

1 **Quartet metabolite reference materials for assessing inter-laboratory**
2 **reliability and data integration of metabolomic profiling**

3
4 Naixin Zhang^{1#}, Peipei Zhang^{1#}, Qiaochu Chen^{1#}, Kejun Zhou², Yaqing Liu¹, Haiyan Wang¹,
5 Yongming Xie³, Luyao Ren¹, Wanwan Hou¹, Jingcheng Yang^{1,4}, Ying Yu^{1*}, Yuanting Zheng^{1*},
6 Leming Shi^{1,5}

7
8 ¹State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome
9 Institute, Fudan University, Shanghai, China.

10 ²Human Metabolomics Institute, Inc., Shenzhen, Guangdong, China.

11 ³Shanghai Applied Protein Technology Co. Ltd, Shanghai, China.

12 ⁴Greater Bay Area Institute of Precision Medicine, Guangzhou, Guangdong, China.

13 ⁵Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China.

14

15 #These authors contributed equally: Naixin Zhang, Peipei Zhang, Qiaochu Chen.

16 *Corresponding authors' e-mail addresses: ying_yu@fudan.edu.cn,
17 zhengyuanting@fudan.edu.cn

18

19 Abstract

20 Various laboratory-developed metabolomic methods lead to big challenges in inter-laboratory
21 comparability and effective integration of diverse datasets. As part of the Quartet Project, we
22 established a publicly available suite of four metabolite reference materials derived from B-
23 lymphoblastoid cell lines from a family quartet of parents and monozygotic twin daughters.
24 We generated comprehensive LC-MS based metabolomic data from the Quartet reference
25 materials using targeted and untargeted strategies in different laboratories. High variabilities in
26 the qualitative and quantitative metabolomic measurements were observed across laboratories.
27 Moreover, the Quartet multi-sample-based quality metrics were developed for objectively
28 assessing the reliability of metabolomic profiling in detecting intrinsic biological differences
29 among difference groups of samples. Importantly, the ratio-based metabolomic profiling, by
30 scaling the absolute values of a study sample relative to those of a universal reference sample,
31 enables data integration in long-term measurements across difference laboratories or platforms.
32 Thus, we constructed the ratio-based high-confidence reference datasets between two reference
33 samples, providing "ground truth" for inter-laboratory proficiency test, which enables objective
34 assessment of various metabolomic methods. Our study provided the community with rich
35 resources and best practice for objective assessment of inter-laboratory measurements and data
36 integration, ensuring reliable large-scale and longitudinal metabolomic profiling.

37

38 **Introduction**

39 Metabolomics is a powerful tool to discover biomarkers distinguishing biological differences
40 in metabolite abundances related to disease diagnosis, prognosis and treatment effects^{1,2}.
41 However, the differences among such biological states are generally subtle and influenced by
42 technical variations introduced by instruments and processing procedures³⁻⁷. Moreover, in
43 large metabolomics cohort studies, batch effects are inevitable when integrating multiple
44 batches of datasets from long-term measurement or collaboration among multiple
45 laboratories^{5,8-10}. Thus, it is crucial to assure the reliability of each batch of metabolomics
46 measurement, as well as the integration of multiple batches of data in long-term or cross-
47 laboratory studies so that the real signals (biological differences) can be distinguished from
48 technical noises (unwanted variations)¹¹⁻¹⁴.

49 Publicly available reference materials (RMs) are indispensable for inter-laboratory
50 reliability assessment of current practices¹⁵⁻²¹. RMs in large quantities are suitable to distribute
51 for community-wide use with the advantages of homogeneity, long-term stability, and
52 availability of corresponding reference datasets¹². At present, metabolite RMs have been
53 mainly developed and distributed by the U.S. National Institute of Standards and Technology
54 (NIST), involving many biospecimen types such as plasma, serum, urine, and liver²²⁻²⁴. By
55 providing various types of RMs, as well as reference material suites from multiple biological
56 states, the coverage of metabolites in the reference dataset has been improved, making it
57 possible to compare and assess the reliability of data based on research objectives^{25,26}. However,
58 there is no renewable metabolomics reference materials suite from cultured cell lines, which
59 represent an indispensable sample type in metabolomics studies.

60 Quality control (QC) metrics for objective performance evaluation are critically important.
61 Reproducibility is one of the most widely used QC metrics, exemplified by correlations or
62 coefficient of variation^{27,28}. It helps to assess the level of unwanted variations introduced by
63 the sample processing and detection procedures through repeated measurements of a universal
64 reference material²⁹. However, a high reproducibility from repeated measurements of a single
65 sample does not guarantee a high resolution in identifying inherent biological differences (*i.e.*,
66 signals) among various sample groups. Identification of differentially expressed metabolites
67 and development of predictive models to classify different sample groups are the two major goals
68 for quantitative metabolomics technologies. Therefore, QC metrics pertinent to such research
69 purposes are crucial to measure the ability to discriminate intrinsic biological differences
70 among multiple sample groups^{30,31}. Accuracy is another important QC metric, which is

71 assessed through comparison of the measured metabolite concentrations with the “ground truth”
72 in the reference datasets²⁵. However, it is unachievable for evaluating the accuracy of
73 untargeted metabolomic profiling, wherein the quantitatively measured values are usually
74 calculated as relative output of instrumental response, which is notoriously incomparable
75 between batches, protocols, instruments, or laboratories. Objective assessment of
76 quantification accuracy of untargeted metabolomics is essential to ensure the reliable detection
77 of biological differences in clinical biomarker discovery. Therefore, it is crucial to develop
78 quality metrics to objectively evaluate the reproducibility and accuracy of metabolomics
79 datasets at the level of detecting biological differences despite the choice of measurement
80 strategies³².

81 Reliable integration of large-scale metabolomic data is a prerequisite for robust biomarker
82 discovery and validation. Even if the intra-batch data is of high quality, batch effects are
83 everywhere in large-scale metabolomics studies. In-house QC samples are widely used in long-
84 term measurement within a single laboratory. Profiling QC samples along with study samples
85 helps to assess the stability of measurement in each batch, and to ensure efficient integration
86 of multiple batches by removing batch effects introduced by unwanted variations over a time
87 span^{27,33-38}. A pooled QC sample in the form of a mixture of the study samples has been widely
88 used in this scenario, but it failed to ensure reliable data integration, mainly because the “pooled
89 QC sample” is not identical across studies or across laboratories^{35,39,40} and the one QC sample
90 based metrics are not pertinent to research purposes as mentioned above. Therefore, there is a
91 lack of best practice for objective assessment of data integration using reference materials³²,
92 which may hinder the cross-batch, cross-laboratory, and cross-study data integration for
93 exploring new biological insights.

94 As part of the Quartet Project (chinese-quartet.org) to provide “ground truth” as well as
95 best practices for the quality control and data integration of multiomics profiling, we
96 established the publicly available Quartet metabolite RMs and reference datasets. The Quartet
97 metabolite RMs enabled the research purpose related QC metric, *i.e.*, the multi-sample based
98 signal-to-noise ratio (SNR), for assessing the ability of discriminating the inherent biological
99 differences among sample groups. In addition, we also demonstrated that the ratio-based
100 metabolomic profiling using universal reference material(s) can enable the long-term and
101 cross-laboratory data integration in large scale and multi-center metabolomics studies.

103 **Results**

104 **Overview of the study design**

105 In this study, we aim to provide the community with multi-sample based metabolite reference
106 materials (RMs) suite and reference datasets for the inter-laboratory reliability assessment of
107 metabolomic profiling using a wide range of analytical techniques. The Quartet metabolite
108 RMs were prepared as part of the Quartet Project in which matched reference materials of DNA,
109 RNA, proteins, and metabolites were simultaneously manufactured from the same batch of
110 cultured cells. Four immortalized B-lymphoblastoid cell lines were derived from a Chinese
111 Quartet family including father (F7), mother (M8), and their monozygotic twin daughters (D5
112 and D6) (**Fig. 1a**). The cellular metabolites were extracted using methanol: water (6:1) solution
113 (**Extended Data Fig. 1**). Eleven external controls were added into the cellular extracts at
114 known amounts. These spike-ins include ten flora metabolites and one xenobiotic compound,
115 sulfadimethoxine (**Extended Data Table 1**). The cellular extracts were aliquoted into 1000
116 vials per cell line and then vacuum frozen dried. Each vial of the Quartet metabolite RM
117 contains dried cellular metabolites extracted from approximately 10^6 cells, which are suitable
118 for most LC-MS/MS based metabolomic profiling. Additionally, the metabolite RMs were
119 formulated as dried cellular extracts, so they cannot be used for QC of sample extraction steps.

120 For inter-laboratory reliability assessment of metabolomic profiling, we generated multi-
121 laboratory datasets using untargeted and targeted strategies (**Fig. 1b**). Three replicates of each
122 Quartet sample were measured within a batch in six laboratories. In each laboratory, the
123 metabolomic methods have been developed independently using different liquid
124 chromatograph (LC) and mass spectrometer (MS) instruments, which is the current practice in
125 the field of metabolomic profiling (**Extended Data Table 2**). One laboratory 4 (T-L4) used a
126 targeted metabolomic method to calculate the metabolite concentration with standard
127 calibration curves, and for other targeted metabolomic methods the quantification was
128 performed by relative metabolite abundance detected by multiple reaction monitoring (MRM).
129 For the untargeted metabolomic methods, quantification was accomplished by relative
130 metabolite abundance detected by precursor ions. For long-term stability monitoring of the
131 Quartet metabolite RMs, three replicates of each Quartet sample were measured monthly in T-
132 L4 for two years. Overall, 180 metabolomic profiles were collected.

133

134 **High variabilities in the qualitative and quantitative metabolomic
135 measurements**

136 We evaluated the qualitative and quantitative performance of metabolomics using the Quartet
137 reference materials in different laboratories. High variabilities were found in the qualitative
138 and quantitative metabolomic measurements.

139 The number of metabolites detected by each laboratory varied considerably, ranging from
140 79 (T-L1) to 462 (T-L5, **Fig. 2a**). Untargeted metabolomic strategies are usually regarded as a
141 tool for profiling all metabolites present in a sample. However, there was no obvious advantage
142 in the number of detected metabolites using untargeted strategies. For example, the number of
143 detected metabolites using untargeted profiling in U-L1 was only 204, whereas the targeted
144 strategy in T-L5 detected the largest number of metabolites, up to 462. We also compared the
145 number of detected metabolites using different filtering criteria. Coefficient of variance (CV)
146 was used to evaluate the reproducibility of measurement from technical replicates of the same
147 single sample, whereas intraclass correlation coefficient (ICC) was applied to measure the
148 reliability of metabolites from aspects of reproducibility and discriminability of multiple
149 samples in test-retest analysis. We defined the reproducibly and reliably detectable metabolites
150 with combined criteria of $CV < 30\%$ and $ICC > 0.4$, and the percentages ranged from 36% to
151 90%. A laboratory using untargeted strategies (U-L2) detected 402 metabolites, but only 36%
152 of them were detected reproducibly and reliably (**Fig. 2a**). On the other side, although another
153 laboratory using untargeted strategies (U-L3) detected 304 metabolites, 59% of these
154 metabolites were recognized as reliable (**Fig. 2a**).

155 Pearson correlation coefficient (PCC) of pairs of technical replicates indicated the
156 reproducibility of quantitative profiles, while PCC of pairs of different Quartet metabolite RMs
157 indicated the level of discriminability of biological differences. As shown in **Fig. 2b**, the PCC
158 of technical replicates of D5 was high in each of the seven datasets, ranging from 0.989 to
159 0.999. However, the PCC between D5 and D6 was also high, ranging from 0.945 to 0.989 (**Fig.**
160 **2c**). For example, the PCC of technical replicates in T-L4 was 0.999, indicating high
161 reproducibility. However, the PCC between different samples in the same laboratory was 0.989,
162 indicating low discriminability. These results indicated that a high reproducibility of technical
163 replicates does not guarantee a high resolution in identifying inherent biological differences
164 (discriminability) between different sample groups (**Fig. 2d**). In addition, there was a negative
165 correlation between PCC of technical replicates and (1-PCC) of difference sample groups (**Fig.**
166 **2e**).

167 Identification of differential abundance metabolites (DAMs) is a major goal of biomarker
168 discovery using metabolomic technologies. However, as shown in **Fig. 2f** where the volcano
169 plots were used to display the magnitude of the fold change versus the statistical significance
170 level, big differences in both the fold changes and statistical significance levels were seen when
171 comparing the same sample pairs. The number of DAMs ranged from ~10 to ~120 in D5/D6,
172 F7/D6, and M8/D6 comparisons (**Fig. 2g**). In two of the laboratories (T_L5 and U_L3) that
173 identified the highest number of DAMs, most of the DAMs were more highly expressed in D6
174 than in D5, F7, and M8 at T-L5. However, most of the DAMs were more highly expressed in
175 D5, F7, and M8 than in D6 at U-L3. Taken together, these results implicated that achieving
176 high inter-laboratory reproducibility of DAMs was challenging.

177

178 **Inter-laboratory reliability assessment by Quartet based signal-to-noise ratio**
179 Based on the Quartet multi-sample design, we designed a signal-to-noise ratio (SNR) metric to
180 take reproducibility and discriminability into consideration simultaneously. SNR is calculated
181 as the ratio of the averaged distance between different Quartet samples (“signal”) to the
182 averaged distances between technical replicates for each sample (“noise”) on a 2D-PCA scatter
183 plot (**Fig. 3c**)^{41,43}, where a higher SNR indicates better reproducibility and discriminability (**Fig.**
184 **3**). As expected, for a measurement to be considered reliable, the sample-to-sample difference
185 should be bigger than variation of technical replicates.

186 We computed the SNR for each batch of metabolomic profiling (4 sample \times 3 replicates)
187 using metabolites detected in all 12 samples in the batch. As shown in the PCA, the first two
188 principal components demonstrated clear separation among the four reference samples in good-
189 quality metabolomic profiling data, but not in poor-quality data (**Fig. 3a**). Astonishingly, high
190 variabilities in data quality were observed in these metabolomic datasets (range 4.6~27.1).
191 After filtering with combined criteria (CV<30% and ICC>0.4) to retain the reliably detectable
192 metabolites, the SNRs were slightly improved but the relative quality ranking of batches did
193 not change obviously (**Fig. 3b**). **Fig. 3d** illustrated the SNRs calculated with metabolites
194 filtered with different criteria, indicating the robustness of SNRs in evaluating the laboratory-
195 specific reliability with or without filtering metabolites.

196 We also ranked the quality of the metabolomic datasets generated in different laboratories
197 using different QC metrics, including the percentages of retained metabolites using different
198 filtering criteria (CV<30%; ICC>0.4; CV<30% and ICC>0.4), PCC of technical replicates, the

199 numbers of DAMs, and SNR calculated with or without filtering. As shown in **Fig. 3e**, the
200 inter-laboratory data quality rankings were not entirely concordant using different QC metrics.
201 T-L5 outperformed others in terms of the numbers of discovered DAMs, but did not perform
202 well by other QC metrics. These results implicated that more DAMs did not guarantee good
203 data quality, which can be confound by false positive discovery. In addition, T-L4 performed
204 well by PCC of technical replicates, but did not perform well by SNR or DAMs. These results
205 suggested that correlation of replicates from one reference material did not have enough
206 resolution in identifying the among-sample differences.

207 The overall concordances among these QC results were also evaluated in **Fig. 3f**. QC results
208 assessed by DAMs showed low concordance with all the other results, and the percentages of
209 retained features after filtering ($CV < 30\%$ and $ICC > 0.4$) was highly correlated with SNR. These
210 data suggested that the inter-laboratory data quality assessments were dependent on the QC
211 metrics being used. PCC of technical replicates from one reference material and the number of
212 DAMs between two reference materials did not show enough resolution in metabolomic
213 profiling quality in identifying differences among sample groups. The Quartet multi-sample
214 based SNR provided an objective QC metric for inter-laboratory reliability assessment for a
215 wide range of metabolomic technologies.

216

217 **Ratio-based metabolite profiling enables data integration across laboratories**
218 To evaluate the reliability of metabolomic data integration, we examined the qualitative and
219 quantitative performance of the integrated data generated in different laboratories. We first
220 evaluated the qualitative concordance of detected metabolites among these datasets. However,
221 most detected metabolites were reported by only one laboratory, and merely six metabolites
222 were reported in all the seven metabolomic datasets (**Fig. 4a**). The intersection size of detected
223 metabolites among different laboratories were shown in **Extended Data Fig. 2**, and there
224 were only 58 metabolites detected by all the three global metabolomic profiling strategies.
225 These results demonstrated the poor concordance of metabolite identification across different
226 laboratories.

227 To further evaluate the quantitative reliability of cross-laboratory integration of metabolomic
228 data at absolute abundance level, we first compared the differences between PCCs of technical
229 replicates and those between different reference sample groups. However, the differences
230 between the two types of PCCs were not dramatic (**Fig. 4b, Left**). Hierarchical cluster analysis

231 (HCA) and principal component analysis (PCA) were also used to visualize the magnitude of
232 technical variation of data integration at the absolute abundance level. The integrated cross-
233 laboratory metabolomic profiling data were first clustered by batch (laboratory) but not by
234 different sample groups (**Fig. 4c**). Similar results were demonstrated in PCA (**Fig. 4e**), where
235 the first principal component (PC1) clearly showed the dramatic differences between the six
236 batches of data and the distinct Quartet samples cannot be separated.

237 Importantly, after converting the absolute abundance data to a ratio scale relative to the same
238 reference material (D6) on a metabolite-by-metabolite basis in each batch, significant
239 differences between PCCs of technical replicates and those of different samples were found
240 (**Fig. 4b, Right**). Similar results were supported by HCA and PCA plots (**Figs. 4d and 4f**).
241 After ratio-based scaling, the metabolomic profiling relative to D6 first clustered by the four
242 different Quartet sample groups (**Fig. 4d**). PCA plots showed clear separation of the four
243 groups of reference samples (D5, D6, F7, and M8) and the drastic batch effects seen at the
244 absolute abundance (**Figs. 4c and 4e**) largely disappeared.

245 Our results showed that batch effects were prevalent in cross-laboratory metabolomic data
246 integration at the absolute abundance level, presenting a real challenge for large-scale
247 integrative analyses of multi-center data. Fortunately, the cross-laboratory data reliability can
248 be greatly improved by converting the absolute abundance to a ratio-based metabolomic
249 profiling using universal reference materials such as the Quartet metabolite reference materials.

250

251 **Ratio-based metabolite profiling improves data integration in long-term 252 measurement**

253 In order to evaluate the long-term stability of metabolomic profiling, we generated a total of
254 15 batches of Quartet metabolomic data in T-L4 over a period of two years. This targeted
255 metabolomic strategy calculates the concentration of each metabolite with a specific standard
256 calibration curve, and is referred to as the “absolute” quantification approach of metabolomic
257 profiling and regarded as one of the most reliable ones.

258 We first evaluated the qualitative concordance of detected metabolites in long-term
259 measurement. We found that only 100 out of 148 metabolites (67.6%) were detected in all the
260 15 batches of datasets (**Fig. 5a**). Thus, the stability of metabolite identification was still not
261 ideal even for the absolute quantification metabolomics strategy.

262 To further evaluate the quantitative stability of long-term metabolomic data at the absolute
263 concentration level, we first compared the differences between PCCs of technical replicates
264 and those between different reference sample groups. There existed significant differences
265 between the two types of PCCs (**Fig. 5b**). HCA and PCA were also used to visualize the
266 magnitude of technical variation of data integration at the absolute concentration level. Most
267 of the samples in the integrated long-term metabolomic dataset were clustered by different
268 sample groups, but several M8 samples mis-clustered into the F7 sample group (**Figs. 5d** and
269 **5f**). In addition, the Quartet signal-to-noise ratio was calculated to be 13.3 for the integrated
270 dataset, indicating a good separation among different Quartet samples.

271 We also integrated the long-term metabolomic datasets by converting the absolute
272 concentration values to a ratio scale relative to those of the same reference material (D6) on a
273 metabolite-by-metabolite basis per batch. The difference between PCCs of technical replicates
274 and PCCs of different samples, a surrogate of discriminability, increased dramatically from
275 0.009 (absolute, **Fig. 5b**) to 0.532 (relative, **Fig. 5c**). Similar results were observed by HCA
276 and PCA plots (**Figs. 5e** and **5g**). After ratio-based scaling, all the samples clustered correctly
277 by different Quartet sample groups (**Fig. 5e**). The Quartet signal-to-noise ratio was improved
278 slightly from 13.3 to 13.5 (**Fig. 5g**). Using the Levey-Jennings plot, we continuously
279 monitored each metabolite measurement across runs (**Extended Data Fig. 3**). There were 57,
280 14, and 10 metabolites deviated from the mean beyond ± 3 SD for 3 RMs (D5, F7, M8),
281 demonstrating evidence of systematic errors (**Extended Data Fig. 3, up**). After ratio-based
282 scaling to D6 sample, the number of systematically deviated metabolites decreased to 8,
283 11, and 15 for D5, F7, and M8, respectively (**Extended Data Fig. 3, down**).

284 These results showed that the reliability of long-term metabolomic profiling measurement
285 can still be improved by converting the absolute concentration values to a ratio scale using
286 universal reference materials such as the Quartet metabolite reference materials.

287

288 **Construction of ratio-based Quartet metabolite reference datasets**

289 In order to provide “ground truth” reference datasets for evaluating the accuracy of
290 metabolomic quantification, we constructed the ratio-based metabolomic reference
291 datasets by scaling the absolute abundance values of D5, F7, and M8 relative to those of
292 D6. **Fig. 6a** illustrated the workflow of consensus integration from seven metabolomics
293 datasets from different laboratories. First, the metabolites detected in all three replicates in

294 each dataset were defined as detected metabolites, and the union of the detected metabolites in
295 all the seven datasets were 939, 944, 948, and 948 for the four reference materials (D5, D6, F7,
296 and M8). Secondly, 210 reproducibly detectable metabolites were retained in all the four
297 reference samples in more than one dataset. Thirdly, ratio-based values were calculated using
298 differential abundance metabolites (DAMs) for each sample pair (D5/D6, F7/D6, or M8/D6)
299 with $p < 0.05$ in more than one dataset. Finally, the high-confidence ratio-based reference value
300 for each metabolite is defined as a geometric mean of fold-changes calculated from each
301 replicate of more than one dataset. After these filtrations, the first release of the Quartet ratio-
302 based metabolomic datasets (v.1.0) for each sample pair (D5/D6, F7/D6, and M8/D6)
303 contained 47, 44, and 51 high-confidence metabolites, respectively (**Extended Data Tables 3-5**).
304

305 The union of high-confidence reference metabolites for the three sample pairs were
306 annotated into 10 classes according to the HMDB database (<https://hmdb.ca>) (**Fig. 6b**). The
307 most abundant class was carboxylic acids and derivatives, with 36 metabolites contained in the
308 reference datasets. The ratio values for the high-confidence reference metabolites for each
309 sample pair were summarized in **Fig. 6c**, covering a wide range of fold-changes from -4.4 to
310 5.1. With the advance in metabolomic technologies and the generation of additional datasets,
311 the Quartet metabolomic reference datasets will be updated periodically through the Quartet
312 Data Portal⁴⁶ (<http://chinese-quartet.org>).

313

314 **Best practice for inter-laboratory proficiency test of metabolomic profiling
315 using the Quartet metabolite reference materials**

316 Inter-laboratory proficiency test is essential to achieve reliable metabolomic profiling. We
317 recommend profiling the Quartet reference materials (*e.g.*, four samples \times three replicates)
318 for method validation. We provided two types of QC metrics for quality assessment of
319 quantitative metabolomic datasets. One is the Quartet multi-sample based SNR to measure
320 the ability to discriminate the intrinsic biological differences among different reference
321 samples. The other is the quantitative concordance between the evaluated batch of data
322 and the reference datasets, calculated by relative correlation (RC). The recall of detected
323 DAMs was recommended to qualitatively assess the accuracy against the Quartet reference
324 datasets (**Fig. 7a**).

325 We evaluated the laboratory proficiency for each of the 22 batches of metabolomic
326 datasets using targeted or untargeted strategies with SNR, RC, and recall. As shown in
327 **Fig. 7b**, the relative quality rankings using different QC metrics were not concordant. The
328 correlations among the three metric values were relatively low (**Extended Data Fig. 4**),
329 therefore a total score would be better to rank the quality of metabolomic datasets. Using
330 the total score calculated using SNR, RC, and recall with each metric value scaled from 0
331 to 10, we found that the inter-laboratory proficiency was not dependent on the
332 metabolomic strategy. The top one laboratory proficiency was achieved in U_L3 using an
333 untargeted strategy. The three datasets with the worst laboratory proficiency (U-L1, T-L5,
334 and U-L2) were generated in three laboratories using either untargeted or targeted
335 strategies. These results supported the notion that the Quartet metabolite reference
336 materials and related QC metrics were suitable for a wide range of metabolomic
337 technologies using both targeted and untargeted strategies. In addition, the standardized
338 QC workflow for inter-laboratory comparisons can be performed through the Quartet Data
339 Portal⁴⁶, where the relative quality ranking among the cumulative metabolomic datasets
340 can be obtained.

341

342 Discussion

343 As part of the Quartet project⁴¹, we provide the community the first suite of renewable
344 metabolite reference materials, with matched DNA⁴², RNA⁴³, and protein⁴⁴ isolated from
345 the same immortalized cell lines. The intended use of the Quartet metabolite reference
346 materials includes intra-laboratory quality control, inter-laboratory proficiency test, and
347 quality assurance of large-scale metabolomic data generation and integration.

348 We also defined the ratio-based reference datasets as abundance ratios of sample pairs
349 (D5/D6, F7/D6, and M8/D6) between the Quartet reference materials, providing “ground
350 truth” for assessing the quantification accuracy of a wide range of metabolomic
351 technologies. There are two clear advantages of the ratio-based reference datasets. First,
352 the ratio-based quantification can mitigate technical variations seen at the absolute-level
353 quantification, because the instrumental output can systematically change by different
354 laboratory-developed methods^{41,45}. Therefore, the Quartet ratio-based reference datasets
355 are suitable for proficiency test and method validation of a wide range of targeted and non-
356 targeted metabolomic strategies using various LC-MS instruments. Secondly, the accuracy
357 and reproducibility of the ratio-based metabolite qualification indicate the ability of a
358 metabolomic measurement procedure in distinguishing the biological differences among
359 sample groups, which is a basis for biomarker discovery and validation using metabolomic
360 technologies. Although the v1.0 of the metabolite reference datasets covers only 92
361 metabolites, the reference datasets will be updated periodically through the Quartet Data
362 Portal (<http://chinese-quartet.org/>) community-wide participation⁴⁶. Our study suggested a
363 paradigm shift of defining the ground truth for assessing the accuracy of metabolomic
364 profiling.

365 The Quartet multi-sample based SNR is developed as an objective QC metric for
366 assessing the ability in identifying intrinsic biological differences between various groups
367 of samples, which is the basis for the development and application of metabolomic
368 profiling based clinical diagnostics. Compared with the previously widely used one-
369 sample based technical reproducibility for quality assessment of quantitative profiling, the
370 unique Quartet SNR guaranteed a high resolution in identifying serious quality issues. An
371 obvious limitation of any “ground truth” dependent QC metrics is due to their reliance on
372 easily detectable metabolites. However, the Quartet based SNR is applicable for assessing
373 the reliability of global metabolomic profiling without considering the ground truth,

374 making it a complementary and broadly applicable approach for objective quality
375 assessment.

376 Using the Quartet metabolite reference materials for inter-laboratory proficiency testing,
377 high variabilities of the qualitative and quantitative metabolomic measurements were
378 observed across laboratories. We found that the best and worst performing batches were
379 all generated using the untargeted metabolomics strategies. This result suggested that the
380 intrinsic laboratory proficiency was critically important for developing in-house
381 untargeted metabolomics strategies, consistent with a previous report⁴⁷. In addition, even
382 for an “absolute” quantification method using a targeted strategy that quantifies each
383 metabolite by standard calibration curves within the same laboratory, clear technical
384 variations were observed by continuously measuring the same Quartet reference materials
385 over a long period of time. This result implicated that profiling reference materials in each
386 batch along with the study samples help monitor long-term data quality and technical drift
387 within a laboratory.

388 Importantly, the multi-sample based SNR can also be used to objectively monitor and
389 correct batch effects. To achieve reliable data integration from long-term and cross-laboratory
390 large-scale metabolomics profiling, we recommend using universal reference materials per-
391 batch along with study samples. As long as the integrated datasets maintain the ability to
392 differentiate the different Quartet samples, the reliability of the metabolomic data from the
393 study samples for further exploratory metabolomic biomarker discovery is assured.

394 Our study also demonstrated the potential utility of the Quartet reference materials as a
395 universal reference sample to scale the absolute abundance to ratio-based metabolomic
396 profiling. The ratio-based metabolomic profiling was suitable for internal quality control in
397 longitudinal measurement within a laboratory, and it can also be used to calibrate the
398 metabolomic profiling in multiple centers. Even if the metabolomic methods were developed
399 using different wet-lab operation procedures on different LC-MS instruments, the ratio-based
400 metabolomic data integration was reliable enough for differentiating the various Quartet
401 reference materials. The intrinsic batch-effect resistant characteristics of the ratio-based
402 profiling is also demonstrated by other quantitative omics profiling technologies, such as
403 methylomics, transcriptomics, and proteomics^{41, 43, 45}.

404 Although we demonstrated the importance of using the Quartet metabolite reference
405 materials and corresponding QC metrics in ensuring reliable biological discovery, there are

406 some limitations beyond the scope of this study. First, the Quartet metabolite reference
407 materials were extracted cellular metabolites in the form of lyophilized powder and could
408 not be applied to in the QC of the sample preparation procedures. Moreover, the
409 metabolites extracted from cells could not fully cover metabolites from other sources of
410 biospecimen, such as plasma, serum and tumor tissues, which may hinder the wider
411 application of the Quartet reference materials especially when the matrix of the study
412 samples is largely different from cellular extractants. However, with the Quartet multi-
413 sample design, the reference data dependent and independent QC metrics could be used to
414 comprehensively assess the system-specific reliability of biological discoveries.

415 In summary, as an important part of the Quartet multiomics reference materials suites
416 consisting DNA, RNA, proteins, and metabolites, the Quartet metabolite reference
417 materials, the reference datasets, and the corresponding quality metrics help lay the
418 foundation for reliable discovery of metabolomic differences through quality control of
419 the intra- and inter-laboratory data generation and integration processes.

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435 References

- 436 1. Holmes, E., Wilson, I. D. & Nicholson, J. K. Metabolic Phenotyping in Health and Disease. *Cell* **134**, 714–
437 717 (2008).
- 438 2. Nicholson, J. K. *et al.* Metabolic phenotyping in clinical and surgical environments. *Nature* **491**, 384–392
439 (2012).
- 440 3. Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms.
441 *Nat. Rev. Mol. Cell Biol.* **2016** *17*, 451–459 (2016).
- 442 4. Wang, T. J. *et al.* Metabolite profiles and the risk of developing diabetes. *Nat. Med.* **2011** *17*, 448–453
443 (2011).
- 444 5. Dunn, W. B. *et al.* Molecular phenotyping of a UK population: defining the human serum metabolome.
445 *Metabolomics* **11**, 9–26 (2015).
- 446 6. Liu, J. *et al.* Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. *Metabolomics*
447 **13**, 104 (2017).
- 448 7. Cirulli, E. T. *et al.* Profound Perturbation of the Metabolome in Obesity Is Associated with Health Risk. *Cell*
449 *Metab.* **29**, 488–500 (2019).
- 450 8. De Livera, A. M. *et al.* Statistical Methods for Handling Unwanted Variation in Metabolomics Data. *Anal.*
451 *Chem.* **87**, 3606–3615 (2015).
- 452 9. Lewis, M. R. *et al.* Development and Application of Ultra-Performance Liquid Chromatography-TOF MS
453 for Precision Large Scale Urinary Metabolic Phenotyping. *Anal. Chem.* **88**, 9004–9013 (2016).
- 454 10. Wehrens, R. *et al.* Improved batch correction in untargeted MS-based metabolomics. *Metabolomics* **12**, 88
455 (2016).
- 456 11. Viant, M. R. *et al.* Use cases, best practice and reporting standards for metabolomics in regulatory toxicology.
457 *Nat. Commun.* **10**, 3041 (2019).
- 458 12. Lippa, K. A. *et al.* Reference materials for MS-based untargeted metabolomics and lipidomics: a review by
459 the metabolomics quality assurance and quality control consortium (mQACC). *Metabolomics* **18**, 24 (2022).
- 460 13. Blaise, B. J. *et al.* Statistical analysis in metabolic phenotyping. *Nat. Protoc.* **16**, 4299–4326 (2021).
- 461 14. Kim, T. *et al.* A hierarchical approach to removal of unwanted variation for large-scale metabolomics data.
462 *Nat. Commun.* **12**, 4992 (2021).
- 463 15. ISO Guide 33:2015. *Reference Materials—Good Practice in Using Reference Materials*. vol. 2015
464 (International Organization for Standardization, Geneva, Switzerland., 2015).
- 465 16. Telu, K. H., Yan, X., Wallace, W. E., Stein, S. E. & Simōn-Manso, Y. Analysis of human plasma metabolites
466 across different liquid chromatography/mass spectrometry platforms: Cross-platform transferable chemical
467 signatures. *Rapid Commun. Mass Spectrom.* **30**, 581–593 (2016).
- 468 17. Beger, R. D. *et al.* Towards quality assurance and quality control in untargeted metabolomics studies.
469 *Metabolomics* **15**, 4 (2019).
- 470 18. Triebel, A. *et al.* Shared reference materials harmonize lipidomics across MS-based detection platforms and
471 laboratories. *J. Lipid Res.* **61**, 105–115 (2020).
- 472 19. Dunn, W. B. *et al.* Quality assurance and quality control processes: summary of a metabolomics community
473 questionnaire. *Metabolomics* **13**, 50 (2017).
- 474 20. Bearden, D. W. *et al.* The New Data Quality Task Group (DQTG): ensuring high quality data today and in
475 the future. *Metabolomics* **10**, 539–540 (2014).
- 476 21. Lindon, J. C. *et al.* Summary recommendations for standardization and reporting of metabolic analyses. *Nat.*
477 *Biotechnol.* **23**, 833–838 (2005).
- 478 22. Phinney, K. W. *et al.* Development of a standard reference material for metabolomics research. *Anal. Chem.*
479 **85**, 11732–11738 (2013).

480 23. Simón-Manso, Y. *et al.* Metabolite profiling of a NIST standard reference material for human plasma (SRM
481 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. *Anal.
482 Chem.* **85**, 11725–11731 (2013).

483 24. Bearden, D. W. *et al.* Metabolomics test materials for quality control: A study of a urine materials suite.
484 *Metabolites* **9**, 270 (2019).

485 25. Aristizabal-Henao, J. J., Jones, C. M., Lippa, K. A. & Bowden, J. A. Nontargeted lipidomics of novel human
486 plasma reference materials: hypertriglyceridemic, diabetic, and African-American. *Anal. Bioanal. Chem.*
487 **412**, 7373–7380 (2020).

488 26. Aristizabal-Henao, J. J. *et al.* Metabolomic Profiling of Biological Reference Materials using a
489 Multiplatform High-Resolution Mass Spectrometric Approach. *J. Am. Soc. Mass Spectrom.* **32**, 2481–2489
490 (2021).

491 27. Siskos, A. P. *et al.* Interlaboratory Reproducibility of a Targeted Metabolomics Platform for Analysis of
492 Human Serum and Plasma. *Anal. Chem.* **89**, 656–665 (2017).

493 28. Townsend, M. K. *et al.* Reproducibility of Metabolomic Profiles among Men and Women in 2 Large Cohort
494 Studies. *Clin. Chem.* **59**, 1657–1667 (2013).

495 29. Zhang, X., Dong, J. & Raftery, D. Five Easy Metrics of Data Quality for LC-MS-Based Global
496 Metabolomics. *Anal. Chem.* **92**, 12925–12933 (2020).

497 30. Koo, T. K. & Li, M. Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for
498 Reliability Research. *J. Chiropr. Med.* **15**, 155–163 (2016).

499 31. Sampson, J. N. *et al.* Metabolomics in epidemiology: Sources of variability in metabolite measurements and
500 implications. *Cancer Epidemiol. Biomarkers Prev.* **22**, 631–640 (2013).

501 32. Evans, A. M. *et al.* Dissemination and analysis of the quality assurance (QA) and quality control (QC)
502 practices of LC-MS based untargeted metabolomics practitioners. *Metabolomics* **16**, 113 (2020).

503 33. Want, E. J. *et al.* Global metabolic profiling procedures for urine using UPLC-MS. *Nat. Protoc.* **5**, 1005–
504 1018 (2010).

505 34. Dunn, W. B. *et al.* Procedures for large-scale metabolic profiling of serum and plasma using gas
506 chromatography and liquid chromatography coupled to mass spectrometry. *Nat. Protoc.* **6**, 1060–1083
507 (2011).

508 35. Broadhurst, D. *et al.* Guidelines and considerations for the use of system suitability and quality control
509 samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. *Metabolomics* **14**,
510 72 (2018).

511 36. Alseekh, S. *et al.* Mass spectrometry-based metabolomics: a guide for annotation, quantification and best
512 reporting practices. *Nat. Methods* **18**, 747–756 (2021).

513 37. Sánchez-Illana, Á. *et al.* Evaluation of batch effect elimination using quality control replicates in LC-MS
514 metabolite profiling. *Anal. Chim. Acta* **1019**, 38–48 (2018).

515 38. Bowden, J. A. *et al.* Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using
516 SRM 1950–Metabolites in Frozen Human Plasma. *J. Lipid Res.* **58**, 2275–2288 (2017).

517 39. Dudzik, D., Barbas-Bernardos, C., García, A. & Barbas, C. Quality assurance procedures for mass
518 spectrometry untargeted metabolomics. a review. *J. Pharm. Biomed. Anal.* **147**, 149–173 (2018).

519 40. Izumi, Y. *et al.* Inter-Laboratory Comparison of Metabolite Measurements for Metabolomics Data
520 Integration. *Metabolites* **9**, 257 (2019).

521 41. Zheng, Y. *et al.* Ratio-based multiomic profiling using universal reference materials empowers data
522 integration. Preprint at doi:10.1101/2022.10.24.513612v1.

523 42. Ren, L. *et al.* Quartet DNA reference materials and datasets for comprehensively evaluating germline
524 variants calling performance. Preprint at <https://doi.org/10.1101/2022.09.28.50984443>.

525 43. Yu, Y. *et al.* Quartet RNA reference materials and ratio-based reference datasets for reliable transcriptomic
526 profiling. Preprint at <https://doi.org/10.1101/2022.09.26.507265>

527 44. Tian, S. *et al.* Quartet protein reference materials and datasets for multi-platform assessment of label-free
528 proteomics. Preprint at <https://doi.org/10.1101/2022.10.25.513670>

529 45. Yu, Y. *et al.* Correcting batch effects in large-scale multiomic studies using a reference-material-based ratio
530 method. Preprint at <https://doi.org/10.1101/2022.10.19.507549>

531 46. Yang, J. *et al.* The Quartet Data Portal: integration of community-wide resources for multiomics quality
532 control. Preprint at <https://doi.org/10.1101/2022.09.26.507202>

533 47. Naz, S., Vallejo, M., García, A. & Barbas, C. Method validation strategies involved in non-targeted
534 metabolomics. *J. Chromatogr. A* **1353**, 99–105 (2014).

535 48. Wheeler, H. E. & Dolan, M. E. Lymphoblastoid cell lines in pharmacogenomic discovery and clinical
536 translation. *Pharmacogenomics* **13**, 55–70 (2012).

537 49. Ozgyin, L., Horvath, A., Hevessy, Z. & Balint, B. L. Extensive epigenetic and transcriptomic variability
538 between genetically identical human B-lymphoblastoid cells with implications in pharmacogenomics
539 research. *Sci. Rep.* **9**, 4889 (2019).

540 50. Cai, Y., Weng, K., Guo, Y., Peng, J. & Zhu, Z. J. An integrated targeted metabolomic platform for high-
541 throughput metabolite profiling and automated data processing. *Metabolomics* **11**, 1575–1586 (2015).

542 51. Evans, A. M. *et al.* High Resolution Mass Spectrometry Improves Data Quantity and Quality as Compared
543 to Unit Mass Resolution Mass Spectrometry in High-Throughput Profiling Metabolomics. *J. Postgenomics
544 Drug Biomark. Dev.* **04**, 2 (2014).

545

546

547 **Methods**

548 **Ethics approval and consent to participate**

549 The study was approved by the IRB (Institutional Review Board) of the School of Life
550 Sciences, Fudan University (BE2050) and conformed to the principles set out in the 1975
551 Declaration of Helsinki. Written informed consent to participate in multiomics research
552 and allow collection of biospecimens was approved by the IRB and obtained from the
553 Quartet family that includes monozygotic twin daughters (D5 and D6) and their parents
554 (father, F7 and mother, M8) in Taizhou, Jiangsu Province, China.

555 **Quartet immortalized B-lymphoblastoid cell lines**

556 Quartet immortalized B-lymphoblastoid cell lines were established through the infection
557 with Epstein-Barr virus (EBV)⁴⁸ and culturing using the protocols described in the Quartet
558 main paper⁴¹. Briefly, immortalized lymphoblastoid cell lines were obtained by isolating
559 peripheral blood mononuclear cells (PBMCs), sorting naive B cells and infecting with
560 EBV by centrifugation at 2000 rpm for 1 hour. Lymphoblastoid cell lines were cultured in
561 RPMI 1640 supplemented with 15% of non-inactivated FBS and 1% Penicillin-Streptomycin.
562 Flasks were incubated on the horizontally position at 37°C under 5% CO₂. Cell cultures were
563 split every three days for maintenance as described in the literature⁴⁹. Cells growing in
564 suspension were centrifuged at 300 g for 5 min to obtain cell pellets and were washed twice
565 with cold PBS, then store at -80°C. About 1×10¹¹ cells were harvested for each cell line in
566 the same batch to ensure that matched multiomics reference materials were extracted from
567 the same batch of cultured cells. About 1.1×10⁹ cells per cell line were used for generating
568 Quartet metabolite reference materials. In all cases, all cell lines were handled in parallel
569 using exactly the same reagents and equipment, and experiments were initiated at the same
570 time-point of the day.

571 **Metabolite extraction**

572
573 Metabolites were extracted from EBV immortalized lymphoblastoid cell lines in L4
574 (Laboratory 4). At first, we thawed cells (11 tubes per sample, 1×10⁸ cells per tube) slowly
575 on ice-bath to minimize potential sample degradation, and then added 2.4 mL ice cold methanol
576 solution (methanol: water = 6:1) to each tube of samples. Then, the ice water bath was under
577 ultrasonic treatment for 3 times, each time for 3 s, with an interval of 2 minutes, power 10%.
578 Then we found that the cell mass at the bottom of the tube was completely broken by ultrasound

579 and appeared as white emulsion. Finally, after centrifugation at 4500 g, 4°C, 20 minutes
580 (Allegra X-15R, Beckman Coulter, Inc., Indianapolis, IN, USA), we transferred supernatant
581 containing extracted metabolites to a new centrifuge tube.

582 **Quartet metabolite reference materials**

583 Eleven external controls were spiked into the supernatant at known concentrations as internal
584 standards, including ten metabolites commonly found in plasma (Indoleacetic acid,
585 Taurocholic acid, Glycocholic acid, Cholic acid, Tauroursodeoxycholic acid,
586 Taurodeoxycholic acid, Glycoursodeoxycholic acid, Glycodeoxycholic acid, Ursodeoxycholic
587 acid, and Deoxycholic acid) and one drug sulfadimethoxine (Extended Data Table 1). For each
588 Quartet sample, supernatant containing metabolites extracted from 1.1×10^9 cells and 11 spike-
589 ins were aliquoted into 1,000 vials using an automated liquid handler (Biomek 4000, Beckman
590 Coulter, Inc., Brea, California, USA), with 5 μ L solution per tube. After centrifugation at 4°C
591 and under vacuum (Labconco, Kansas City, Missouri, USA) for 50 minutes, water was
592 removed, and we obtained the Quartet metabolite reference materials in the form of lyophilized
593 power. Reference materials from different Quartet samples were clearly marked with
594 differently colored dispensing caps and labels. The tube cap colors of the reference materials
595 D5, D6, F7, and M8 are blue, green, yellow, and red, respectively. We stored the Quartet
596 metabolite reference materials at -80°C and shipped with dry ice.

597 **Sample preparation**

598 We distributed 12 vials (triplicates for each Quartet sample) of the Quartet metabolite reference
599 materials as a batch to each laboratory and offered basic guidance on sample preparation. The
600 same sample running order (D5-1, D6-1, F7-1, M8-1, D5-2, D6-2, F7-2, M8-2, D5-3, D6-3,
601 F7-3, and M8-3) in each batch was maintained among all laboratories.

602 *T-LI/U-L1*

603 Samples were first centrifuged before the researchers added 200 μ L acetonitrile-water (1:1, v/v)
604 to reconstitute. The solution was then centrifuged at 14,000 rcf for 15 min at 4°C to extract
605 supernatant for MS analysis.

606 *U-L2*

607 The researchers added 100 μ L of 50% acetonitrile to reconstitute (containing isotope-labeled
608 internal standard mixture). The solution was vortexed for 30 s, and sonicated in ice-water bath

609 for 10 min. After centrifugation at 13000 rpm for 15 min at 4 °C, the supernatant of 70 µL was
610 transferred into the sample bottle and tested on the machine.

611 *U-L3*

612 The researchers added 500 µL of ice-cold 80% methanol solution to dissolve the sample. Then
613 the solution was divided into five fractions: two for analysis by two separate reverse phases
614 (RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one for
615 analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-
616 MS/MS with negative ion mode ESI, and one sample was reserved for backup. Samples were
617 placed briefly on a TurboVap® (Zymark) to remove the organic solvent. The sample extracts
618 were stored overnight under nitrogen before preparation for analysis.

619 *T-L4*

620 The researchers added 350 µL of ice-cold 50% methanol solution to dilute the sample. The
621 plate was then stored at 20°C for 20 minutes and then centrifuged at 4000g for 30 minutes at
622 4°C. They transferred 135 µL of supernatant to a new 96-well plate, which contained 15 µL of
623 internal standard per well. Serial dilutions of derivatized standards were added to the left wells.
624 The plate was sealed for LC-MS analysis.

625 *T-L5*

626 The researchers added the 500 µL of 10% methanol solution to dissolve the powder, and then
627 injected samples into LC-MS for analysis.

628 *T-L6*

629 The researchers added 100 µL reconstituted solution (acetonitrile: water=1:1) of HPLC-grade
630 to the 1.5 mL EP tube containing the dried metabolites, and vortexed for 1 min; centrifuged at
631 15,000 rpm for 10 min at 4°C (Note: the centrifuge needs to be pre-cooled); used a 200 µL
632 pipette to draw about 60 µL of the supernatant and transfer to the injection vial, making sure
633 that there are no air bubbles at the bottom of the liner or the injection vial; mixed the remaining
634 liquid in the same sample EP tube (took an equal volume) into the same 1.5 mL EP tube,
635 centrifuged at 15,000 rpm for 10 min at 4°C, transferred the supernatant to the injection vial as
636 QC sample (Note: the whole process needs to be operated on ice).

637 **Laboratory instrument**

638 Each laboratory used different HPLC/UPLC or MS/MS platforms to detect and quantify
639 metabolites (details in Extended Data Table 2). L1 used Waters UPLC-MRM with AB SCIEX

640 QTRAP 5500 mass spectrometers by targeted strategy (T-L1) and Agilent UHPLC with AB
641 SCIEX Triple TOF 6600 mass spectrometers by untargeted strategy (U-L1). L2 used HPLC
642 with SCIEX mass spectrometers by untargeted strategy (U-L2). L3 used Waters UPLC with
643 Thermo Fisher Q Exactive and Orbitrap mass spectrometers by untargeted strategy (U-L3). L4
644 used Waters UPLC with a Waters Xevo TQ-S mass spectrometer by targeted strategy (T-L4).
645 L5 and L6 used AB SCIEX Exion UPLC-MRM with AB SCIEX QTRAP® 6500+ mass
646 spectrometers by targeted strategy (T-L5 and T-L6).

647 **Data processing**

648 Raw data acquired using UPLC-MS were pre-processed by each participating laboratory to
649 provide structured data in .xls format for subsequent statistical analysis. Chromatography-MS
650 data for a single sample are a matrix of m/z versus retention time (or index) versus ion current
651 or intensity.

652 *T-L1*

653 MRM raw data were extracted by MRMAnalyzer (R), and the peak area of each metabolite
654 was obtained. More detailed description can be found in reference⁵⁰.

655 *U-L1*

656 The raw data was converted into mzXML format by ProteoWizard. The researchers used the
657 XCMS program for peak alignment, retention time correction and peak area extraction. For
658 structure identification of metabolites, accurate mass matching (<25 ppm) and secondary
659 spectrum matching were used to search the laboratory's inhouse-built database.

660 *U-L2*

661 The researchers used ProteoWizard software to convert the original mass spectrum into
662 mzXML format and XCMS for retention time correction, peak identification, peak extraction,
663 peak integration, and peak alignment. An inhouse-built secondary mass spectrometry database
664 was used in parallel to identify the peaks.

665 *U-L3*

666 The researchers used ThermoFisher Scientific software Xcalibur QuanBrowser for peak
667 detection and integration. A detailed description of data processing including chromatographic
668 alignment, QC practices and compound identification can be found in reference⁵¹.

669 *T-L4*

670 The raw data files generated by UPLC-MS/MS were processed using the QuanMET software
671 (v2.0, Metabo-Profile, Shanghai, China) to perform peak integration, calibration, and
672 quantitation for each metabolite.

673 *T-L5*

674 The detection of the experimental samples using MRM (Multiple Reaction Monitoring) were
675 based on T-L5 inhouse database. The Q3 was used for metabolite quantification. The Q1, Q3,
676 RT (retention time), DP (declustering potential) and CE (collision energy) were used for
677 metabolite identification. The data files generated by HPLC-MS/MS were processed using the
678 SCIEX OS Version 1.4 to integrate and correct the peak. The main parameters were set as
679 follows: minimum peak height, 500; signal/noise ratio, 5; Gaussian smooth width, 1. The area
680 of each peak represents the relative content of the corresponding metabolite.

681 *T-L6*

682 The MRM raw data were extracted by OS-MQ software (AB SCIEX), and the peak area value
683 of each metabolite was obtained.

684 **Data integration**

685 We collected 264 metabolomics profiles at the metabolite level from all laboratories, with each
686 laboratory provided HMDB (Human Metabolome Database, <https://hmdb.ca>) IDs
687 corresponding to the metabolites.

688 We integrated these metabolomics profiles first by their HMDB IDs and then by metabolite
689 names. Metabolites were annotated into different classes with the information downloaded
690 from HMDB (https://hmdb.ca/system/downloads/current/hmdb_metabolites.zip, released on
691 2021-11-17).

692 **Performance metrics**

693 Based on Quartet metabolite RMs and RDs, we constructed three types of performance metrics
694 to comprehensively evaluate the reproducibility and accuracy of each laboratory in detecting
695 biological differences. Among them, signal-to-noise ratio (SNR) was designed to evaluate the
696 ability of each laboratory in extracting different Quartet samples from technical replicates.
697 Recall of differential abundance metabolites (DAMs) and relative correlation (RC) were

698 computed based on the reference datasets and were designed to evaluate the ability and
699 accuracy in detection of biological differences among Quartet sample pairs.

700 *Signal-to-noise ratio (SNR)*

701 We measured SNR through comparing the average Euclidean distances between different
702 Quartet samples (“signals”) to those between different technical replicates of the same Quartet
703 sample (“noises”) computed based on the first two principal components of PCA, which was
704 same to other companion articles from the Quartet multiomics project. SNR was defined as the
705 following equation:

$$706 SNR = 10 \times \log_{10} \left(\frac{m \times \binom{n}{2}}{\binom{m}{2} \times n \times n} \times \frac{\sum_{x=1}^m \sum_{y=1}^{n-x} \sum_{i=1}^n \sum_{j=1}^n \sum_{p=1}^2 W_p (PC_{p,i,x} - PC_{p,j,y})^2}{\sum_{x=1}^m \sum_{i=1}^n \sum_{j=1}^{n-x} \sum_{p=1}^2 W_p (PC_{p,i,x} - PC_{p,j,x})^2} \right)$$

707 Here, m was the number of different groups of samples, and n was the number of technical
708 replicates of the same sample group. The variances explained by the p^{th} principal component
709 (PC_p) was noted as W_p . $PC_{p,i,x}$, $PC_{p,j,x}$ and $PC_{p,j,y}$ represent the value of i^{th} and j^{th} replicate of
710 sample x or sample y on p^{th} principal component, respectively.

711 *Recall*

712 We computed Recall for the assessment of qualitative agreement with the RDs, as the fraction
713 of the differential abundance metabolites (DAMs) in RDs that are successfully retrieved. Here
714 recall is the number of measured DAMs ($p < 0.05$, t test) divided by the number of DAMs
715 should be identified as RDs.

716 *Relative correlation (RC)*

717 We measured RC for the assessment of quantitative consistency with the RDs. First, we
718 calculated the average log2 abundance of each metabolite of each Quartet sample. Based on
719 the average log2 abundance, we computed relative abundance values of metabolites of each
720 sample pair (log2 ratios to D6) overlapped with the RDs in each laboratory. Finally, the Pearson
721 correlation was computed between the measured relative abundance values and consensual
722 ones in the RDs.

723 **Statistical analysis**

724 We used R version 4.0.5 and associated packages to perform all statistical analysis. All
725 statistical tests described in this work were two-sided. Tests involving comparisons of
726 distributions were done using ‘wilcox.test’ unless otherwise specified. Intraclass correlation
727 coefficient (ICC) was computed based on package *irr* (v0.84.1), using two-way model and

728 estimated by the agreement between raters to compute differences in judges' mean ratings. We
729 plotted all results based on R package *ggplot2* (v3.3.6), *cowplot* (v1.1.1), *ComplexUpset*
730 (v1.3.3), *ggpubr* (v0.4.0), *ggsci* (v2.9) and *GGally* (v2.1.2).

731 **Materials Availability**

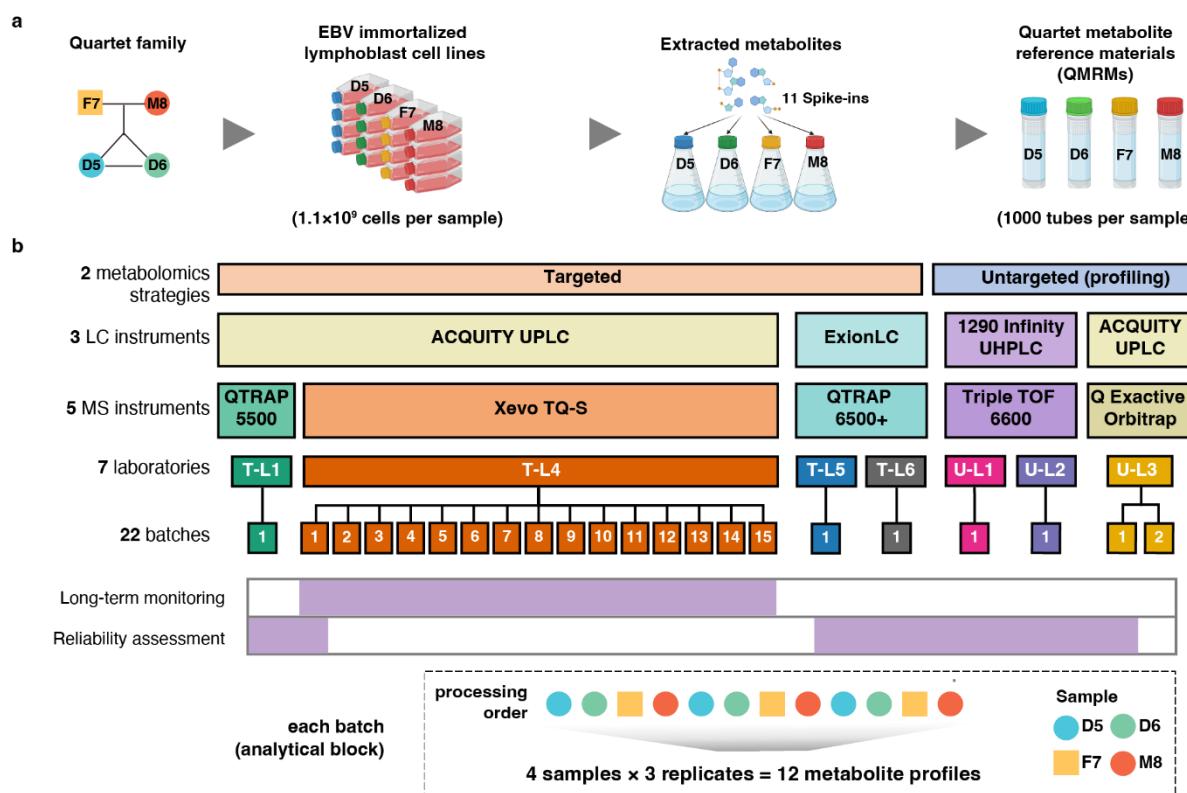
732 The Quartet metabolite reference materials can be requested for research use from the
733 Quartet Data Portal (<http://chinese-quartet.org/>) under the Administrative Regulations of
734 the People's Republic of China on Human Genetic Resources.

735 **Data and Code Availability**

736 The Quartet metabolite Reference datasets could also be downloaded from the Quartet
737 Data Portal. Metabolomics profiles generated from all laboratories included in this article
738 could be downloaded from National Omics Data Encyclopedia (NODE project
739 OEP000970, <https://www.biosino.org/node/project/detail/OEP000970>) under the
740 regulation of the Human Genetic Resources Administration of China (HGRAC).

741 **Acknowledgments**

742 This study was supported in part by National Key R&D Project of China
743 (2018YFE0201603 and 2018YFE0201600), the National Natural Science Foundation of
744 China (31720103909 and 32170657), Shanghai Municipal Science and Technology Major
745 Project (2017SHZDZX01), State Key Laboratory of Genetic Engineering (SKLGE-2117),
746 and the 111 Project (B13016). Some of the illustrations in this paper were created with
747 BioRender.com.

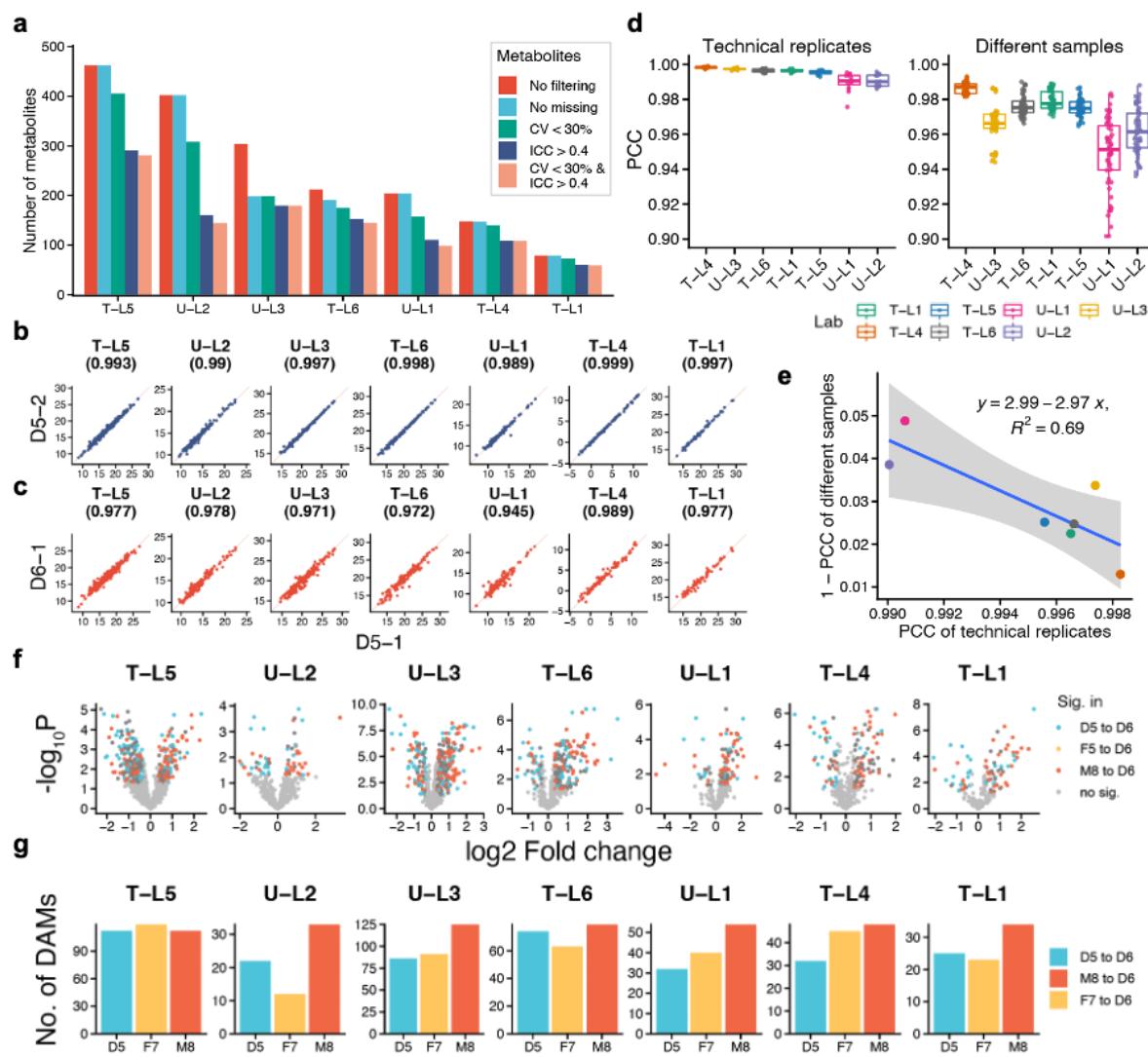

748 **Author contributions**

749 Y.Z., L.S., and Y.Y. conceived and oversaw the study. Y.Z., P.Z., K.Z., H.W., W.H.
750 cultured the cell lines, prepared or characterized the metabolite reference materials. Y.Z.,
751 K.Z., and Y.X. coordinated and/or performed metabolomic data generation. N.Z., P.Z.,
752 Q.C., Y.L., L.R., J.Y., Y.Y., Y.Z., and L.S. performed data analysis and/or interpretation.
753 J.Y. and Y.L. managed the datasets. N.Z., Y.Z., and L.S. wrote the manuscript. All authors
754 reviewed and approved the manuscript.

755 **Competing interest declaration**

756 The authors declare no competing financial interests.

757 **Figures**

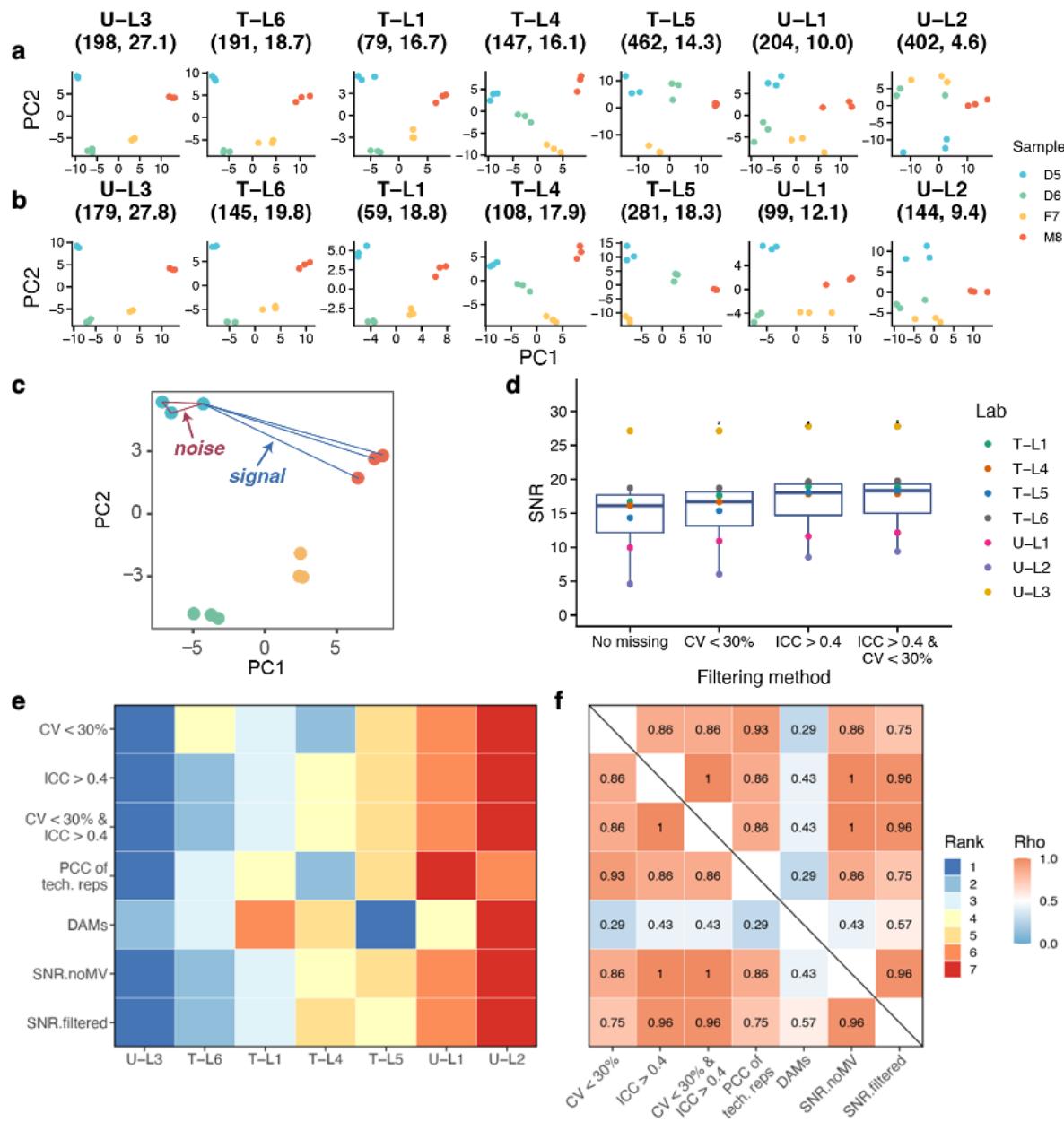


758

759 **Fig. 1 | Study overview.**

760 **a**, Preparation of the Quartet metabolite reference materials. Four B-lymphoblastoid cell lines
761 (LCLs) of a family quartet including Father (F7), Mother (M8), and monozygotic twin
762 daughters (D5 and D6) were used for extracting metabolites. Eleven spike-ins were added to
763 the cell extract and aliquoted into 1,000 tubes per-sample. **b**, Data generation. LC-MS based
764 targeted (T-) and untargeted (U-) metabolomic datasets were generated in different laboratories
765 for inter-laboratory reliability assessment. Long-term monitoring was conducted using
766 untargeted strategy within a laboratory (T-L4) for two years.

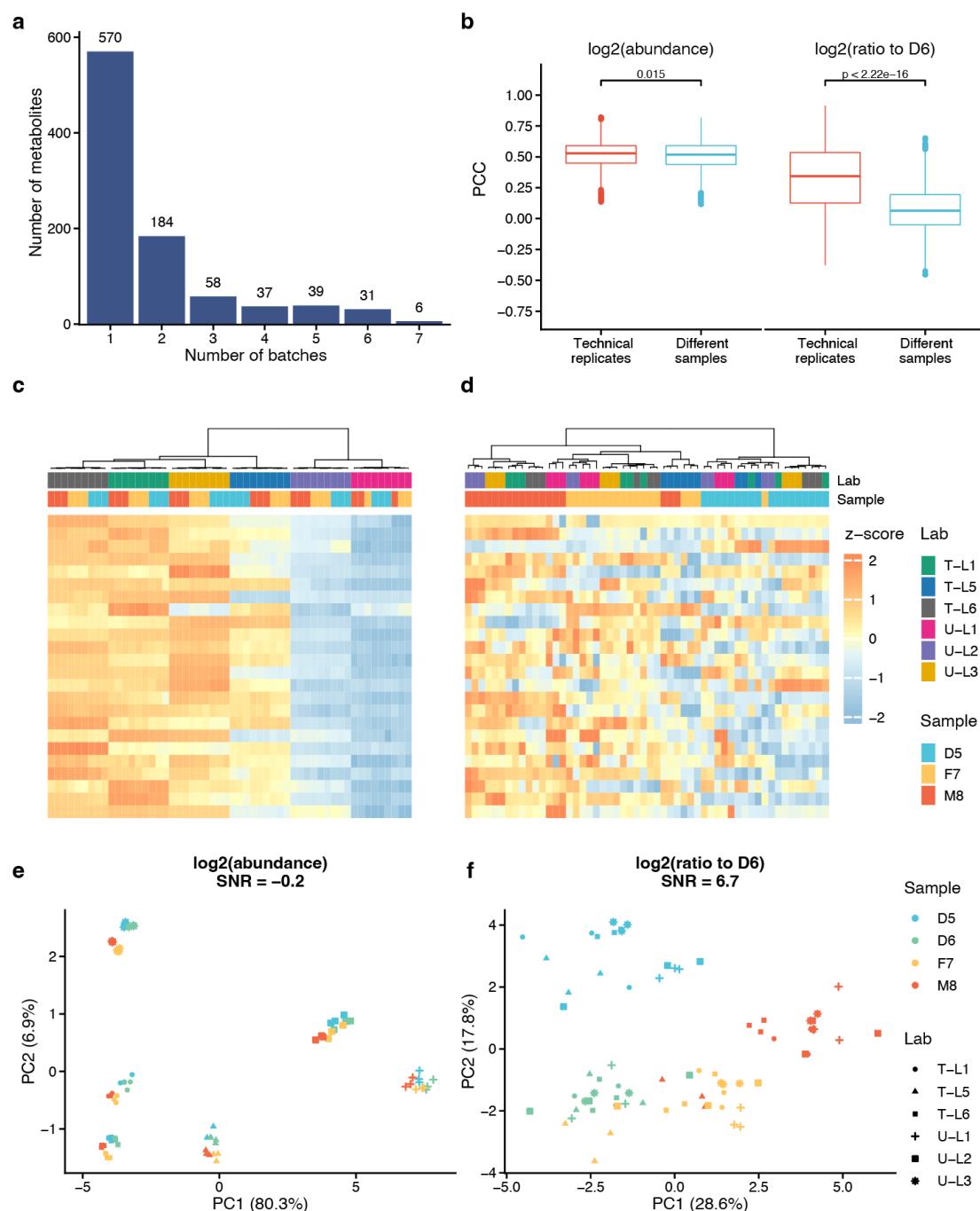
767
768
769
770
771
772
773


774

775 **Fig. 2 | High variabilities in the qualitative and quantitative metabolomic**
776 **measurements.**

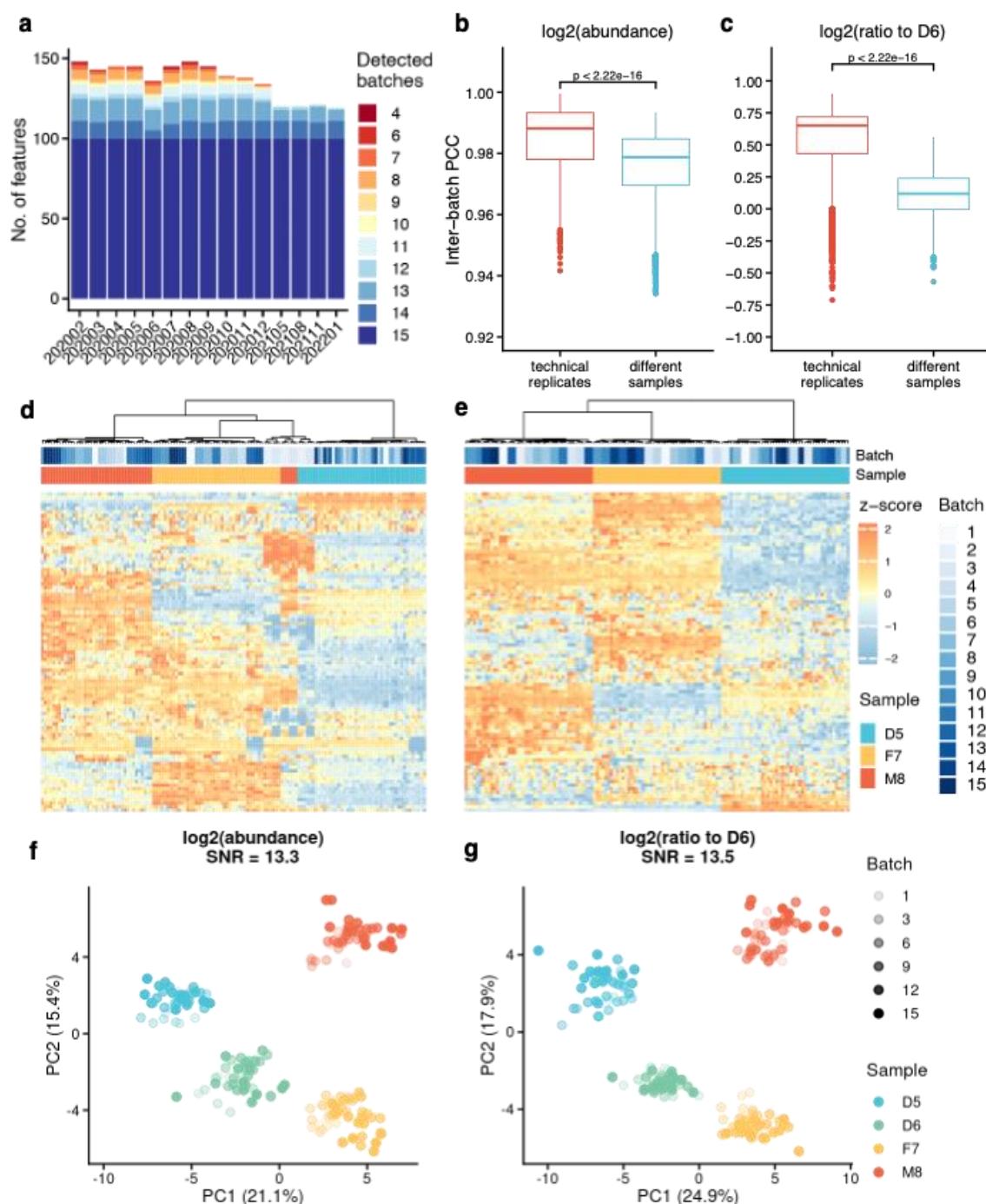
777 **a**, Numbers of detected metabolites in each metabolomic measurement using different filtering
778 criteria, including no filtering (all detected metabolites in any of the samples), no missing
779 (metabolites detected in all 12 samples); CV (Coefficient of variance) < 30%; ICC (intraclass
780 correlation coefficient) > 0.04; CV < 30% & ICC > 0.04. **b**, Reprehensive scatter plots of
781 technical replicates (D5-1 and D5-2). **c**, Reprehensive scatter plots of different samples (D5-1
782 and D6-1). **d**, Pearson correlation coefficient (PCC) of pairs of technical replicates and of
783 different Quartet samples in each measurement; **e**, Negative correlation between
784 reproducibility (PCC of technical replicates) and discriminability (1-PCC of different samples).
785 **f**, Differential abundance metabolites (DAMs) analysis for three sample pairs. Volcano plots
786 were used to display the magnitude of the fold change versus the statistical significance level
787 in each measurement. **g**, Numbers of DAMs identified for three sample pairs in each
788 measurement.

789


790

791

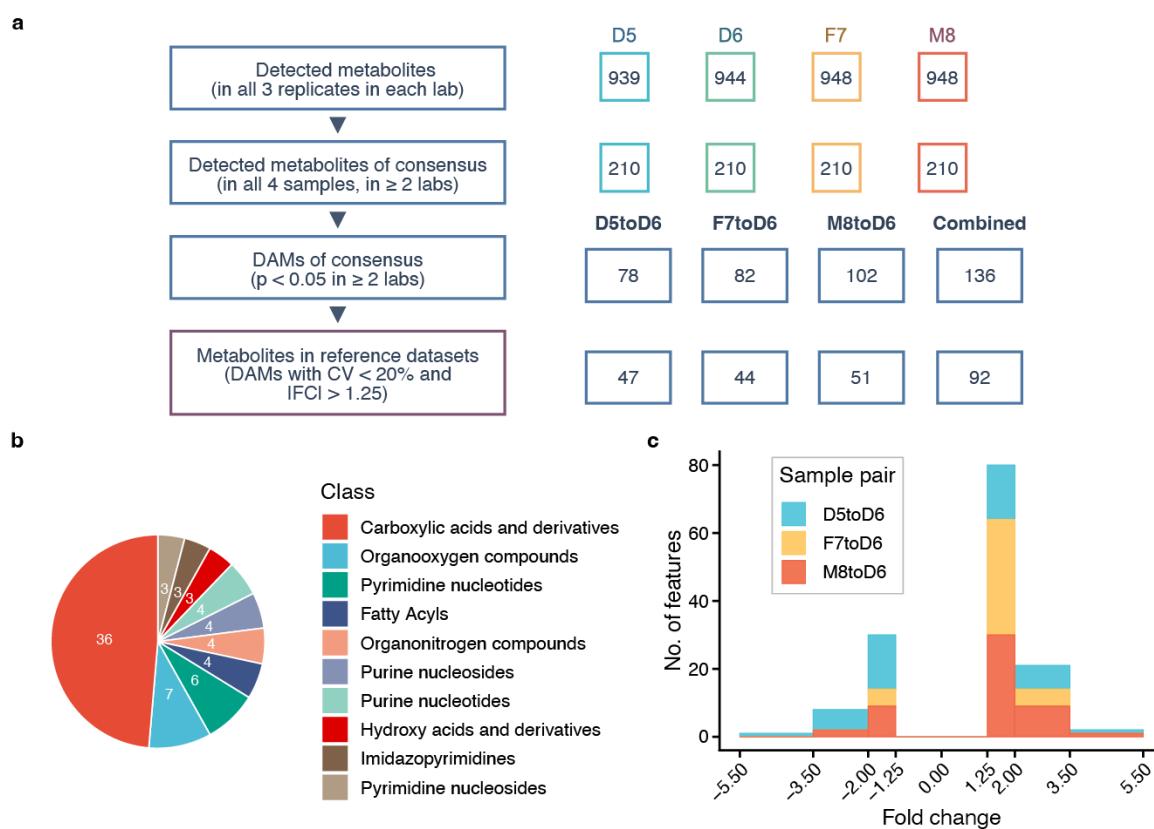
792 **Fig. 3 | Inter-laboratory reliability assessment by Quartet based Signal-to-**
793 **Noise ratio.**


794 **a** and **b**, Reliability assessment using signal-to-noise ratio (SNR) in different laboratories with
795 (a) or without (b) filtration. The results were visualized by PCA plots. The number of features
796 used and the calculated SNR were shown above each plot. **c**, Schematic diagram of SNR
797 calculated as the ratio of the averaged distance between different Quartet samples (“signal”) to
798 the averaged distances between technical replicates for each sample (“noise”) on a 2D-PCA
799 scatter plot. **d**, SNRs calculated with metabolites filtered with different criteria. **e**, The inter-
800 laboratory data quality was ranked using different QC metrics, including the percentages of
801 retained metabolites using different filtering criteria (CV<30%; ICC>0.4; CV<30% and
802 ICC>0.4), PCC of technical replicates, the number of DAMs, and SNR calculated with or
803 without filtering. **f**, The concordances of data quality ranking using different QC metrics.

804

805 **Fig. 4 | Ratio-based metabolite profiling enables data integration across**
806 **laboratories.**

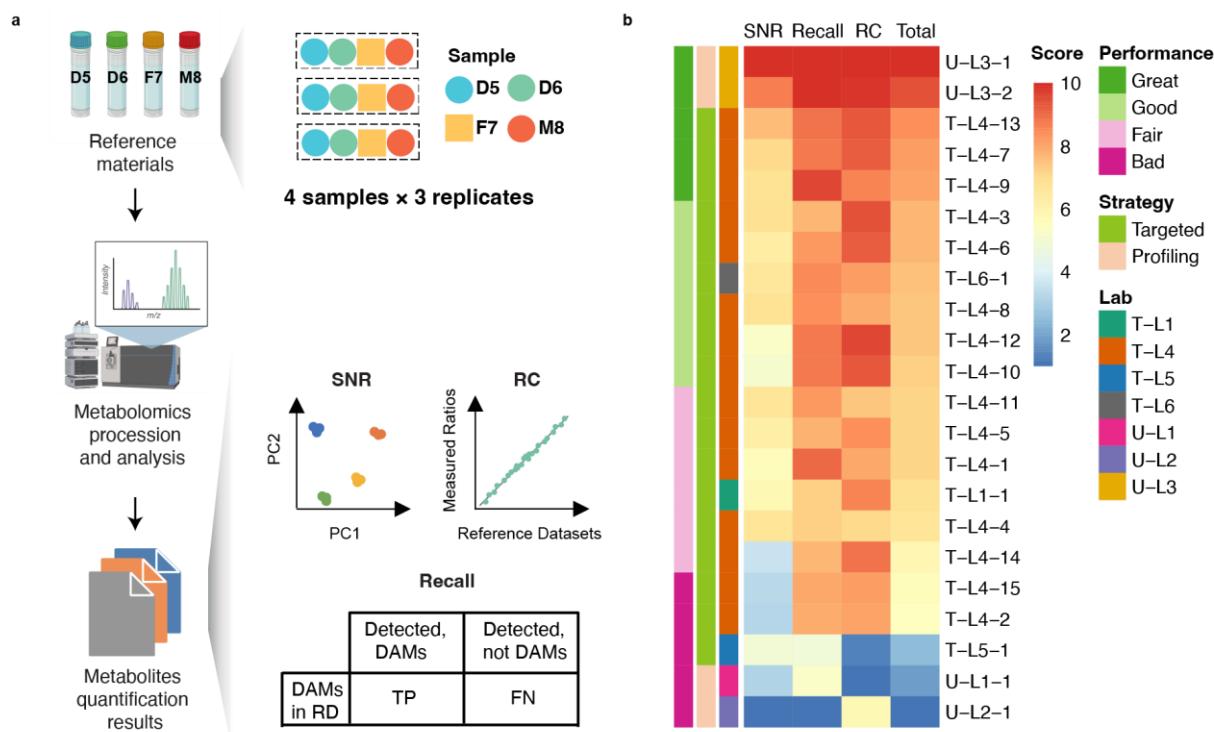
807 **a**, Qualitative concordance of metabolite identification. The numbers of metabolites detected
808 in different batches of metabolomic datasets were shown. **b**, Pearson correlation
809 coefficients (PCCs) of pairs of technical replicates and of different Quartet samples were
810 compared using quantitative datasets at abundance level or ratio to D6 level. **c** and **d**, Cross-
811 lab data integration was visualized by hierarchical cluster analysis (HCA) at absolute
812 abundance level (**c**) and relative ratio to D6 level (**d**). **e** and **f**, Cross-lab data integration
813 assessment using signal-to-noise ratio (SNR) by principal component analysis (PCA) at
814 absolute abundance level (**e**) and relative ratio to D6 level (**f**).



815

816 **Fig. 5 | Ratio-based metabolite profiling improves data integration in long-**
817 **term monitoring.**

818 **a**, Qualitative concordance of metabolite identification. The numbers of metabolites detected
819 in each batch of metabolomic datasets were shown. **b** and **c**, Pearson correlation
820 coefficients (PCCs) of pairs of technical replicates and of different Quartet samples were
821 compared using quantitative datasets at abundance level (b) or ratio to D6 level (c). **d** and **e**,
822 Cross-batch data integration was visualized by hierarchical cluster analysis (HCA) at absolute
823 abundance level (**d**) and relative ratio to D6 level (**e**). **f** and **g**, Cross-batch data integration
824 assessment using signal-to-noise ratio (SNR) by principal component analysis (PCA) at
825 absolute abundance level (**f**) and relative ratio to D6 level (**g**).

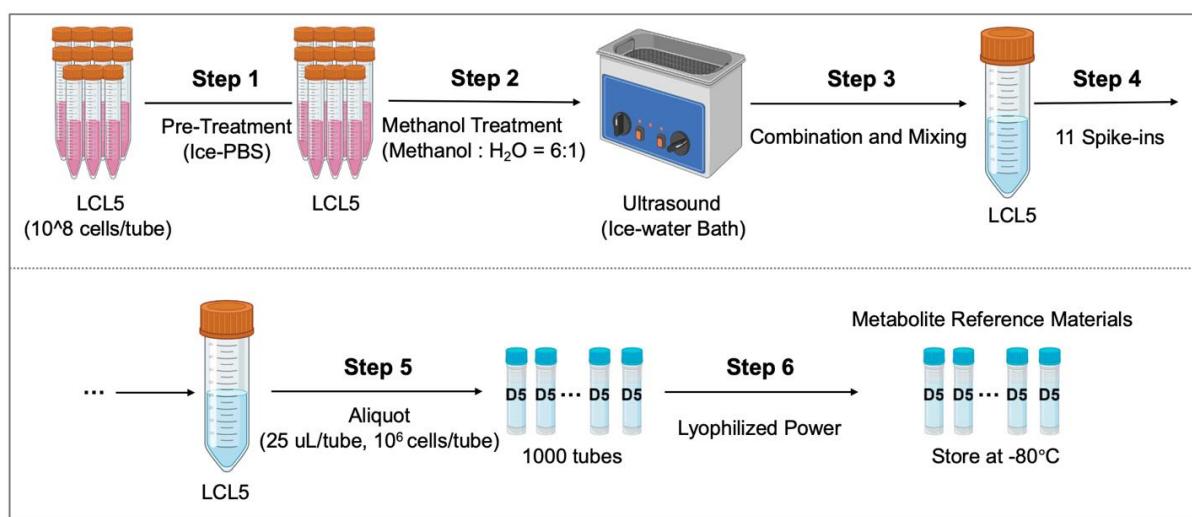

826

827 **Fig. 6 | Integration of ratio-based Quartet metabolite reference datasets.**

828 **a**, The workflow of integration of ratio-based metabolite reference datasets. **b**, The number of
829 metabolites in high-confidence reference datasets annotated into 10 classes according to the
830 HMDB database. **b**, The distribution histogram of fold changes of the high-confidence
831 reference metabolites for three sample pairs.

832

833


834 **Fig. 7 | Best practice for inter-laboratory proficiency test of metabolomic**
835 **proficiency using Quartet metabolite reference materials.**

836 **a**, Flowchart of an inter-laboratory proficiency test using the Quartet metabolite reference
837 materials. **b**, Inter-laboratory proficiency for each of the 22 batches of metabolomic datasets
838 using targeted or untargeted strategies with SNR, RC, and recall. The overall performance was
839 classified into four levels (Great, Good, Fair, and Bad)

840

841 **Extended data**

842

843

844 **Extended Data Fig. 1 | Steps of the preparation of Quartet metabolite**
845 **reference materials.**

846

No.	External controls	Amount (pmol)	Comment
1	Indoleacetic acid	25	Intestinal bacteria metabolite
2	Taurocholic acid	1	
3	Glycocholic acid	5	Primary bile acids
4	Cholic acid	25	
5	Taurooursodeoxycholic acid	2.5	
6	Taurodeoxycholic acid	7.5	
7	Glycoursodeoxycholic acid	1	
8	Glycodeoxycholic acid	0.5	Secondary bile acids
9	Ursodeoxycholic acid	25	
10	Deoxycholic acid	50	
11	Sulfadimethoxine	5	Sulfa antibiotics

847 **Extended Data Table 1 | External controls spiked in the Quartet metabolite**
848 **reference materials.**

Lab	Strategies	Liquid Chromatograph (LC) Instrument	Chromatographic Column	Mass Spectrometer (MS) Instrument	Metabolites Coverage
T-L1	Targeted (MRM based)	Waters ACQUITY UPLC	Waters ACQUITY UPLC BEH Amide (1.7 μ m, 2.1 x 100 mm column)	AB SCIEX QTRAP 5500	79
U-L1	Untargeted	Agilent Technologies 1290 Infinity UHPLC	Waters ACQUITY UPLC BEH Amide (1.7 μ m, 2.1 x 100 mm column)	AB SCIEX Triple TOF 6600	203
U-L2	Untargeted	Agilent Technologies 1290 Infinity UHPLC	Waters ACQUITY UPLC BEH Amide (1.7 μ m, 2.1 x 100 mm column)	AB SCIEX Triple TOF 6600	400
U-L3	Untargeted	Waters ACQUITY UPLC	Waters ACQUITY UPLC BEH Amide (1.7 μ m, 2.1 x 150 mm column)	Thermo Fisher Q Exactive and Orbitrap	262
T-L4	Targeted	Waters ACQUITY UPLC	Waters ACQUITY UPLC BEH C18 (1.7 μ M, 2.1 x 100 mm column)	Waters Xevo TQ-S	148
T-L5	Targeted (MRM based)	AB SCIEX ExionLC	Waters ACQUITY UPLC HSS T3 (1.8 μ M, 2.1 x 100 mm column) and BEH C8 (1.7 μ m, 2.1 x 100 mm column)	AB SCIEX QTRAP 6500+	462
T-L6	Targeted (MRM based)	AB SCIEX ExionLC	Waters XBridge BEH Amide (3.5 μ m, 4.6 x 100mm column)	AB SCIEX QTRAP 6500+	207

851 **Extended Data Table 2 | Experimental methods of metabolomics profiling in each dataset.**

HMDB ID	Metabolite name	Fold change	KEGG ID	Class
HMDB0000902	NAD	3.23	C00003	(5'->5')-dinucleotides
HMDB0001173	5'-Methylthioadenosine	1.82	C00170	5'-deoxyribonucleosides
HMDB0001185	S-Adenosylmethionine	1.57	C00019	5'-deoxyribonucleosides
HMDB0000714	Hippuric acid	-1.81	C01586	Benzene and substituted derivatives
HMDB0000001	1-Methylhistidine	1.49	C01152	Carboxylic acids and derivatives
HMDB0000052	Argininosuccinic acid	2.9	C03406	Carboxylic acids and derivatives
HMDB0000092	Dimethylglycine	-1.29	C01026	Carboxylic acids and derivatives
HMDB0000159	L-Phenylalanine	-1.67	C00079	Carboxylic acids and derivatives
HMDB0000161	L-Alanine	-1.37	C00041	Carboxylic acids and derivatives
HMDB0000187	L-Serine	1.52	C00065	Carboxylic acids and derivatives
HMDB0000191	L-Aspartic acid	2.21	C00049	Carboxylic acids and derivatives
HMDB0000202	Methylmalonic acid	1.44	C02170	Carboxylic acids and derivatives
HMDB0000214	Ornithine	1.97	C00077	Carboxylic acids and derivatives
HMDB0000254	Succinic acid	1.38	C00042	Carboxylic acids and derivatives
HMDB0000267	Pyroglutamic acid	-1.76	C01879	Carboxylic acids and derivatives
HMDB0000517	L-Arginine	2.02	C00062	Carboxylic acids and derivatives
HMDB0000883	L-Valine	-1.29	C00183	Carboxylic acids and derivatives
HMDB0000904	Citrulline	-2.55	C00327	Carboxylic acids and derivatives
HMDB0001325	N6,N6,N6-Trimethyl-L-lysine	1.83	C03793	Carboxylic acids and derivatives
HMDB0001511	Phosphocreatine	1.48	C02305	Carboxylic acids and derivatives
HMDB0001539	Asymmetric dimethylarginine	2.49	C03626	Carboxylic acids and derivatives
HMDB0000300	Uracil	-1.39	C00106	Diazines
HMDB0000086	Glycerophosphocholine	5.18	C00670	Glycerophospholipids
HMDB0000126	Glycerol 3-phosphate	2.1	C00093	Glycerophospholipids
HMDB0000190	L-Lactic acid	-1.93	C00186	Hydroxy acids and derivatives
HMDB0001311	D-Lactic acid	-2.62	C00256	Hydroxy acids and derivatives
HMDB0000157	Hypoxanthine	-1.36	C00262	Imidazopyrimidines
HMDB0000292	Xanthine	-2.4	C00385	Imidazopyrimidines
HMDB0001096	Carbamoyl phosphate	1.4	C00169	Organic phosphoric acids and derivatives
HMDB0000097	Choline	-1.3	C00114	Organonitrogen compounds

HMDB0000210	Pantothenic acid	1.51	C00864	Organoxygen compounds
HMDB0000230	N-Acetylneuraminic acid	-3.76	C19910	Organoxygen compounds
HMDB0000247	Sorbitol	-2.47	C00794	Organoxygen compounds
HMDB0000613	Erythronic acid	-1.92		Organoxygen compounds
HMDB0000765	Mannitol	-2.41	C00392	Organoxygen compounds
HMDB0000855	Nicotinamide riboside	2.09	C03150	Organoxygen compounds
HMDB0000779	Phenyllactic acid	-1.72	C01479	Phenylpropanoic acids
HMDB0000133	Guanosine	-1.68	C00387	Purine nucleosides
HMDB0000195	Inosine	-1.57	C00294	Purine nucleosides
HMDB0000299	Xanthosine	1.62	C01762	Purine nucleosides
HMDB0000045	Adenosine monophosphate	1.46	C00020	Purine nucleotides
HMDB0000089	Cytidine	-1.33	C00475	Pyrimidine nucleosides
HMDB0000296	Uridine	-1.41	C00299	Pyrimidine nucleosides
HMDB0000788	Orotidine	-2.54	C01103	Pyrimidine nucleosides
HMDB0000095	Cytidine monophosphate	1.97	C00055	Pyrimidine nucleotides
HMDB0000288	Uridine 5'-monophosphate	1.95	C00105	Pyrimidine nucleotides
HMDB0001564	CDP-ethanolamine	1.82	C00570	Pyrimidine nucleotides

853 **Extended Data Table 3 | Reference datasets of D5toD6.**

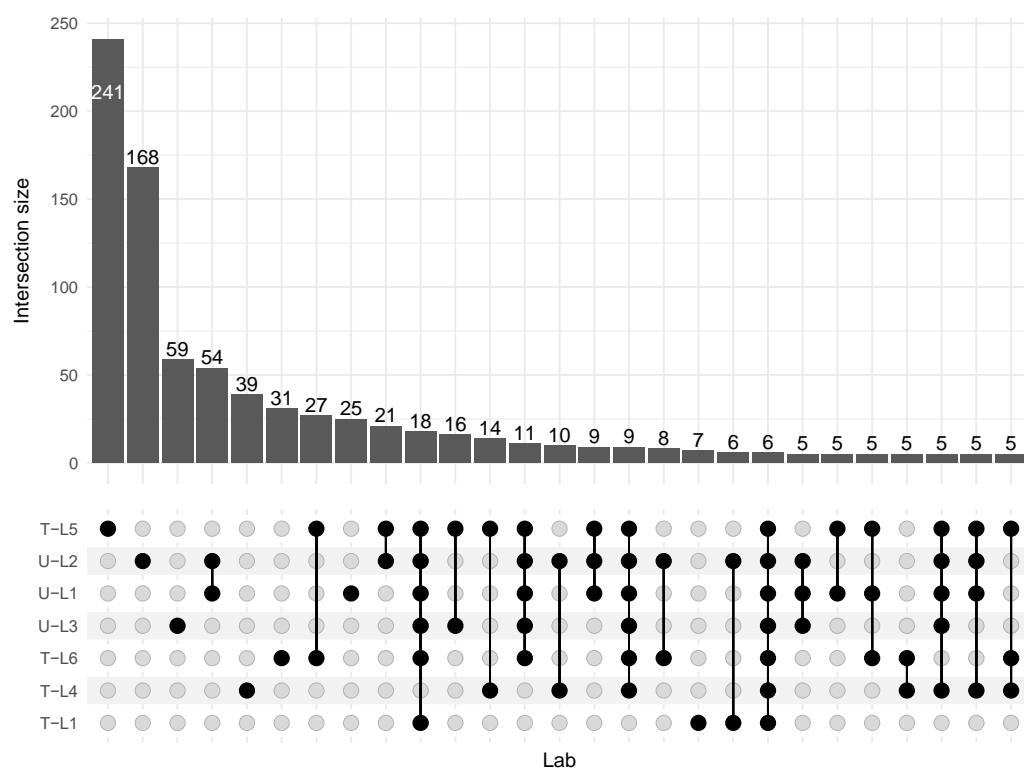
854

HMDB ID	Metabolite name	Fold change	KEGG ID	Class
HMDB0000902	NAD	1.58	C00003	(5'->5')-dinucleotides
HMDB0000462	Allantoin	1.42	C01551	Azoles
HMDB0000056	beta-Alanine	1.38	C00099	Carboxylic acids and derivatives
HMDB0000064	Creatine	1.33	C00300	Carboxylic acids and derivatives
HMDB0000072	cis-Aconitic acid	1.5	C00417	Carboxylic acids and derivatives
HMDB0000094	Citric acid	1.66	C00158	Carboxylic acids and derivatives
HMDB0000112	gamma-Aminobutyric acid	-1.63	C00334	Carboxylic acids and derivatives
HMDB0000148	L-Glutamic acid	1.29	C00025	Carboxylic acids and derivatives
HMDB0000176	Maleic acid	1.37	C01384	Carboxylic acids and derivatives
HMDB0000177	L-Histidine	-1.43	C00135	Carboxylic acids and derivatives
HMDB0000182	L-Lysine	1.48	C00047	Carboxylic acids and derivatives
HMDB0000202	Methylmalonic acid	1.77	C02170	Carboxylic acids and derivatives
HMDB0000254	Succinic acid	1.85	C00042	Carboxylic acids and derivatives
HMDB0000446	N-alpha-Acetyl-L-lysine	1.38	C12989	Carboxylic acids and derivatives
HMDB0000517	L-Arginine	1.37	C00062	Carboxylic acids and derivatives
HMDB0000562	Creatinine	1.29	C00791	Carboxylic acids and derivatives
HMDB0000766	N-Acetyl-L-alanine	1.31		Carboxylic acids and derivatives
HMDB0001511	Phosphocreatine	1.77	C02305	Carboxylic acids and derivatives
HMDB0000235	Thiamine	1.78	C00378	Diazines
HMDB0000300	Uracil	1.36	C00106	Diazines
HMDB0000201	L-Acetylcarnitine	-1.37		Fatty Acyls
HMDB0000222	Palmitoylcarnitine	-1.6	C02990	Fatty Acyls
HMDB0000086	Glycerophosphocholine	1.28	C00670	Glycerophospholipids
HMDB0000156	Malic acid	1.76	C00149	Hydroxy acids and derivatives
HMDB0000190	L-Lactic acid	1.58	C00186	Hydroxy acids and derivatives
HMDB0000157	Hypoxanthine	1.28	C00262	Imidazopyrimidines
HMDB0000292	Xanthine	1.58	C00385	Imidazopyrimidines
HMDB0000935	Uridine diphosphate glucuronic acid	2.45	C00167	Lactones
HMDB0000062	L-Carnitine	1.39	C00318	Organonitrogen compounds
HMDB0001257	Spermidine	1.63	C00315	Organonitrogen compounds

HMDB0000210	Pantothenic acid	1.55	C00864	Organoxygen compounds
HMDB0000613	Erythronic acid	1.53		Organoxygen compounds
HMDB0000855	Nicotinamide riboside	3.09	C03150	Organoxygen compounds
HMDB0000217	NADP	1.59	C00006	Phenols
HMDB0000299	Xanthosine	2.22	C01762	Purine nucleosides
HMDB0000175	Inosinic acid	1.5	C00130	Purine nucleotides
HMDB0001554	Xanthyllic acid	2.01	C00655	Purine nucleotides
HMDB0000229	Nicotinamide ribotide	1.84	C00455	Pyridine nucleotides
HMDB0000296	Uridine	1.38	C00299	Pyrimidine nucleosides
HMDB0000286	Uridine diphosphate glucose	1.49	C00029	Pyrimidine nucleotides
HMDB0000288	Uridine 5'-monophosphate	1.67	C00105	Pyrimidine nucleotides
HMDB0000290	Uridine diphosphate-N-acetylglucosamine	2.18	C00043	Pyrimidine nucleotides
HMDB0000295	Uridine 5'-diphosphate	1.91	C00015	Pyrimidine nucleotides
HMDB0000653	Cholesterol sulfate	-1.32	C18043	Steroids and steroid derivatives

855 **Extended Data Table 4 | Reference datasets of F7toD6.**

856

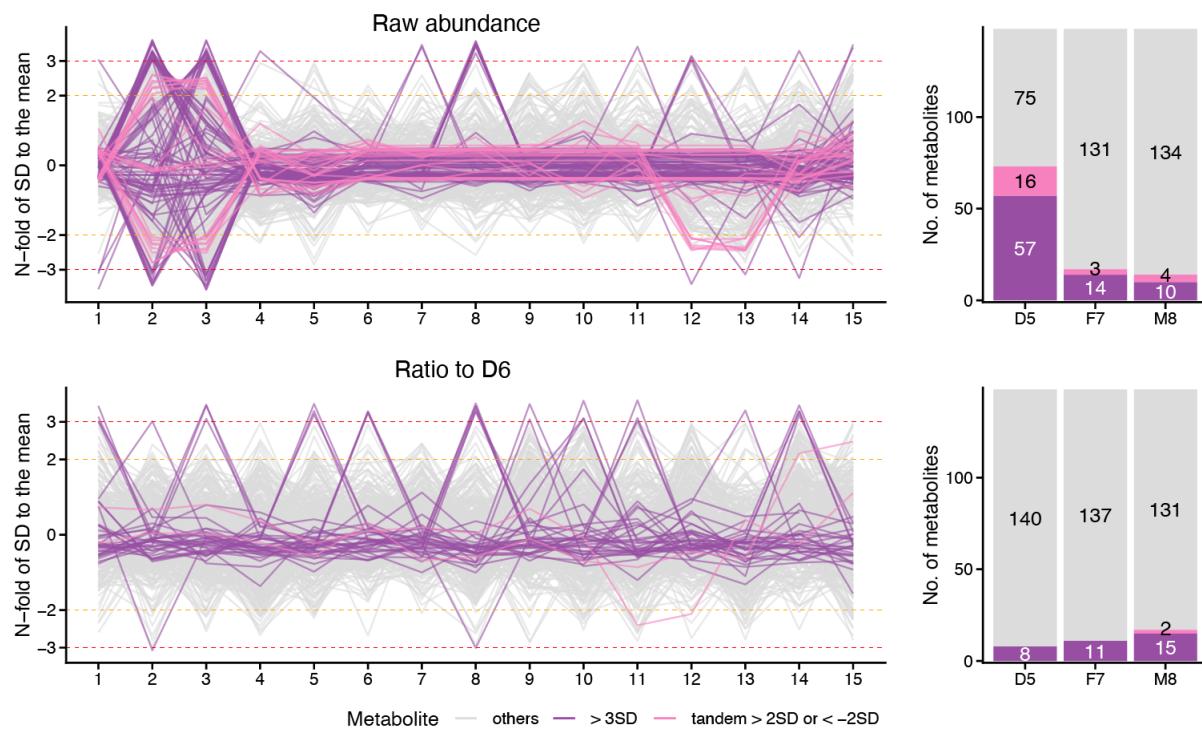

HMDB ID	Metabolite name	Fold change	KEGG ID	Class
HMDB0001173	5'-Methylthioadenosine	1.78	C00170	5'-deoxyribonucleosides
HMDB0001185	S-Adenosylmethionine	1.98	C00019	5'-deoxyribonucleosides
HMDB0000462	Allantoin	1.64	C01551	Azoles
HMDB0000001	1-Methylhistidine	-1.37	C01152	Carboxylic acids and derivatives
HMDB0000043	Betaine	1.28		Carboxylic acids and derivatives
HMDB0000056	beta-Alanine	3.48	C00099	Carboxylic acids and derivatives
HMDB0000092	Dimethylglycine	1.26	C01026	Carboxylic acids and derivatives
HMDB0000094	Citric acid	1.91	C00158	Carboxylic acids and derivatives
HMDB0000112	gamma-Aminobutyric acid	1.43	C00334	Carboxylic acids and derivatives
HMDB0000128	Guanidoacetic acid	1.58	C00581	Carboxylic acids and derivatives
HMDB0000148	L-Glutamic acid	1.42	C00025	Carboxylic acids and derivatives
HMDB0000158	L-Tyrosine	-1.77	C00082	Carboxylic acids and derivatives
HMDB0000159	L-Phenylalanine	-1.76	C00079	Carboxylic acids and derivatives
HMDB0000172	L-Isoleucine	-1.54	C00407	Carboxylic acids and derivatives
HMDB0000177	L-Histidine	-1.65	C00135	Carboxylic acids and derivatives
HMDB0000202	Methylmalonic acid	1.81	C02170	Carboxylic acids and derivatives
HMDB0000254	Succinic acid	1.71	C00042	Carboxylic acids and derivatives
HMDB0000267	Pyroglutamic acid	1.85	C01879	Carboxylic acids and derivatives
HMDB0000446	N-alpha-Acetyl-L-lysine	1.37	C12989	Carboxylic acids and derivatives
HMDB0000517	L-Arginine	1.3	C00062	Carboxylic acids and derivatives
HMDB0000562	Creatinine	1.43	C00791	Carboxylic acids and derivatives
HMDB0000687	L-Leucine	-1.45	C00123	Carboxylic acids and derivatives
HMDB0000812	N-Acetyl-L-aspartic acid	1.57	C01042	Carboxylic acids and derivatives
HMDB0000883	L-Valine	-1.28	C00183	Carboxylic acids and derivatives
HMDB0001511	Phosphocreatine	2.73	C02305	Carboxylic acids and derivatives
HMDB0001539	Asymmetric dimethylarginine	1.4	C03626	Carboxylic acids and derivatives
HMDB0002931	N-Acetylserine	1.46		Carboxylic acids and derivatives
HMDB000300	Uracil	1.85	C00106	Diazines
HMDB0000824	Propionylcarnitine	1.38	C03017	Fatty Acyls
HMDB0005065	Oleoylcarnitine	1.34		Fatty Acyls

HMDB0000156	Malic acid	1.33	C00149	Hydroxy acids and derivatives
HMDB0000157	Hypoxanthine	-1.28	C00262	Imidazopyrimidines
HMDB0000292	Xanthine	-1.86	C00385	Imidazopyrimidines
HMDB0001366	Purine	-2.29	C15587	Imidazopyrimidines
HMDB0000935	Uridine diphosphate glucuronic acid	2.76	C00167	Lactones
HMDB0000939	S-Adenosylhomocysteine	1.44	C00021	Lactones
HMDB0000251	Taurine	1.41	C00245	Organic sulfonic acids and derivatives
HMDB0000097	Choline	1.29	C00114	Organonitrogen compounds
HMDB0001565	Phosphorylcholine	1.32	C00588	Organonitrogen compounds
HMDB0000210	Pantothenic acid	1.89	C00864	Organoxygen compounds
HMDB0000230	N-Acetylneurameric acid	-2.5	C19910	Organoxygen compounds
HMDB0000613	Erythronic acid	2.11		Organoxygen compounds
HMDB0000625	Gluconic acid	1.66	C00257	Organoxygen compounds
HMDB0000855	Nicotinamide riboside	3.35	C03150	Organoxygen compounds
HMDB0000033	Carnosine	1.84	C00386	Peptidomimetics
HMDB0000217	NADP	3.21	C00006	Phenols
HMDB0000050	Adenosine	2.09	C00212	Purine nucleosides
HMDB0000058	Cyclic AMP	2	C00575	Purine nucleotides
HMDB0001554	Xanthyllic acid	3.06	C00655	Purine nucleotides
HMDB0000290	Uridine diphosphate-N-acetylglucosamine	2.01	C00043	Pyrimidine nucleotides
HMDB0000295	Uridine 5'-diphosphate	3.65	C00015	Pyrimidine nucleotides

857 **Extended Data Table 5 | Reference datasets of M8toD6.**

858

859

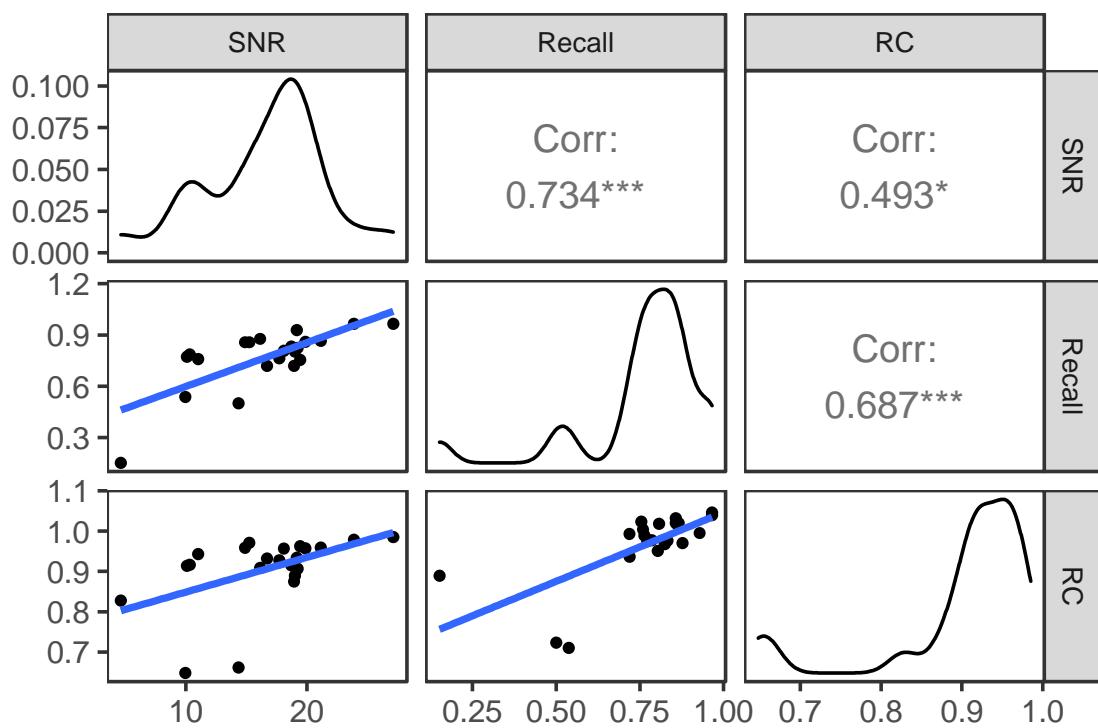


860

861 **Extended Data Fig. 2 | Concordance of detected metabolites among**
862 **laboratories.**

863 The intersection size of detected metabolites among seven datasets generated in
864 different laboratories was shown.

865



866

867 **Extended Data Fig. 3 | Ratio-based metabolite profiling improves the stability**
868 **of continuous monitoring of each metabolite measurement.**

869 The Levey-Jennings plot of metabolites detected in all 15 batches. Different colors
870 represent different groups of metabolites, indicating systematic deviation $> \pm 3$ SD; $>$
871 ± 2 SD, and others.

872

873

874 **Extended Data Fig. 4 | Scatter plot matrices for SNR, Recall and RC**

875

876