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Abstract:

16S rRNA and shotgun metagenomics studies typically yield different results, traditionally
thought to be due to biases in amplification. We show that differences in reference phylogeny
are more important. By inserting sequences into a whole-genome phylogeny, we show that 16S
rRNA and shotgun metagenomic data generated from the same samples agree in principal

coordinates space, taxonomy, and in phenotype effect size when analyzed with the same tree.

Body:
Shotgun metagenomics and 16S rRNA gene amplicon (16S) studies are widely used in

microbiome research, but investigators using different methods typically find their results hard to
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reconcile. This lack of standardization across methods limits the utility of the microbiome for

reproducible biomarker discovery.

A key problem is that whole-genome resources and rRNA resources depend on different
taxonomies and phylogenies. For example, Web of Life (WoL) " and the Genome Taxonomy
Database (GTDB) ? provide whole-genome trees that cover only a small fraction of known
bacteria and archaea, while SILVA ® and Greengenes * are more comprehensive but not fully

linked to genome records.

We reasoned that an iterative approach could yield a massive reference tree that unifies these
different data layers. We began with a whole-genome catalog of 15,953 bacterial and archeal
genomes evenly sampled from NCBI, and reconstructed an accurate phylogenomic tree by
summarizing evolutionary trajectories of 380 global marker genes using the new workflow
uDance. This work, namely Web of Life version 2 (WoL2), represents a significant upgrade from
the previously released WolL1 (10,575 genomes) '. Then, we added 18,356 full-length rRNA
amplicons from the Living Tree Project January 2022 release ° and 1,725,274 near-complete
16S rRNA genes from Karst et al. ® and the EMP500 7 with uDance v1.1.0, then added all full-
length 16S sequences from GTDB r207, and finally inserted 23,113,447 short V4 16S rRNA
Deblur v1.1.0 8 amplicon sequence variants from Qiita (retrieved Dec. 14, 2021) ° as well as
mitochondria and chloroplast 16S from SILVA v138 using DEPP v0.3 ', including everything
from the Earth Microbiome Project "' and American Gut Project/Microsetta ' (Fig. 1A). Our use
of uDance ensured the genome-based relationships are kept fixed and relationships between
full-length 16S sequences are inferred. For short fragments, we kept genome and full length
relationships fixed and inserted fragments independently from each other. Following
deduplication and quality control on fragment placement, this yielded a tree covering 21,074,442

sequences from 31 different Earth Microbiome Project Ontology (EMPO) EMPO_3
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environments, of which 46.5% of species-level leaves were covered by a complete genome.
Taxonomic labels were decorated onto the phylogeny using tax2tree v1.1 *. The input taxonomy
for decoration used GTDB r207, combined with the Living Tree Project January 2022 release.
Taxonomy was harmonized prioritizing GTDB including preserving the polyphyletic labelings of
GTDB (see also Online Methods). Taxonomy will be updated every six months using the latest

versions of GTDB and LTP.

Our resource is much larger than past resources in its phylogenetic coverage, as compared to
the last release of Greengenes (Fig. 1B), SILVA (Fig. S1A) or GTDB (Fig. S1B). However,
because our amplicon library is linked to environments labeled with Earth Microbiome Project
Ontology (EMPO) categories, we can easily identify the environments that contain samples that
can fill out the tree. Because MAG assembly efforts can only cover abundant taxa, we plotted
for each EMPO category the amount of new branch length added to the tree by taxa whose
minimum abundance is 1% in each sample (Fig. 1C). The results show which environment
types on average will best yield new metagenome assembled genomes (MAGs), and also show

which environments harbor individual samples that will have a large impact when sequenced.

Past efforts to reconcile 16S and shotgun datasets have led to non-overlapping distributions and
only techniques such as Procrustes analysis can even show relationships between the results

'3, On two large human stool cohorts ">

where both 16S and shotgun data were generated on
the same samples, we find that Bray-Curtis '* (non-phylogenetic) ordination fails to reconcile at
the feature level (Fig. 1D) and is poor at the genus level (Fig. 1E, S1C). However, UniFrac '°, a

phylogenetic method, used with our Greengenes?2 tree provides far better concordance (Fig. 1F,

S1D).
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Figure 1. (A) The Greengenes2 phylogeny rendered using Empress '” with amplicon sequence
variant multifurcations collapsed, tip color indicating representation in the American Gut Project
(AGP), the Earth Microbiome Project (EMP), both or neither, and with the top 20 represented
phyla depicted in the outer bar. (B) The same collapsed phylogeny, colored by the presence or
absence of a best BLAST '8 hit from Greengenes 13_8 99% OTUSs. The bar depicts the same
coloring as the tips. (C) Earth Microbiome Project samples and the amount of novel branch
length, normalized by the total backbone branch length, added to the tree through amplicon
sequence variant fragment placement. (D) Bray Curtis applied to paired 16S V4 rRNA amplicon

sequence variants and whole genome shotgun samples from The Healthy Microbiome Diet
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100 Initiative subset of The Microsetta Initiative. (E) Same data as (D) but computing Bray Curtis on
101 genus collapsed data. (F) Same data as (D-E) but using weighted UniFrac.

102

103  We also find that the per-sample shotgun and 16S taxonomy concordances are excellent even
104  to the species level. We first computed taxonomy profiles for shotgun data using the Woltka
105  pipeline °. Using a Naive Bayes classifier from g2-feature-classifier v2022.2 % to compare

106  GTDB r207 taxonomy results at each level against SILVA v138 (Fig. 2A) or Greengenes v13_8
107  (Fig. 2B), no species-level reconciliation was possible. In contrast, Greengenes2 provided

108 excellent concordance at the genus level (Pearson r=0.85) and good concordance at the

109  species level (Pearson r=0.65) (Fig. 2C). Interestingly, the tree is now sufficiently complete that
110  exact matching of 16S ASVs followed by reading the taxonomy off the tree performs even better
111 than the Naive Bayes Classifier (Naive Bayes; Pearson r=0.54 at species, r=0.84 at genus).
112

113  Finally, a critical reason to assign taxonomy is downstream use of biomarkers and indicator

114  taxa. Microbiome science has been described as having a reproducibility crisis 2!, but much of
115  this problem stems from incompatible methods ?2. We initially used the The Human Diet

116  Microbiome Initiative (THDMI) dataset, which is a multipopulation expansion of The Microsetta
117  Initiative ' that contains samples with paired 16S and shotgun preparations, to test whether a
118  harmonized resource would provide concordant rankings for the variables that affect the human
119  microbiome similarly. Using Greengenes2, the concordance was good with Bray-Curtis (Fig. 2D;
120  Pearson r’=0.56), better using UniFrac with different phylogenies (SILVA 138 and

121 Greengenes2; Fig S1E; Pearson r’=0.77), and excellent with UniFrac on the same phylogeny
122  (Fig. 2E; Pearson r’=0.87). We confirmed these results with an additional cohort ' (Fig. S1FG).
123  Intriguingly, the ranked effect sizes across different cohorts were concordant.

124
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Figure 2. (A-C) Per sample taxonomy comparisons between 16S and whole genome shotgun
profiles from THDMI. The solid bar depicts the 50th percentile, the dashed lines are 25th and
75th percentiles. (A) 16S taxonomy assessed with SILVA 138 using the default q2-feature-
classifier Naive Bayes model. (B) 16S taxonomy assessment with Greengenes 13_8 using the
default q2-feature-classifier Naive Bayes model. (C) 16S taxonomy assessment performed by

reading the lineages directly from the phylogeny or through Naive Bayes trained on the V4
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132  regions of the GreengenesZ2 backbone. (D-E) Effect size calculations performed with Evident on

133 paired 16S and whole genome shotgun samples from THDMI. Calculations performed at
134 maximal resolution, using ASVs for 16S and genome identifiers for shotgun. (D) Bray Curtis
135 distances. (E) Weighted normalized UniFrac.

136

137  Taken together, these results show that use of a consistent, integrated taxonomic resource

138 dramatically improves the reproducibility of microbiome studies using different data types, and
139  allows variables of large versus small effect to be reliably recovered in different populations.
140

141 ONLINE METHODS

142

143  Phylogeny construction

144  Web of Life version 2 ' (a tree inferred using genome-wide data) was used as the starting

145  backbone. Full length 16S sequences from the Living Tree Project °, full length mitochondria
146  and chloroplast from SILVA 138 3, full length 16S from GTDB r207 2, full length 16S from Karst
147  etal®, and full length 16S from the EMP 500 7 (samples selected and sequenced specifically for
148  Greengenes2) were collected and deduplicated. Sequences were then aligned using UPP 23
149  and gappy sequences with less than 1000bp were removed. The resulting set of 321,210

150  unique sequences were used with uDance v1.1.0 to update the Web of Life 2 (WoL2) backbone.
151 Briefly, uDance updates an existing tree with new sequences and (unlike placement methods)
152  also infers the relationship of existing sequences. uDance has two modes: one that allows

153  updates to the backbone and one that keeps the backbone fixed. In our analyses, we kept the
154  backbone tree (inferred using genomic data) fixed. To extend the genomic tree with 16S data,
155  we identified 13,249 genomes in the WoL2 backbone tree with at least one 16S copy and used
156  them to train a DEPP model with the weighted average method detailed below to handle

157  multiple copies. We then used DEPP to insert all 16S copies of all genomes into the backbone
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158 and measured the distance between the genome position and the 16S position. We removed
159  copies that were placed far further than others, as identified using a 2-means approach with
160 centroids equals to at least 13 branches. We repeated this process a second round. Then, for
161  every remaining genome, we selected as its representative the copy with the minimum

162  placement error and computing the consensus when there were ties. At the end, we are left with
163 12,344 unique 16S sequences across all the WolL.2 genomes. For tree inference, uDance used
164 IQ-TREE2 # in fast tree search with model GTR+I" after removing duplicate sequences.

165

166  Next, we collected 16S V4 ASVs from Qiita ° using redbiom ?° (query performed December 14,
167  2021) from contexts “Deblur_2021.09-lllumina-16S-V4-90nt-dd6875”, “Deblur_2021.09-lllumina-
168  16S-V4-100nt-50b3a2”, “Deblur_2021.09-lllumina-16S-V4-125nt-92f954”, “Deblur_2021.09-
169  lllumina-16S-V4-150nt-ac8c0b”, “Deblur_2021.09-lllumina-16S-V4-200nt-0b8b48”,

170  “Deblur_2021.09-lllumina-16S-V4-250nt-8b2bff’ and aligned them to the existing 16S alignment
171 of sequences in WoL2 using UPP, setting the maximum alignment subset size to 200 (to help
172  with scalability). The collected 16S V4 ASVs are aligned to the V4 region of the existing

173  "backbone" alignments. A DEPP model was then trained on the full length 16S sequences from
174  the backbone. DEPP constructs a Neural network model that embeds sequences in high

175  dimensional spaces such that embedded points resemble the phylogeny in their distances.

176  Such a model then allows insertion of new sequences into a tree using distance-based

177  phylogenetic insertion method APPLES-2 %°. The ASVs from redbiom were then inserted into
178  the backbone using the trained DEPP model. To enable analyses of large datasets, we used a
179  clustering approach with DEPP: we trained an ensemble of DEPP models corresponding to

180 different parts of the tree and used a classifier to detect the correct subtree. During training, for
181 species with multiple 16S, all the copies are mapped to the same leaf in the backbone tree. To
182 train the DEPP models with multiple sequences mapped to a leaf, each site in the sequences is

183  encoded as a probability vector of four nucleotides across all the copies.
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184

185  Integrating the GTDB and Living Tree Project taxonomies

186  GTDB and Living Tree Project are not directly compatible due to differences in their curation. As
187  aresult, it is not always possible to map a species from one resource to the other, either

188 because parts of a species lineage are not present, are described using different names, or

189  have an ambiguous association due to polyphyletic taxa in GTDB. GTDB is actively curated,
190  while LTP generally uses the NCBI taxonomy. To account for these differences, we first mapped
191 any species that had a perfect species name association and revised its ancestral lineage to
192  match GTDB. Next, we generated lineage rewrite rules using the GTDB record metadata.

193  Specifically, we limited the metadata to records which are GTDB representatives and NCBI type
194  material, and then defined a lineage renaming from the recorded NCBI taxonomy to the GTDB
195 taxonomy. These rewrite rules were applied from most to least specific taxa, and through this
196  mechanism we could revise much of the higher ranks of LTP. We then identified incertae sedis
197  records in LTP which we could not map, removed their lineage strings and did not attempt to
198  provide taxonomy for them, instead opting to rely on downstream taxonomy decoration to

199 resolve their lineages. Next, any record which was ambiguous to map was split into a secondary
200 taxonomy for use in backfilling in the downstream taxonomy decoration. Finally, we

201 instrumented numerous consistency checks in the taxonomy through the process to capture
202 inconsistent parents in the taxonomy hierarchy, consistent numbers of ranks in a lineage and
203  ensuring the resulting taxonomy was a strict hierarchy.

204

205  Taxonomy decoration

206  The original tax2tree algorithm was not well suited for a large volume of species level records in
207  the backbone, as the algorithm requires an internal node to place a name. If two species are
208 siblings, the tree would lack a node to contain the species label for both taxa. To account for

209 this, we updated the algorithm to insert “placeholder” nodes with zero branch length as the
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210 parents of backbone records, which could accept these species labels. We further updated

211  tax2tree to operate directly on .jplace data %', preserving edge numbering of the original edges
212  prior to adding “placeholder” nodes. To support LTP records which could not be integrated into
213  GTDB, we instrumented a secondary taxonomy mode for tax2tree. Specifically, following the
214  standard decoration, backfilling and name promotion procedures, we determine on a per record
215  basis for the secondary taxonomy what portion of the lineage is missing, and place the missing
216 labels on the placeholder node. We then issue a second round of name promotion using the
217  existing tax2tree methods.

218

219  The actual taxonomy decoration occurs on the backbone tree, which contains only full length
220 16S records, and does not contain the amplicon sequence variants (ASV). This is done as ASV
221 placements are independent, do not modify the backbone, and would substantially increase the
222  computational resources required. After the backbone is decorated, fragment placements from
223  DEPP are resolved using a multifurcation strategy using the balanced-parentheses library

224 (https://github.com/biocore/improved-octo-waddle/).

225

226  Phylogenetic collapse for visualization

227  We are unaware of phylogenetic visualization software that can display a tree with over

228 20,000,000 tips. To produce the visualizations in figure 1, we reduced the dimension of the tree
229 by collapsing fragment multifurcations to single nodes, dropping the tree to 522,849 tips.

230

231  MAG target environments

232  Afeature table for the 27,015 16S rRNA V4 90nt Earth Microbiome Project samples was

233  obtained from redbiom. The amplicon sequence variants (ASV) were filtered to the overlap of
234  ASVs present in Greengenes2. Any feature with < 1% relative abundance within a sample was

235 removed. The feature table was then rarefied to 1,000 sequences per sample. The amount of
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236  novel branch length was then computed, per sample, by summing the branch length of each
237  ASV’s placement edge. The per sample branch length was then normalized by the total tree
238  branch length (excluding length contributed by ASVs).

239

240  Per sample taxonomy correlations

241  All comparisons used the THDMI 16S and Woltka processed shotgun data. These data were
242  accessed from Qiita study 10317, and filtered the set of features which overlap with

243  Greengenes2 using the QIIME 228 q2-greengenes2 plugin. 16S taxonomy was assessed using
244  either a traditional Naive Bayes classifier with q2-feature-classifier and default references from
245 QIIME 2 2022.2, or by reading the lineage directly from the phylogeny. To help improve

246  correlation between SILVA and Greengenes2, and Greengenes and Greengenes2, we stripped
247  polyphyletic labelings from those data; we did not strip polyphyletic labels from the phylogenetic
248 taxonomy comparison or the Greengenes2 16S vs. Greengenes2 WGS Naive Bayes

249  comparison. Shotgun taxonomy was determined by the specific observed genome records.

250  Once the 16S taxonomy was assigned, those tables as well as the WGS Woltka WoL version 2
251  table were collapsed at the species, genus, family, order, and class levels. We then computed a
252  minimum relative abundance per sample in the THDMI dataset. In each sample, we removed
253  any feature, either 16S or WGS, below the per sample minimum (i.e., max(min(16S),

254  min(WGS))), forming a common minimal basis for taxonomy comparison. Following filtering,
255  Pearson correlation was computed per sample using SciPy %. These correlations were

256  aggregated per 16S taxonomy assignment method, and by each taxonomic rank. The 25th, 50th
257  and 75th percentiles were then plotted with Matplotlib *°.

258

259  Principal coordinates

260 THDMI Deblur 16S and Woltka processed shotgun sequencing data, against WoL version 2,

261  were obtained from Qiita study 10317. Both feature tables were filtered against Greengenes2
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262  2022.10, removing any feature not present in the tree. For the genus collapsed plot (figure 1e),
263  both the 16S and WGS data features were collapsed using the same taxonomy. For all three
264  figures, the 16S data were subsampled, with replacement, to 10,000 sequences per sample.
265 The WGS data were subsampled, with replacement, to 1,000,000 sequences per sample. Bray
266  Curtis and Weighted UniFrac, and PCoA were computed using g2-diversity 2022.2. The

267  resulting coordinates were visualized with q2-emperor 3'.

268

269  Effect size calculations

270  Similar to principal coordinates, the THDMI data were rarefied to 9,000 and 2,000,000

271  sequences per sample for 16S and WGS respectively. Bray Curtis and weighted normalized
272  UniFrac were computed on both sets of data. The variables for THDMI were subset to those
273  with at least two category values having more than 50 samples. For UniFrac with SILVA, figure
274  S1E, we performed fragment insertion using q2-fragment-insertion *? into the standard QIIME 2
275  SILVA reference, followed by rarefaction to 9,000 sequences per sample, and then computed
276  weighted normalized UniFrac.

277

278  For FinRISK, the data were rarefied to 1,000 and 500,000 sequences per sample for 16S and
279  WGS. A different depth was used to account for the overall lower amount of sequencing data for
280 FinRISK. As with THDMI, the variables selected were reduced to those with at least two

281  category values having more than 50 samples.

282

283  Support for computing paired effect sizes is part of the QIIME2 Greengenes2 plugin, g2-

284  greengenes2, which performs effect size calculations using Evident

285  (https://github.com/biocore/evident/).

286

287 Data access
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288  The official location of the Greengenes2 releases is http:/ftp.microbio.me/greengenes _release/.

289  The data are released under a BSD-3 clause license. A QIIME 2 plugin is available to facilitate

290 use with the resource, which can be obtained from https://github.com/biocore/g2-greengenes?2/.

291  Taxonomy construction, decoration, and release processing is part of

292 https://github.com/biocore/greengenes2. uDance release v1.1.0 is available at GitHub:

293  https://github.com/balabanmetin/uDance. Phylogeny insertion using DEPP is available at

294 https://github.com/yueyujiang/DEPP; the trained model accessioned with Zenodo at

295 10.5281/zenodo.7416684. The THDMI data are part of Qiita study 10317, and EBI accession
296 PRJEB11419. The FinRISK data are available under EGAD00001007035. Finally, an interactive

297  website to explore the Greengenes2 data is available at https://greengenes2.ucsd.edu.

298

299  Acknowledgements

300  This work was supported in part by NSF XSEDE BIO210103, NSF RAPID 20385.09, NIH

301  1R35GM14272, NIH U19AG063744, NIH U24DK131617, NIH DP1-AT010885 and Emerald
302  Foundation 3022. JTM was funded by the intramural research program of the Eunice Kennedy

303  Shriver National Institute of Child Health and Human Development (NICHD).


https://doi.org/10.1101/2022.12.19.520774
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.19.520774; this version posted December 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

B we
M 16S

M SILVA 138
M Not in SILVA 138

Axis 2 (4.341 %) Axis 2 (7.405 %)

W GTDB r207
M Not in GTDB r207
it (46,54
Beta-diversity effect sizes (Cohen's D and F) Beta-diversity effect sizes (Cohen's D and F) Beta-diversity effect sizes (Cohen's D and F)
P ~220.77: p=1.29e-27 Pearson r~2=0.30; p=3.33e-16 0.5 | Pearson r~2=0.55; p=7.47e-34
§0.25 earson r =0.77; p=1.29e-, s
é 0.20 ° E °
8 L] >
5 503 °
B0 I o °
5 E 0.1
E F G
0'08.00 0.05 0.10 0.15 0.20 0.25 0'%.0 . 0.2 0.3 0.4 '%.0 0.1 0.2 0.3 0.4 0.5
Effect size SILVA 16S Weighted UniFrac Effect size GG2 16S Bray Curtis Effect size GG2 16S Weighted UniFrac
304
305 Figure S1. (A) Best BLAST hit for SILVA 138 against Greengenes2. (B) Best BLAST hit for
306 GTDB r207 SSU sequences against Greengenes?2. (C) The FinRISK 16S and WGS data
307 combined, collapsed to genus, with Bray Curtis computed followed by Principal Coordinates
308 Analysis, colored by technical preparation. (D) The same data as (C) but using weighted

309 UniFrac. (E) Effect sizes of the THDMI data using the SILVA 138 phylogeny for 16S data, and
310 the Greengenes2 phylogeny for WGS data. (F) Effect sizes of the FinRISK data using Bray
311 Curtis. (G) The same data as (E) but using Weighted UniFrac.
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