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ABSTRACT3

High-density electrophysiology probes have opened new possibilities for systems neuroscience4

in human and non-human animals, but probe motion (or drift) while recording poses a challenge5

for downstream analyses, particularly in human recordings. Here, we improve on the state of6

the art for tracking this drift with an algorithm termed DREDge (Decentralized Registration of7

Electrophysiology Data) with four major contributions. First, we extend previous decentralized8

methods to exploit multiband information, leveraging the local field potential (LFP), in addition to9

spikes detected from the action potentials (AP). Second, we show that the LFP-based approach10

enables registration at sub-second temporal resolution. Third, we introduce an efficient online11

motion tracking algorithm, allowing the method to scale up to longer and higher spatial resolution12

recordings, which could facilitate real-time applications. Finally, we improve the robustness of13

the approach by accounting for the nonstationarities that occur in real data and by automating14

parameter selection. Together, these advances enable fully automated scalable registration of15

challenging datasets from both humans and mice.16

Index Terms— Decentralization, online optimization, electrophysiology, motion estimation,17

preprocessing, extracellular recording, neuropixels18
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1. INTRODUCTION19

Dense electrophysiology via multi-channel microelectrode probes, such as the Neuropixels probe20

[1, 2], provide an unprecedented view of neural circuits in human and non-human animal brains21

at extremely high resolution both temporally (30 kHz) and spatially (20-400 µm). In contrast with22

older recording technologies using lower spatial resolution arrays, the latest probes that pene-23

trate into the brain allow us to measure activity in large populations of neurons (several hundreds)24

and the local field potential (LFP) with high fidelity. Since their introduction and ongoing develop-25

ment, these probes have allowed testing a variety of novel scientific hypotheses, including those26

related to neural correlates of consciousness [3], motor planning [4] and visual choice tasks [5],27

cementing their role as a staple tool for systems neuroscience for the foreseeable future. Fur-28

thermore, Neuropixels probes have recently been successfully employed for high-quality intra-29

operative recordings in awake and anesthetized humans [6, 7], enabling us to directly answer30

fundamental questions about human brain physiology with possible clinical implications.31

However, several biological and physical sources of noise and variability reduce the neural32

recording effectiveness of Neuropixels probes [8]. In the case of in vivo measurements, espe-33

cially in human participants, the probe signal can be impacted by brain motion effects due to the34

heart rate and breathing of the patients as well as unexpected brain shifting during recording35

(such as when the participants start to talk in clinically indicated awake tasks) [6]. This motion36

results in drift in the voltage measurements across channels, potentially corrupting the ability37

to isolate single unit activity on a given channel, which may lead to undersampling of spikes or38

over-splitting of identified unit clusters [9, 10, 11]. Together, these errors reduce the ability to39

characterize the functional activity of neural populations that are measured.40

While drift affects voltage measurements in any rigid electrode, it is both visible and fixable41

in probes with very high spatial resolution such as Neuropixels. There are two main approaches42

to solving the motion drift problem in dense electrophysiology probes. Experimental approaches43

involve designing hardware to steady the probe during measurement. For example, probe move-44

ment can be stabilized at the open craniotomy as done in non-human primate preparations using45
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O-rings or other materials pressing down on the brain [12]. However, in the human operating46

room, attempts to stabilize the probe using the same techniques could induce problematic cap-47

illary damage on the surface of the cortex and may require considerable careful non-human48

testing before implementing these approaches.49

Two main computational methods have been developed to estimate motion drift in Neuropix-50

els probes. Kilosort 2.5 [2] uses a template-based approach, computing a template signal, and51

then using cross-correlations to shift the drifting signal back to the template space. In contrast,52

Varol et al. [13] take a decentralized approach, measuring local signal shifts between all pairs of53

time-binned signals to learn a global displacement vector. These two techniques have been in54

wide deployment by several experimental groups [6, 14], however, they have three main short-55

comings. Kilosort 2.5’s template-based approach is plagued by model misspecification if the56

neural signal rapidly changes, eliminating the possibility that the recording would be described57

by a single template. The decentralized approach [13] circumvents this issue but is hindered by58

the computation of a T ×T matrix that might be prohibitively large in chronic recordings. Further-59

more, both of these methods have a variety of parameters such as time bin sizes and correlation60

cutoff parameters that need to be carefully tuned by practitioners to recover the tracked mo-61

tion, reducing their robustness in high-throughput settings. Last and most importantly, these two62

techniques rely on the spike waveforms, probe locations, and discrete spike times of the high-63

frequency action potential (AP) band of the voltage signal, but ignore the smoother local field64

potential (LFP) band to estimate drift. Although AP band approaches require localizing spikes65

over time to estimate motion, the number of spikes in smaller time bins becomes too sparse to66

accurately compute motion-induced shifts. Hence, AP band approaches are limited to estimate67

drift on the order of ∼1 second temporal resolution. On the other hand, the LFP band possesses68

smoother and more continuous signal across the entire recording, which has the potential to69

capture drift with a temporal resolution that is only limited by the sampling rate of measurement70

(∼2.5KHz).71

To overcome these obstacles, we introduce a novel extension to the decentralized registra-72
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tion approach [13] with the following main contributions: 1) fast online GPU based-optimization73

of displacement estimates in large-scale recordings, 2) sub-second temporal resolution, 3) au-74

tomatic statistical tuning of parameters, and 4) multiband (LFP and AP based) motion estima-75

tion. Together, these four new features provide us with a fast, scalable, and robust approach for76

motion-correcting electrophysiological data with minimal or no parameter tuning. We term our77

approach DREDge which stands for Decentralized Registration of Electrophysiology Data.78

We validate DREDge on two human Neuropixels recordings [6] and a mouse recording [2]79

from two separate research groups. We measure its performance in terms of registration quality80

and run-time and compare it with state-of-the-art techniques [13] and [2]. See https://github.81

com/evarol/DREDge for open-source code.82

2. METHODS83

We first motivate the DREDge algorithm using the decentralized registration approach [13] that84

it builds on in section 2.1. Then we describe several additions that enable DREDge to esti-85

mate drift in multiband electrophysiology data in a robust, efficient, and online manner in sec-86

tions 2.2,2.4,and2.5. In section 2.6, we describe the procedure for realigning electrophysiology87

data through interpolation, adjusting for the shifting signal after motion estimation. Finally, we88

summarize all of these steps in algorithmic pseudocode in section 2.7.89

2.1. Review: decentralized registration.90

Given a D × T signal R with columns rt, our goal is to discover p ∈ R
T such that pt is the91

displacement of the tth time bin rt. Here, R may be the signal from the LFP band, or it may be92

a rasterized representation of spiking activity from the AP band 1. In the LFP case, in practice,93

rather than using LFP directly, we spatially filter it to obtain one form of what we call current94

source density (CSD) [15], which provides spatially sharpened local features for registration. In95

the AP case, we construct R by first estimating depth positions along the probe for all spikes,96
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Fig. 1. Overview of the DREDge algorithm. AP or LFP data from electrophysiology recordings

from human, non-human primate, or mouse data is first processed to yield depth (D) × time

(T) features R. Then each time-binned feature is cross-correlated with every other time-binned

feature to generate a T × T displacement shift matrix and its corresponding maximum cross-

correlation. This step is done efficiently on the GPU. The displacement matrix is filtered using an

automatically derived correlation cutoff and the remaining terms are used to solve a centralization

equation to estimate drift estimates for each time bin. This procedure is robustified using priors

that ensure that nearby drift terms are close to each other. Furthermore, for large recordings,

the entire routine is done in smaller overlapping time chunks in an online fashion to efficiently

calculate drift without the need to store a large T × T displacement shift matrix in memory.

typically using a point-source localization model [16]. Then, we divide the depth domain into D97

bins and the time domain into T bins and set Rdt to the average amplitude of spikes falling in the98

dth depth and tth time bins, taking the average in empty bins to be 0 by convention. In the LFP99

case, we construct R by directly taking the voltage signal at time t at each channel location with100

depth d such that Rdt is the LFP value at depth d and time t (see Fig.1 for examples of R in the101

left side).102

The decentralized approach [13] infers p using estimates of the displacements between all103
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pairs of time bins, represented in a T × T antisymmetric matrix D with104

Dtt′ = argmax
∆y

corr(rt(y), rt′(y +∆y)), (1)105

106

the spatial offset which maximizes the correlation between the two time bins. For AP-band107

problems, T is measured in seconds and this matrix is relatively small; for longer recordings or108

LF bands, the online method below avoids large matrices. The “centralization” problem, then, is109

to find110

p̂ = argmin
p

∥D− (p1¦ − 1p¦)∥
2

F . (2)111

The solution to this simple version of the problem is the row mean:112

p̂t =
1

T

T
∑

t′=1

Dtt′ . (3)113

114

2.2. Extension: decentralized registration with correlation-based subsampling.115

If due to nonstationarities in the neural activity or large amounts of drift, two time bins rt and rt′116

do not contain the same features, then their pairwise displacement Dtt′ should be excluded from117

the objective in Eq. (2). For example, this could occur in two time bins that are temporally distant,118

and the subject has completely different neural subpopulations firing, preventing a good shift to119

be found that overlays these two patterns.120

Thus a simple heuristic approach is to include only those pairs of time bins whose maximal121

normalized cross-correlation exceeds a certain threshold, which indicates similar neural activity122

patterns up to a shift. To that end, we fix a correlation threshold ¹, and let Ctt′ = corr(rt(y), rt′(y+123

Dtt′)), to be the correlation corresponding to the displacement estimate Dtt′ . Let S ∈ R
T×T be124

the thresholded correlation matrix with Stt′ = 1C
tt′

>θ. Now, we modify Eq. (2) to its subsampled125

form:126

p̂θ = argmin
p

∥

∥S ◦ [D− (p1¦ − 1p¦)]
∥

∥

2

F
, (4)127
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where ◦ indicates the elementwise product.128

To efficiently solve this problem, consider the set of pairs of times {(tk, t
′

k)}k=1,...,K , where129

K =
∑

t,t′ Stt′ , such that Ctkt
′

k
> ¹. Now, let D⃗θ ∈ R

K be the vector whose kth element is Dtkt
′

k
,130

and let the matrix A ∈ R
K×T have elements Akt = [I ¹ 1]tkt − [1 ¹ I]t′

k
t. Then, Eq. (4) can be131

rewritten in the least squares form132

min
p
∥D⃗θ −Ap∥

2

2, (5)133

134

which can be solved by a sparse least squares solver (e.g. LSMR [17]). Note that such least135

squares systems usually require O(T 3) to solve, but since A only has 2K << T 2 non-zero136

elements, the complexity is reduced to O(K2T ).137

2.3. Adaptive choice of subsampling threshold:138

Since different modalities and recordings will have different statistics, it is important to find a139

way to set the correlation threshold robustly. One simple solution is to set this threshold to a140

low percentile of the distributions of maximum cross-correlations between neighboring time bins.141

Since almost all neighboring time bins contain the same features, this method will discover a142

correlation threshold that is suitable for non-neighboring time bins in a way that adapts to the143

characteristics of the recording. In the online method below, a threshold can be chosen in this144

manner for each new batch in order to adapt to nonstationarities in the signal.145

2.4. Extension: smoothing prior for robustness.146

Since some time bins may be poorly correlated with the others, these bins may be separated147

from or only weakly linked to the rest through the subsampled cost function. This effect can148

lead to jumps in the resulting p̂. To resolve this issue, we place a standard Brownian prior on p̂:149

p̂t+1 − p̂t ∼ N(0, 1). Since the difference operator is linear and sparse, it is simple to incorporate150
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this prior into the above least squares framework, effectively turning our objective function into:151

min
p
∥D⃗θ −Ap∥

2

2 + ∥∆p∥ 2
2, (6)152

153

where ∆ is the T × T finite difference matrix with elements ∆t,t = 2 and ∆t,t−1 = ∆t−1,t = −1.154

2.5. Extension: online motion tracking.155

The methods in the previous two sections scale at least quadratically in T , since we compute156

T × T matrices C and D and solve a T × T system. When registering spiking data, where the157

time bins typically have lengths on the order of 1 second, this is no issue except in very long158

chronic recordings, or when registering sub-second resolution drift in human patients using the159

CSD or LFP signal.160

To mitigate this, we estimate drift in chunks in an ‘online’ fashion. First, break the data R into161

C chunks of size at most D×T0, R
(c), c = 1, . . . , C. We initialize the algorithm by using the batch162

version of DREDge(Algorithm 1) to find p(1), the displacement in the first block. Then, given163

the previous chunk’s displacement estimate p(c), we can find the current chunk’s displacement164

estimate p(c+1) according to the problems in Eqs. (2) and (4). Proceeding through the recording165

chunk by chunk, we can recover the full displacement estimate by concatenating those in each166

chunk. Since the sizes of the chunks’ sub-problems are bounded, this method will scale linearly167

in the total length of the recording. We present the online method in the case without correlation-168

based subsampling, since the notation for the subsampling will complicate things unnecessarily,169

but the extension is direct as in Sec. 2.2 and our results use subsampling.170

Let p = [p̂(c);p(c+1)] ∈ R
2T0 be the concatenation of the two displacement vectors, and define171

these chunks’ 2T0 × 2T0 displacement matrix172

D(c+1) =







D(c,c) D(c,c+1)

−D¦

(c,c+1) D(c+1,c+1)






(7)173
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where the T0×T0 blocks D(c,c), D(c,c+1), and D(c+1,c+1) are pairwise displacement estimates in the174

previous block R(c), between the two blocks R(c) and R(c+1), and within the current block R(c+1),175

respectively. Consider Eq. (2), modified to hold p̂(c) fixed:176

p̂(c+1) = argmin
p(c+1)

∥

∥D(c+1) − (p1¦ − 1p¦)
∥

∥

2

F
. (8)177

This online registration problem ensures that p̂(c+1) both aligns with the past estimate and cen-178

tralizes the pairwise displacement estimates for the current time bins. Removing terms which do179

not include p(c+1), Eq. (8) simplifies to180

min
p(c+1)

∥

∥D(c+1,c+1) − (p(c+1)1¦ − 1p(c+1)¦)
∥

∥

2

F
+ 2

∥

∥(p̂(c)1¦ −D(c,c+1))− 1p(c+1)¦)
∥

∥

2

F
. (9)181

182

Here, the first term is the usual decentralized objective, ensuring the fidelity of the estimate in183

the current block. The cross term pushes p(c+1) towards the column means of p̂(c)1¦ −D(c,c+1),184

encouraging alignment with the past. As above, we can incorporate subsampling and solve this185

problem by rewriting it in OLS form and using a sparse least squares solver.186

2.6. Data interpolation after motion estimation187

After estimating the motion trace, the SpikeInterface [11] library was used to interpolate the188

underlying raw data to correct for the motion. A simple method was used: first, a displaced189

coordinate is computed for each channel at each time according to the drift estimate, leading190

to a set of time-varying coordinates for a virtual probe. If the displacement at a given time was191

zero, then the original recording is used at that time. Otherwise, each virtual channel’s value is192

computed by a weighted average of the three channels closest to its displaced location, where193

the weights are the inverse distances from the virtual channel.194
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2.7. Algorithmic details195

We summarize the above pipeline to estimate motion drift in electrophysiology data as the196

DREDge algorithm whose pseudocode details can be found in Algorithm 1. Note that the spa-197

tiotemporal signal matrix R ∈ R
D×T can either be based on the AP band or the LFP band,198

resulting in two versions of the algorithm that we refer to below as DREDge-AP and DREDge-199

CSD. Algorithm 1 denotes the ”batch” version of motion estimation. In large data cases such200

as in chronic recordings or in real-time applications, Algorithm 1 can serve as a subroutine for201

an online estimation of motion as described in section 2.5 where smaller time chunks of signal202

matrices R act as input in a streaming fashion.203

Algorithm 1 DREDge (batch).

Input: signal R ∈ R
D×T , neighbor correlation quantile q, true/false value continuity-prior

Output: motion estimate p ∈ R
T

Compute optimal displacements and correlations

Allocate T × T matrices D,C

for 1 f t, t′ f T do

Dtt′ ← argmax∆y corr(rt(y), rt′(y +∆y))
Ctt′ ← corr(rt(y), rt′(y +Dtt′))

end for

Compute the adaptive correlation threshold ¹

¹ ← quantileq{Ct,t+1 : t = 1, . . . , T − 1}

Solve the centralization problem

Find pairs of times {(tk, t
′

k)}k=1,...,K such that Ctk,t
′

k
g ¹

Compute d ∈ R
K , where dk = Dtk,t

′

k

Compute the sparse matrix A ∈ R
K×T , where Akt = [I¹ 1]tkt − [1¹ I]t′

k
t

if continuity-prior then

Grow d by appending a vector of T − 1 0s

Grow A by appending T − 1 new rows AK+1, . . . ,AK+T , where AK+t = ¶t+1 − ¶t
end if

Find p by solving the sparse least squares problem minp ∥d−Ap∥22 using a solver like LSMR

[17]
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Fig. 2. (a) Rasterized spike amplitudes from the Pt. 02 dataset [6], with estimated motion traces

from Kilosort 2.5 and DREDge; regions of interest starting at 160 and 400s displayed in (d)

show that the large jumps do correspond to the observed spatially filtered LFP which we refer

to as CSD (d). (b) Spike amplitude maps after shifting the spike depths according to DREDge

displacement estimates (CSD, top, and AP, below). (c) Metrics on three datasets, two human

(Pts. 02 and 09, [6]) and one mouse (drift-dataset1, [2]). The first two metrics are the mean

correlation/mutual information across pairs of rasterized spike activity time bins; the last is the

mean standard dev. of the amplitude in-depth bins. (d) Motion traces for 40s regions of interest

in the CSD. Color scale shared in (a) and (b).
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Fig. 3. (a) Timing comparisons: top, DREDge-AP method vs. KS; below, online vs. offline in

CSD. DREDge-AP is on par with KS thanks to a fast GPU implementation. (b) Comparing results

with no prior and with prior on a test version of drift-dataset1 [2] with 5% of time bins erased at

random: left, estimated motion traces over rasterized spike amplitudes; right, correlation and

displacement matrices; horizontal and vertical stripes in these reflect the erased time bins. (c)

Motion estimates using adaptive correlation threshold choices (marked ∗) vs. a grid of other

choices: top, in real mouse AP data (¹∗ =5 percentile of neighbor correlations) and bottom,

in human CSD (0.1 percentile). (d) Left, full CSD displacement estimates with prior (purple,

green) and without (red); right, adding the prior pushes estimates for isolated frames away from

0 without causing shrinkage.
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Fig. 4. Checking the drift estimate using drift-corrected spike localizations [16] and interpolated

waveforms. (a) Localizations of spikes detected in the Pt. 02 dataset. (b) Spike localizations

shifted according to a drift estimate (DREDge-CSD in Fig. 2.a); green dots in (a) and (b) rep-

resent the same events, corresponding to spikes in a well-isolated cluster in (b) isolated by

manually thresholding amplitude and selecting a rectangular region in x, z. (c) Spike localiza-

tions computed from events detected in a version of the recording which was interpolated to

correct for drift using the SpikeInterface framework [11]. Purple dots lie in a region matching the

region used to select the green dots in (b). (d) Waveforms corresponding to spikes highlighted

in the green box in (a-b) read from the original recording, shown on high-amplitude channels

(contacts shown in blue in (a)). (e) Waveforms corresponding to the same spike times, read from

the motion-corrected interpolated binary. The cluster which emerged after correcting the spike

depths corresponds to a unit with a well-stereotyped waveform shape in the interpolated binary,

providing a validation of the drift estimate. (f) Waveforms corresponding to spikes highlighted in

purple in (c); these waveforms match (e) in appearance. (g) A Venn diagram comparing spike

times found in the green and purple clusters in (b) and (c); most (1063) spikes are shared be-

tween the two spike trains, and few spikes in each cluster do not match (188 and 39 spikes).
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3. RESULTS204

Experiments were carried out in three datasets: a mouse dataset with induced motion (dataset1205

from [2]), and two human datasets (Pts. 02 and 09 from [6]). The mouse dataset is characterized206

by a slow (period ∼ 100s) and shallow (tens of microns) induced triangle wave drift, while the hu-207

man datasets are characterized by large (hundreds of microns) and fast (sub-second) drift driven208

by heartbeat and breathing patterns. Comparisons were carried out against the registration al-209

gorithm in Kilosort 2.5, which performs well on the same mouse dataset as previously shown in210

[2], but fails on the human datasets (see Fig. 2.(a, c)). Online methods used 104 samples per211

chunk.212

Due to the characteristic noise present in unsorted spiking data, the AP methods (KS and213

DREDge-AP) shown in Fig. 2 cannot be pushed to a sub-second resolution and thus cannot214

capture the fine drift discovered by the DREDge-CSD method (Fig. 2.c), reflected in a well-215

stabilized spike amplitude raster (Fig. 2.a, top) when compared to the AP method (Fig. 2.a,216

bottom). The CSD method’s improvements over the AP method are reflected in its performance217

on simple metrics (Fig. 2.c). While the time complexity of the AP-based method is on par with218

Kilosort and both are just a few seconds (Fig. 3.a, top), when running on CSD sampled at 250Hz219

the runtime increases dramatically, an effect which is mitigated by the online method (Fig. 3.a,220

bottom). By using the prior and automatic correlation thresholding, the CSD method can robustly221

register full recordings (Fig. 3.d), without incurring shrinkage from the prior (right). Intuition for222

the effect of the prior is examined in a simulation study (Fig. 3.b), in which randomly selected223

time bins in the mouse AP data are zeroed out, resulting in “glitches” in the correlation and224

displacement matrices (right). With no prior, these glitches carry through to the drift estimate,225

but the prior is able to remove them. Throughout these figures, adaptive correlation thresholds226

were used. The 5th percentile of correlations of neighboring frames is used in AP, where the227

time scale is faster and thus more nonstationarities appear, while the 0.1 percentile is used in228

the smoother CSD. These thresholds are among the best performing when looking at a grid of229

choices (Fig. 3.c).230
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To further validate our drift estimate, we shifted localization features [16] of detected spikes231

according to the drift. Clusters that were not visible at first (Fig. 4.a) appear after correction232

(Fig. 4.b). In particular, spikes from a particular cluster shown in green in panel (b) have lo-233

calizations with a broad spread before motion correction. To see if these particular spikes truly234

correspond to a single unit, we interpolated the binary file to correct for the drift using the open-235

source SpikeInterface framework [11]. As expected, waveforms corresponding to spikes in the236

cluster were spread across many channels in the uncorrected recording (Fig. 4.d), but appear237

as a stable unit after correction (Fig. 4.e), validating that the drift correction was accurate. For238

another perspective, we check to see if the cluster can be identified in the localizations of spikes239

detected in the interpolated binary. Indeed, after localizing events from that binary, shown in240

(Fig. 4.c), we identified the same cluster manually (purple dots). Waveforms loaded at times241

corresponding to these spikes (Fig. 4.f) match those shown in (Fig. 4.e). Further, after using242

SpikeInterface [11] to identify matching spike times across these clusters, the Venn diagram in243

(Fig. 4.g) shows that these clusters have high spike time agreement.244

4. DISCUSSION245

Here, we present an online decentralized algorithm, DREDge, to track drift in electrophysiological246

recordings from the brain using Neuropixels probes. We demonstrate the applicability of tracking247

the movement of the neural signal relative to the probe with this approach in three different data248

sets, two recordings in the human cortex [6] and one in mouse [2]. DREDge is shown to work249

using as input both action potentials, representing the activities of single neurons, as well as the250

local field potential, representing the summed activity of hundreds to thousands of neurons. We251

develop methods to adapt this algorithm to the structure of individual datasets, improving the252

robustness and ease of use of this tool.253

Finally, we suggest that DREDge could be used to improve the clustering of spike localization254

features for applications in spike sorting. Furthermore, as a fast online estimation of the motion of255

the probe relative to the neural signal, DREDge has potential applications in recording sessions256
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with real-time neural feedback and brain-computer interfaces (BCI) [18, 19].257

The latter point may be a key feature in gathering neural data using Neuropixels in the hu-258

man cortex. Unlike in mouse preparations [1, 2], recordings in humans, so far, have presented a259

challenge in that the brain, by virtue of the scale and size, moves considerably due to the heart-260

beat, breathing, the participants talking, etc. This has required researchers in this domain to261

rely on manual tracking or only use data where the spike rate is high enough to track the neural262

signal reliably using Kilosort tools [6, 7]. Such other approaches might not fully correct for the263

observed motion, with implications for lower yields of unit quality and/or number. DREDge allows264

researchers to move forward in using such precious data to understand human brain activity.265

A major question is whether after applying the tracked motion to the signal, there are changes266

that are not present in the original signal. Our data suggest that applying DREDge correction to267

motion-degraded spike and local field potential data has the potential to accurately reconstruct268

these electrophysiological signals, while not altering their spatiotemporal profiles in datasets269

without significant motion artefacts. However, the power of our approach is that we use both270

the LFP and the spiking activity in parallel to estimate the motion and, alternately, can use each,271

particularly the spike waveforms, to confirm that we are not adding in artefacts. Further validation272

could therefore make use of 2D cross-correlation to determine if new spiking waveforms were273

found in the corrected data sets [6]. An additional question is whether ongoing large-scale neural274

changes such as evoked potentials due to a task, clinically indicated neural signals such as275

epileptiform activity, anesthesia-induced burst suppression [6], or other types of stimulation could276

alter the motion registration and, therefore, the tracking. Further analyses of additional data sets277

from humans, non-human primates, rodents, and other species where we know specific events278

are occurring will be necessary to parse this effect in a future study.279

Finally, a true test of this approach is how it can handle different types of probes, probe280

designs, and layouts, both Neuropixels and other silicon probes, and how this can alter spike281

sorting [1, 2, 20]. To this end, we were able to apply our method to the staggered Neuropixels282

1.0 version (the two human data sets) and the Neuropixels 2.0 probe (the mouse data set).283
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Future work would involve applying the method to other probe layouts, particularly to ask whether284

this approach could be applied to low spatial resolution probes and the spatial and temporal285

limitations in tracking motion relative to the neural signal.286

To facilitate this sort of portability, DREDge is being developed into a part of the SpikeIn-287

terface [11] framework. In future applications, and as DREDge is applied to further data sets288

using different probe layouts and reaching deeper brain structures other than the cortex, we pro-289

pose that the underlying algorithm may be applicable to a number of different conditions and290

paradigms within and beyond electrophysiology.291

5. ACKNOWLEDGMENTS292

We would like to thank Yangling Chou, Aaron Tripp, Brian Coughlin, and Fausto Minidio for their293

help in the original data collection. We would like to especially thank the patients for their will-294

ingness to participate in this research. EV is supported by 1K99MH128772-01A1. This research295

was supported by the ECOR and K24-NS088568 (to SSC) and the Tiny Blue Dot Foundation (to296

SSC and ACP) and NIH grant U01NS121616 (to ZMW). CW, EV and LP is funded by Simons297

Foundation 543023, NSF Neuronex Award DBI-1707398 and the Gatsby Charitable Foundation.298

The views and conclusions contained in this document are those of the authors and do not rep-299

resent the official policies, either expressed or implied, of the funding sources. The funders had300

no role in the study design, data collection and analysis, decision to publish, or preparation of301

the manuscript.302

6. COMPETING INTERESTS STATEMENT303

The MGH Translational Research Center has clinical research support agreements with Neu-304

ralink, Paradromics, and Synchron, for which SSC provide consultative input. None of these305

entities listed are involved with this research or the Neuropixels device. The remaining authors306

declare no competing interests.307

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.04.519043doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.04.519043
http://creativecommons.org/licenses/by-nc-nd/4.0/


7. REFERENCES308

[1] James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Marius Bauza,309

Brian Barbarits, Albert K Lee, Costas A Anastassiou, Alexandru Andrei, Çağatay Aydın,310
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Svoboda, Michael Häusser, Sebastian Haesler, Matteo Carandini, and Timothy D. Harris,319

“Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings,”320

bioRxiv, 2020.321

[3] Janis Karan Hesse and Doris Y Tsao, “A new no-report paradigm reveals that face cells322

encode both consciously perceived and suppressed stimuli,” Elife, vol. 9, pp. e58360, 2020.323

[4] Hidehiko K Inagaki, Susu Chen, Margreet C Ridder, Pankaj Sah, Nuo Li, Zidan Yang, Hana324

Hasanbegovic, Zhenyu Gao, Charles R Gerfen, and Karel Svoboda, “A midbrain-thalamus-325

cortex circuit reorganizes cortical dynamics to initiate movement,” Cell, vol. 185, no. 6, pp.326

1065–1081, 2022.327

[5] Nicholas A Steinmetz, Peter Zatka-Haas, Matteo Carandini, and Kenneth D Harris, “Dis-328

tributed coding of choice, action and engagement across the mouse brain,” Nature, vol.329

576, no. 7786, pp. 266–273, 2019.330

[6] Angelique C Paulk, Yoav Kfir, Arjun R Khanna, Martina L Mustroph, Eric M Trautmann,331

Dan J Soper, Sergey D Stavisky, Marleen Welkenhuysen, Barundeb Dutta, Krishna V332

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.04.519043doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.04.519043
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shenoy, et al., “Large-scale neural recordings with single neuron resolution using Neu-333

ropixels probes in human cortex,” Nature Neuroscience, vol. 25, no. 2, pp. 252–263, 2022.334

[7] Jason E Chung, Kristin K Sellers, Matthew K Leonard, Laura Gwilliams, Duo Xu, Maxi-335

milian E Dougherty, Viktor Kharazia, Sean L Metzger, Marleen Welkenhuysen, Barundeb336

Dutta, et al., “High-density single-unit human cortical recordings using the Neuropixels337

probe,” Neuron, 2022.338

[8] Nicholas A Steinmetz, Christof Koch, Kenneth D Harris, and Matteo Carandini, “Challenges339

and opportunities for large-scale electrophysiology with neuropixels probes,” Current opin-340

ion in neurobiology, vol. 50, pp. 92–100, 2018.341

[9] Marius Pachitariu, Nicholas Steinmetz, Shabnam Kadir, Matteo Carandini, et al., “Kilo-342

sort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels,”343

BioRxiv, p. 061481, 2016.344

[10] JJ Jun, JF Magland, C Mitelut, and AH Barnett, “IronClust: Scalable and drift-resistant spike345

sorting for long-duration, high-channel count recordings; 2020,” .346

[11] Alessio P Buccino, Cole L Hurwitz, Samuel Garcia, Jeremy Magland, Joshua H Siegle,347

Roger Hurwitz, and Matthias H Hennig, “SpikeInterface, a unified framework for spike sort-348

ing,” Elife, vol. 9, pp. e61834, 2020.349

[12] Eric M Trautmann, Sergey D Stavisky, Subhaneil Lahiri, Katherine C Ames, Matthew T350

Kaufman, Daniel J O’Shea, Saurabh Vyas, Xulu Sun, Stephen I Ryu, Surya Ganguli, et al.,351

“Accurate estimation of neural population dynamics without spike sorting,” Neuron, vol. 103,352

no. 2, pp. 292–308, 2019.353

[13] Erdem Varol, Julien Boussard, Nishchal Dethe, Olivier Winter, Anne Urai, The Interna-354

tional Brain Laboratory, Anne Churchland, Nick Steinmetz, and Liam Paninski, “Decen-355

tralized motion inference and registration of neuropixel data,” in ICASSP 2021-2021 IEEE356

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.04.519043doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.04.519043
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,357

2021, pp. 1085–1089.358

[14] Gaelle Chapuis, Mayo Faulkner, Kenneth D Harris, Julia M Huntenburg, Cole Hurwitz,359

Hyun Dong Lee, Liam Paninski, Cyrille Rossant, Noam Roth, Nicholas A Steinmetz, Charlie360

Windolf, et al., “Spike sorting pipeline for the International Brain Laboratory,” channels, vol.361

10, pp. 6, 2022.362
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