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ABSTRACT

High-density electrophysiology probes have opened new possibilities for systems neuroscience
in human and non-human animals, but probe motion (or drift) while recording poses a challenge
for downstream analyses, particularly in human recordings. Here, we improve on the state of
the art for tracking this drift with an algorithm termed DREDge (Decentralized Registration of
Electrophysiology Data) with four major contributions. First, we extend previous decentralized
methods to exploit multiband information, leveraging the local field potential (LFP), in addition to
spikes detected from the action potentials (AP). Second, we show that the LFP-based approach
enables registration at sub-second temporal resolution. Third, we introduce an efficient online
motion tracking algorithm, allowing the method to scale up to longer and higher spatial resolution
recordings, which could facilitate real-time applications. Finally, we improve the robustness of
the approach by accounting for the nonstationarities that occur in real data and by automating
parameter selection. Together, these advances enable fully automated scalable registration of
challenging datasets from both humans and mice.

Index Terms— Decentralization, online optimization, electrophysiology, motion estimation,

preprocessing, extracellular recording, neuropixels
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1. INTRODUCTION

Dense electrophysiology via multi-channel microelectrode probes, such as the Neuropixels probe
[1} 2], provide an unprecedented view of neural circuits in human and non-human animal brains
at extremely high resolution both temporally (30 kHz) and spatially (20-400 um). In contrast with
older recording technologies using lower spatial resolution arrays, the latest probes that pene-
trate into the brain allow us to measure activity in large populations of neurons (several hundreds)
and the local field potential (LFP) with high fidelity. Since their introduction and ongoing develop-
ment, these probes have allowed testing a variety of novel scientific hypotheses, including those
related to neural correlates of consciousness [3], motor planning [4] and visual choice tasks [5],
cementing their role as a staple tool for systems neuroscience for the foreseeable future. Fur-
thermore, Neuropixels probes have recently been successfully employed for high-quality intra-
operative recordings in awake and anesthetized humans [6, 7], enabling us to directly answer
fundamental questions about human brain physiology with possible clinical implications.

However, several biological and physical sources of noise and variability reduce the neural
recording effectiveness of Neuropixels probes [8]. In the case of in vivo measurements, espe-
cially in human participants, the probe signal can be impacted by brain motion effects due to the
heart rate and breathing of the patients as well as unexpected brain shifting during recording
(such as when the participants start to talk in clinically indicated awake tasks) [6]. This motion
results in drift in the voltage measurements across channels, potentially corrupting the ability
to isolate single unit activity on a given channel, which may lead to undersampling of spikes or
over-splitting of identified unit clusters [9, [10, [11]. Together, these errors reduce the ability to
characterize the functional activity of neural populations that are measured.

While drift affects voltage measurements in any rigid electrode, it is both visible and fixable
in probes with very high spatial resolution such as Neuropixels. There are two main approaches
to solving the motion drift problem in dense electrophysiology probes. Experimental approaches
involve designing hardware to steady the probe during measurement. For example, probe move-

ment can be stabilized at the open craniotomy as done in non-human primate preparations using
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O-rings or other materials pressing down on the brain [12]. However, in the human operating
room, attempts to stabilize the probe using the same techniques could induce problematic cap-
illary damage on the surface of the cortex and may require considerable careful non-human

testing before implementing these approaches.

Two main computational methods have been developed to estimate motion drift in Neuropix-
els probes. Kilosort 2.5 [2] uses a template-based approach, computing a template signal, and
then using cross-correlations to shift the drifting signal back to the template space. In contrast,
Varol et al. [13] take a decentralized approach, measuring local signal shifts between all pairs of
time-binned signals to learn a global displacement vector. These two techniques have been in
wide deployment by several experimental groups [6, [14], however, they have three main short-
comings. Kilosort 2.5’s template-based approach is plagued by model misspecification if the
neural signal rapidly changes, eliminating the possibility that the recording would be described
by a single template. The decentralized approach [13] circumvents this issue but is hindered by
the computation of a 7" x T" matrix that might be prohibitively large in chronic recordings. Further-
more, both of these methods have a variety of parameters such as time bin sizes and correlation
cutoff parameters that need to be carefully tuned by practitioners to recover the tracked mo-
tion, reducing their robustness in high-throughput settings. Last and most importantly, these two
techniques rely on the spike waveforms, probe locations, and discrete spike times of the high-
frequency action potential (AP) band of the voltage signal, but ignore the smoother local field
potential (LFP) band to estimate drift. Although AP band approaches require localizing spikes
over time to estimate motion, the number of spikes in smaller time bins becomes too sparse to
accurately compute motion-induced shifts. Hence, AP band approaches are limited to estimate
drift on the order of ~1 second temporal resolution. On the other hand, the LFP band possesses
smoother and more continuous signal across the entire recording, which has the potential to
capture drift with a temporal resolution that is only limited by the sampling rate of measurement

(~2.5KHz).

To overcome these obstacles, we introduce a novel extension to the decentralized registra-
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tion approach [13] with the following main contributions: 1) fast online GPU based-optimization
of displacement estimates in large-scale recordings, 2) sub-second temporal resolution, 3) au-
tomatic statistical tuning of parameters, and 4) multiband (LFP and AP based) motion estima-
tion. Together, these four new features provide us with a fast, scalable, and robust approach for
motion-correcting electrophysiological data with minimal or no parameter tuning. We term our
approach DREDge which stands for Decentralized Registration of Electrophysiology Data.

We validate DREDge on two human Neuropixels recordings [6] and a mouse recording [2]
from two separate research groups. We measure its performance in terms of registration quality
and run-time and compare it with state-of-the-art techniques [13] and [2]. See https://github.

com/evarol/DREDge for open-source code.

2. METHODS

We first motivate the DREDge algorithm using the decentralized registration approach [13] that
it builds on in section 2.1l Then we describe several additions that enable DREDge to esti-
mate drift in multiband electrophysiology data in a robust, efficient, and online manner in sec-

tions [2.22.4,and2.5] In section we describe the procedure for realigning electrophysiology

data through interpolation, adjusting for the shifting signal after motion estimation. Finally, we

summarize all of these steps in algorithmic pseudocode in section [2.7]

2.1. Review: decentralized registration.

Given a D x T signal R with columns r;, our goal is to discover p € R” such that p, is the
displacement of the tth time bin r;,. Here, R may be the signal from the LFP band, or it may be
a rasterized representation of spiking activity from the AP band [1] In the LFP case, in practice,
rather than using LFP directly, we spatially filter it to obtain one form of what we call current
source density (CSD) [15], which provides spatially sharpened local features for registration. In

the AP case, we construct R by first estimating depth positions along the probe for all spikes,
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Fig. 1. Overview of the DREDge algorithm. AP or LFP data from electrophysiology recordings
from human, non-human primate, or mouse data is first processed to yield depth (D) x time
(T) features R. Then each time-binned feature is cross-correlated with every other time-binned
feature to generate a T' x T displacement shift matrix and its corresponding maximum cross-
correlation. This step is done efficiently on the GPU. The displacement matrix is filtered using an
automatically derived correlation cutoff and the remaining terms are used to solve a centralization
equation to estimate drift estimates for each time bin. This procedure is robustified using priors
that ensure that nearby drift terms are close to each other. Furthermore, for large recordings,
the entire routine is done in smaller overlapping time chunks in an online fashion to efficiently
calculate drift without the need to store a large 7' x T displacement shift matrix in memory.

typically using a point-source localization model [16]. Then, we divide the depth domain into D
bins and the time domain into 7" bins and set R,; to the average amplitude of spikes falling in the
dth depth and tth time bins, taking the average in empty bins to be 0 by convention. In the LFP
case, we construct R by directly taking the voltage signal at time ¢ at each channel location with
depth d such that R, is the LFP value at depth d and time ¢ (see Fig[f]for examples of R in the
left side).

The decentralized approach [13] infers p using estimates of the displacements between all
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pairs of time bins, represented in a 7' x T" antisymmetric matrix D with

Dy = argAmax corr(r(y), rv (v + Ay)), (1)
y

the spatial offset which maximizes the correlation between the two time bins. For AP-band
problems, T is measured in seconds and this matrix is relatively small; for longer recordings or
LF bands, the online method below avoids large matrices. The “centralization” problem, then, is
to find

N . 2
p=argmin|D — (p1' —1p")| . (2)
P

The solution to this simple version of the problem is the row mean:

1 T
Pe=17> Dur (3)

t'=1

2.2. Extension: decentralized registration with correlation-based subsampling.

If due to nonstationarities in the neural activity or large amounts of drift, two time bins r; and r
do not contain the same features, then their pairwise displacement D, should be excluded from
the objective in Eq. (2). For example, this could occur in two time bins that are temporally distant,
and the subject has completely different neural subpopulations firing, preventing a good shift to

be found that overlays these two patterns.

Thus a simple heuristic approach is to include only those pairs of time bins whose maximal
normalized cross-correlation exceeds a certain threshold, which indicates similar neural activity
patterns up to a shift. To that end, we fix a correlation threshold 0, and let C;s = corr(r;(y), rv (y +
Dyy)), to be the correlation corresponding to the displacement estimate D;. Let S € R7*T be
the thresholded correlation matrix with S, = 1¢,,~s. Now, we modify Eq. to its subsampled

form:

- (4)

Po = arg min HS o[D—(p1' — lpT)H
P
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where o indicates the elementwise product.

To efficiently solve this problem, consider the set of pairs of times {(¢,t,.)}r=1.. x, Where

K =3, , S, suchthat C,, > 0. Now, let D, € R¥ be the vector whose kth element is D1 5
and let the matrix A € R**" have elements A;;, = I ® 1],; — [1 ® I;;,. Then, Eq. (4) can be

rewritten in the least squares form
. — 2
min [|Ds — Ap||,, (5)

which can be solved by a sparse least squares solver (e.g. LSMR [17]). Note that such least
squares systems usually require O(T®) to solve, but since A only has 2K << T? non-zero

elements, the complexity is reduced to O(K*>T).

2.3. Adaptive choice of subsampling threshold:

Since different modalities and recordings will have different statistics, it is important to find a
way to set the correlation threshold robustly. One simple solution is to set this threshold to a
low percentile of the distributions of maximum cross-correlations between neighboring time bins.
Since almost all neighboring time bins contain the same features, this method will discover a
correlation threshold that is suitable for non-neighboring time bins in a way that adapts to the
characteristics of the recording. In the online method below, a threshold can be chosen in this

manner for each new batch in order to adapt to nonstationarities in the signal.

2.4. Extension: smoothing prior for robustness.

Since some time bins may be poorly correlated with the others, these bins may be separated
from or only weakly linked to the rest through the subsampled cost function. This effect can
lead to jumps in the resulting p. To resolve this issue, we place a standard Brownian prior on p:

P11 — P ~ N(0,1). Since the difference operator is linear and sparse, it is simple to incorporate

7
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this prior into the above least squares framework, effectively turning our objective function into:
. — 2
min Dy — Apl|, + | Ap]l3, (6)

where A is the T' x T finite difference matrix with elements A,, =2 and A,y = A = —1.

2.5. Extension: online motion tracking.

The methods in the previous two sections scale at least quadratically in 7', since we compute
T x T matrices C and D and solve a T' x T system. When registering spiking data, where the
time bins typically have lengths on the order of 1 second, this is no issue except in very long
chronic recordings, or when registering sub-second resolution drift in human patients using the
CSD or LFP signal.

To mitigate this, we estimate drift in chunks in an ‘online’ fashion. First, break the data R into
C chunks of size at most D x Ty, R9, ¢ = 1,..., C. We initialize the algorithm by using the batch
version of DREDge(Algorithm (1) to find p"), the displacement in the first block. Then, given
the previous chunk’s displacement estimate p(?, we can find the current chunk’s displacement
estimate p(c*Y according to the problems in Egs. and . Proceeding through the recording
chunk by chunk, we can recover the full displacement estimate by concatenating those in each
chunk. Since the sizes of the chunks’ sub-problems are bounded, this method will scale linearly
in the total length of the recording. We present the online method in the case without correlation-
based subsampling, since the notation for the subsampling will complicate things unnecessarily,

but the extension is direct as in Sec. and our results use subsampling.
Let p = [p?; pc*V] € R?™ be the concatenation of the two displacement vectors, and define
these chunks’ 27}, x 2T, displacement matrix

D c,c D c,C
Dt — (c0) (ee+1) (7)

_DEE,C-i-l) D(c+1,c+1)

8
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where the Tj x Tj blocks D¢y, D(cc41), @nd D41 .41y are pairwise displacement estimates in the
previous block R(©, between the two blocks R(¥ and RtV and within the current block R(+1),

respectively. Consider Eq. (2), modified to hold p(© fixed:

~(c . c 2
ptt) = arg min HD( D (p1T — 1pT)HF. (8)
p(c“Fl)
This online registration problem ensures that p(*!) both aligns with the past estimate and cen-
tralizes the pairwise displacement estimates for the current time bins. Removing terms which do

not include p(“tV, Eq. (8) simplifies to

min ||D(c+1,c+1) B (p(c+1)1T o 1p(c+1)T)H2F + 2} (ﬁ(c)lT o D(c,c+1)) o 1p(c+1)T)||; (9)

p(c+1)

Here, the first term is the usual decentralized objective, ensuring the fidelity of the estimate in
the current block. The cross term pushes p(“™") towards the column means of p)17 — D . .11),
encouraging alignment with the past. As above, we can incorporate subsampling and solve this

problem by rewriting it in OLS form and using a sparse least squares solver.

2.6. Data interpolation after motion estimation

After estimating the motion trace, the Spikelnterface [11] library was used to interpolate the
underlying raw data to correct for the motion. A simple method was used: first, a displaced
coordinate is computed for each channel at each time according to the drift estimate, leading
to a set of time-varying coordinates for a virtual probe. If the displacement at a given time was
zero, then the original recording is used at that time. Otherwise, each virtual channel’s value is
computed by a weighted average of the three channels closest to its displaced location, where

the weights are the inverse distances from the virtual channel.

9


https://doi.org/10.1101/2022.12.04.519043
http://creativecommons.org/licenses/by-nc-nd/4.0/

195

196

197

198

199

200

201

202

203

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.04.519043; this version posted December 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.7. Algorithmic details

We summarize the above pipeline to estimate motion drift in electrophysiology data as the
DREDge algorithm whose pseudocode details can be found in Algorithm 1] Note that the spa-
tiotemporal signal matrix R € RP*T can either be based on the AP band or the LFP band,
resulting in two versions of the algorithm that we refer to below as DREDge-AP and DREDge-
CSD. Algorithm [1] denotes the “batch” version of motion estimation. In large data cases such
as in chronic recordings or in real-time applications, Algorithm [1| can serve as a subroutine for
an online estimation of motion as described in section [2.5| where smaller time chunks of signal

matrices R act as input in a streaming fashion.

Algorithm 1 DREDge (batch).

Input: signal R € RP*T neighbor correlation quantile ¢, true/false value continuity-prior
Output: motion estimate p € RT

Compute optimal displacements and correlations
Allocate T' x T matrices D, C
for1 <t¢,¢ <Tdo
Dyy < argmaxy, corr(ry(y), ry (y + Ay))
Ci + corr(ry(y), vy (y + D))
end for

Compute the adaptive correlation threshold 6
0 < quantile {Cy ;1 :t=1,..., T — 1}

Solve the centralization problem
Compute d € R¥, where d;, = Dy, 1,
Compute the sparse matrix A € R**", where Ay, = [I® 1], — [1 © Iy,
if continuity-prior then
Grow d by appending a vector of 7" — 1 0s
Grow A by appending 7' — 1 new rows Agx.1,...,Ax 1, where Ag,; = ;1 — &
end if
Find p by solving the sparse least squares problem min,, ||d — Ap||§ using a solver like LSMR
[17]

10
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Fig. 2. (a) Rasterized spike amplitudes from the Pt. 02 dataset [6], with estimated motion traces
from Kilosort 2.5 and DREDge; regions of interest starting at 160 and 400s displayed in (d)
show that the large jumps do correspond to the observed spatially filtered LFP which we refer
to as CSD (d). (b) Spike amplitude maps after shifting the spike depths according to DREDge
displacement estimates (CSD, top, and AP, below). (c) Metrics on three datasets, two human
(Pts. 02 and 09, [6]) and one mouse (drift-dataset1, [2]). The first two metrics are the mean
correlation/mutual information across pairs of rasterized spike activity time bins; the last is the
mean standard dev. of the amplitude in-depth bins. (d) Motion traces for 40s regions of interest
in the CSD. Color scale shared in (a) and (b).
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Fig. 3. (a) Timing comparisons: top, DREDge-AP method vs. KS; below, online vs. offline in
CSD. DREDge-AP is on par with KS thanks to a fast GPU implementation. (b) Comparing results
with no prior and with prior on a test version of drift-dataset1 [2] with 5% of time bins erased at
random: left, estimated motion traces over rasterized spike amplitudes; right, correlation and
displacement matrices; horizontal and vertical stripes in these reflect the erased time bins. (c)
Motion estimates using adaptive correlation threshold choices (marked *) vs. a grid of other
choices: top, in real mouse AP data (6* =5 percentile of neighbor correlations) and bottom,
in human CSD (0.1 percentile). (d) Left, full CSD displacement estimates with prior (purple,
green) and without (red); right, adding the prior pushes estimates for isolated frames away from
0 without causing shrinkage.
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Fig. 4. Checking the drift estimate using drift-corrected spike localizations [16] and interpolated
waveforms. (a) Localizations of spikes detected in the Pt. 02 dataset. (b) Spike localizations
shifted according to a drift estimate (DREDge-CSD in Fig. [2la); green dots in (a) and (b) rep-
resent the same events, corresponding to spikes in a well-isolated cluster in (b) isolated by
manually thresholding amplitude and selecting a rectangular region in z, z. (c) Spike localiza-
tions computed from events detected in a version of the recording which was interpolated to
correct for drift using the Spikelnterface framework [11]. Purple dots lie in a region matching the
region used to select the green dots in (b). (d) Waveforms corresponding to spikes highlighted
in the green box in (a-b) read from the original recording, shown on high-amplitude channels
(contacts shown in blue in (a)). (e) Waveforms corresponding to the same spike times, read from
the motion-corrected interpolated binary. The cluster which emerged after correcting the spike
depths corresponds to a unit with a well-stereotyped waveform shape in the interpolated binary,
providing a validation of the drift estimate. (f) Waveforms corresponding to spikes highlighted in
purple in (c); these waveforms match (e) in appearance. (g) A Venn diagram comparing spike
times found in the green and purple clusters in (b) and (c); most (1063) spikes are shared be-
tween the two spike trains, and few spikes in each cluster do not match (188 and 39 spikes).
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3. RESULTS

Experiments were carried out in three datasets: a mouse dataset with induced motion (dataset1
from [2]), and two human datasets (Pts. 02 and 09 from [6]). The mouse dataset is characterized
by a slow (period ~ 100s) and shallow (tens of microns) induced triangle wave drift, while the hu-
man datasets are characterized by large (hundreds of microns) and fast (sub-second) drift driven
by heartbeat and breathing patterns. Comparisons were carried out against the registration al-
gorithm in Kilosort 2.5, which performs well on the same mouse dataset as previously shown in
[2], but fails on the human datasets (see Fig. [2/(a, c)). Online methods used 10* samples per
chunk.

Due to the characteristic noise present in unsorted spiking data, the AP methods (KS and
DREDge-AP) shown in Fig. [2| cannot be pushed to a sub-second resolution and thus cannot
capture the fine drift discovered by the DREDge-CSD method (Fig. [2c), reflected in a well-
stabilized spike amplitude raster (Fig. [2la, top) when compared to the AP method (Fig. [2a,
bottom). The CSD method’s improvements over the AP method are reflected in its performance
on simple metrics (Fig. [2lc). While the time complexity of the AP-based method is on par with
Kilosort and both are just a few seconds (Fig.[3|a, top), when running on CSD sampled at 250Hz
the runtime increases dramatically, an effect which is mitigated by the online method (Fig. [3]a,
bottom). By using the prior and automatic correlation thresholding, the CSD method can robustly
register full recordings (Fig. [3}d), without incurring shrinkage from the prior (right). Intuition for
the effect of the prior is examined in a simulation study (Fig. [38lb), in which randomly selected
time bins in the mouse AP data are zeroed out, resulting in “glitches” in the correlation and
displacement matrices (right). With no prior, these glitches carry through to the drift estimate,
but the prior is able to remove them. Throughout these figures, adaptive correlation thresholds
were used. The 5th percentile of correlations of neighboring frames is used in AP, where the
time scale is faster and thus more nonstationarities appear, while the 0.1 percentile is used in
the smoother CSD. These thresholds are among the best performing when looking at a grid of

choices (Fig. [3c).
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To further validate our drift estimate, we shifted localization features [16] of detected spikes
according to the drift. Clusters that were not visible at first (Fig. [4la) appear after correction
(Fig. [b). In particular, spikes from a particular cluster shown in green in panel (b) have lo-
calizations with a broad spread before motion correction. To see if these particular spikes truly
correspond to a single unit, we interpolated the binary file to correct for the drift using the open-
source Spikelnterface framework [11]. As expected, waveforms corresponding to spikes in the
cluster were spread across many channels in the uncorrected recording (Fig. [4]d), but appear
as a stable unit after correction (Fig. [4]e), validating that the drift correction was accurate. For
another perspective, we check to see if the cluster can be identified in the localizations of spikes
detected in the interpolated binary. Indeed, after localizing events from that binary, shown in
(Fig. [4c), we identified the same cluster manually (purple dots). Waveforms loaded at times
corresponding to these spikes (Fig. [4}f) match those shown in (Fig. dle). Further, after using
Spikelnterface [11] to identify matching spike times across these clusters, the Venn diagram in

(Fig. [4lg) shows that these clusters have high spike time agreement.

4. DISCUSSION

Here, we present an online decentralized algorithm, DREDge, to track drift in electrophysiological
recordings from the brain using Neuropixels probes. We demonstrate the applicability of tracking
the movement of the neural signal relative to the probe with this approach in three different data
sets, two recordings in the human cortex [6] and one in mouse [2]. DREDge is shown to work
using as input both action potentials, representing the activities of single neurons, as well as the
local field potential, representing the summed activity of hundreds to thousands of neurons. We
develop methods to adapt this algorithm to the structure of individual datasets, improving the
robustness and ease of use of this tool.

Finally, we suggest that DREDge could be used to improve the clustering of spike localization
features for applications in spike sorting. Furthermore, as a fast online estimation of the motion of

the probe relative to the neural signal, DREDge has potential applications in recording sessions
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with real-time neural feedback and brain-computer interfaces (BCI) [18, [19].

The latter point may be a key feature in gathering neural data using Neuropixels in the hu-
man cortex. Unlike in mouse preparations [1}, 2], recordings in humans, so far, have presented a
challenge in that the brain, by virtue of the scale and size, moves considerably due to the heart-
beat, breathing, the participants talking, etc. This has required researchers in this domain to
rely on manual tracking or only use data where the spike rate is high enough to track the neural
signal reliably using Kilosort tools [6l, [7]. Such other approaches might not fully correct for the
observed motion, with implications for lower yields of unit quality and/or number. DREDge allows

researchers to move forward in using such precious data to understand human brain activity.

A major question is whether after applying the tracked motion to the signal, there are changes
that are not present in the original signal. Our data suggest that applying DREDge correction to
motion-degraded spike and local field potential data has the potential to accurately reconstruct
these electrophysiological signals, while not altering their spatiotemporal profiles in datasets
without significant motion artefacts. However, the power of our approach is that we use both
the LFP and the spiking activity in parallel to estimate the motion and, alternately, can use each,
particularly the spike waveforms, to confirm that we are not adding in artefacts. Further validation
could therefore make use of 2D cross-correlation to determine if new spiking waveforms were
found in the corrected data sets [6]. An additional question is whether ongoing large-scale neural
changes such as evoked potentials due to a task, clinically indicated neural signals such as
epileptiform activity, anesthesia-induced burst suppression [6], or other types of stimulation could
alter the motion registration and, therefore, the tracking. Further analyses of additional data sets
from humans, non-human primates, rodents, and other species where we know specific events

are occurring will be necessary to parse this effect in a future study.

Finally, a true test of this approach is how it can handle different types of probes, probe
designs, and layouts, both Neuropixels and other silicon probes, and how this can alter spike
sorting [1} 2, 20]. To this end, we were able to apply our method to the staggered Neuropixels

1.0 version (the two human data sets) and the Neuropixels 2.0 probe (the mouse data set).
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Future work would involve applying the method to other probe layouts, particularly to ask whether
this approach could be applied to low spatial resolution probes and the spatial and temporal
limitations in tracking motion relative to the neural signal.

To facilitate this sort of portability, DREDge is being developed into a part of the Spikeln-
terface [11] framework. In future applications, and as DREDge is applied to further data sets
using different probe layouts and reaching deeper brain structures other than the cortex, we pro-
pose that the underlying algorithm may be applicable to a number of different conditions and

paradigms within and beyond electrophysiology.
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