs are classified as ‘negative’

or ‘unknown’. Droplets with more than one positive HTO are classified

as doublets/multiplets. Those with only one positive HTO are classified

as singlets. Here we use two data sets to assess the performance of

each demultiplexing method by comparing the assignments from HTO

demultiplexing to assignments from genetic demultiplexing on the same

data. Firstly, we suggest some visualisations for assessing the quality of

HTO tagging. Next, we compare each method’s performance on data whose

labelling quality ranges from good to poor. We find that all methods perform

similarly when the labelling is of high quality. However, with lower quality

labelling, methods that make simplistic, explicit assumptions about the data

perform worse than those that take a more flexible approach.

Results

Evaluation data sets

We perform our comparison of hashtag demultiplexing methods on four

tagging experiments across two data sets each using different tagging

technologies. The first data set, the BAL data set, contains 24 genetically

distinct samples of bronchoalveolar lavage fluid tagged with Totalseq-A

antibody-derived tags (ADTs) [14]. These samples were processed in 3

batches of 8 pooled samples, each with 2 captures per batch. Batch 1

contains 24,823 droplets, batch 2 contains 50,668 droplets and batch 3,

64,842 droplets.

We subsequently perform the same analysis on a second data set, the cell

line data set, consisting of three human lung cancer cell lines, which are

tagged with MULTI-seq lipid-modified oligos (LMOs) [11]. For each data

set vireo [7] is used to assign cells to individuals with default settings (see

Fig. 1: Quality assessment visualisations of the BAL data set. Left column

(a-c): Probability density function of the logarithm of HTO counts for each

hashtag (labelled by corresponding genetic donor), right column (d-f): tSNE

dimensional reduction of HTO counts, coloured by genetic donor in batches

1 (d), 2 (e) and 3 (f). NB: all donors are genetically distinct individuals,

generic donor labels are repeated across batches for simplicity.

Methods) and these are used as the “ground truth” to assess the accuracy of

the HTO demultiplexing methods.

QC visualisation

To assess the quality of the HTO labelling and sequencing, we present some

qualitative visualisations that can guide more quantitative analysis. Figure

1 shows the probability density function (PDF), approximated using kernel

density estimation, of the logarithm of counts per cell of each HTO (labelled

by the corresponding genetic donor) across the three batches in the BAL

data set (Figure 1a-c). The tSNE dimensional reduction of the PCA of log-

normalized HTO counts in each batch are also shown (Figure 1d-f). Each

HTO in batch 1 of the BAL data set follows a bimodal distribution (Figure 1a),

with a lower peak corresponding to the background counts in the majority

of droplets and a higher peak corresponding to the cells from the tagged

sample. In batches 2 (Figure 1b) and 3 (Figure 1c), some HTOs (e.g. donor

B in batch 2 and donor G in batch 3) appear unimodal, indicating lower

quality labelling. In the right column, the tSNE of batch 1 (Figure 1d)

has 8 distinct clusters, corresponding to the 8 individual samples, with a

constellation of smaller, interspersed clusters which correspond to doublets

and unassigned droplets based on the genetic assignments. Batches 2 (Figure

1e) and 3 (Figure 1f) also show 8 clusters, however, the boundaries of these

clusters are closer than in batch 1, and overlap for some samples in batch 3.

While not quantitative, the tSNE plots in Figure 1 indicate that the cells in

batch 1 are well-labelled, while those in batches 2 and 3 are labelled more

poorly, highlighting that demultiplexing these batches is more challenging.

In addition, specific samples within a batch are labelled more poorly than

others as indicated by the density plots of the individual HTOs and the

overlapping tSNE clusters. Overall, the density and tSNE plots of the HTO
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counts can be used to evaluate the quality of the HTO labelling. High quality

data is indicated by bimodal density plots and tSNE plots with distinct, major

clusters corresponding to the number of samples.

Quantitative comparisons of demultiplexing methods

Each of the three batches in our BAL data set contain cells from eight samples,

from genetically distinct donors. Each demultiplexing method (including the

genetic demultiplexing) can return one of 10 assignments for a cell: singlet,

corresponding to one of the eight unique samples; doublet; or negative. We

compare seven HTO demultiplexing methods: BFF (Boggy et al. 2022);

deMULTIplex [11]; demuxmix [15]; GMM-Demux [17]; hashedDrops [9],

HTODemux [14] and HashSolo [3]. BFF has two modes, BFFraw and

BFFcluster, and we present the output of both. All of the methods we

consider have some adjustable parameters that affect output, however, in

our exploration changing the default options does not significantly change

the assignments. We discuss the details of each method and their parameters

further in the Methods section below. The exception is hashedDrops, which

uses a simple counts threshold to distinguish negatives and singlets. We

find that in many cases the default value of this threshold is too high, and

performance is improved by lowering its value. To illustrate this we present the

hashedDrops classifications with both the default value (confident.min =

2) and the value we find gives the best performance (confident.min = 0.5).

As each batch was processed across two captures, we run the demultiplexing

methods on HTO data from each individual capture. However, the results are

presented per batch for simplicity as we do not observe significant variation

between captures within a batch.

In Figure 2, we show the fraction of assignments in each broad category:

singlet; doublet; or negative (unassigned), from vireo and each hashtag

demultiplexing method for the three batches in the BAL data set. Two clear

trends are apparent in Figure 2. First, vireo is able to assign more droplets

as singlets than any of the hashtag demultiplexing methods. Second, the

hierarchy of HTO tagging quality between the batches suggested by Figure

1 is confirmed in Figure 2. The fraction of negative droplets increases from

batch 1 to batch 3 for most methods. The exception to both is BFFcluster, which

assigns slightly more singlets than vireo in batches 1 and 2, and assigns fewer

negative droplets in batches 2 and 3 than in batch 1. HashSolo assigns fewer

negative cells than any other method, including vireo, and assigns a similar

fraction of doublets in each batch, with the doublet fraction greater than vireo

in all batches.

We next compare the specific individuals allocated by the singlet

assignments of each HTO demultiplexing method to the “ground truth” of

genetic assignments from vireo. To quantitatively assess their performance,

we calculate the F-score (see Methods), a statistic which is the harmonic mean

of precision and recall. The F-score ranges between 0 and 1, with a higher

value indicating better performance. Figure 3 shows the F-score of each

method for each possible singlet assignment (as well as the mean F-score) for

each of the three batches. Table 1 shows the mean F-score of each sample for

each method, in each of the three batches. Figure 3 and Table 1 show that all

methods perform similarly well for batch 1. The overall performance of all

methods drops for batches 2 and 3 and some methods begin to show significant

performance differences between batches. Notably, BFFcluster, which has the

highest mean F-score in batch 1, fails for all HTOs except HTO-12 in batch

2, and fails for all HTOs in batch 3. BFFraw is unable to classify any cells

from HTO-6 or HTO-7 in batch 2 or HTO-6, HTO-8 and HTO-14 in batch 3.

hashedDrops has higher scores in all batches with optimised parameters than

with the default settings, and has the highest mean F-score of all methods in

batches 2 and 3. Demuxmix, GMM-Demux, HashSolo and HTODemux show

consistent performance across all three batches.

Next, we investigate doublets in more detail. Figure 2 demonstrates that

all HTO demultiplexing methods call more doublets and negatives than vireo.

Fig. 2: The proportion of cell assignments to singlets, doublets or negative

droplets for each demultiplexing method of the BAL data set. Each panel is

a method and each bar is a batch.

Metric Batch 1 Batch 2 Batch 3

Genetic singlet fraction 21851 / 24823 41816 / 50668 50496 / 64842

Ămean (hashedDrops) 0.919 0.827 0.773

Ămean (hashedDrops - default) 0.901 0.609 0.569

Ămean (HashSolo) 0.912 0.761 0.721

Ămean (HTODemux) 0.893 0.788 0.741

Ămean (GMM-Demux) 0.899 0.786 0.718

Ămean (deMULTIplex) 0.903 0.771 0.627

Ămean (BFFraw) 0.875 0.537 0.405

Ămean (BFFcluster) 0.927 0.117 0.011

Ămean (demuxmix) 0.901 0.814 0.766

Table 1. Singlet fraction and mean F-score of each demultiplexing method for

each batch.

However, assigning true doublets as singlets is a potentially significant source

of error in downstream analysis [16]. Therefore, we reason that it is worse

for an algorithm to assign doublets as singlets than to leave them unassigned.

In Figure 4 we compare the fraction of genetic doublets assigned by each

method as either doublet, singlet or negative. Figure 4 illustrates several

factors not apparent in Figure 3 and Table 1. Firstly, BFFcluster, which has

the highest F-score for batch 1, unfortunately assigns more than half of

the genetic doublets in that batch as singlets. Secondly, while adjusting the

parameters of hashedDrops from their default values improves the F-score,

the number of incorrectly assigned genetic doublets approximately doubles

in all batches. Thirdly, the other best-performing methods based on F-score:

demuxmix, HTODemux and GMM-demux, perform well on this metric as
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Fig. 3: F-scores of each possible singlet assignment with each demultiplexing

method for the BAL data set. Batch 1 (top panel), batch 2 (middle panel),

batch 3 (bottom panel).

well, assigning < 20% of genetic doublets as singlets in all batches, though

HashSolo performs slightly worse, with ≈ 30% of genetic doublets identified

as singlets.

Cell line data

In addition to the BAL data set previously described, we perform the same

analysis on a second data set, the cell line data set, consisting of three

samples from genetically distinct human lung cancer cell lines. Here, H3122,

H358 and H1792 cells were tagged with different MULTI-seq LMOs [11],

a different tagging technology to the ADTs used on the BAL samples.

These samples were pooled together and processed in one batch across three

captures, with 45,977 total droplets.

Since both the ADT and LMO technologies produce an ĊHTOs × Ċdroplets

counts matrix with similar distributions (see supplementary Figure S6), we

expect the demultiplexing methods to perform similarly on the LMO and

ADT data. Figure 5 shows the F-score for each method on each of the three

samples in this data set, as well as the categorical assignments of the 4945

genetic doublets. Figure 5 and Figure S6 show that the cell line data is

somewhere between the quality of batches 1 and 2 of the BAL data, and

Fig. 4: Fraction of genetic doublets assigned by each HTO demultiplexing

method to doublets, singlets or negative in the BAL data set.

the performance of each of the methods is similar. Based on F-score alone

(Figure 5a), BFFcluster performs best, however, looking at Figure 5b we

see that more than 75% of genetic doublets are assigned as singlets. Based

on the two metrics, we find that deMULTIplex, GMM-Demux and demuxmix

perform well, hashedDrops with default parameters and HTODemux perform

relatively poorly, and hashedDrops with lowered thresholds and HashSolo

perform well based on the F-score, but misidentify≈ 60% of genetic doublets

as singlets – more than twice as many as the best-performing methods.

Discussion

As sample multiplexing becomes more common in scRNA-seq experiments,

reliable demultiplexing of cells becomes paramount. We benchmark seven

methods for cell demultiplexing based on hashtag oligo data. Of the methods

we consider, demuxmix shows the best overall performance. However, the

difference between demuxmix, GMM-Demux and HTODemux is small, and

all should perform similarly well on most data sets. Our results are consistent

for hashtagging using ADTs and LMOs, indicating that the performance of

the demultiplexing methods is agnostic to the choice of tagging protocol.

Although most of the tools are straightforward to run, and interact well

with popular single-cell analysis packages, there are some important usability

differences. Demuxmix is part of the Bioconductor ecosystem and can easily

be run in R. As it only requires a HTO counts matrix to return assignments
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Fig. 5: (a) F-score for each demultiplexing method on each sample from

the cell line data set. (b) Fraction of the 4945 genetic doublets assigned to

different categories by each method.

it can be incorporated as part of a Bioconductor or Seurat-based single-cell

analysis pipeline. HTODemux is part of the Seurat package and requires

a Seurat object as input, therefore runs most easily alongside other Seurat

tools for single-cell analysis. HashSolo is part of the scanpy ecosystem and

can be run easily as part of a scanpy analysis pipeline. However, although

HashSolo performs well on high quality data, its tendency to misidentify

genetic doublets as singlets means care should be taken on lower quality data.

GMM-Demux is a command-line tool, which may provide a barrier to entry

for some users, although wrappers such as cellhashR [4] can be used to run

it from R.

We demonstrate two simple visualisation methods to assess the quality

of hashtag data, and show that if the probability density of counts follows a

bimodal distribution, and the counts separate into well-defined clusters on a

dimensional reduction plot, then all demultiplexing methods perform well.

However, if these conditions are not met, demultiplexing algorithms that

explicitly assume bimodal distributions (such as deMULTIplex and BFF)

fail to correctly assign some droplets to their samples of origin. Threshold-

based methods, such as hashedDrops, can perform well but make a trade-off

between greater recovery of singlets and false positives. More sophisticated

methods, such as the clustering-based HTODemux and demuxmix, and the

Bayesian estimation-based method GMM-Demux perform best and most

consistently on both high and low-quality hashtag data.

Low-quality hashtag data does not imply low-quality RNA expression

data; importantly, the two are largely uncorrelated (see Figure S1

in Supplementary Materials). We show that the difference between

demultiplexing methods becomes more pronounced as the quality of the

hashtag data reduces. Therefore, maximising performance of demultiplexing

methods on lower-quality hashtag data is particularly important to prevent

otherwise good quality cells being excluded in a single-cell analysis.

Methods

Single-cell data generation

The BAL data set is derived from CITE-seq experiments of 24 samples

of paediatric BAL. Samples were collected, cryopreserved, and thawed as

previously described [13]. Live, single cells were sorted using a BD FACS

Aria fusion and resuspended in 25µL of cell staining buffer (BioLegend).

Human TruStain FcX FC blocking reagent (BioLegend) was added according

to manufacturers’ instructions for 10min on ice. Each tube was made up to

100µL with cell staining buffer and TotalSeq Hashtag reagents (BioLegend)

were added to each sample for 20min on ice. Cells were washed with 3mL

cell staining buffer and centrifuged at 400xg for 5min at 4°C. Supernatant

was discarded and each sample resuspended at 62,500 cells/100µL following

which 100µL of each sample were pooled into one tube. Pooled cells were

centrifuged at 400xg for 5min at 4°C, supernatant discarded, and resuspended

in 25µL cell staining buffer and 25ul of TotalSeqA Human Universal Cocktail

v1.0 (BioLegend) for 30min on ice. This cocktail contains 154 immune

related surface proteins. Cells were washed in 3mL cell staining buffer and

centrifuged at 400xg for 5min at 4°C. Following two more washes, cells

were resuspended in PBS + 0.04% BSA for Chromium captures. Single-cell

captures, library preparation, and sequencing was performed as we have

described previously [10].

For the cell line data set, three human lung cancer cell lines: H1792,

H3122 and H358 were labelled with a different 3’ lipid modified oligo (LMO)

as in [11]. Cell lines were pooled in a 1:1:1 ratio and the pool was used for three

separate captures with the 10x Chromium system using the 10X Genomics

NextGEM 3’ Single-cell Gene Expression Solution (10x Genomics).

Post single-cell capture, scRNA libraries were generated according to

the manufacturer’s recommendations and LMO library preparation was

performed as described previously [11]. LMO count matrices were generated

from fastq files using CITE-seq-count v 1.4.3

Genetic demultiplexing

For both data sets, genetic donors were assigned to the samples by first

performing SNP genotyping using cellSNP-lite (v1.2.0 for the BAL data;

v1.2.1 for the cell line data) [6]. We used a list of common variants from the

1000 genome project [1] and filtered SNPs with < 20 UMIs or < 10% minor

alleles, as recommended in the cellSNP-lite manual. We then used vireoSNP

0.5.6 [7] for demultiplexing using the output of cellSNP-lite as the cell data

and no additional donor information. More detail is provided in [10].

Calculating the F-score

For each possible HTO assignment we calculate the true positive rate TP,

which is the fraction of cells with that HTO assignment that have the

corresponding vireo assignment; the false positive rate FP, which is the

fraction of cells with that HTO assignment and a different genetic assignment;

and the false negative rate FN, which is the fraction of cells with the

corresponding genetic assignment but a different HTO assignment. Our key

metric is the F-score, which is defined as:

Ă =

ĐČ

ĐČ + 1/2(ĂČ + ĂĊ )
.
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F is the harmonic mean of the precision and recall, and can vary between 0

and 1, with a higher F-score implying better performance.

Overview of demultiplexing methods in this comparison

hashedDrops

hashedDrops, part of the DropletUtils package [9], is a simple threshold-

based classifier. First, the HTO counts matrix is corrected for the ambient

counts of each HTO in the data (either before or after filtering out empty

droplets). It then ranks the HTO counts in each droplet. Assignments are

determined solely by the log-fold change (LFC) between the highest and

second highest counts in a droplet, relative to the median counts for that

HTO. Firstly, doublets are called where the LFC of the second highest HTO

is greater than a user-defined number of median absolute deviations (MAD)

above the median and also greater than another user-defined threshold. If a

droplet is not assigned as a doublet, singlet assignments are determined by

checking that the LFC of the HTO with the highest count in each droplet is

greater than a user-defined threshold and is also not less than a user-defined

number of MADs below the median. While less sophisticated than other

demultiplexing methods, hashedDrops has the advantage of making very few

assumptions about the data, and is easily configurable by the user. However,

as the results are very sensitive to the choice of the hard thresholds their

values should be carefully considered. We explore the effect of varying the

singlet threshold parameter in Figure S3 in the supplementary materials.

HTODemux

HTODemux [14], included in the Seurat package, uses a clustering-based

approach. The HTO counts are normalized using the centred log ratio (CLR)

transformation. Then an unsupervised ġ-medoids clustering is performed,

with ġ = ĊHTOs +1. For each HTO, cells are identified as positive or negative

in a two step procedure. Firstly, the cluster with the lowest expression count

for each HTO is defined as the “negative” cluster, and a negative binomial

distribution is fitted to the counts in that cluster. For the droplets outside

that cluster, droplets with HTO counts above a user-defined quantile (0.99 by

default) are assigned as positive for the HTO. After performing this procedure

on all HTOs, droplets that have been assigned positive for more than one

HTO are classified as multiplets, droplets with no positive assignments are

classified as negative, and the droplets assigned positive for only one HTO are

classified as singlets. We explore the effect of varying the quantile threshold

in Figure S4 in the supplementary materials.

GMM-Demux

Like HTODemux, GMM-Demux [17] uses the CLR-transformed HTO

counts. In well-behaved data, the distribution of the CLR-transformed

counts of each HTO is bimodal, with the lower peak corresponding to the

‘negative’ background and the higher peak corresponding to the true ‘positive’

counts. GMM-Demux fits a two-component Gaussian mixture model to the

distribution of each HTO, and uses Bayesian estimation to assign each droplet

to the higher-or lower-peaked distribution for each HTO. Droplets with only

one positive HTO assignment are classified as singlets, droplets with no

positive assignments are classified as negative, while droplets with multiple

positive assignments are classified as multiplets, with the identity of the

most-probable HTOs in each multiplet included in the output. Every positive

assignment is given a confidence score between 0 and 1, and a user-defined

confidence threshold (0.8 by default) can be adjusted to be more or less strict

with the output classifications. We explore the effect of varying the confidence

threshold set in Figure S5 in the supplementary materials.

demuxmix

demuxmix [15] is similar to GMM-Demux but uses a negative binomial

mixture model on the untransformed HTO counts, rather than a mixed

Gaussian on the CLR-transformed counts. For each HTO, all cells are

clustered into positive and negative clusters using ġ-means clustering. Cells

with very high counts are marked as outliers, and the non-outliers are fitted

to a two-component negative binomial distribution using an expectation-

maximisation algorithm. demuxmix can also leverage the RNA counts to

improve performance, using the number of detected genes in the RNA library

as a covariate in the mixture model. Using this additional RNA information

with the BAL data set showed no significant improvement on either data set

in this paper, so the results presented are based on the HTO counts only.

deMULTIplex

deMULTIplex [11] uses an iterative approach. First, a kernel density estimator

is used to smooth the log-normalized HTO counts. For each HTO, an

initial threshold for positive classification is defined as the highest maximum

(assuming a bimodal normalized counts distribution), while the initial

threshold for negative classification is the mode. Then, the algorithm sweeps

through the quantile range between these two thresholds to find the value

that classifies the largest proportion of the data as singlets. Each droplet

is then compared against each HTO-specific threshold, being classified as

negative, singlet or multiplet based on the number of HTOs for which

it passes. All negatively-classified droplets are removed from the counts

matrix, and the process is repeated until successive iterations identify no

additional negative droplets. While the thresholds for singlets and doublets

can be adjusted manually, the default option searches for the value which

maximises the fraction of singlet assignments, and our results use this

automatic threshold-determining mode.

BFF

Bimodal Flexible Fitting (BFF) [4] also assumes a bimodal counts

distribution. It operates in two modes, BFFraw and BFFcluster. The first,

BFFraw smooths the counts distribution using a kernel density estimator,

much like deMULTIplex. The threshold between positive and negative

classification in this case is the local minimum between the two peaks.

The second mode, BFFcluster, is similar, but includes an additional layer

of normalization, called bimodal quantile normalization, before finalizing

classifications. The level of smoothing on the counts can be selected by the

user, however our results are based on the default, which searches for an

optimal value.

HashSolo

HashSolo [3] is a Bayesian method that models the overall counts distribution

across all cells as a mixture of two log-normal distributions corresponding

to signal and noise. For each cell, it looks at the two highest counts and

computes the likelihood of both belonging to the noise distribution (negative),

one belonging to the signal and one the noise (singlet) or both belonging to

the signal (doublet). It then returns the assignment with the highest Bayesian

evidence. The prior is the fraction of singlets, doublets and negative cells

within the sample. Based on the vireo results, we use a prior of 75% singlets,

20% doublets and 5% negative. We also run HashSolo with a negative fraction

prior between 1% and 10% and a doublet fraction prior between 10% and

30%. This has a negligible effect on the posterior assignments, with the

average F-score varying by < 1% in all batches.

Data availability

Code to reproduce the analysis in this paper, as well as all necessary data is

available online at https://github.com/Oshlack/hashtag-demux-paper
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