bioRxiv preprint doi: https://doi.org/10.1101/2022.12.14.520412; this version posted December 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PyDESeq2: a python package for bulk RNA-seq differential
expression analysis

Boris Muzellec, Maria Telenczuk, Vincent Cabeli and Mathieu Andreux

Owkin Inc., New York, USA.

December 14, 2022

Abstract

Summary: We present PyDESeq2, a python implementation of the DESeq2 workflow for differential
expression analysis on bulk RNA-seq data. This implementation achieves better precision, allows speed
improvements on large datasets, as shown in experiments on TCGA data, and can be more easily inter-
faced with modern python-based data science tools.

Availability and Implementation: PyDESeq?2 is released as an open-source software under the MIT
license. The source code is available on GitHub at https://github.com/owkin/PyDESeq2.

Contact: boris.muzellecQowkin.com

1 Introduction

Bulk RNA sequencing (RNA-seq) is one of the most common molecular data modality used in biomedical
research. Most RNA-seq datasets are used primarily for differential expression analysis (DEA) (Stark
et al.l 2019) which provides invaluable insight on the associations between the genes’ expression and a
phenotype. Due to the inherent noise and statistical challenges present in RNA-seq data, DEA methods
have become more sophisticated over the past decade, making them difficult to re-implement or port
over new programming languages. In practice the community now relies primarily on a small handful of
packages implementing state-of-the-art methods, among which DESeq2 (Love et al., [2014]).

While bioinformatics software is classically developed in R, a recent trend has seen the arrival of
python software. Examples include the scanpy suite (Wolf et al.| 2018) or the squidpy package (Palla
et al., 2022) for single-cell and spatial RNA-seq, among others. This shift is motivated by several ad-
vantages of the python language: (1) the possibility to rely on well-maintained and efficient scientific
computing packages such as numPy and sciPy, (2) a greater interoperability with machine learning and
data science frameworks and (3) the potential to reach a wider audience, as python is one of the most
popular programming languages (see, e.g., https://pypl.github.io/). Yet, to the best of our knowl-
edge, there is currently no available python-native package for DEA with generalized linear models on
bulk RNA-seq data.

A workaround consists in relying on python-to-R bindings, i.e. call R software and make back-and-
forth data conversions from a python interface, using packages such as rpy2 (https://rpy2.github.io/).
However, this approach raises several issues: (1) it requires the user to install and maintain packages
both in python and in R, which is cumbersome, (2) it creates computational overhead, as data is being
converted and passed from one framework to the other and (3) it may lead to a loss of control for the
user, as the options and subroutines of the original packages are only accessible through the binding
layer.

In an effort to alleviate those issues and to benefit from the advantages offered by python-based soft-
ware, we present PyDESeq2, a python implementation of the bulk RNA-seq DEA methodology introduced
by [Love et al. (2014) and implemented in the R package DESeq?2.

https://github.com/owkin/PyDESeq2
boris.muzellec@owkin.com
https://pypl.github.io/
https://rpy2.github.io/
https://doi.org/10.1101/2022.12.14.520412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.14.520412; this version posted December 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

TCGA-BRCA TCGA-COAD TCGA-LUAD TCGA-LUSC B PyDESeq2 DESeq2

100.0%
3

9 none down-reg,
PyDESeq2
TC

none e reg
PyDESeq2 PyDESeq2
TCGA-PAAD TCGA-PRAD

upreg.- 100.0% upreg.- 9 o upreg.- 100.0% [T

down down dowrrec
PyDESeq2 PyDESeq2 PyDESeq2 PyDESeq2

Normalized enrichment score (NES)

(o] Gene-wise Log-fold changes D
— cor

100% = pyDESeq2

- DESeq2
175001 DEseq2 better DESeq2 better PyDESeq2 better

15000

12500

10000

genes

7500

5000

2500

ol
~F102 -10° 107 0 1070 10
Relative log-likelihood

& 1071

~1 -102-10--10--10"* 1

07" 107 107 102 1
Relative log-likelihood

Figure 1: (A) Significantly differentially expressed genes (with padj < 0.05 and |[LFC| > 2)
according to PyDESeq2 and DESeq2. (B) Significantly enriched pathways (padj < 0.05) obtained
with the fgsea package, using Wald statistics as gene-ranking metric. Only top 10 enriched
pathways (according to adjusted p-value) of at least one cancer dataset are represented. If for a
given cancer dataset, a pathway is not significantly enriched, the corresponding square is left blank.
The 3 pathways which are considered significantly enriched in one implementation but not the
other on a given TCGA dataset are highlighted by a surrounding box. (C): Distribution of relative

log-likelihoods (E(PYDElsfgﬁﬁ)s;%(DEsqu)), with corresponding cumulative distribution functions. (D)
92)|

Time benchmark on an 8-core machine, averaged over 10 runs, using 8 threads for each package.

Numbers between parenthesis correspond to dataset sample sizes. (A-D) We refer to the appendix

for additional details on the experiments.

2 Implementation

PyDESeq?2 implements the DEA methodology of (2014), which briefly consists in modeling raw
counts using a negative binomial distribution. Dispersion parameters are first estimated independently
for each gene by fitting a negative binomial generalized linear model (GLM), and then shrunk towards a
global trend curve. In turn, dispersions are used to fit gene-wise log-fold changes (LFC) between cohorts,
and to perform Wald tests for differential expression.

2.1 Available features and code structure

For now, the features implemented in PyDESeq2 correspond to default DESeq2 settings. More precisely,
it implements DEA for single-factor designs using Wald tests, and LFC shrinkage using the apeGLM
prior @7 . Similarly to DESeq2, PyDESeq2 is structured around two classes of objects: a
DeseqgDataSet class, handling data-modeling steps from normalization to LFC fitting, and a DeseqgStats
class for statistical tests and optional LFC shrinkage. To fit GLMs, we rely on the popular scipy
(Virtanen et al.,|2020) and statsmodels (Seabold and Perktold} 2010) python packages.

https://doi.org/10.1101/2022.12.14.520412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.14.520412; this version posted December 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.2 Comparison with DESeq2 on TCGA datasets

In Fig. |1} we compare the results of PyDESeq2 and DESeq2 on 8 datasets from The Cancer Genome Atlas
(TCGA, https://www.cancer.gov/tcga). More precisely, we test differential expression between tissue
samples corresponding to advanced vs. non-advanced tumor grades (as per TCGA’s clinical data), and
focus on 4 criteria: retrieved genes, enriched pathways obtained with the fgsea package (Sergushichev)
2016), model likelihood, and speed.

As can be seen from Fig. PyDESeq2 returns very similar sets of significant genes and pathways,
while achieving better likelihood for dispersion and LFC parameters on a vast majority of genes, and at
comparable speeds (higher for large cohorts, lower for small cohorts).

The data used in our experiments is publicly available on the TCGA Research Network website:
https://portal.gdc.cancer.gov/. We refer to the supplementary material for additional details on the
experiments.

2.3 Conclusion and future perspectives

In conclusion, PyDESeq?2 is a fast and reliable package for bulk RNA-seq DEA. By releasing this package,
we hope to fill a gap in the python omics ecosystem, and to contribute to popularize the usage of modern
data science python tools in gene expression analysis.

Finally, let us mention some of the features that we plan to implement in PyDESeq2. Future work
includes adding support for multi-factor designs, and implementing the features induced by the glmGamPoi
(Ahlmann-Eltze and Huber| 2020) option, such as using log-ratio tests and local median regression for
the dispersions trend curve.

Acknowledgements

The authors would like to thank Aura Moreno-Vega, Valérie Ducret and Quentin Bayard for fruitful
discussions.

References

Ahlmann-Eltze, C. and Huber, W. (2020). glmGamPoi: fitting gamma-poisson generalized linear models
on single cell count data. Bioinformatics, 36(24), 5701-5702.

Love, M. I. et al. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome biology, 15(12).

Palla, G. et al. (2022). Squidpy: a scalable framework for spatial omics analysis. Nature methods, 19(2),
171-178.

Seabold, S. and Perktold, J. (2010). statsmodels: Econometric and statistical modeling with python. In
9th Python in Science Conference.

Sergushichev, A. A. (2016). An algorithm for fast preranked gene set enrichment analysis using cumulative
statistic calculation. bioRxiv.

Stark, R. et al. (2019). RNA sequencing: the teenage years. Nature Reviews Genetics, 20(11), 631-656.

Virtanen, P. et al. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17, 261-272.

Wolf, F. A. et al. (2018). SCANPY: large-scale single-cell gene expression data analysis. Genome biology,
19(1), 1-5.

Zhu, A. et al. (2019). Heavy-tailed prior distributions for sequence count data: removing the noise and
preserving large differences. Bioinformatics, 35(12), 2084—2092.

https://www.cancer.gov/tcga
https://portal.gdc.cancer.gov/
https://doi.org/10.1101/2022.12.14.520412
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Implementation
	Available features and code structure
	Comparison with DESeq2 on TCGA datasets
	Conclusion and future perspectives

	Additional details on the experiments
	PyDESeq2 and DESeq2 pipelines
	Gene set enrichment analysis
	Time benchmark

