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Abstract

Background: Single-cell gene expression profiling provides unique opportunities to understand tumor hetero-
geneity and the tumor microenvironment. Because of cost and feasibility, profiling bulk tumors remains the
primary population-scale analytical strategy. Many algorithms can deconvolve these tumors using single-cell
profiles to infer their composition. While experimental choices do not change the true underlying composition
of the tumor, they can affect the measurements produced by the assay.

Results: We generated a dataset of high-grade serous ovarian tumors with paired expression profiles from
using multiple strategies to examine the extent to which experimental factors impact the results of downstream
tumor deconvolution methods. We find that pooling samples for single-cell sequencing and subsequent demul-
tiplexing has a minimal effect. We identify dissociation-induced differences that affect cell composition, leading
to changes that may compromise the assumptions underlying some deconvolution algorithms. We also observe
differences across mRNA enrichment methods that introduce additional discrepancies between the two data
types. We also find that experimental factors change cell composition estimates and that the impact differs by
method.

Conclusions: Previous benchmarks of deconvolution methods have largely ignored experimental factors. We
find that methods vary in their robustness to experimental factors. We provide recommendations for methods
developers seeking to produce the next generation of deconvolution approaches and for scientists designing
experiments using deconvolution to study tumor heterogeneity.
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Background

Solid tumors are highly heterogeneous tissues; the malignant cancer cells cohabitate and interact with various
immune and stromal cells, known broadly as the tumor microenvironment (TME), in complex ways [1]. For
cancer patients with the same tumor type, differences in the TME can yield different outcomes in progression,
treatment response, and overall survival. TME composition affects immune cells’ ability to locate and kill
malignant cells, the bioavailability and effectiveness of chemotherapy drugs, the availability of oxygen and other
nutrients needed for cancer cell growth, and the possibility of metastasis [2, 3]. For these reasons, thorough
characterization of the TME is an active area of cancer research [4, 5].

Researchers often use Bulk RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) to examine the
TME. Bulk sequencing—extracting RNA from pulverized tissue—is cost-effective and allows for transcriptome-
wide coverage of total RNA. Many large cancer characterization efforts, such as The Cancer Genome Atlas,
have bulk RNA-sequenced hundreds or thousands of samples [6]. Unfortunately, bulk RNA-seq loses direct
information on tumor purity and cell type composition. Single-cell RNA-seq involves dissociating tissue and
characterizing individual cells, retaining cell type-specific information. However, scRNA-seq is expensive and
thus hard to scale to large datasets. scRNA-seq also produces much sparser data than bulk RNA-seq [7]. Each
data modality presents unique experimental opportunities and challenges, but it is possible to combine bulk and
single-cell data to computationally estimate tissue composition of bulk RNA-seq data using single-cell profiles,
providing estimates of the TME for larger studies.

In the context of the TME, deconvolution describes the challenge of estimating cell type abundances from
bulk profiles. Methods can be reference-free [8-10] or reference-based [11-15]. Many reference-based methods
use a matrix of signature marker genes, but with the advent of single-cell sequencing, reference-based methods
using profiles drawn from single-cell observations have become widespread []. We focus on reference-based
methods in this paper.

Whether or not methods use single-cell data as input, many within-method validations and cross-method
benchmarks rely on single-cell data to assess the accuracy of a deconvolution method [16-18]. These assessments
aggregate scRNA-seq data to create simulated or ” pseudo-bulk” tumors with known cell type proportions. This
assumes that single-cell and aggregated bulk data are biologically equivalent and that performing well on one
data type indicates capturing similar information on the other. However, there are several technical differences
that strain this assumption.

One source of technical variability between single-cell and bulk sequencing is dissociation. Separating cells
from each other requires vigorous chemical and/or physical digestion, which can lyse cell membranes or otherwise
compromise cell integrity [19]. Certain cell types are more sensitive to this process and are systematically
underrepresented in scRNA-seq data [20]. Deconvolution algorithms that assume complete representation of
cell types may perform well on pseudo-bulk assessments but could underperform in practice.

Another difference between single-cell and bulk RNA sequencing is the method of mRNA enrichment.
Most RNA in any given cell is ribosomal RNA, which is undesired in most RNA-seq studies [21]. There are two
prevailing ways to enrich for non-ribosomal RNA [22]. Many bulk RN A-seq experiments use ribosomal depletion
which directly removes rRNA from a sample. This approach performs well for capturing partially-degraded
RNA, such as that found in formalin-fixed paraffin-embedded (FFPE) tissue [23]. An alternative strategy
is poly-A capture, which adds primers that ligate to the polyadenylated 3’ ends of mRNA. Many single-cell
protocols use poly-A-based methods. It is unknown how using reference profiles from poly-A captured single
cells affects the deconvolution of rRNA-depleted bulk samples.

In this work, we generate a unique dataset of high-grade serous ovarian tumors and use it to directly
examine the effects of protocol differences and their ramifications for deconvolution. We focus specifically on
tumor deconvolution. While some deconvolution methods are designed for cancer data [11, 17|, benchmarks
have been performed predominantly on normal tissue [16, 18]. Solid tumors present unique challenges in
deconvolution. Aberrant and dysregulated tissue growth often yields incomplete dissociation with many cells
damaged [24]. Inter-patient heterogeneity is also much greater for malignant cells than for normal cell types
[25], making it harder to generalize patterns across samples. Indeed, robustness to the noise contributed by the
tumor fraction has been called one of the major challenges deconvolution algorithms face [26]. We compare the
consistency of six deconvolution methods across protocols and assess their accuracy on cancer data. Finally, we
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propose a series of recommendations for researchers looking to sequence cancer samples for use in deconvolution
and subsequent at-scale studies of the TME.

Results

Experimental design

Our dataset comprises tumor data from n=8 high-grade serous ovarian carcinoma (HGSOC) patients. HGSOC
is known to have considerable inter-patient and intra-tumor heterogeneity, making deconvolution particularly
valuable [27-29]. In addition, HGSOC tumors exemplify the kinds of challenges faced in cancer sequencing.
Since HGSOC easily disseminates through the peritoneal cavity and forms small metastases, most debulking
surgeries are extensive and take many hours [30], increasing the RNA and tissue degradation prior to freezing
or fixture. The tumor’s histopathology is marked by extensive regions of necrotic tissue [31] resulting in a large
amount of cellular debris at sequencing. Also, HGSOC cells have high genomic instability and a particularly
high burden of copy number variants [32, 33] which can complicate deconvolution. By focusing on a challenging
tumor type, we aim to identify best practices that are robust to real-world experimental conditions and thus
have relevance to many other solid tumor types.

We used data from eight HGSOC tumors for which frozen tumor chunks and frozen dissociated cells were
available (Methods). To directly assess the ways different library preparation methods affect deconvolution in
cancer data, we assayed our data in multiple ways (Figure 1). We performed RNA extraction on the tumor
chunks, enriched for mRNA with rRNA depletion, and performed bulk RNA-sequencing. We will refer to
this data type as "rRNA™ Chunk.” Ribo-depletion on undigested tissue is one of the most common protocols
for cancer RNA-seq datasets and is thus likely to be used as an input for deconvolution. We also performed
rRNA depletion on dissociated cells and performed bulk RNA-sequencing. We will refer to this data type as
"rRNA" Dissociated.” By comparing the rRNA™ Chunk and rRNA" Dissociated data, we examine the effect of
dissociation without other confounding factors that would be involved in bulk vs. single-cell comparisons. We
also performed poly-A (3’) capture and performed bulk RNA-sequencing on RNA from dissociated cells. We
will call this data type "polyA™ Dissociated.”

In addition to our three bulk sequencing data types, we performed two different scRNA-seq assay types.
For one portion of the dissociated cells, we performed scRNA-seq on each tumor separately. We will refer to
these as the "scRNA-seq Individual” samples. For another portion of the dissociated cells, we added a barcoded
antibody and pooled the cells into batches (two sets of four samples each), and performed scRNA-seq on the
pools. We will refer to these as the "scRNA-seq Pooled” samples. Performing scRNA-seq both individually
and in pools allows us to directly compare deconvolution results using reference profiles from each data type
and also evaluate the impact of demultiplexing on deconvolution.

Multiplexing increases throughput and preserves sample-specific information

Pooling has the potential to greatly increase the scalability of single-cell profiling, but it introduces technical
and computational challenges. Pooled samples require a higher total number of cells to be loaded for acceptable
coverage of each sample. In cancer samples with high cellular debris from necrotic tissue, loading more cells
may increase the risk of clogging the microfluidic device. By adding an extra debris-filtering step on the batched
samples (Methods), we could sequence cell counts comparable to or higher than the individual single-cell runs
(Table 1).

Upon successful sequencing, another challenge arises: identifying from which sample each cell originates.
The process of computationally splitting the cells into groups by sample or patient of origin is known as
demultiplexing. To determine if it’s possible to sufficiently demultiplex cells from cancer tissue to use them
as reference profiles for deconvolution, we performed two kinds of demultiplexing: hash demultiplexing and
genetic demultiplexing.
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Hash demultiplexing is precise but limited at default thresholds

For hash demultiplexing, cells are labeled with an antibody targeting ubiquitous cell surface epitopes attached
to a unique oligo-tag (one for each sample) and are then pooled; after sequencing, the tag on each cell is used
to recapitulate the sample of origin [34]. We used 10X Genomics’ cellranger multi platform to do this. When
performing demultiplexing based on antibody hashing in the two batches, 4246 and 3734 of the cells respectively
(57.7% and 38.0%) were assigned to one sample, with 286 and 145 (3.9% and 1.5%) cells called as multiplets
and 2823 and 5935 (38.4% and 60.5%) cells unassigned (Figure 2A-B, Table S1-S2).

When reviewing the assignment probabilities for each cell, we found that many unassigned cells mapped to
one antibody hashtag with reasonably high probability. The default assignment threshold for cellranger multi is
90% probability or greater of originating from one sample. When we relaxed this threshold to 85% probability,
4974 and 3831 cells were assigned (67.6% and 39.0% of total) (Figure SIA-B). A further relaxed threshold of
80% probability yielded 5536 and 4032 assigned cells (75.2% and 41.1% of total) (Figure S1C-D).

Given the high number of unassigned cells under default parameters, we checked if there was differential
antibody adhesion based on cell type, which if present could bias downstream deconvolution. We assigned a cell
type label to all pooled cells using the CellTypist package [35] combined with unsupervised clustering (Methods).
We found across tested probability thresholds that epithelial cells and fibroblasts were proportionally more likely
to be unassigned in Batch A, whereas T cells were proportionally less likely to be unassigned (Figure S2A).
We did not observe a similar bias in Batch B (Figure S2B). One difference between these two batches is
that most of the unassigned cells in Batch A were assigned to a single sample (id 2283) when the probability
threshold was relaxed. In contrast, the newly-assigned cells at lower thresholds were more evenly distributed
in Batch B, suggesting lower overall antibody adhesion in the cells from sample 2283. We posit that in samples
where overall antibody adhesion is low, perhaps due to insufficient reagent or insufficient time for adhesion,
antibodies are preferentially likely to bind to the cell surface markers of certain cell types, perhaps through
greater prevalence or steric availability of CD298 and/or 2 microglobulin. Given sufficient time or reagent,
however, we posit that the antibodies will eventually bind to all cell types, explaining the lack of cell type bias
in other samples/batches. This emphasizes the importance of titrating reagents based on the amount of cellular
input, as recommended in the cell multiplexing procol we used [36]. These results also highlight the need to
scrutinize the data post-sequencing and test a range of assignment thresholds rather than simply relying on
default parameters to maximize the number of confidently assigned cells.

Genetic demultiplexing performs well in HGSOC samples

We also performed genetic demultiplexing of the pooled cells. Instead of identifying sample of origin based on an
experimentally-added antibody, genetic demultiplexing leverages unrelated patients’ innate genetic variation to
group cells based on their genotype [37]. Genotypes can be called using common variants from publicly available
data, e.g., from the 1000 Genomes Project, or with genotypes called from another data modality in the same
samples. The latter allows cells to be directly mapped back to samples rather than arbitrarily labeled. We used
beftools to genotype our bulk RNA-seq data [38], cellSNP-lite to genotype the single cells [39], and vireo to use
the called genotypes to assign a sample of origin [40]. Under this framework, we assigned 6730 and 8866 of the
cells respectively (91.4% and 90.3%) to one sample, with 558 and 705 (7.6% and 7.2%) called as multiplets and
70 and 243 (1.0% and 2.5%) unassigned (Figure 2C-D).

Since genetic demultiplexing relies on the ability to call sample-specific genotypes for common variants
within single cells, the inherent genomic instability of cancer cells has previously been an area of concern.
Simulated experiments have indicated that genetic demultiplexing was possible in tumor samples [41], and
these results offer confirmation in real experimental data. It has been shown that using genotypes from bulk
data from the sample samples (when available) is preferable for cancer demultiplexing [41]. One could imagine
that the selection strategy used for bulk data could affect results—for example, by unevenly sampling across
transcripts. Here we found that genotypes from paired bulk RNA-seq samples appear to be highly consistent
across protocol types. We performed genotyping on our three bulk RNA-seq datasets (rRNA™ Chunk, rRNA-
Dissociated, polyA™ Dissociated) and performed genetic demultiplexing with each as a reference. We found
that over 99% of cells had the same genetic demultiplexing assignment in each run (Figure S3A-C).
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High concordance between hash and genetic demultiplexing

Encouragingly, we saw a high degree of overlap in assignments between hash and genetic demultiplexing. In
cells assigned to a sample by both methods, 94.3% and 95.2% of cells were assigned to the same sample (Figure
2E-F). The biggest area of discordance overall was that many cells were assigned by genetic demultiplexing
and left unassigned by hash demultiplexing. This effect was somewhat lessened at the more permissive 80%
cellranger multi threshold. We attribute the higher number of assigned cells with genetic multiplexing, even
after the relaxed hash assignment threshold, to incomplete adhesion of the antibody tags. For this reason,
we elected to use cells assigned by genetic demultiplexing as our single-cell reference profiles for our main
deconvolution analyses.

Dissociation causes loss of certain cell types

As mentioned previously, some cell types are more resilient to dissociation than others, which can create a
bias in deconvolution when using single cells as reference profiles and in comparison of bulk to single-cell data.
We assessed the effect of dissociation on tumor transcriptomic data by comparing two of our bulk RNA-seq
datasets: TRNA™ Chunk and rRNA~ Dissociated.

Principal component analysis (PCA) of the samples’ expression profiles revealed that individual sample
types tended to segregate together in the first two principal components rather than based on dissociation
status (Figure 3A). This indicated that inter-patient heterogeneity is still strongly present before and after
dissociation. We ran differential expression using the DESeq2 package [42] (Figure 3B). The genes with the
highest log fold-change of expression in the tumor chunks compared to the dissociated cells were hemoglobin
genes (HBA1, HBA2, HBB). Hemoglobin genes were significantly reduced across all rRNA™ Dissociated samples
when compared to their rRNA™ Chunk counterparts (Figure 3C). Erythrocytes (red blood cells) are the pre-
dominant expressors of hemoglobin, and are lysed and removed by many dissociation protocols [43], including
the one that we used. We plotted other erythrocyte-specific genes [44] and found several were significantly
more abundant in the tumor chunks as well.

Several other highly-increased genes in the tumor chunks were associated with adipose tissue (Figure 3B).
Adipocytes are fragile and rarely survive dissociation [45]. In a comparison of single-cell and single-nucleus
RNA-seq data, adipocytes were abundant in single-nucleus data and essentially absent from single-cell data
[46]. Some of the samples expressed adipose-related genes in the tumor chunks but less in the dissociated
cells. In other samples, adipose gene expression was low in both tumor chunks and dissociated cells (Figure
3D). These data support a model where some tumors have high numbers of adipocytes, which are lost during
dissociation, and others lack substantial adipose tissue. While the surgical excision site was not recorded for
these samples, our data are consistent with certain samples being derived from the omentum (a layer of fat
lining the peritoneal cavity to which ovarian cancer cells preferentially migrate and colonize [47]) and others
from other sites.

The omentum is a layer of fat lining the peritoneal cavity, to which ovarian cancer cells preferentially migrate
and colonize [47]. While surgical excision site was not recorded for our samples, we suspect that the tissue
samples with high adipocyte gene expression in the tumor chunks derive from the omentum, while the samples
with little adipocyte gene expression derive from other sites.

Many genes were more abundant in the dissociated cells compared to the tumor chunks. These genes are
related to a variety of biological pathways and cell types. Gene set expression analysis using cell type signature
genes from the Molecular Signatures Database [48] showed that endothelial cells, fibroblasts, macrophages, and
other immune cell types are more abundant in dissociated cells (Figure S4). We confirmed increased endothelial
expression using marker genes from Emont et al [46] (Figure 3B). Indeed, many of the stromal and immune cell
types one would expect to see in an HGSOC tumor are more abundant in the dissociated cells. We hypothesize
this is due to increased relative abundance rather than a true biological enrichment. When red blood cells and
adipocytes are removed, the relative abundance of markers of the remaining cell types necessarily increases.

While some cell type bias in dissociated cells is caused by easily avoided technical artifacts—one could alter
their dissociation protocol to not include a red blood cell lysis step—others are not easily remedied, such as the
loss of adipocytes and other fragile cell types. Other cancer types may also have other relevant cell types that
are lost in dissociation, such as mesothelial cells [46]. Deconvolution using single-cell data for reference profiles


https://doi.org/10.1101/2022.12.04.519045
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.04.519045; this version posted January 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

will, at best, be unable to detect the presence of or quantify these fragile cell types. This poses a particular
problem for adipocytes in ovarian cancer studies, where adipocytes are posited to have a direct role on tumor
growth and metastasis [49, 50] and explain some aspects of inter-patient heterogeneity. Methods that assume
all cell types have a reference present may exhibit unstable performance as they minimize residuals that arise
from the absent cell types.

mRNA enrichment affects gene abundance

Many deconvolution experiments use bulk data that has been ribosomal RNA-depleted and single-cell reference
profiles that have been poly-A captured. While both poly-A capture and rRNA depletion have been shown to
effectively enrich for mRNA across a variety of contexts [23, 51], it is not known if this experimental difference
has a downstream effect on deconvolution. Comparing two of our datasets, rRNA- Dissociated and polyA™
Dissociated, allows us to observe the impact different mRNA enrichment methods have on gene expression
profiling.

To visualize the differences across samples and across data types, we used PCA on a regularized log-
transformed dataset comprising all genes in the TRNA" Dissociated and polyA™ Dissociated samples. We found
that the first principal component segregated samples by patient, while second principal component completely
separated the TRNA- Dissociated and polyA™ Dissociated samples from each other (Figure 4A). The choice of
mRNA enrichment method exerts a substantial effect on overall gene expression.

We performed differential expression analysis to identify trends in global expression profiles (Figure 4B).
Of the top 20 most differentially abundant genes (based on log fold change) in the ribo-depleted samples, 10
encoded histone proteins. To see if this effect was widespread among all histone genes, we aggregated their
counts and found 1.7-fold to 10-fold enrichment of histone genes in the rRNA" Dissociated samples compared
to the polyA™ Dissociated samples from the same tumor (Figure 4C). There is a simple explanation for this:
canonical histone RNAs are not polyadenylated and thus missed by poly-A capture protocols [52]. (The histone
reads we observe in the polyA™ Dissociated samples are likely attributable to variant histones that are not cell
cycle dependent and are polyadenylated.) Several other non-polyadenylated transcripts, such as TERC (the
RNA component of telomerase) and RMRP (an endoribonuclease implicated in cancer progression [53, 54]),
were also in the top 20 most differentially abundant genes in the rRNA™ Dissociated samples [55]. While
these genes are not documented marker genes for cell types, researchers should expect that these genes will be
substantially undercounted or missing in poly-A captured samples, which includes many existing tumor maps.

We observed another trend in the opposite direction: of the top 20 most differentially abundant genes in
the poly-A captured samples, 10 originated from the mitochondrial transcriptome (mtRNA). Examining the
aggregated counts of all mitochondrial RNA in both sets of samples, we found a 10-fold to 30-fold increase in
mtRNA reads in poly-A samples compared to their ribo-depleted counterparts (Figure 4D). We initially found
these results surprising since most mitochondrial RNAs have no connection to ribosomal machinery. However,
the widely-used kit that we used for rRNA depletion has an off-target effect where non-ribosomal mitochondrial
transcripts are depleted along with the mitochondrial ribosomes [56]. The apparent increased abundance of
mitochondrial genes in poly-A samples is likely attributable to this technical artifact.

The percent of mtRNA reads is a major metric used for quality control of scRNA-seq data. Dissociation can
result in a rupture of the cell membrane and loss of cytoplasmic RNA, causing an increase in the proportion
of mitochondrial RNA [57]. Cells above a certain mitochondrial threshold are usually removed from analysis,
assumed to be dead or irreparably compromised. If a researcher uses paired bulk RNA-seq that has been
ribo-depleted as a reference for the expected fraction of mtRNA reads, they may choose an overly conservative
threshold and lose many potentially informative cells.

Assessing deconvolution accuracy and robustness together improves method evaluation

With more information on the effect different experimental decisions have on the data directly, we assessed
the extent to which those experimental factors affect tumor deconvolution. We applied several commonly used
deconvolution methods to our tumor data (Table 2) [11-15, 58]. We chose methods that return proportions of
cell types, allowing us to directly compare results across methods. Each method has its own particular required
inputs. In the case of methods that do not use scRNA-seq data, we used the marker gene matrices provided
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by the respective methods [14]. Most methods we examined require single cells as cell type reference profiles
[11-13, 15, 58]. For these methods, we used cells from our pooled single-cell data that could be assigned to a
sample by genetic demultiplexing and confidently annotated to a cell type (n=14,608). Having two types of
single-cell data from the same samples (scRNA-seq Pooled and scRNA-seq Individual) allowed us to provide the
pooled cells as a reference profile and leave the individually-sequenced cells to be used for validation without
the pitfalls of using the same data for reference profiles and assessment.

Deconvolution methods have cell type bias in real and pseudo-bulk data

We generated pseudo-bulk samples using 7 of our scRNA-seq Individual samples, using cells annotated by cell
type. We excluded sample 2428 due to an insufficient number of cells. We used SimBu [59] to create four
datasets of 50 pseudo-bulk samples each, spanning a range of potential scenarios that a deconvolution method
should be able to accurately characterize (Figure 5A). Each pseudo-bulk sample consisted of count data from
2000 single cells, sampled according to the scenario parameters. One scenario mirrored the proportions of cell
types observed in the single-cell samples; we will refer to this scenario as "realistic.” Another scenario had
approximately even proportions of all the cell types present in the single-cell data; we will call this scenario
"even.” A scenario we will call ”sparse” only included cell types believed to be common in our tumor dataset
(epithelial cells, endothelial cells, fibroblasts, macrophages, and T cells), to enable us to assess how deconvolution
methods handle absent cell types. One of the scenarios, called ”weighted,” is designed to mimic our expectation
that many epithelial tumors are predominated by cancer cells; in this scenario, the epithelial cell fraction was
held constant at 70% with random proportions of other cell types.

We ran the deconvolution methods on all of the simulated pseudo-bulk datasets and calculated the corre-
lation between the estimated and known proportions across samples and cell types. We found that methods
differed dramatically in performance across simulation types (Figure 5B). All of the methods tested had higher
correlation values in the realistic and sparse simulations than in the even simulations, the latter arguably be-
ing the least relevant to actual tissue contexts. Most of the methods trained on single-cell reference profiles
performed best on the weighted simulations, whereas the methods that focus on immune cell types did poorly.

We next investigated whether some methods gave better estimates of certain cell types than others. We
stratified the proportion estimates by method and cell type and subtracted the corresponding true proportion
values from them (Figure 5C). Surprisingly, all the methods tested had a negative mean difference for T cells,
meaning they estimated a smaller T cell fraction in the pseudo-bulk sample than was actually used. While
we cannot completely explain this phenomenon, it has been reported that some kinds of T lymphocytes are
underrepresented in deconvolution methods that use marker genes [60]. Perhaps the phenotypic heterogeneity
observed in most T cell lineages makes it harder to identify a unifying expression profile for accurate quantifi-
cation. On the other hand, most methods also overestimated the proportion of fibroblasts and epithelial cells
in our data, albeit to a lesser degree than the T cells were underestimated.

Given that we had paired bulk and single-cell data, we could compare our pseudo-bulk results to the output
of deconvolution on real bulk data. We ran deconvolution on each of our three bulk data types (rRNA™ Chunk,
rRNA- Dissociated, and polyA™ Dissociated). We used the number of cells of each type from the individual
single-cell data to approximate proportions, with the assumption that deconvolution results that are closer to
the proportions from the single-cell data will be closer to the unknown true proportions comprising the bulk
data. (We excluded sample 2428 from this analysis because of its small number of captured single cells.) We
subtracted proportions estimated from our single-cell data from the deconvolution-estimated proportions for
our bulk data (Figure 5D). In this comparison, we found trends similar to those seen in the pseudo-bulk data:
all methods undercount T cells, and most overcount endothelial cells, epithelial cells, and fibroblasts. These
trends occur across each of the bulk data types (Figure S5A-C).

The concordance across methods led us to speculate that this may represent a true difference in cell type
proportions between bulk and single-cell data. To explore this, we ran differential expression analysis on our
polyA™ Dissociated bulk data compared to our pseudo-bulk data generated from all scRNA-seq Individual
cells. Using polyA™ Dissociated bulk data to compare to pseudo-bulk ensured that any differences in gene
expression were not an artifact of dissociation status or method of mRNA enrichment. We found a high
number of differentially expressed genes, suggesting that discrepancies between bulk and single-cell data extend
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beyond the experimental design decisions we controlled for. We filtered differential expression results to the
cell type unique markers used by MCPcounter [61]. T cell markers were all more expressed in the single-cell
data than in the bulk, and the overwhelming majority of fibroblast and endothelial cell markers were more
expressed in the bulk data than in the single-cell (Figure 5E). These results suggest that some step in the
technical protocol post-dissociation also creates a cell type-specific bias in what cells are captured by scRNA-
seq. We used microfluidic-based scRNA-seq, so loading the cells into microfluidic droplets could be differentially
affected. Endothelial cells and fibroblasts are irregularly shaped and highly integrated into the extracellular
matrix (ECM) and vasculature; these groups of cells may be more prone to incomplete dissociation and are
strained prior to loading. This may be particularly challenging in the context of a high-grade tumor, where
cancer cells establish a dense and highly disorganized ECM and vasculature compared to normal tissue. In
contrast, T cells are more spherical and inherently migratory and are thus more likely to be dissociated and
loaded efficiently.

Regardless of the cause of the cell type bias in scRNA-seq, its presence suggests an uncomfortable truth: bulk
and single-cell RNA-seq are substantially different modalities. This challenges the use of accuracy on pseudo-
bulk data as a gold standard for deconvolution because performing well on pseudo-bulked single-cell data does
not necessarily equate to performing well on real bulk data. It also suggests that comprehensive profiles of the
tumor microenvironment should include both bulk and single-cell assays to allow accurate analysis of the TME.

Deconvolution methods vary in robustness to technical differences

We propose an additional way to evaluate deconvolution methods: robustness of results to different experimental
and protocol decisions. We posit that a method that returns consistent results for the same tissue sample,
regardless of what kind of pre-sequencing processing is done and what reference profile it is given, is likely
to give meaningful results across a range of real-world settings and studies. The concept of robustness has
been previously employed in deconvolution with the assertion that constructing better marker gene matrices
requires taking cross-microarray platform variation into account [62]. Here, we extend this concept to single-cell
informed deconvolution methods.

Since our three bulk-sequenced datasets originated from the same tumors, we would expect a robust de-
convolution method to return similar cell type proportions for a given tumor using each bulk dataset as input.
We compared the variance in proportion estimates for each combination of sample, cell type, and method (e.g.,
the proportion of B cells CIBERSORTx reported for sample 2251 in rRNA™ Chunk vs. rRNA- Dissociated
vs. polyA™ Dissociated data) (Figure 6A). The more abundant cell types in our tumors, such as endothelial
cells and epithelial cells, had naturally higher variance than the less abundant cell types, such as NK cells and
plasma cells. MuSiC had the lowest variance overall, followed by BayesPrism.

As we have already demonstrated, changes in how the single-cell data are generated can change the cell
type representation of the reference profile, which can skew deconvolution results. We used the results from
our demultiplexing experiment to determine what deconvolution methods are more robust to technically-driven
changes in the single-cell reference profile. We ran deconvolution on our bulk data using a reference comprising
only the cells assigned by hash demultiplexing at the default 90% probability threshold. This represented
51.8% of the cells used in our original profile of cells assigned by genetic demultiplexing. Given that each
cell type was still reasonably represented in the smaller single-cell dataset, we would expect a robust method
to return similar deconvolution results using either reference profile. (Note that these analyses only apply to
deconvolution methods that use single-cell reference profiles, so methods that use pre-selected marker genes
were excluded.)

We compared the variance across the single-cell profiles in each combination of sample, cell type, method,
and bulk type (e.g., the proportion of B cells CIBERSORTx reported for sample 2251’s rRNA~ Chunk data
using the genetic demultiplexed reference profile vs. the hash demultiplexed reference profile) (Figure 6B).
BayesPrism had lower average variance across most cell types. We calculated the correlation between the
deconvolution results across the two reference profiles (Figure 6C). BayesPrism and CIBERSORTx had very
high correlations across all bulk/pseudo-bulk types, with BayesPrism’s correlation values being nominally higher
on the true bulk data. MuSiC and NNLS had comparable correlation values with the previous methods on the
true bulk data types but had substantially decreased performance on the pseudo-bulk data types. Seen another
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way, the difference between the deconvolved cell type proportions using either reference profile was relatively
small and uniform across bulk data types for BayesPrism, slightly larger but still uniform across bulk types
for CIBERSORTX and MuSiC, but highly variable in Bisque and NNLS, particularly in the pseudo-bulk types
(Figure 6D).

Finally, to consider robustness and accuracy simultaneously, we plotted a metric of each on an axis of
a graph (Figure 6E-F) to determine if there was a tradeoff between methods, i.e., if some methods return
precise-but-not-accurate results across experimental conditions and some methods are accurate under some
experimental conditions but not robust. We used variance across true bulk types as the robustness axis, and
for the accuracy axis we used either the correlation of pseudo-bulk proportions to true proportions (Figure 6E)
or correlation of real bulk proportions to single-cell proportions (Figure 6F). We also used root mean square
error (RMSE) as an accuracy metric (Figure S6A-B). BayesPrism and CIBERSORTx scored highly on both
axes, and while MuSiC had a slightly higher robustness score and had high accuracy on pseudo-bulk data, it
had poor accuracy on true bulk data.

Discussion

In this study, we designed a unique experiment, profiling HGSOC tumors in multiple ways to allow for direct
characterizations of how experimental design affects the deconvolution of cancer data. We introduce the metric
of robustness across experimental protocols to deconvolution methods to ensure results are consistent for a
single tumor independent of the technical choices made. Performing these analyses on real tumor data instead
of simulated data establishes a model dataset with which future deconvolution methods can be evaluated for
robustness.

We applied and evaluated six different deconvolution methods for both accuracy and robustness. We intend
this to be an examination of how different commonly-used existing methods can vary in robustness and not a
comprehensive benchmark. We invite researchers to use this dataset to evaluate the robustness of other existing
and future methods. We have included a tutorial on GitHub for running new methods on this data (Availability
of data and materials).

Our analysis focused on deconvolution methods that return absolute proportions of cell types within a
sample. Other common methods return unitless scores that can be compared across samples to assess relative
abundance but which do not indicate an absolute proportion of cell types in the sample. We initially applied
several such methods to our data (Table S3) [61, 63—68]. However, when we attempted to assess the accuracy
of these methods on our bulk data, based on their correlation with the proportions in the single-cell data,
correlation values were very low (Figure STA-G). Many of these methods focus on granular profiling of the
immune compartment rather than total deconvolution, so our dataset may not be optimal for evaluating such
methods.

Methods development for deconvolution is an active area of research. As such, we offer recommendations
for researchers designing the next generation of deconvolution methods. One major consideration brought to
light by this study is that certain cell types are present in the bulk tissue but lost from single-cell data. These
cell types are thus unquantifiable by existing reference profile-based deconvolution methods. At a minimum,
we recommend that future methods include a parameter to capture the proportion of ”unknown cells” that
lack a reference within a sample to quantify missing cell types indirectly. (This is already implemented in
certain methods, such as EPIC [14]). Alternatively, a potential area for development would be a method that
employs single-nucleus data (snRNA-seq) as a reference profile for deconvolution. Some cell types that are lost
by dissociation can still be profiled using snRNA-seq due to the protection of the nuclear membrane [46]. A
method that corrects for differences between nuclear and cytoplasmic RNA may effectively leverage an snRNA-
seq reference profile to more accurately characterize all cell types present in a given tissue. Another option
would be a combination of reference profile and marker gene strategies, using reference profiles for cell types
that can be single-cell sequenced and cell type markers obtained from the literature or from bulk sequencing
for cell types lost in single-cell sequencing.

Regardless of individual algorithmic decisions, developers of new deconvolution methods should be sure to
test on real bulk and single-cell datasets that have been prepared using representative experimental protocols.
As we have shown here, different design decisions each introduce biases that can affect deconvolution. Testing
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on only one data type renders these biases invisible. Our results show that pseudo-bulk data is an inherently
limited metric and should not be used as the solitary gold standard for evaluation. Also, a recent study
by Hu and Chikina confirms that the traditional way of simulating data for evaluating deconvolution does
not adequately represent biological heterogeneity, and proposes new ways for better capture heterogeneity in
simulation [69]. By incorporating robustness evaluations across both well-designed simulations and real datasets
into their testing process, researchers can maximize the utility of their method across many future research
questions.

We also have recommendations for scientists interested in designing an experiment to use deconvolution to
profile the TME. For those generating novel data, pooling is an effective way to single-cell profile more tumors
at a considerably reduced cost. We recommend using genetic demultiplexing to assign cells back to their sample
of origin since it is independent of the efficiency of antibody loading and thus results in fewer unassigned cells
with no observed bias by cell type.

Dissociation status is a key consideration when designing a bulk sequencing protocol for tumor deconvolu-
tion. Sequencing whole tumor chunks more closely approximates the tumor microenvironment than sequencing
cells that have undergone dissociation due to the loss of certain cell types, but using a robust deconvolution
method should allow for high performance when using either dissociated or non-dissociated bulk samples. Out
of all of the methods we tested, BayesPrism had the highest combination of robustness (across bulk expression
protocols and single-cell reference profile sizes) and accuracy (compared to true pseudo-bulk proportions and
real single-cell data).

Conclusion

Our results indicate that differences in data generation protocols introduce biases that alter the output of
most deconvolution methods. This is true across protocols within a single data modality, such as bulk RNA
sequencing of dissociated vs. non-dissociated tissue, but it is also true across different data modalities, namely
bulk vs. single-cell RNA sequencing. Even when mRNA enrichment methods and dissociation status are the
same, bulk and pseudo-bulk single-cell data have cell type specific abundance differences. From this, we intuit
that characterizing the true cell type profile of a tissue is more complex than is deconvolving a collection of single
cells that have been pseudo-bulked. Thus, accuracy on pseudo-bulk data is more of a silver standard than a gold
standard. A well-performing deconvolution method will need to balance the trade-off between accuracy and
robustness, being careful not to overfit to either silver standard. Out of the methods we tested, BayesPrism
had the highest combination of robustness and accuracy. Development of even more robust deconvolution
methods, as well as thoughtful design of experiments to generate data for deconvolution, will allow for high-
quality characterizations of the TME across hundreds or thousands of samples in bulk datasets. These large
sample sizes will enable a better understanding of the fundamentals of tumor biology at a population level and
potentially identify opportunities for novel targeted therapeutics.

Methods

Experimental methods
Tumor processing/dissociation

Samples were collected from 8 patients with HGSOC by the University of Pennsylvania Ovarian Cancer Research
Center’s Tumor BioTrust Collection (RRID: SCR_022387). All patients underwent primary debulking surgery
and had not received neoadjuvant chemotherapy. A 10X enzymatic digest stock solution was made by combining
a 500 mL bottle of RPMI-1640 (Gibco 61870036), 1000 mg collagenase (Millipore Sigma C9407), and 150 KU
DNase type IV (Millipore Sigma D5025). Solution was sterile filtered, aliquoted, and stored at -200C until
use. Tumor samples were minced into 1mm pieces. Portions of the tumor were flash frozen. Remaining fresh
tissue was put into a 1X solution of the enzymatic digest solution, diluted with RPMI-1640. Tumor tissues
were dissociated overnight at room temperature. Dissociate mixture was filtered using a sterile 100pm mesh
filter and washed using DPBS. Red blood cells were removed using ACK Lysis Buffer. Dissociated cells were
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resuspended in 90% human AB serum/10% DMSO freezing media and frozen at -80C in a freezing chamber
then transferred to -150C for long term storage.

Multiplexing

For each set of four samples, a portion of the dissociated cells was thawed and labeled with TotalSeq-B anti-
human antibody-oligonucleotide conjugates from BioLegend, which are designed to label most cells via binding
to both CD298 and 52 microglobulin. The cells were then pooled and prepared for sequencing using the 10X
Genomics 3’ CellPlex Kit.

Single-cell sequencing

We performed scRNA-seq using the Chromium Next GEM platform from 10X Genomics. We loaded our thawed
dissociated cells into emulsified droplets with Single Cell 3’ v3.1 Gel Beads using the Chromium Next GEM
Chip G. We then added primers complete with a unique molecular identifier (UMI) and a poly-dT sequence to
ligate with the mRNA molecules in each droplet and generate cDNA. Droplets were then broken, pooling the
labeled cDNA for amplification, fragment size selection, and sequencing.

The multiplexed single-cell samples were prepared in the same way as above, but additional primers map-
ping to the cell surface protein feature barcodes were added alongside the other primers, allowing for specific
amplification of the antibody-associated oligonucleotides.

All single-cell samples, multiplexed and individually run, were sequenced on an Illumina NovaSeq 6000
system using the S2 Reagent Kit v1.5 (100 cycles).

Bulk sequencing

For each sample, we bulk sequenced thawed tumor chunks; we also bulk sequenced a portion of the thawed
dissociated cells in two ways: (1) Tumor chunks and one set of dissociated cells were prepared following
Illumina’s TruSeq Stranded Total RNA protocol. Ribosomal RNA was depleted using the Illumina Stranded
RiboZero Plus kit. Then cDNA was synthesized from the remaining RNA and enriched using PCR. (2) Another
set of thawed dissociated cells were prepared according to Illumina’s TruSeq Stranded mRNA protocol. In this
protocol, mRNA molecules attach to oligo-dT magnetic beads for purification before cDNA synthesis and
enrichment.

All bulk samples were sequenced on an Illumina NovaSeq 6000 system using an S2 Reagent Kit v1.5 (300
cycles).

Computational methods
Data processing

The single-cell data were processed using 10x Genomics’ Cell Ranger software version 6.1.2. The raw sequence
files were converted to FASTQ files using the cellranger mkfastq function, which were then aligned, filtered,
counted, and converted into a gene by cell matrix by the cellranger count function. These samples were aligned
using a GrCh38 reference genome provided by 10x Genomics (2020-A).

The bulk data were processed using two different aligners in order to account for some deconvolution methods
requiring raw read counts and others requiring transcripts per million (TPM): (1) For methods requiring raw
read counts, we processed the samples using the STAR aligner version 2.7.10 [70], using an index generated from
the same reference genome as the single-cell data (10x Genomics GrCh38 2020-A). We used STAR’s quantMode
parameter to generate per-gene read counts for each bulk sample. (2) Since calculating transcripts per million
requires consideration of transcript length, we also quantified the bulk samples using salmon version 1.9.0 [71].
We used an index generated from the GENCODE release 32 reference transcriptome (GRCh38.p13). Salmon
returns per-transcript quantifications, which we combined across transcripts of a gene to get per-gene TPM
values.
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Demultiplexing

For the pooled single-cell data, we quantified and separated the cells by sample of origin using Cell Ranger
version 6.1.2, specifically the function cellranger multi. In addition to the normal alignment and cell counting
steps, cellranger multi also quantifies the provided cell multiplexing oligos (CMOs) and splits each cell’s read
values into one of several matrices: one for each provided CMO and one for cells that weren’t able to be
assigned at the given threshold. It also generates a unique BAM alignment file for the reads in each matrix
and an assignment report giving the probability estimates for each barcode being assigned to each particular
sample, called as a multiplet, or called as a blank droplet.

For the genetic demultiplexing, we first genotyped the STAR-aligned bulk data using the mpileup and call
functions of bcftools version 1.7 [38]. To genotype the single-cell data, we used the BAM files generated by
cellranger multi, concatenated into a single file. We genotyped this file using cellsnp-lite version 1.2.2 [39] with
the variant calls from the bulk data as a reference for sites of heterogeneous genotypes across samples. We used
vireo version 0.5.7 [40] to assign cells to a donor group based on the cellsnp-lite genotypes.

Single-cell processing and annotation

We used miQC to identify a sample-specific threshold using percent mitochondrial reads and library complexity
(number of unique genes expressed) to filter out dead and compromised cells [72]. All cell counts reported in
the paper are from after this filtering step.

We assigned cell type labels to our single-cell data, both scRNA-seq Individual and scRNA-seq Pooled, using
a combination of unsupervised clustering and CellTypist [35]. For each sample and pool, we ran unsupervised
clustering using the scran (version 1.24.1) and igraph (version 1.3.5) packages in R [73, 74]. Per-cluster cell
type annotations were defined using marker genes, via the findMarkers function in scran. We ran CellTypist
version 1.1.0 with overclustering to converge similar cells to a single cell type assignment. Cells in the pooled
samples with concordant assignments based on unsupervised clustering and Cell Typist were used as the default
reference profile for all single cell-based deconvolution methods.

Bulk differential expression

Differential expression analysis was done using the DESeq2 package in R (version 1.36.0) [36]. For each anal-
ysis, we compared the eight samples from each condition (rRNA- Chunk vs. rRNA- Dissociated and rRNA-
Dissociated vs. polyA+ Dissociated respectively). The sample of origin was used as a covariate to control for
sample-specific effects. Principal component analysis of the bulk samples was also done using DESeq?2.

Pseudo-bulk data generation

We used SimBu version 1.0.0 [60] as a way to efficiently sample single cells by cell type. For each scenario
(even, realistic, sparse, weighted), SimBu calculated the appropriate percentage of each cell type for the custom
designed scenario. For each scenario, we simulated 50 samples out of each scRNA-seq Individual sample (n=7,
sample 2428 excluded). Across each simulated sample, SimBu added a random noise parameter to each cell
type and then recalculated the proportions to sum to 1. It then multiplied these percentages by the desired
number of cells, converted it to an integer, and then randomly sampled with replacement from the labeled single
cells of that cell type. The reads from all sampled cells were then combined to form a pseudo-bulk sample.
SimBu also offers a correction for different cell types having different amounts of mRNA, but we did not use
this in our analysis in order to preserve the integer read counts.

Deconvolution

We created a snakemake pipeline [75] to run each deconvolution method on our various real and pseudo-bulk
samples. We used cells from the scRNA-seq Pooled samples as a reference profile for those methods that require
it. We implemented the methods that return cell type scores using the immunedeconv R package [16].
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Availability of data and materials

The dataset supporting the conclusions of this article is available in the Gene Expression Omnibus (GEO)
(processed gene count tables) under accession GSE217517 and Database of Genotypes and Phenotypes (dbGaP)
(raw FASTQ files) under accession phs002262.v2.p2. The code for all the analyses performed in this paper is
available at https://github.com/greenelab/deconvolution_pilot under a BSD-3-Clause license.
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Figure 1: Overview of experimental design Each tumor was profiled in five different ways, three times
with bulk RNA-seq and twice with scRNA-seq using two strategies for mRNA enrichment, rRNA depletion and
poly-A capture.

22


https://doi.org/10.1101/2022.12.04.519045
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.04.519045; this version posted January 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A
Batch A
2.5
~
o 0.04
<
=
=)
—2.54
~5.04
6
C
2.54
by 0.0
<
=
=]
-2.5
-5.0
6
E
Donoro{ 23 51 564 124 21
5
g’ Donorl A 0 1 3 - 24 287
7]
&
E’ Donor24 1 1 1 44 105
3
2
E Donor3 3 3 7 36 173
3
o
‘T Doublet{ 105 105 3 89 160 150
8
Unassigned 4 3 5 4 3 1 32
& & $ & & &
& ! «\‘f’e& &e& \ﬁé@ S @5’\@

Hash demultiplexing assignment

Assignment

Hashtagl
Hashtag2
Hashtag3
Hashtag4
Unassigned

Assignment

Donor0
Donorl
Donor2
Donor3
Unassigned

UMAP 2 UMAP 2

Genetic demultiplexing assignment

Batch B

Donor0 5

Donor2 72 5 4 3 222

Donorl 22 18 26 -
Donor3 14 16 - 19 -

Doublet 56 51 79 70 483
Unassigned 5 4 12 1 128
a9 & > > >
R R
& & R K

Hash demultiplexing assignment

Assignment

Hashtagl
Hashtag2
Hashtag3
Hashtag4
Unassigned

Assignment

Donor0
Donorl
Donor2
Donor3
Unassigned

Figure 2: Results of antibody-based and genetic demultiplexing are concordant in cancer data A-B)
A UMAP representation of the pooled data from Batch A (A) and Batch B (B), colored by antibody-based
assignment from cellranger multi. C-D) The same samples colored based on genetic demultiplexing assignment
from vireo. E-F) A confusion matrix showing the overlap of assignments with antibody-based and genetic
demultiplexing in each sample.
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Figure 3: Dissociation causes loss of certain cell types A) A principal component analysis of the rRNA"
Chunk and rRNA- Dissociated bulk samples, where color indicates patient of origin and shape indicates dis-
sociation status. Two points that are closer together on the PCA plot are more similar in their expression
profiles. B) A volcano plot of the differential expression results based on dissociation status, with gene sets of
interest colored: genes known to be upregulated in adipocytes [46], endothelial cells [46], and red blood cells
[44]. C) Expression of hemoglobin genes in each sample based on dissociation status. D) Expression of selected
adipocyte-related genes based on dissociation status.
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Figure 4: Method of mRNA enrichment affects gene expression profile A) A principal component
analysis of the TRNA" Dissociated and polyA™ Dissociated bulk samples, where color indicates patient of
origin and shape indicates whether samples were poly-A captured or rRNA depleted. Two points that are
close together on the PCA plot are similar in their expression profiles. B) A volcano plot of the differential
expression results based on mRNA enrichment method, with gene sets of interest colored: histones, other
non-polyadenylated genes [55], and mitochondrial genes. C) Combined expression of all histone genes in each
sample based on mRNA enrichment method. D) Combined expression of all mtDNA genes based on mRNA
enrichment method.
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Figure 5: Deconvolution methods show cell type bias in pseudo-bulk and real data A) The four

different simulation scenarios to generate pseudo-bulk data from our single-cell samples, shown with a single

sample.

For each pseudo-bulk dataset, we pre-set proportions based on the simulation scenario and then

randomly sampled cells from each cell type at those proportions. B) The average Pearson correlation value (r)
between cell type proportions estimated by various deconvolution methods and the true simulated proportions,
stratified by simulation type. C) The difference between deconvolution estimates for our pseudo-bulk data and
their true simulated proportions, stratified by cell type. A score of 0 indicates perfect concordance between
the deconvolution estimate and the true value. D) The difference between deconvolution estimates for our real
data and the proportion of cells mapping to that cell type in the corresponding sample’s single-cell data. E)
A volcano plot of differential expression in cell type markers between pseudo-bulk (non-simulated, aggregating
all reads from all single cells in the sample) and polyA™ Dissociated real bulk data. Genes are selected and
colored based on the signature matrix from MCPcounter [61].
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Figure 6: Deconvolution methods vary in robustness to changes in bulk and single-cell data A)
Variance of deconvolution results across bulk data type. For each method, we calculated the variance between
the estimated proportion for a given cell type in a given sample in the rRNA~ Chunk, rRNA" Dissociated, and
polyA™ Dissociated data. B) Variance of deconvolution results across reference profile size. For each method,
we calculated the variance between the estimated proportion of a given cell type in a given sample when using
cells assigned by genetic demultiplexing (n=14,608) as a reference vs. using cells assigned by antibody-based
demultiplexing with default parameters (n=7574). C) The average Pearson correlation value (r) between cell
type proportions using the smaller and larger reference profile. D) The average difference between cell type
proportion estimates using the smaller vs. the larger reference profile, stratified by bulk/pseudo-bulk data
type. E) The final accuracy vs. robustness result for each method based on pseudo-bulk data, with variance
in estimates for bulk data types and correlation between estimate and simulated proportions for pseudo-bulk
data. F) Accuracy vs. robustness of each method based on true bulk data, with variance in estimates for bulk
data types and correlation between real bulk estimate and real single-cell proportion.
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Tables

Table 1: Single-cell count per sample. All numbers are after filtering based on percentage of mitochondrial
reads.

Sample ID Sample Type Cells Component samples

2251 Individual 9464

2267 Individual 5345

2283 Individual 7627

2293 Individual 10609

2380 Individual 6300

2428 Individual 283

2467 Individual 6729

2497 Individual 9313
A Pooled 7358 2267, 2283, 2293, 2380
B Pooled 9814 2251, 2428, 2467, 2497

Table 2: Deconvolution methods. All methods used are open source and return proportional estimates of
the total composition of a tissue sample.

Method Implemented by Uses scRNA-seq data  Availability
BayesPrism Chu et al 2022 [11] Yes R package
Bisque Jew et al 2020 [12] Yes R package
CIBERSORTx Newman et al 2019 [13] Yes Web app
EPIC Racle et al 2017 [14] No R package
MuSiC Wang et al 2019 [15] Yes R package
NNLS Mullen and van Stokkum 2012 [58] Yes R package
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Supplementary Information

Table S1: Number of demultiplexed cells, Batch A
Assignment Hash (90% probability) Hash (85% probability) Hash (80% probability) Genetic

2380 920 958 966 1010
2267 1119 1149 1159 1106
2283 578 1204 1737 2862
2293 1629 1663 1674 1720
Unassigned 2823 2095 1533 48
Multiplets 286 286 286 612

Table S2: Number of demultiplexed cells, Batch B
Assignment Hash (90% probability) Hash (85% probability) Hash (80% probability) Genetic

2428 0 15 178 306
2251 1215 1220 1225 3773
2467 1095 1126 1137 1904
2497 1424 1470 1492 2942
Unassigned 5935 5838 5637 150
Multiplets 145 145 145 739

Table S3: Cell score deconvolution methods. All methods used are open source and return cell type scores,
with a focus on immune cells.

Method Implemented by Uses scRNA-seq data  Availability
ABIS Monaco et al 2019 [61] No R package
Consensus_TME  Jiménez-Sanchez et al 2019 [62] No R package
ImmuCellAl Miao et al 2020 [63] No Web app
MCPcounter Becht et al 2016 [64] No R package
quanTTseq Finotello et al 2019 [65] No Bash script
TIMER Li et al 2020 [66] No R package
XCell Aran et al 2017 [67] No R package
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Figure S1: Relaxed probability thresholds for hash demultiplexing increase number of assigned
cells. A) Assignments for Batch A where any cell with greater than 85% probability of originating from a sample
is assigned to that sample. B) Assignments for Batch B at the 85% probability threshold. C) Assignments
for Batch A at a threshold of greater than 80% probability of originating from a sample. D) Assignments for

Batch B at the 80% probability threshold.
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Figure S2: Hash demultiplexing demonstrates cell type bias. A) Proportion of cell types in Batch A
across all cells and in unassigned cells at various probability thresholds. Epithelial cells and fibroblasts are
proportionally greater and T cells proportionally lesser in unassigned cells than in all cells. B) Proportion of
cell types in Batch B.
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Figure S3: Genetic demultiplexing is concordant across source of bulk reference genotypes. A)
Confusion matrix of genetic demultiplexing assignments for Batch A when using reference genotypes from
rRNA" Chunk samples vs TRNA" Dissociated samples. B) Genetic demultiplexing assignments for Batch B
using reference genotypes from rRNA"~ Chunk samples vs rRNA™ Dissociated samples. C) Confusion matrix
of genetic demultiplexing assignments for Batch A when using reference genotypes from rRNA" Dissociated
samples vs polyA™ Dissociated samples. D) Genetic demultiplexing assignments for Batch B using reference
genotypes from TRNA- Dissociated samples vs polyA™ Dissociated samples.
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Figure S4: Stromal cell types are more abundant in dissociated bulk samples. Results from Gene
Set Enrichment Analysis of rRNA~ Chunk samples vs rRNA™ Dissociated samples. Gene signatures associated
with endothelial cells, fibroblasts, macrophages, and other immune cells (blue) are more abundant in rRNA-
Dissociated samples, whereas red blood cell gene signatures (orange) are more abundant in rRNA~ Chunk
samples.
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Figure S5: Deconvolution estimates vary based on input bulk type. A) The average difference between
estimated cell type proportion in rRNA~ Chunk samples minus the corresponding cell type proportion in scRNA-
seq Individual samples. Gray boxes represent cell types not estimated by a given method. B) The difference
in cell type proportion based on rRNA™ Dissociated sample deconvolution estimates and scRNA-seq Individual
samples. C) The difference in cell type proportion based on polyA™ Dissociated sample deconvolution estimates
and scRNA-seq Individual samples.
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Figure S6: Robustness vs accuracy in deconvolution methods. A) The X axis represents the variance of
estimates across the three true bulk types. The Y axis represents the root mean square error (RMSE) of pseudo-

bulk deconvolution estimates compared to the true pseudo-bulk proportions. B) The RMSE of deconvolution
proportion estimates compared to the cell type proportions in the scRNA-seq Individual samples.
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Figure S7: Alternate deconvolution methods that return cell type scores do not match single-cell
proportions. A-G) Correlation between the cell type score returned by the deconvolution method and the
corresponding proportion of cells in the scRNA-seq Individual sample. The name of the deconvolution method
and the Pearson correlation (r value) is shown at the top of each panel.
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