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29 Abstract

30  The first 2 years of the COVID-19 pandemic were mainly characterized by convergent evolution of
31 mutations of SARS-CoV-2 Spike protein at residues K417, L452, E484, N501 and P681 across different
32  variants of concern (Alpha, Beta, Gamma, and Delta). Since Spring 2022 and the third year of the
33  pandemic, with the advent of Omicron and its sublineages, convergent evolution has led to the
34  observation of different lineages acquiring an additional group of mutations at different amino acid
35 residues, namely R346, K444, N450, N460, F486, F490, Q493, and S494. Mutations at these residues
36  have become increasingly prevalent during Summer and Autumn 2022, with combinations showing
37  increased fitness. The most likely reason for this convergence is the selective pressure exerted by
38  previous infection- or vaccine-elicited immunity. Such accelerated evolution has caused failure of all
39  anti-Spike monoclonal antibodies, including bebtelovimab and cilgavimab. While we are learning
40 how fast coronaviruses can mutate and recombine, we should reconsider opportunities for
41 economically sustainable escape-proof combination therapies, and refocus antibody-mediated
42  therapeutic efforts on polyclonal preparations that are less likely to allow for viral immune escape.
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43 Introduction

44 In the third year of the COVID-19 pandemic, the majority of the general population is now largely
45  protected from severe COVID-19 disease and death by mass vaccination campaigns and by
46  immunity from former infection. Unfortunately, SARS-CoV-2 remains a life-threatening pathogen for
47  immunocompromised (IC) patients who are unable to mount a protective immune response. IC
48  individuals create a cohort population in whom the virus can persistently replicate, which is a
49  novelty for pandemics. In this regard, advancements in therapeutics and supportive care have
50 greatly increased the prevalence of IC patients compared to just a few decades ago. SARS-CoV-2
51 infection in IC patients is arguably the most difficult current problem in the COVID-19 pandemic for
52  these individuals can have large viral loads with inevitably include antigenically different viruses and
53  have a diminished capacity for clearing the infection.

54  Since Summer 2022, SARS-CoV-2 transmission has proceeded undisturbed worldwide after the
55  relaxation of nonpharmaceutical interventions such as lockdowns, social distancing, hand hygiene,
56  and face masks, which together with the waning of infection- and vaccine-elicited immunity, has
57  increased opportunities for spread and the number of susceptible individuals, respectively. Hence,
58 the increase in the “human culture medium” has led to large infectious waves during 2022, with
59  estimated excess deaths similar to those observed in 2020 [1]. While acquisition and waning of
60 immunity from former infections is not a novel occurrenece , the COVID-19 pandemic has created
61  conditions whereby the natural course of a coronavirus pandemic is changed by introducing timely
62  vaccination campaigns and therapeutics targeting the viral receptor domain. There is no historical
63  precedent for the current situation. The combined action of increasing cumulative viral loads in the
64  “human culture medium” and such selective pressures has led to an unprecedented increase in viral
65 diversification in 2022. WHO nomenclature for variants of concern remained stuck at “Omicron”[2],
66  while alternative naming schemes introduced novel names to designate lineages that are
67  responsible for thousands of hospitalizations. The most refined phylogeny to date has been released
68 by PANGOLIN which counts more than 600 designated Omicron sublineages at the time of writing
69  (https://www.pango.network/summary-of-designated-omicron-lineages/), accounting for more than
70  45% of SARS-CoV-2 variability (Figure 1). Of interest, such increase in divergence was detected
71  despite a 75% reduction in genomic surveillance in 2022, which is mainly due to budget constraints.
72 After peaking at 1 million sequences in January 2022, the number of new sequences deposited at
73 the site decreased to t 250,000 in October 2022 (https://cov-
74  spectrum.org/explore/World/AllSamples/Past6M/sequencing-coverage ). Consequently, it is likely
75  that the number of defined circulating sublineages is an underestimate of the viral genetic variation
76  inthe current pandemic.

77 Mutation rates and mutational spectra

78 Mutation rate (MR) is often used interchangeably to indicate 2 different things: occurrence of
79 mutations within a single host (intrahost evolution at individual level without any demand for
80  outcompeting co-circulating strains) or step-wise accumulation of mutations (“antigenic drift”) that
81  get fixated within a species. While the first meaning has been demonstrated (e.g., in IC hosts[3-5],
82  and after administration of the small molecule antiviral molnupiravir which known to increase G—A
83 and C—U transition mutations[6], potentially contributing to new linages), from an evolutionary
84  standpoint it is the second meaning which is more interesting and already well-established for other
85  respiratory pathogens|[7], including the related human coronavirus 229E[8].

86  Early in the pandemic, data suggested that mass vaccination could restrict SARS-CoV-2 mutation
87  rates (MR): the diversity of the SARS-CoV-2 lineages declined at the country-level with increased rate
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88  of mass vaccination (r = -0.72) and vaccine breakthrough patients harbor viruses with 2.3-fold lower
89  diversity in known B cell epitopes compared to unvaccinated COVID-19 patients [9]. Also, vaccination
90  coverage rate was inversely correlated to the MR of the SARS-CoV-2 Delta variant in 16 countries
91  (r’=0.878)[10].

92 Ruis et al found a halving in the relative rate of G>T mutations in Omicron compared to pre-
93  Omicron sublineages[11]. To exclude selective pressures on the derived protein structures, Bloom et
94  al found similar results by repeating the analysis focusing on 4-fold degenerate codons (i.e. codons
95 that can tolerate any point mutation at the third position, although codon usage bias restricts this in
96  practice in many organisms) [12]. Replicaion of viruses and bacteria in the lower respiratory tract has
97  been associated with high levels of G>T mutations and for SARS-CoV-2 this effect occurred with
98  Delta but was lost in Omicron [11]. Such changes on mutation type and rate could theoretically stem
99  from from mutations affecting genome replication and packaging [13], as well as from mutations in
100 genes encoding proteins (e.g. APOBEC) that antagonize host innate-immune factors, which
101 otherwise will mutate viral nucleic acids[14-16] and/or from environmental factors [6].

102  The average MR of the entire SARS-CoV-2 genome was estimated from the related mouse hepatitis
103 virus (MHV) to be 10 nucleotides per cycle, or 4.83 x 10 subs/site/year, which is similar, or slightly
104 lower, that observed for other RNA viruses [17]. Following the removal of mandatory
105 nonpharmaceutical interventions such as face masks, social distancing, and quarantine in most
106  western countries, vaccination was not sufficient to prevent hyperendemicity. The MR of SARS-CoV-
107 2 consequently doubled from 23 substitutions per year before December 2021 to 45 substitutions
108 per year after December 2021, coinciding with the advent of omicron (Figure 2), which approximates
109  14.5/subs/year for the ~30 kb SARS-CoV-2 genome. This rate should set the upper limit for mutation
110  frequency, as many mutations will not be viable and/or transmissible, and thus not observed in the
111  sequencing data at baseline. It had been previously shown that the P203L mutation in the error-
112 correcting exonuclease non-structural protein 14 (nsp14) almost doubles the genomic MR (from 20
113  to 36 SNPs/year) [18]. While this change is not prevalent in Omicron lineages, many changes in the
114  replication machinery appeared with Omicron, such as K38R, A1265, and A1892T in Nsp3; P132H in
115  Nsp5; 1189V in Nsp6; P323L in Nsp12; and 142V in Nsp14, and some of them could have contributed
116  tothe MR jump[19].

117 Convergent evolution

118  In the midst of such massive lineage divergence, convergent evolution towards certain motifs has
119  become increasingly manifest.

120 In the pre-Omicron and pre-vaccine era, variants of concern (VOCs) notably converged to mutations
121 which resulted in the following amino acid changes: K417N, L452R, E484K, N501Y, and P681X[20].
122 These amino acid changes have been proposed to increase the stability of the trimeric protein[21-
123 23], and they emerged in the absence of significant selective pressures by the immune system.
124 K417N, E484A, N501Y and P681H remained hallmarks of BA.2.*, while the paraphyletic BA.4/5
125  acquired L452R and F486V and the Q493R reversion.

126 In the last year the BA.2 variant first generated a wave that led first to the paraphyletic BA.4/5
127  sublineage, which was later joined by a return of so-called “second-generation” BA.2 sublineages
128 (Figure 3), with BA.2.75.* and BA.2.3.20 being the most circulated. Since Summer 2022, each of
129  those sublineages has amazingly converged with changes at the receptor-binding domain (RBD)
130 residues R346, K444, L452, N450, N460, F486, F490, Q493, and 5494 (see Supplementary Table
131 1)[24]. E484A remained instead stable, with 484K never detected, A484G seen only in BA.2.3.20, and
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132  A484T seen only in XBB.1.3. More recently, convergence in indels within the N-terminal domain
133  (NTD), as previously recognized in Brazilian VOCs[25], was reported for Omicron sublineages: in
134  particular, Y144del has been found in BA.4.6.3, BJ.1, BU.1, BQ.1.8.*, BQ.1.1.10, BQ.1.1.20, BQ.1.18,
135  and XBB.*)[26].

136  This “variant soup” can be organized and stratified according to the number of key Spike mutations
137  present, and although the number of key mutations acquired correlates well with increasing fitness,
138  this is only so within each lineage, which shows that the biology of SARS-COV-2 infection goes
139  beyond what occurs in the Spike protein (Figure 4). At present, only the BQ.1-derived lineages with 7
140 or more selected mutations display a clear relative growth advantage relative comparison to the
141  BQ.1.1 baseline. Convergence was clearly observed at the amino acid level, with different nucleotide
142  mutations leading to similar amino acid changes: e.g., N460K was caused by T22942A in BQ.1*, XAW
143  and some of the BA.5.2 sublineages, while it was caused by T22942G in BA.2.75*(all lineages),
144 BA.2.3.20, BS.1, BU.1, XBB, XAK and BW.1 (BA.5.6.2.1). Another impressive example of this
145 convergent evolution is the Spike of BA.4.6.3, BQ.1.18 and BQ.1.1.20 independently acquiring the
146  following amino acid changes since their last shared common ancestor: Y144del, R346T, N460K,
147 LA52R, F486V and the R493Q reversion. Also, BA.4.6.3 has acquired K444N, while BQ.1.18 and
148 BQ.1.1.20 acquired K444T.

149 Escalating immune escape

150  SARS-CoV-2 evolution represents an accelerated movie of Darwinian selection. Variants that are
151  more likely to escape vaccine- and infection-elicited immunity that are more fit expand at the
152 expense of those less fit. While it may sound obvious, we now have formal evidence of such
153 evolution, with PANGOLIN descendants invariably having increased RBD immune escape scores
154 compared to parental strains (Figure 5). In this ongoing race, descendants invariably replace parents,
155 as these are fitter in hosts with pre-existing immunity. In this regard, the chances for saltations
156  lineages that emerged after intrahost evolution in IC patients (i.e. in the absence of RBD immune
157  escape) seem minimal: accordingly, despite the initial hypothesis of intrahost evolution to explain
158  the saltation seen with the emergence of Omicron, recent evidence suggests that Omicron
159  ancestors circulated undetected long before the exponential spread [27].

160 RBD immune escape can nowadays be estimated in silico based on in vitro data
161  (https://ibloomlab.github.io/SARS2 RBD Ab escape maps/escape-calc/). RBD immune escape is
162  clearly a moving scale with an evolving asymptote. E.g., by changing vaccine composition [28] we are
163  likely to reset the “game”.

164

165 ACEZ2 affinity fine tuning

166  ACE2 affinity can be estimated in silico (https://github.com/jbloomlab/SARS-CoV-2-
167 RBD DMS_Omicron/blob/main/results/final _variant scores/final variant scores.csv). Several
168  Omicron sublineages showed remarkable examples of further evolution at Spike residues that were
169  already recently mutated. E.g.,

170 e BQ.1 already had K444T inherited from BE.1.1.1, but further mutated into 444M in the child
171 BQ.1.1.17

172 e XBB.1 already had E484A inherited from the BA.2 parent, but further mutated into 484T in
173 the child XBB.1.3
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174 e BA.2.3 already had E484A inhertited from the BA.2 parent, but further mutated into 484G in
175 the child BA.2.3.20, which caused an impressive increase in ACE2 affinity (to whom K444R,
176 L452M, and N460K contributed)

177 e BM.4.1.1 already had F486S inherited from the BM.4.1 parent but further mutated into
178 486P in CH.3

179 e BM.1.1.1 already had F486S inherited from the BM.1 parent but further mutated into 486P
180 in the child CJ.1

181 e XBB.1 already had F486S inherited from the BM.1.1.1 parent but further mutated into 486P
182 in the child XBB.1.5

183 e BA.2.75.2 already had F486S inherited from the BA.2.75 parent, but further mutated into
184 486L in the child CA.4

185 e BA.5.2.1 already had F486V inherited since BA.5, but further mutated to 4861 in BF.12

186 e BW.1 already had F486V inherited from the BA.5 parent, but further mutated into 486S in
187 the child BW.1.1

188 Seven of these examples manifest escalating affinities for ACE2, with the other 2 representing no
189 change in ACE2 affinity (Figure 6).

190

191 Mutually exclusive mutations

192 Mutually exclusive mutations across the entire SARS-CoV-2 genome have been previously
193  studied[29], but the vast constellation of Omicron sublineages provides an unique opportunity for an
194  in-depth exploration of substitutions that are incompatible in combination. The best examples so far
195 are N450X and R346X mutations, which have not yet been observed together in more than 6 millions
196  of Omicron sequences. Two dipolar interactions exist between the carboxamide group of Asn and
197  the guanidino group of Arg in the ancestral sequence, stabilizing the receptor binding module (RBM)
198  tertiary fold (Figure 7, left). R346 resides within a short loop between helix al and beta strand 1.
199  N450is a constituent of the extended RBM insertion into the overall five-stranded antiparallel beta-
200  sheet fold of the domain. As the RBM is the critical determinant for the interaction with ACE2,
201  maintaining its optimal conformation through this stabilizing bond is likely to be essential for
202  pathogenesis. N450D is a common substitution among Omicron lineages. This mutation would result
203  in a similarly sized sidechain but different electrostatic properties (carboxamine = carboxylic acid).
204  This substitution would likely result in a stronger interaction with position 450, as one H-bonding is
205 maintained, and one is replaced with ionic salt bridge between the deprotonated oxygen and the
206  basic guanidino group, provided that the residue at position 346 remains Arg. On the other hand,
207 any substitution at position 346, with the exception of Lys, would result in a significantly shorter,
208  non-cationic sidechain, which would abrogate this RBM-stabilizing interaction. R346K would partially
209  maintain this interaction, replacing a bidentate linkage to N450 with a monodentate dipolar
210 interaction. Thus, the observed mutual exclusivity of mutations at these two sites can be rationalized
211 by their contributions to this stabilizing intradomain interaction.

212 Other combinations have been exceedingly rare so far, and seen only in cryptic lineages (e.g., F486P
213 and K444 mutations), but no steric justifications can be found for them.

214 Epistasis

215  While the focus so far has been mostly on the Spike protein, it is likely that convergent evolution is
216  acting on genes other than Spike. Given that the Spike protein is the best protective antigen for both
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217  infection and vaccines, mutations in other genes are more likely to provide fitness advantages if they
218  affect Spike expression. E.g., ORF8 limits the amount of Spike proteins that reaches the cell surface
219  and is incorporated into virions, reducing recognition by anti-SARS-CoV-2 antibodies[30]. ORF8 has
220  accordingly been target of convergent evolution in Omicron (e.g., ORF8:5667F in BR.2.1, ORF8:G8x in
221 XBB.1) and in SARS-related coronaviruses[31].

222 Other genes whose roles in Spike modulation are not clear are also converging, such as
223 ORF1b:T1050, found in many BA.5.2.* sublineages, and XBE (T1050N) as well as XBC.* (T1050l).

224

225 Selective pressures from therapeutics targeting the Spike
226 protein.

227  There is a theoretical concern that, in addition to vaccines- and infection-elicited immunity, selective
228  pressure by prophylactic and therapeutic anti-Spike monoclonal antibodies (mAb), can contribute to
229  the emergence of novel SARS-CoV-2 sublineages [32]. While selective pressures are likely to generate
230  many different mutants, a very few of those emerging sublineages could be fit enough to compete
231  with the lineages that are dominating at that time to become locally or globally dominant.

232 While spontaneous evolution can occur in the absence of selective pressures due to the intrinsic
233  genomic MR (see section above), extended half-life mAbs (such as Evusheld™) administered for pre-
234  exposure prophylaxis or therapy to chronically infected immunocompromised patients at
235  subneutralizing concentrations provide ideal conditions to facilitate the emergence of mutants[33],
236 for these patients often cannot clear the infection and have high viral loads. Establishing a cause-
237 effect relationship is difficult, but intra-host evolution studies provide a highly suggestive temporal
238 association[34]. mAbs have come of age since the advent of the SARS-CoV-2 Delta VOC, but because
239  of the resistance of Omicron to most authorized mAbs, their use since Spring 2022 has been largely
240  limited to Evusheld™ (for which cilgavimab was the only ingredient with residual activity) and
241 bebtelovimab.

242  We know from in vitro deep mutational scanning studies the exact mutations that cause resistance
243 to each mAb. S:F486X mutations impart resistance to tixagevimab, S:R346X, S:K444X and S:5494X
244  mutations impart resistance to cilgavimab, while S:K444X mutations impart resistance to
245  bebtelovimab (Table 1). We recently noted an increase in the circulation of Omicron sublineages
246  associated with S:R346X mutations, and wondered whether this could partly be the result of
247  selective pressure with Evusheld™. We compared the prevalence of R346X mutations in countries
248  with high versus low usage of Evusheld™ (France vs. UK) or bebtelovimab (USA vs. UK) (Figure 8). UK
249  also represents an ideal control because of its very high SARS-CoV-2 genome sequencing rate. We
250  discuss these 2 scenarios in details below.

251

252 S:R346X

253  Different mutations can affect the R346 residue. R346G has been selected in vitro by
254 cilgavimab+tixagevimab[35] . R346S occurred in vitro after 12 weeks of propagating SARS-CoV-2 in
255  the presence of sotrovimab, and before the other epitope mutation (P337L) which leads to
256 sotrovimab resistance [36]. R346l has been selected in vitro under the selective pressure from
257 cilgavimab [37,38]. Lee et al reported mutually exclusive substitutions at residues R346 (R346S and
258  R346l) and E484 (E484K and E484A) of Spike protein and continuous turnover of these substitutions
259  in 2 immunosuppressed patients[39]. Unfortunately, in vivo selection evidences are so far available
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260 for sotrovimab[40] but not for Evusheld™. It should be anyway noted that R346T[41,42] and R346I[43]
261  have been reported to spontaneously develop and fix in 3 IC patients without any selective pressure.

262 While R346K was associated with the BA.1.1 wave (see Figure 8), the plethora of different Omicron
263  sublineages that showed convergent evolution towards R3461, R346S or R346T is of concern.

264 e R346K (previously seen only in VOC Mu/B.1.621 [44]) occurred exclusively in BA.1.1, a
265 sublineage that disappeared since May 2022, where it affected the interaction network in
266 the BA.1.1 RBD/hACE2 interface through long-range alterations and contributes to the
267 higher hACE2 affinity of the BA.1.1 RBD than the BA.1 RBD [45], and had increased resistance
268 against Evusheld™[46] and sotrovimab[47]. Only STI-9167 remained effective among the
269 mADbs[48]. Beta+R346K, which was identified in the Philippines in August 2021, exhibited the
270 highest resistance to 2 BNT61b2 doses-elicited sera among the tested VOCs[49]. After
271 BA.1.1, R346K has not been detected worldwide in any sublineage.

272 e R346I occurs in more than 40 different Omicron sublineages, but it is most represented in
273 BA.5.9 (38%), BA.4.1 (5%), BA.5.9 (4%), but also occurred in AY.39 (14%);

274 e R346S (previously seen only in a C.36.3 sublineage from Italy[50] (30.8%), occurs in more
275 than 40 different Omicron sublineages but it is most represented in B.1.640.1 (18%), and in a
276 few Delta sublineages (<2%)) occurs nowadays in BA.4.7 (13%), BA.5.2.1 (8.22%), BA.4
277 (2.8%).

278 e R346T occurs in more than 96 different Omicron sublineages, but it is mostly represented in
279 BA.4.6 (44%), BA.5.2.1 (13%), BA.2 (8%), BA.2.74 (3%), BA.2.76 (12%), BA.4.1 (2.3%). In
280 addition, it is a hallmark mutation of BA.1.23, BA.2.9.4, BL.1, BA.2.75.2, BA.2.80, BA.2.82,
281 BA.4.1.8, BF.7 and BF.11. BA.4.6, BA.4.7, and BA.5.9 displayed higher humoral immunity
282 evasion capability than BA.4/BA.5, causing 1.5 to 1.9-fold decrease in NTsy of the plasma
283 from BA.1 and BA.2 breakthrough-infection convalescents compared to BA.4/BA.5.
284 Importantly, plasma from BA.5 breakthrough-infection convalescents also exhibits significant
285 neutralization activity decrease against BA.4.6, BA.4.7, and BA.5.9 than BA.4/BA.5, showing
286 on average 2.4 to 2.6-fold decrease in NTsp. R346S causes resistance to class 3 antibodies:
287 bebtelovimab remains potent, while Evusheld™ is completely escaped by these subvariants
288 [51].

289

290 S:K444X

291  The K444E/R mutations were reported in vitro after selection with cilgavimab[38]. Resistance studies
292 with bebtelovimab selected the K444T escape mutations for BA.2[52]. Ortega et al found that K444R
293  (previously found in the Beta VOC[53]), K444Q, and K444N mutations can change the virus binding
294 affinity to the ACE2 receptor[54]. Weisblum et a/ found that K444R/Q/N occurs after exposure to
295  convalescent plasma[55]. Among largely diversified VOCs such as Delta, S:K444N was associated with
296 reduced remdesivir binding and increased mortality[56].

297

298 Conclusions

299  The convergent evolution of Omicron sublineages appears to reflect the selective pressure exerted
300 by previous infection- or vaccine-elicited immunity. Vaccines and perhaps antibody therapeutics
301  have without doubt saved an untold number of lives but also likely altered the natural evolutionary
302  trajectory of the virus. While other viruses such as influenza and HIV routinely produced new
303  variants because of their mutagenicity, the scale at which SARS-CoV-2 has spun off new variants and
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304 lineages appears unprecedented in modern virology history. The SARS-CoV-2 vaccines reduce severe
305 disease and mortality but do not confer sufficient immunity to prevent re-infection with viral
306 replication in vaccinated hosts. Hence, we have the unusual situation of viral replication in immune
307  hosts where the immune system is placing evolutionary pressure on the virus to select variants that
308  can escape vaccine-elicited immunity in addition to infection-elicited immunity. Whether this rapid
309 evolutionary trajectory is the result of viral replication properties, replication in immune hosts or
310 both is unknown but conditions present in the past year of the pandemic have produced a
311  remarkable natural experiment in viral evolution for which we cannot discern its conclusion.

312  Insights from structural biology has shown how some mutations are mutually exclusive, which could
313  help the design of next-generation vaccines. But the latter could reset the run for immune escape,
314  perpetuating the never-ending game of host and pathogen. Viral recombination[57] (more than 50
315 lineages censed at the time of writing, with both simple and complex variants[58]) and sudden
316 reemergence of former VOCs[59] have to be considered as further drivers for evolutionary saltation.

317 In this setting, polyclonal passive immunotherapies (such as plasma from convalescent and
318 vaccinated donors[60,61]) appear more escape-resistant than monoclonal antibodies[62-65], and
319  combo therapies should be urgently investigated and deployed in vulnerable populations, such as IC
320 patients[66].
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Table 1

Heatmap of selected Spike RBD mutations in Omicron sublineages and their impact on authorized therapeutic anti-Spike mAbs. BAM: bamlanivimab; ETE:
etesevimab; CAS: casirivimab; IMD: imdevimab; TIX: tixagevimab; CIL: cilgavimab; SOT: sotrovimab; BEB: bebtelovimab; REG: regdanvimab. Data sourced
from the Stanford University Coronavirus and Antiviral Resistance Database (accessed online at https://covdb.stanford.edu/search-drdb on November 30,
2022). Green means fold-reductions < 5; Orange means fold-reduction 5-100 ; Red means fold-reduction in ICs, > 100 compared to wild-type; blank means
no data available.

Spike mutation Main lineages

R346X | T BS.1.*, BP.1, DD.1, BJ.1, BL.1.*, BL.2.*, BL.5,
BA.2.75.2.* (CA.*), BM.1.1.* (CL.* and CV.¥),
BM.4.1.1.1 .* (CH.*), BR.2.* and BR.3, BN.1,
BA.2.75.6.* (BY.*), BA.2.75.9.* (CY.*), BA.2.76,
BA.4.1.8 and BA.4.1.9, CS.1, BA.4.6.* (DC.*) and
BA.4.7, BA.5.1.18 and BA.5.1.20, DE.2,
BA.5.1.26.* (CU.*), BA.5.1.27 and BA.5.1.28,
BF.7.*, BF.11.*, BA.5.2.6.* (CP.*), BA.5.2.13.*
(CR.¥), BA.5.2.25.% (DA.*), BA.5.2.39, BQ.1.1.*
(CZ.*, CW.*, DK.*), BE.1.2.*, BE.1.4.2, BE.4.1.*
(CQ.*), BE.5, BE.6 and BE.7, XBB.*, XBD, XBE,
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S BL.5, BF.13, BQ.1.21, BE.6

K444X | M CA.3.1, BR.1.*, BA.5.2.7, CY.1, BU.1,

CG.1, BQ.1.17

N BA.2.38.*, BA.4.6.3, BA.5.1.29, BV.2,
BA.5.2.24, CK.* (DG.*), BE.4.2

R BA.2.3.20.* (CM.*), CS.1, BF.16,
BA.5.2.18, CR.1.*, CR.2, BA.5.2.41,
CQ.1.*, XBB.4.*

T CH.1.*, BR.4, BA.5.2.25, DB.1, DB.2,
BA.5.2.36.* (CT.1), BE.1.1.1, BQ.1.*
(CZ.*, CW.*, DK.*), BQ.2, BE.9,
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BA.5.6.2.* (BW.1)

V445

BA.4.6.2, BF.25, CP.1.1, BU.2, CR.1.2,
BA.5.2.23, BE.1.2.1, BE.1.4.3, CQ.2

BJ.1, XBB.*

G446

BA.5.2.30,CD.1

BR.4

IOl o

BA.1.*,CM.8.%, BJ.1, BA.2.10.4, BH.1,
BA.2.75.* (BL.*, CA.*, BM.*, CJ.*, CV.*,
CH.*, BR.*, BN.*, BY.*, CB.*), BF.3.1,
CP.1.3, CQ.1, XBB.*, XBC, XBD, XBF

N450D

BU.3, CN.1, BA.5.2.32, BA.5.2.40, CC.1

L452X

XBD

BP.1, BA.2.3.20.* (CM.*), XBC.1

BH.1, BA.2.75.8

BS.1.*, CA.1, CA.3.1, CA.7, CV.1,
CH.1.1, BA.2.75.4.* (BR.*), BY.1.1.,
BA.4.* (CS.*, DC.*), BA.5.* (BT.*, DH.*,
DE.*, CU.*, CL.*, BE.*, BZ.*, CP.*, CY.*,
BU.*, CR.*, BV.*, CN.*, CK.*, DG.*,
DB.*, CG.*, CF.*, CD.*, CE.*, CT.*,
DA.*, BE.*, BQ.*, CZ.*, CW.*, CC.*,
CQ.*, BW.*, DK.*), XBE, XBG

N460X

BS.1.*, BA.2.3.20.* (CM.*), DD.1,
BA.2.75.* (BL.*, CA.*, BM.*, CJ.*, CV.*,
CH.*, BR.*, BN.*, BY.*, CB.*), BA.4.6.3,
CL.1, BF.33, CY.1, BU.1, CK.1, CK.2.*,
DG.1, CK.3, DB.1, BQ.1.* (CZ.*, CW.*,
DK.*), BE.4.2, BE.9, BW.1, XBB.*, XBD,
XBF

(%]

DC.1

CP.3

F486X

BM.2.3, BR.2.*, BF.7.12, BF.12
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P BA.2.10.4, CA.4, CJ.1, XBB.1.5, XBC.*,
XBF
S BA.2.75.2.% (CA.*), BM.1.* (CV.*),
BM.4.1.* (CH.*), BR.1.2, BY.1.%,
BA.2.75.7, XBB.*, XBD
Vv BM.2.1, CB.1, BA.4.* (CS.*, DC.*),
BA.5.* (BT.*, DH.*, DE.*, CU.*, CL.*,
BF.*, BZ.*, CP.*, CY.*, BU.*, CR.*, BV.*,
CN.*, CK.*, DG.*, DB.*, CG.*, CF.*,
CD.*, CE.*, CT.*, DA.*, BE.*, BQ.*, CZ.*,
CW.*, CC.*, CQ.*, BW.*, DK.*), XBE,
XBG
F490X | | cz.1
L BL.1.3
S BM.1.1.1.* (CJ.1), BN.1.*, BN.2.1.,
BN.3.1, BN.4, XBB.*, XBF
Vv BJ.1, BL.1.4
RA93X | L BA.2.3.21.1
Q BA.2.10.4, BA.2.75.* (BL.*, CA.*, BM.*,
CJ.*, CV.*, CH.*, BR.*, BN.*, BY.*,
CB.*), BA.4.* (CS.*, DC.*), BA.5.* (BT.*,
DH.*, DE.*, CU.*, CL.*, BF.*, BZ.*, CP.*,
CY.*, BU.*, CR.*, BV.*, CN.*, CK.*,
DG.*, DB.*, CG.*, CF.*, CD.*, CE.*,
CT.*, DA.*, BE.*, BQ.*, CZ.*, CW.*¥,
CC.*, CQ.*, BW.*, DK.*), XBB.*, XBC.*,
XBD, XBE, XBF, XBG
5494p BA.2.10.4, CA.2, BN.1.*,BY.1.2.1,
BQ.1.1.11, BQ.1.1.12, BQ.1.19
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Supplementary Table 1

Occurrence of selected amino acid mutations associated with immune escape within the Spike protein of SARS-CoV-2 in BA.2 and BA.4/5 Omicron

sublineages. Modified from https://docs.google.com/spreadsheets/d/10TWogpyvWNTIKOww7TIDcl4] SkZt378nYiSp2YARys/edit?usp=sharing
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570 Figure 1

571 Radial tree of SARS-CoV-2 evolution, with branch length approximating divergence, showing that Omicron (light blue shadow} currently includes more than
572  45% or variations across 3045 genomes sampled between Dec 2019 and Nov 2022. Accessed online at https://nextstrain.org/ncov/gisaid/global/all-

573 time?l=radial&m=div on November 26, 2022.
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Figure 3

Diagram representing all SARS-CoV-2 Omicron sublineages designated by PANGOLIN as of November 26, 2022 for which at least one of the Spike RBD
immune escaping mutations (R346X, K444X, L452X, N460X, FA486X, or R493Q) represents a branching event. Mythological names introduced by Ryan T
Gregory and used colloquially are also reported. Convergence towards combos of this mutations is noted, with different background colors representing
different combinations. Resistance of each combination to clinically authorized anti-Spike mAbs is reported on the right box. For visualization purposes, the
upper panel shows BA.1 and BA.2 evolution, while the lower panel shows BA.4/5 evolution.
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Figure 4

Step-wise accumulation of key Spike mutations involved in immune escape within SARS-CoV-2 Omicron sublineages increase the relative growth rate.
Lineage name text is color coded, where BA.5 descendants are in blue text, BA.4 descendants in green text and BA.2.75 descendants are in red text. Each
mutation is color coded as shown in the mutation key, and depicted as colored squares when present or white squares if absent. Number of key mutations
of each lineage is summarized at the top. Relative growth rates were calculated using BA.5 lineage as baseline, for groups of BA.4, BA.5, BA.2.75 and XBB

descendant lineages with each exact total number of key mutations. Relative growth rates were calculated using CoV-Spectrum [67]
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s95 Figure 5

596  Evolutionary steps at the basis of the major Omicron branches (CZ.1, XBB.* and CH.1.1.1, and other BA.2.75.* descendants), showing progressive increases
597 in RBD immune escape score (as calculated here: https://jbloomlab.github.io/SARS2 RBD Ab escape maps/escape-calc/). Chart created on NextStrain [68]
598  (https://next.nextstrain.org/staging/nextclade/sars-cov-

599 2/211?gmin=15&I=scatter&scatterX=ace2 binding&scatterY=immune escape&showBranchlLabels=all)

Convergent evolution steps in RBD increase immune escape: from BA.2.75.3 to XBB.* and CH.1.1.1
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Figure 6

Sequential mutational events at the same Spike amino acid residues showing no change or progressive increases in ACE2 affinity score (as calculated here:

https://github.com/jbloomlab/SARS-CoV-2-RBD _DMS Omicron/blob/main/results/final variant scores/final variant scores.csv). Chart created on
NextStrain [68] (https://next.nextstrain.org/staging/nextclade/sars-cov-
2/211?gmin=15&|=scatter&scatterX=ace2 binding&scatterY=immune escape&showBranchLabels=all)

Examples of fine tuning in convergent Spike residues to increase ACE2 affinity score
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Figure 7

Mutually exclusive mutations at R346 and N450. The receptor binding domain of S is depicted in grey cartoon representation, with the receptor binding
module (ACE2 interaction interface) highlighted in orange. Amino acids at the 346 and 450 positions are displayed as purple sticks. A zoomed-in view of the
R346-N450 interaction in the ancestral domain, as well as the computationally modelled amino acid substitutions at those two positions, are portrayed in
boxes to the right. In the wild-type sequence, the basic R346 sidechain interacts with the N450 residue through a pair of hydrogen bond interactions.
N450D results in a similarly sized sidechain, but altered electrostatics. One hydrogen bond is maintained between the neutral oxygen of Asp and Ne of Arg,
and a new salt bridge is formed between the anionic deprotonated oxygen of Asp and the cationic center of the guanidino group of Arg. In the case of
R346X, any substitution except lysine would result in a side chain that is significantly shorter and non-cationic, thus dissolving the interactions between
N450 or other common substitutions at that position.
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