[

~N O O A oWwDN

oo

10

11

12

13
14

15

16
17
18

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.01.514762; this version posted November 3, 2022. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Quartet metabolite reference materials for assessing inter-laboratory

reliability and data integration of metabolomic profiling

Naixin Zhang'¥, Peipei Zhang¥, Qiaochu Chen'*, Kejun Zhou?, Yaqing Liu®, Haiyan Wang?,
Yongming Xie?, Luyao Ren!, Wanwan Hou?, Jingcheng Yang'4, Ying Yu'®, Yuanting Zheng®",
Leming Shit®

IState Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome
Institute, Fudan University, Shanghai, China.

2Human Metabolomics Institute, Inc., Shenzhen, Guangdong, China.
Shanghai Applied Protein Technology Co. Ltd, Shanghai, China.
“Greater Bay Area Institute of Precision Medicine, Guangzhou, Guangdong, China.

>Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China.

#These authors contributed equally: Naixin Zhang, Peipei Zhang, Qiaochu Chen.

*Corresponding authors’ e-mail addresses: ying_yu@fudan.edu.cn,

zhengyuanting@fudan.edu.cn


https://doi.org/10.1101/2022.11.01.514762
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.01.514762; this version posted November 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Abstract

Various laboratory-developed metabolomic methods lead to big challenges in inter-laboratory
comparability and effective integration of diverse datasets. As part of the Quartet Project, we
established a publicly available suite of four metabolite reference materials derived from B-
lymphoblastoid cell lines from a family quartet of parents and monozygotic twin daughters.
We generated comprehensive LC-MS based metabolomic data from the Quartet reference
materials using targeted and untargeted strategies in different laboratories. High variabilities in
the qualitative and quantitative metabolomic measurements were observed across laboratories.
Moreover, the Quartet multi-sample-based quality metrics were developed for objectively
assessing the reliability of metabolomic profiling in detecting intrinsic biological differences
among difference groups of samples. Importantly, the ratio-based metabolomic profiling, by
scaling the absolute values of a study sample relative to those of a universal reference sample,
enables data integration in long-term measurements across difference laboratories or platforms.
Thus, we constructed the ratio-based high-confidence reference datasets between two reference
samples, providing "ground truth” for inter-laboratory proficiency test, which enables objective
assessment of various metabolomic methods. Our study provided the community with rich
resources and best practice for objective assessment of inter-laboratory measurements and data

integration, ensuring reliable large-scale and longitudinal metabolomic profiling.
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Introduction

Metabolomics is a powerful tool to discover biomarkers distinguishing biological differences
in metabolite abundances related to disease diagnosis, prognosis and treatment effectsl?.
However, the differences among such biological states are generally subtle and influenced by
technical variations introduced by instruments and processing procedures®’. Moreover, in
large metabolomics cohort studies, batch effects are inevitable when integrating multiple
batches of datasets from long-term measurement or collaboration among multiple
laboratories®>®1°, Thus, it is crucial to assure the reliability of each batch of metabolomics
measurement, as well as the integration of multiple batches of data in long-term or cross-
laboratory studies so that the real signals (biological differences) can be distinguished from

technical noises (unwanted variations)*-24,

Publicly available reference materials (RMs) are indispensable for inter-laboratory
reliability assessment of current practices’>%1. RMs in large quantities are suitable to distribute
for community-wide use with the advantages of homogeneity, long-term stability, and
availability of corresponding reference datasets'?. At present, metabolite RMs have been
mainly developed and distributed by the U.S. National Institute of Standards and Technology
(NIST), involving many biospecimen types such as plasma, serum, urine, and liver?>2*, By
providing various types of RMs, as well as reference material suites from multiple biological
states, the coverage of metabolites in the reference dataset has been improved, making it
possible to compare and assess the reliability of data based on research objectives®26, However,
there is no renewable metabolomics reference materials suite from cultured cell lines, which

represent an indispensable sample type in metabolomics studies.

Quality control (QC) metrics for objective performance evaluation are critically important.
Reproducibility is one of the most widely used QC metrics, exemplified by correlations or
coefficient of variation?”28, It helps to assess the level of unwanted variations introduced by
the sample processing and detection procedures through repeated measurements of a universal
reference material®®. However, a high reproducibility from repeated measurements of a single
sample does not guarantee a high resolution in identifying inherent biological differences (i.e.,
signals) among various sample groups. ldentification of differentially expressed metabolites
and development of predictive models to classy different sample groups are the two major goals
for quantitative metabolomics technologies. Therefore, QC metrics pertinent to such research
purposes are crucial to measure the ability to discriminate intrinsic biological differences

among multiple sample groups®®3!. Accuracy is another important QC metric, which is
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assessed through comparison of the measured metabolite concentrations with the “ground truth”
in the reference datasets?®. However, it is unachievable for evaluating the accuracy of
untargeted metabolomic profiling, wherein the quantitatively measured values are usually
calculated as relative output of instrumental response, which is notoriously incomparable
between batches, protocols, instruments, or laboratories. Objective assessment of
quantification accuracy of untargeted metabolomics is essential to ensure the reliable detection
of biological differences in clinical biomarker discovery. Therefore, it is crucial to develop
quality metrics to objectively evaluate the reproducibility and accuracy of metabolomics
datasets at the level of detecting biological differences despite the choice of measurement
strategies®.

Reliable integration of large-scale metabolomic data is a prerequisite for robust biomarker
discovery and validation. Even if the intra-batch data is of high quality, batch effects are
everywhere in large-scale metabolomics studies. In-house QC samples are widely used in long-
term measurement within a single laboratory. Profiling QC samples along with study samples
helps to assess the stability of measurement in each batch, and to ensure efficient integration
of multiple batches by removing batch effects introduced by unwanted variations over a time
span®’33-3_ A pooled QC sample in the form of a mixture of the study samples has been widely
used in this scenario, but it failed to ensure reliable data integration, mainly because the “pooled
QC sample” is not identical across studies or across laboratories 33%4° and the one QC sample
based metrics are not pertinent to research purposes as mentioned above. Therefore, there is a
lack of best practice for objective assessment of data integration using reference materials®?,
which may hinder the cross-batch, cross-laboratory, and cross-study data integration for

exploring new biological insights.

As part of the Quartet Project (chinese-quartet.org) to provide “ground truth” as well as
best practices for the quality control and data integration of multiomics profiling, we
established the publicly available Quartet metabolite RMs and reference datasets. The Quartet
metabolite RMs enabled the research purpose related QC metric, i.e., the multi-sample based
signal-to-noise ratio (SNR), for assessing the ability of discriminating the inherent biological
differences among sample groups. In addition, we also demonstrated that the ratio-based
metabolomic profiling using universal reference material(s) can enable the long-term and

cross-laboratory data integration in large scale and multi-center metabolomics studies.
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103 Results

104  Overview of the study design

105 In this study, we aim to provide the community with multi-sample based metabolite reference
106  materials (RMs) suite and reference datasets for the inter-laboratory reliability assessment of
107  metabolomic profiling using a wide range of analytical techniques. The Quartet metabolite
108 RMs were prepared as part of the Quartet Project in which matched reference materials of DNA,
109 RNA, proteins, and metabolites were simultaneously manufactured from the same batch of
110  cultured cells. Four immortalized B-lymphoblastoid cell lines were derived from a Chinese
111 Quartet family including father (F7), mother (M8), and their monozygotic twin daughters (D5
112 and D6) (Fig. 1a). The cellular metabolites were extracted using methanol: water (6:1) solution
113  (Extended Data Fig. 1). Eleven external controls were added into the cellular extracts at
114 known amounts. These spike-ins include ten flora metabolites and one xenobiotic compound,
115  sulfadimethoxine (Extended Data Table 1). The cellular extracts were aliquoted into 1000
116  vials per cell line and then vacuum frozen dried. Each vial of the Quartet metabolite RM
117  contains dried cellular metabolites extracted from approximately 10° cells, which are suitable
118  for most LC-MS/MS based metabolomic profiling. Additionally, the metabolite RMs were

119  formulated as dried cellular extracts, so they cannot be used for QC of sample extraction steps.

120 For inter-laboratory reliability assessment of metabolomic profiling, we generated multi-
121  laboratory datasets using untargeted and targeted strategies (Fig. 1b). Three replicates of each
122  Quartet sample were measured within a batch in six laboratories. In each laboratory, the
123  metabolomic methods have been developed independently using different liquid
124 chromatograph (LC) and mass spectrometer (MS) instruments, which is the current practice in
125  the field of metabolomic profiling (Extended Data Table 2). One laboratory 4 (T-L4) used a
126  targeted metabolomic method to calculate the metabolite concentration with standard
127  calibration curves, and for other targeted metabolomic methods the quantification was
128  performed by relative metabolite abundance detected by multiple reaction monitoring (MRM).
129  For the untargeted metabolomic methods, quantification was accomplished by relative
130  metabolite abundance detected by precursor ions. For long-term stability monitoring of the
131  Quartet metabolite RMs, three replicates of each Quartet sample were measured monthly in T-

132 L4 for two years. Overall, 180 metabolomic profiles were collected.

133
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134 High variabilities in the qualitative and quantitative metabolomic
135 measurements

136  We evaluated the qualitative and quantitative performance of metabolomics using the Quartet
137  reference materials in different laboratories. High variabilities were found in the qualitative

138  and quantitative metabolomic measurements.

139 The number of metabolites detected by each laboratory varied considerably, ranging from
140 79 (T-L1) to 462 (T-L5, Fig. 2a). Untargeted metabolomic strategies are usually regarded as a
141 tool for profiling all metabolites present in a sample. However, there was no obvious advantage
142 in the number of detected metabolites using untargeted strategies. For example, the number of
143  detected metabolites using untargeted profiling in U-L1 was only 204, whereas the targeted
144  strategy in T-L5 detected the largest number of metabolites, up to 462. We also compared the
145  number of detected metabolites using different filtering criteria. Coefficient of variance (CV)
146  was used to evaluate the reproducibility of measurement from technical replicates of the same
147  single sample, whereas intraclass correlation coefficient (ICC) was applied to measure the
148  reliability of metabolites from aspects of reproducibility and discriminability of multiple
149  samples in test-retest analysis. We defined the reproducibly and reliably detectable metabolites
150  with combined criteria of CV < 30% and ICC > 0.4, and the percentages ranged from 36% to
151  90%. A laboratory using untargeted strategies (U-L2) detected 402 metabolites, but only 36%
152  of them were detected reproducibly and reliably (Fig. 2a). On the other side, although another
153  laboratory using untargeted strategies (U-L3) detected 304 metabolites, 59% of these

154  metabolites were recognized as reliable (Fig. 2a).

155 Pearson correlation coefficient (PCC) of pairs of technical replicates indicated the
156  reproducibility of quantitative profiles, while PCC of pairs of different Quartet metabolite RMs
157 indicated the level of discriminability of biological differences. As shown in Fig. 2b, the PCC
158  of technical replicates of D5 was high in each of the seven datasets, ranging from 0.989 to
159  0.999. However, the PPC between D5 and D6 was also high, ranging from 0.945 to 0.989 (Fig.
160 2c). For example, the PCC of technical replicates in T-L4 was 0.999, indicating high
161  reproducibility. However, the PCC between different samples in the same laboratory was 0.989,
162 indicating low discriminability. These results indicated that a high reproducibility of technical
163  replicates does not guarantee a high resolution in identifying inherent biological differences
164  (discriminability) between different sample groups (Fig. 2d). In addition, there was a negative
165  correlation between PCC of technical replicates and (1-PCC) of difference sample groups (Fig.
166  2e).
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167 Identification of differential abundance metabolites (DAMS) is a major goal of biomarker
168  discovery using metabolomic technologies. However, as shown in Fig. 2f where the volcano
169  plots were used to display the magnitude of the fold change versus the statistical significance
170 level, big differences in both the fold changes and statistical significance levels were seen when
171 comparing the same sample pairs. The number of DAMs ranged from ~10 to ~120 in D5/D6,
172 F7/D6, and M8/D6 comparisons (Fig. 2g). In two of the laboratories (T_L5 and U_L3) that
173  identified the highest number of DAMs, most of the DAMs were more highly expressed in D6
174  than in D5, F7, and M8 at T-L5. However, most of the DAMs were more highly expressed in
175 D5, F7, and M8 than in D6 at U-L3. Taken together, these results implicated that achieving
176  high inter-laboratory reproducibility of DAMs was challenging.

177

178 Inter-laboratory reliability assessment by Quartet based signal-to-noise ratio
179  Based on the Quartet multi-sample design, we designed a signal-to-noise ratio (SNR) metric to
180 take reproducibility and discriminability into consideration simultaneously. SNR is calculated
181  as the ratio of the averaged distance between different Quartet samples (“signal”) to the
182  averaged distances between technical replicates for each sample (“noise”) on a 2D-PCA scatter
183  plot (Fig. 3c)***3, where a higher SNR indicates better reproducibility and discriminability (Fig.
184  3). As expected, for a measurement to be considered reliable, the sample-to-sample difference

185  should be bigger than variation of technical replicates.

186 We computed the SNR for each batch of metabolomic profiling (4 sample > 3 replicates)
187  using metabolites detected in all 12 samples in the batch. As shown in the PCA, the first two
188  principal components demonstrated clear separation among the four reference samples in good-
189  quality metabolomic profiling data, but not in poor-quality data (Fig. 3a). Astonishingly, high
190 variabilities in data quality were observed in these metabolomic datasets (range 4.6~27.1).
191  After filtering with combined criteria (C\VV<30% and 1CC>0.4) to retain the reliably detectable
192  metabolites, the SNRs were slightly improved but the relative quality ranking of batches did
193  not change obviously (Fig. 3b). Fig. 3d illustrated the SNRs calculated with metabolites
194  filtered with different criteria, indicating the robustness of SNRs in evaluating the laboratory-

195  specific reliability with or without filtering metabolites.

196 We also ranked the quality of the metabolomic datasets generated in different laboratories
197  using different QC metrics, including the percentages of retained metabolites using different
198 filtering criteria (CV<30%,; ICC>0.4; CV<30% and ICC>0.4), PCC of technical replicates, the
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199  numbers of DAMs, and SNR calculated with or without filtering. As shown in Fig. 3e, the
200 inter-laboratory data quality rankings were not entirely concordant using different QC metrics.
201  T-L5 outperformed others in terms of the numbers of discovered DAMs, but did not perform
202  well by other QC metrics. These results implicated that more DAMs did not guarantee good
203  data quality, which can be confound by false positive discovery. In addition, T-L4 performed
204 well by PCC of technical replicates, but did not perform well by SNR or DAMs. These results
205  suggested that correlation of replicates from one reference material did not have enough

206  resolution in identifying the among-sample differences.

207 The overall concordances among these QC results were also evaluated in Fig. 3f. QC results
208  assessed by DAMs showed low concordance with all the other results, and the percentages of
209  retained features after filtering (CV<30% and 1CC>0.4) was highly correlated with SNR. These
210  data suggested that the inter-laboratory data quality assessments were dependent on the QC
211 metrics being used. PCC of technical replicates from one reference material and the number of
212 DAMs between two reference materials did not show enough resolution in metabolomic
213  profiling quality in identifying differences among sample groups. The Quartet multi-sample
214  based SNR provided an objective QC metric for inter-laboratory reliability assessment for a

215  wide range of metabolomic technologies.

216

217 Ratio-based metabolite profiling enables data integration across laboratories
218  To evaluate the reliability of metabolomic data integration, we examined the qualitative and
219 quantitative performance of the integrated data generated in different laboratories. We first
220  evaluated the qualitative concordance of detected metabolites among these datasets. However,
221  most detected metabolites were reported by only one laboratory, and merely six metabolites
222  were reported in all the seven metabolomic datasets (Fig. 4a). The intersection size of detected
223  metabolites among different laboratories were shown in Extended Data Fig. 2, and there
224 were only 58 metabolites detected by all the three global metabolomic profiling strategies.
225  These results demonstrated the poor concordance of metabolite identification across different

226  laboratories.

227 To further evaluate the quantitative reliability of cross-laboratory integration of metabolomic
228  data at absolute abundance level, we first compared the differences between PCCs of technical
229  replicates and those between different reference sample groups. However, the differences

230  between the two types of PCCs were not dramatic (Fig. 4b, Left). Hierarchical cluster analysis
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231 (HCA) and principal component analysis (PCA) were also used to visualize the magnitude of
232  technical variation of data integration at the absolute abundance level. The integrated cross-
233  laboratory metabolomic profiling data were first clustered by batch (laboratory) but not by
234  different sample groups (Fig. 4c). Similar results were demonstrated in PCA (Fig. 4e), where
235  the first principal component (PC1) clearly showed the dramatic differences between the six
236  batches of data and the distinct Quartet samples cannot be separated.

237 Importantly, after converting the absolute abundance data to a ratio scale relative to the same
238 reference material (D6) on a metabolite-by-metabolite basis in each batch, significant
239  differences between PCCs of technical replicates and those of different samples were found
240  (Fig. 4b, Right). Similar results were supported by HCA and PCA plots (Figs. 4d and 4f).
241  After ratio-based scaling, the metabolomic profiling relative to D6 first clustered by the four
242  different Quartet sample groups (Fig. 4d). PCA plots showed clear separation of the four
243  groups of reference samples (D5, D6, F7, and M8) and the drastic batch effects seen at the
244 absolute abundance (Figs. 4c and 4e) largely disappeared.

245 Our results showed that batch effects were prevalent in cross-laboratory metabolomic data
246  integration at the absolute abundance level, presenting a real challenge for large-scale
247  integrative analyses of multi-center data. Fortunately, the cross-laboratory data reliability can
248  be greatly improved by converting the absolute abundance to a ratio-based metabolomic

249  profiling using universal reference materials such as the Quartet metabolite reference materials.

250

251 Ratio-based metabolite profiling improves data integration in long-term
252 measurement

253  In order to evaluate the long-term stability of metabolomic profiling, we generated a total of
254 15 batches of Quartet metabolomic data in T-L4 over a period of two years. This targeted
255  metabolomic strategy calculates the concentration of each metabolite with a specific standard
256  calibration curve, and is referred to as the “absolute” quantification approach of metabolomic

257  profiling and regarded as one of the most reliable ones.

258 We first evaluated the qualitative concordance of detected metabolites in long-term
259  measurement. We found that only 100 out of 148 metabolites (67.6%) were detected in all the
260 15 batches of datasets (Fig. 5a). Thus, the stability of metabolite identification was still not

261 ideal even for the absolute quantification metabolomics strategy.
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262 To further evaluate the quantitative stability of long-term metabolomic data at the absolute
263  concentration level, we first compared the differences between PCCs of technical replicates
264  and those between different reference sample groups. There existed significant differences
265  between the two types of PCCs (Fig. 5b). HCA and PCA were also used to visualize the
266  magnitude of technical variation of data integration at the absolute concentration level. Most
267  of the samples in the integrated long-term metabolomic dataset were clustered by different
268  sample groups, but several M8 samples mis-clustered into the F7 sample group (Figs. 5d and
269  5f). In addition, the Quartet signal-to-noise ratio was calculated to be 13.3 for the integrated
270  dataset, indicating a good separation among different Quartet samples.

271 We also integrated the long-term metabolomic datasets by converting the absolute
272  concentration values to a ratio scale relative to those of the same reference material (D6) on a
273  metabolite-by-metabolite basis per batch. The difference between PCCs of technical replicates
274 and PCCs of different samples, a surrogate of discriminability, increased dramatically from
275 0.009 (absolute, Fig. 5b) to 0.532 (relative, Fig. 5c). Similar results were observed by HCA
276  and PCA plots (Figs. 5e and 5g). After ratio-based scaling, all the samples clustered correctly
277 by different Quartet sample groups (Fig. 5e). The Quartet signal-to-noise ratio was improved
278  slightly from 13.3 to 13.5 (Fig. 5g). Using the Levey-Jennings plot, we continuously
279  monitored each metabolite measurement across runs (Extended Data Fig. 3). There were 57,
280 14, and 10 metabolites deviated from the mean beyond #3 SD for 3 RMs (D5, F7, M8),
281  demonstrating evidence of systematic errors (Extended Data Fig. 3, up). After ratio-based
282  scaling to D6 sample, the number of systematically deviated metabolites decreased to 8,
283 11, and 15 for D5, F7, and M8, respectively (Extended Data Fig. 3, down).

284 These results showed that the reliability of long-term metabolomic profiling measurement
285 can still be improved by converting the absolute concentration values to a ratio scale using

286  universal reference materials such as the Quartet metabolite reference materials.

287

288 Construction of ratio-based Quartet metabolite reference datasets

289 In order to provide ‘“ground truth” reference datasets for evaluating the accuracy of
290 metabolomic quantification, we constructed the ratio-based metabolomic reference
291 datasets by scaling the absolute abundance values of D5, F7, and M8 relative to those of
292 D6. Fig. 6a illustrated the workflow of consensus integration from seven metabolomics

293 datasets from different laboratories. First, the metabolites detected in all three replicates in

10
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294  each dataset were defined as detected metabolites, and the union of the detected metabolites in
295  all the seven datasets were 939, 944, 948, and 948 for the four reference materials (D5, D6, F7,
296 and M8). Secondly, 210 reproducibly detectable metabolites were retained in all the four
297  reference samples in more than one dataset. Thirdly, ratio-based values were calculated using
298 differential abundance metabolites (DAMS) for each sample pair (D5/D6, F7/D6, or M8/D6)
299  with p <0.05 in more than one dataset. Finally, the high-confidence ratio-based reference value
300  for each metabolite is defined as a geometric mean of fold-changes calculated from each
301 replicate of more than one dataset. After these filtrations, the first release of the Quartet ratio-
302 based metabolomic datasets (v.1.0) for each sample pair (D5/D6, F7/D6, and M8/D6)
303  contained 47, 44, and 51 high-confidence metabolites, respectively (Extended Data Tables 3-
304 5).

305 The union of high-confidence reference metabolites for the three sample pairs were
306  annotated into 10 classes according to the HMDB database (https://nmdb.ca) (Fig. 6b). The
307  most abundant class was carboxylic acids and derivatives, with 36 metabolites contained in the
308 reference datasets. The ratio values for the high-confidence reference metabolites for each
309  sample pair were summarized in Fig. 6¢, covering a wide range of fold-changes from -4.4 to
310 5.1. With the advance in metabolomic technologies and the generation of additional datasets,
311  the Quartet metabolomic reference datasets will be updated periodically through the Quartet
312  Data Portal*® (http://chinese-quartet.org).

313

314  Best practice for inter-laboratory proficiency test of metabolomic profiling
315 using the Quartet metabolite reference materials

316 Inter-laboratory proficiency test is essential to achieve reliable metabolomic profiling. We
317  recommend profiling the Quartet reference materials (e.g., four samples x<three replicates)
318 for method validation. We provided two types of QC metrics for quality assessment of
319 quantitative metabolomic datasets. One is the Quartet multi-sample based SNR to measure
320 the ability to discriminate the intrinsic biological differences among different reference
321 samples. The other is the quantitative concordance between the evaluated batch of data
322  and the reference datasets, calculated by relative correlation (RC). The recall of detected
323 DAMs was recommended to qualitatively assess the accuracy against the Quartet reference
324  datasets (Fig. 7a).

11
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325 We evaluated the laboratory proficiency for each of the 22 batches of metabolomic
326  datasets using targeted or untargeted strategies with SNR, RC, and recall. As shown in
327  Fig. 7b, the relative quality rankings using different QC metrics were not concordant. The
328  correlations among the three metric values were relatively low (Extended Data Fig. 4),
329 therefore a total score would be better to rank the quality of metabolomic datasets. Using
330 the total score calculated using SNR, RC, and recall with each metric value scaled from 0
331 to 10, we found that the inter-laboratory proficiency was not dependent on the
332  metabolomic strategy. The top one laboratory proficiency was achieved in U_L3 using an
333  untargeted strategy. The three datasets with the worst laboratory proficiency (U-L1, T-L5,
334 and U-L2) were generated in three laboratories using either untargeted or targeted
335 strategies. These results supported the notion that the Quartet metabolite reference
336 materials and related QC metrics were suitable for a wide range of metabolomic
337  technologies using both targeted and untargeted strategies. In addition, the standardized
338  QC workflow for inter-laboratory comparisons can be performed through the Quartet Data
339  Portal*®, where the relative quality ranking among the cumulative metabolomic datasets
340  can be obtained.

341
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342 Discussion

343  As part of the Quartet project*!, we provide the community the first suite of renewable
344  metabolite reference materials, with matched DNA*?, RNA*3, and protein®* isolated from
345  the same immortalized cell lines. The intended use of the Quartet metabolite reference
346  materials includes intra-laboratory quality control, inter-laboratory proficiency test, and

347 quality assurance of large-scale metabolomic data generation and integration.

348 We also defined the ratio-based reference datasets as abundance ratios of sample pairs
349 (D5/D6, F7/D6, and M8/D6) between the Quartet reference materials, providing “ground
350 truth” for assessing the quantification accuracy of a wide range of metabolomic
351 technologies. There are two clear advantages of the ratio-based reference datasets. First,
352 the ratio-based quantification can mitigate technical variations seen at the absolute-level
353 quantification, because the instrumental output can systematically change by different
354 laboratory-developed methods**“°. Therefore, the Quartet ratio-based reference datasets
355  are suitable for proficiency test and method validation of a wide range of targeted and non-
356 targeted metabolomic strategies using various LC-MS instruments. Secondly, the accuracy
357 and reproducibility of the ratio-based metabolite qualification indicate the ability of a
358 metabolomic measurement procedure in distinguishing the biological differences among
359  sample groups, which is a basis for biomarker discovery and validation using metabolomic
360 technologies. Although the v1.0 of the metabolite reference datasets covers only 92
361 metabolites, the reference datasets will be updated periodically through the Quartet Data
362  Portal (http://chinese-quartet.org/) community-wide participation®®. Our study suggested a
363  paradigm shift of defining the ground truth for assessing the accuracy of metabolomic

364  profiling.

365 The Quartet multi-sample based SNR is developed as an objective QC metric for
366  assessing the ability in identifying intrinsic biological differences between various groups
367 of samples, which is the basis for the development and application of metabolomic
368  profiling based clinical diagnostics. Compared with the previously widely used one-
369  sample based technical reproducibility for quality assessment of quantitative profiling, the
370 unique Quartet SNR guaranteed a high resolution in identifying serious quality issues. An
371  obvious limitation of any “ground truth” dependent QC metrics is due to their reliance on
372  easily detectable metabolites. However, the Quartet based SNR is applicable for assessing

373 the reliability of global metabolomic profiling without considering the ground truth,
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374 making it a complementary and broadly applicable approach for objective quality
375  assessment.

376 Using the Quartet metabolite reference materials for inter-laboratory proficiency testing,
377  high variabilities of the qualitative and quantitative metabolomic measurements were
378  observed across laboratories. We found that the best and worst performing batches were
379  all generated using the untargeted metabolomics strategies. This result suggested that the
380 intrinsic laboratory proficiency was critically important for developing in-house
381 untargeted metabolomics strategies, consistent with a previous report*’. In addition, even
382 for an “absolute” quantification method using a targeted strategy that quantifies each
383  metabolite by standard calibration curves within the same laboratory, clear technical
384  variations were observed by continuously measuring the same Quartet reference materials
385 overalong period of time. This result implicated that profiling reference materials in each
386  batch along with the study samples help monitor long-term data quality and technical drift
387  within a laboratory.

388 Importantly, the multi-sample based SNR can also be used to objectively monitor and
389  correct batch effects. To achieve reliable data integration from long-term and cross-laboratory
390 large-scale metabolomics profiling, we recommend using universal reference materials per-
391 batch along with study samples. As long as the integrated datasets maintain the ability to
392 differentiate the different Quartet samples, the reliability of the metabolomic data from the

393  study samples for further exploratory metabolomic biomarker discovery is assured.

394 Our study also demonstrated the potential utility of the Quartet reference materials as a
395 universal reference sample to scale the absolute abundance to ratio-based metabolomic
396 profiling. The ratio-based metabolomic profiling was suitable for internal quality control in
397  longitudinal measurement within a laboratory, and it can also be used to calibrate the
398 metabolomic profiling in multiple centers. Even if the metabolomic methods were developed
399  using different wet-lab operation procedures on different LC-MS instruments, the ratio-based
400 metabolomic data integration was reliable enough for differentiating the various Quartet
401 reference materials. The intrinsic batch-effect resistant characteristics of the ratio-based
402  profiling is also demonstrated by other quantitative omics profiling technologies, such as

403  methylomics, transcriptomics, and proteomics*® 43 4,

404 Although we demonstrated the importance of using the Quartet metabolite reference

405  materials and corresponding QC metrics in ensuring reliable biological discovery, there are
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406 some limitations beyond the scope of this study. First, the Quartet metabolite reference
407  materials were extracted cellular metabolites in the form of lyophilized power and could
408 not be applied to in the QC of the sample preparation procedures. Moreover, the
409  metabolites extracted from cells could not fully cover metabolites from other sources of
410  biospecimen, such as plasma, serum and tumor tissues, which may hinder the wider
411  application of the Quartet reference materials especially when the matrix of the study
412  samples is largely different from cellular extractants. However, with the Quartet multi-
413  sample design, the reference data dependent and independent QC metrics could be used to
414  comprehensively assess the system-specific reliability of biological discoveries.

415 In summary, as an important part of the Quartet multiomics reference materials suites
416  consisting DNA, RNA, proteins, and metabolites, the Quartet metabolite reference
417  materials, the reference datasets, and the corresponding quality metrics help lay the
418 foundation for reliable discovery of metabolomic differences through quality control of
419 the intra- and inter-laboratory data generation and integration processes.

420
421
422
423
424
425
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427
428
429
430
431
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547  Methods
548 Ethics approval and consent to participate

549  The study was approved by the IRB (Institutional Review Board) of the School of Life
550  Sciences, Fudan University (BE2050) and conformed to the principles set out in the 1975
551  Declaration of Helsinki. Written informed consent to participate in multiomics research
552 and allow collection of biospecimens was approved by the IRB and obtained from the
553  Quartet family that includes monozygotic twin daughters (D5 and D6) and their parents
554  (father, F7 and mother, M8) in Taizhou, Jiangsu Province, China.

555  Quartet immortalized B-lymphoblastoid cell lines

556  Quartet immortalized B-lymphoblastoid cell lines were established through the infection
557  with Epstein-Barr virus (EBV)*® and culturing using the protocols described in the Quartet
558  main paper®!. Briefly, immortalized lymphoblastoid cell lines were obtained by isolating
559  peripheral blood mononuclear cells (PBMCs), sorting naive B cells and infecting with
560 EBYV by centrifugation at 2000 rpm for 1 hour. Lymphoblastoid cell lines were cultured in
561 RPMI 1640 supplemented with 15% of non-inactivated FBS and 1% Penicillin-Streptomycin.
562  Flasks were incubated on the horizontally position at 37°C under 5% CO2. Cell cultures were
563  split every three days for maintenance as described in the literature*®. Cells growing in
564  suspension were centrifuged at 300 g for 5 min to obtain cell pellets and were washed twice
565  with cold PBS, then store at -80°C. About 1x<10* cells were harvested for each cell line in
566  the same batch to ensure that matched multiomics reference materials were extracted from
567 the same batch of cultured cells. About 1.1>10° cells per cell line were used for generating
568  Quartet metabolite reference materials. In all cases, all cell lines were handled in parallel
569  using exactly the same reagents and equipment, and experiments were initiated at the same

570 time-point of the day.

571 Metabolite extraction

572
573  Metabolites were extracted from EBV immortalized lymphoblastoid cell lines in L4

574  (Laboratory 4). At first, we thawed cells (11 tubes per sample, 1102 cells per tube) slowly
575  onice-bath to minimize potential sample degradation, and then added 2.4 mL ice cold methanol
576  solution (methanol: water = 6:1) to each tube of samples. Then, the ice water bath was under
577  ultrasonic treatment for 3 times, each time for 3 s, with an interval of 2 minutes, power 10%.

578  Then we found that the cell mass at the bottom of the tube was completely broken by ultrasound
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579 and appeared as white emulsion. Finally, after centrifugation at 4500 g, 4°C, 20 minutes
580  (Allegra X-15R, Beckman Coulter, Inc., Indianapolis, IN, USA), we transferred supernatant
581  containing extracted metabolites to a new centrifuge tube.

582 Quartet metabolite reference materials

583  Eleven external controls were spiked into the supernatant at known concentrations as internal
584  standards, including ten metabolites commonly found in plasma (Indoleacetic acid,
585  Taurocholic acid, Glycocholic acid, Cholic acid, Tauroursodeoxycholic acid,
586  Taurodeoxycholic acid, Glycoursodeoxycholic acid, Glycodeoxycholic acid, Ursodeoxycholic
587  acid, and Deoxycholic acid) and one drug sulfadimethoxine (Extended Data Table 1). For each
588  Quartet sample, supernatant containing metabolites extracted from 1.110° cells and 11 spike-
589 ins were aliquoted into 1,000 vials using an automated liquid handler (Biomek 4000, Beckman
590 Coulter, Inc., Brea, California, USA), with 5 uL solution per tube. After centrifugation at 4°C
591 and under vacuum (Labconco, Kansas City, Missouri, USA) for 50 minutes, water was
592  removed, and we obtained the Quartet metabolite reference materials in the form of lyophilized
593  power. Reference materials from different Quartet samples were clearly marked with
594  differently colored dispensing caps and labels. The tube cap colors of the reference materials
595 D5, D6, F7, and M8 are blue, green, yellow, and red, respectively. We stored the Quartet

596  metabolite reference materials at -80°C and shipped with dry ice.
597 Sample preparation

598  We distributed 12 vials (triplicates for each Quartet sample) of the Quartet metabolite reference
599  materials as a batch to each laboratory and offered basic guidance on sample preparation. The
600 same sample running order (D5-1, D6-1, F7-1, M8-1, D5-2, D6-2, F7-2, M8-2, D5-3, D6-3,
601 F7-3, and M8-3) in each batch was maintained among all laboratories.

602 T-L1/U-L1

603  Samples were first centrifuged before the researchers added 200 L acetonitrile-water (1:1, v/v)
604  to reconstitute. The solution was then centrifuged at 14,000 rcf for 15 min at 4<C to extract

605 supernatant for MS analysis.

606 U-L2

607  The researchers added 100 uL of 50% acetonitrile to reconstitute (containing isotope-labeled

608 internal standard mixture). The solution was vortexed for 30 s, and sonicated in ice-water bath
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609  for 10 min. After centrifugation at 13000 rpm for 15 min at 4 °C, the supernatant of 70 pL was
610 transferred into the sample bottle and tested on the machine.

611 U-L3

612  The researchers added 500 pL of ice-cold 80% methanol solution to dissolve the sample. Then
613  the solution was divided into five fractions: two for analysis by two separate reverse phases
614 (RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one for
615 analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-
616  MS/MS with negative ion mode ESI, and one sample was reserved for backup. Samples were
617  placed briefly on a TurboVap® (Zymark) to remove the organic solvent. The sample extracts
618  were stored overnight under nitrogen before preparation for analysis.

619 T-L4

620  The researchers added 350 uL of ice-cold 50% methanol solution to dilute the sample. The
621  plate was then stored at 20<C for 20 minutes and then centrifuged at 4000g for 30 minutes at
622  4°C. They transferred 135 pL of supernatant to a new 96-well plate, which contained 15 pL of
623 internal standard per well. Serial dilutions of derivatized standards were added to the left wells.

624  The plate was sealed for LC-MS analysis.
625 T-L5

626  The researchers added the 500 pL of 10% methanol solution to dissolve the powder, and then
627  injected samples into LC-MS for analysis.

628 T-L6

629  The researchers added 100 L reconstituted solution (acetonitrile: water=1:1) of HPLC-grade
630 tothe 1.5 mL EP tube containing the dried metabolites, and vortexed for 1 min; centrifuged at
631 15,000 rpm for 10 min at 4<C (Note: the centrifuge needs to be pre-cooled); used a 200 L
632  pipette to draw about 60 L of the supernatant and transfer to the injection vial, making sure
633  that there are no air bubbles at the bottom of the liner or the injection vial; mixed the remaining
634  liquid in the same sample EP tube (took an equal volume) into the same 1.5 mL EP tube,
635 centrifuged at 15,000 rpm for 10 min at 4<C, transferred the supernatant to the injection vial as

636 QC sample (Note: the whole process needs to be operated on ice).

637 Laboratory instrument

638 Each laboratory used different HPLC/UPLC or MS/MS platforms to detect and quantify
639  metabolites (details in Extended Data Table 2). L1 used Waters UPLC-MRM with AB SCIEX
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640 QTRAP 5500 mass spectrometers by targeted strategy (T-L1) and Agilent UHPLC with AB
641  SCIEX Triple TOF 6600 mass spectrometers by untargeted strategy (U-L1). L2 used HPLC
642  with SCIEX mass spectrometers by untargeted strategy (U-L2). L3 used Waters UPLC with
643  Thermo Fisher Q Exactive and Orbitrap mass spectrometers by untargeted strategy (U-L3). L4
644  used Waters UPLC with a Waters Xevo TQ-S mass spectrometer by targeted strategy (T-L4).
645 L5 and L6 used AB SCIEX Exion UPLC-MRM with AB SCIEX QTRAP® 6500+ mass
646  spectrometers by targeted strategy (T-L5 and T-L6).

647 Data processing

648 Raw data acquired using UPLC-MS were pre-processed by each participating laboratory to
649  provide structured data in .xls format for subsequent statistical analysis. Chromatography-MS
650 data for a single sample are a matrix of m/z versus retention time (or index) versus ion current

651  or intensity.
652 T-L1

653 MRM raw data were extracted by MRMAnalyzer (R), and the peak area of each metabolite
654  was obtained. More detailed description can be found in reference®.

655 U-L1

656  The raw data was converted into mzXML format by ProteoWizard. The researchers used the
657 XCMS program for peak alignment, retention time correction and peak area extraction. For
658  structure identification of metabolites, accurate mass matching (<25 ppm) and secondary

659  spectrum matching were used to search the laboratory's inhouse-built database.

660 U-L2

661 The researchers used ProteoWizard software to convert the original mass spectrum into
662 mzXML format and XCMS for retention time correction, peak identification, peak extraction,
663  peak integration, and peak alignment. An inhouse-built secondary mass spectrometry database

664  was used in parallel to identify the peaks.
665 U-L3

666  The researchers used ThermoFisher Scientific software Xcalibur QuanBrowser for peak
667  detection and integration. A detailed description of data processing including chromatographic

668 alignment, QC practices and compound identification can be found in reference®..
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669 T-L4

670  The raw data files generated by UPLC-MS/MS were processed using the QuanMET software
671 (v2.0, Metabo-Profile, Shanghai, China) to perform peak integration, calibration, and

672 quantitation for each metabolite.

673 T-L5

674  The detection of the experimental samples using MRM (Multiple Reaction Monitoring) were
675 based on T-L5 inhouse database. The Q3 was used for metabolite quantification. The Q1, Q3,
676 RT (retention time), DP (declustering potential) and CE (collision energy) were used for
677  metabolite identification. The data files generated by HPLC-MS/MS were processed using the
678 SCIEX OS Version 1.4 to integrate and correct the peak. The main parameters were set as
679  follows: minimum peak height, 500; signal/noise ratio, 5; Gaussian smooth width, 1. The area

680  of each peak represents the relative content of the corresponding metabolite.

681 T-L6

682 The MRM raw data were extracted by OS-MQ software (AB SCIEX), and the peak area value
683  of each metabolite was obtained.

684 Data integration

685  We collected 264 metabolomics profiles at the metabolite level from all laboratories, with each
686 laboratory provided HMDB (Human Metabolome Database, https://hmdb.ca) IDs

687  corresponding to the metabolites.

688  We integrated these metabolomics profiles first by their HMDB IDs and then by metabolite
689  names. Metabolites were annotated into different classes with the information downloaded
690 from HMDB (https://hmdb.ca/system/downloads/current/hmdb_metabolites.zip, released on
691 2021-11-17).

692 Performance metrics

693  Based on Quartet metabolite RMs and RDs, we constructed three types of performance metrics
694  to comprehensively evaluate the reproducibility and accuracy of each laboratory in detecting
695 biological differences. Among them, signal-to-noise ratio (SNR) was designed to evaluate the
696 ability of each laboratory in extracting different Quartet samples from technical replicates.

697  Recall of differential abundance metabolites (DAMs) and relative correlation (RC) were
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698 computed based on the reference datasets and were designed to evaluate the ability and
699  accuracy in detection of biological differences among Quartet sample pairs.

700  Signal-to-noise ratio (SNR)

701  We measured SNR through comparing the average Euclidean distances between different
702  Quartet samples (“signals”) to those between different technical replicates of the same Quartet
703  sample(“noises”) computed based on the first two principal components of PCA, which was
704  same to other companion articles from the Quartet multiomics project. SNR was defined as the
705  following equation:

m X (2) Ne12y=i Ai=1 Xj=1 2127=1 W, (PCpix — PCpjy)?

706 SNR =10X% lo
100y S xn T ST S, S0 52y Wy (P — POy y)?

707  Here, m was the number of different groups of samples, and n was the number of technical
708  replicates of the same sample group. The variances explained by the p™ principal component

709  (PC,) was noted as W,. PCy; ., PC, ;. and PC

».jyrepresent the value of i" and j™ replicate of

g
710  sample x or sample y on p™ principal component, respectively.

711  Recall

712 We computed Recall for the assessment of qualitative agreement with the RDs, as the fraction
713  of the differential abundance metabolites (DAMS) in RDs that are successfully retrieved. Here
714 recall is the number of measured DAMs (p < 0.05, t test) divided by the number of DAMs
715  should be identified as RDs.

716  Relative correlation (RC)

717  We measured RC for the assessment of quantitative consistency with the RDs. First, we
718 calculated the average log2 abundance of each metabolite of each Quartet sample. Based on
719  the average log2 abundance, we computed relative abundance values of metabolites of each
720  sample pair (log2 ratios to D6) overlapped with the RDs in each laboratory. Finally, the Pearson
721  correlation was computed between the measured relative abundance values and consensual
722 ones in the RDs.

723  Statistical analysis

724  We used R version 4.0.5 and associated packages to perform all statistical analysis. All
725  statistical tests described in this work were two-sided. Tests involving comparisons of
726  distributions were done using ‘wilcox.test’ unless otherwise specified. Intraclass correlation

727  coefficient (ICC) was computed based on package irr (v0.84.1), using two-way model and
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728  estimated by the agreement between raters to compute differences in judges' mean ratings. We
729  plotted all results based on R package ggplot2 (v3.3.6), cowplot (v1.1.1), ComplexUpset
730  (v1.3.3), ggpubr (v0.4.0), ggsci (v2.9) and GGally (v2.1.2).

731  Materials Availability

732  The Quartet metabolite reference materials can be requested for research use from the
733  Quartet Data Portal (http://chinese-quartet.org/) under the Administrative Regulations of

734 the People’s Republic of China on Human Genetic Resources.

735 Data and Code Availability

736  The Quartet metabolite Reference datasets could also be downloaded from the Quartet
737  Data Portal. Metabolomics profiles generated from all laboratories included in this article
738 could be downloaded from National Omics Data Encyclopedia (NODE project
739  OEP000970, https://www.biosino.org/node/project/detail/ OEP0O00970)  under the
740  regulation of the Human Genetic Resources Administration of China (HGRAC).
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759  Fig. 1| Study overview.

760 a, Preparation of the Quartet metabolite reference materials. Four B-lymphoblastoid cell lines
761  (LCLs) of a family quartet including Father (F7), Mother (M8), and monozygotic twin
762  daughters (D5 and D6) were used for extracting metabolites. Eleven spike-ins were added to
763  the cell extract and aliquoted into 1,000 tubes per-sample. b, Data generation. LC-MS based
764  targeted (T-) and untargeted (U-) metabolomic datasets were generated in different laboratories
765  for inter-laboratory reliability assessment. Long-term monitoring was conducted using
766  untargeted strategy within a laboratory (T-L4) for two years.
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775 Fig. 2 | High variabilities in the qualitative and quantitative metabolomic
776  measurements.

777  a, Numbers of detected metabolites in each metabolomic measurement using different filtering
778  criteria, including no filtering (all detected metabolites in any of the samples), no missing
779  (metabolites detected in all 12 samples); CV (Coefficient of variance) < 30%; ICC (intraclass
780  correlation coefficient) > 0.04; CV < 30% & ICC > 0.04. b, Reprehensive scatter plots of
781  technical replicates (D5-1 and D5-2). ¢, Reprehensive scatter plots of different samples (D5-1
782 and D6-1). d, Pearson correlation coefficient (PCC) of pairs of technical replicates and of
783  different Quartet samples in each measurement; e, Negative correlation between
784  reproducibility (PCC of technical replicates) and discriminability (1-PCC of different samples).
785 f, Differential abundance metabolites (DAMs) analysis for three sample pairs. Volcano plots
786  were used to display the magnitude of the fold change versus the statistical significance level
787 in each measurement. g, Numbers of DAMs identified for three sample pairs in each
788  measurement.
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792 Fig. 3 | Inter-laboratory reliability assessment by Quartet based Signal-to-
793  Noise ratio.

794  aand b, Reliability assessment using signal-to-noise ratio (SNR) in different laboratories with
795 (@) or without (b) filtration. The results were visualized by PCA plots. The number of features
796 used and the calculated SNR were shown above each plot. ¢, Schematic diagram of SNR
797  calculated as the ratio of the averaged distance between different Quartet samples (“signal”) to
798  the averaged distances between technical replicates for each sample (“noise”) on a 2D-PCA
799  scatter plot. d, SNRs calculated with metabolites filtered with different criteria. e, The inter-
800 laboratory data quality was ranked using different QC metrics, including the percentages of
801 retained metabolites using different filtering criteria (CV<30%; ICC>0.4; CV<30% and
802 1CC>0.4), PCC of technical replicates, the number of DAMs, and SNR calculated with or
803  without filtering. f, The concordances of data quality ranking using different QC metrics.
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Fig. 4 | Ratio-based metabolite profiling enables data integration across
laboratories.

a, Qualitative concordance of metabolite identification. The numbers of metabolites detected
in different batches of metabolomic datasets were shown. b, Pearson correlation
coefficients (PCCs) of pairs of technical replicates and of different Quartet samples were
compared using quantitative datasets at abundance level or ratio to D6 level. ¢ and d, Cross-
lab data integration was visualized by hierarchical cluster analysis (HCA) at absolute
abundance level (c) and relative ratio to D6 level (d). e and f, Cross-lab data integration
assessment using signal-to-noise ratio (SNR) by principal component analysis (PCA) at
absolute abundance level (e) and relative ratio to D6 level (f).
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Fig. 5 | Ratio-based metabolite profiling improves data integration in long-
term monitoring.

a, Qualitative concordance of metabolite identification. The numbers of metabolites detected
in each batch of metabolomic datasets were shown. b and c, Pearson correlation
coefficients (PCCs) of pairs of technical replicates and of different Quartet samples were
compared using quantitative datasets at abundance level (b) or ratio to D6 level (c). d and e,
Cross-batch data integration was visualized by hierarchical cluster analysis (HCA) at absolute
abundance level (d) and relative ratio to D6 level (e). e and f, Cross-batch data integration
assessment using signal-to-noise ratio (SNR) by principal component analysis (PCA) at
absolute abundance level (f) and relative ratio to D6 level (Q).
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a, The workflow of integration of ratio-based metabolite reference datasets. b, The number of
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HMDB database. b, The distribution histogram of fold changes of the high-confidence

reference metabolites for three sample pairs.
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Fig. 7 | Best practice for inter-laboratory proficiency test of metabolomic
profiling using Quartet metabolite reference materials.

a, Flowchart of an inter-laboratory proficiency test using the Quartet metabolite reference
materials. b, Inter-laboratory proficiency for each of the 22 batches of metabolomic datasets
using targeted or untargeted strategies with SNR, RC, and recall. The overall performance was
classified into four levels (Great, Good, Fair, and Bad)
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841 Extended data
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(25 ul/tube, 10%cellsMube) 40600 tubes Store at -80°C
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843

844 Extended Data Fig. 1 | Steps of the preparation of Quartet metabolite
845 reference materials.
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No. External controls Amount (pmol) Comment

1 Indoleacetic acid 25 Intestinal bacteria metabolite
2 Taurocholic acid 1

3 Glycocholic acid 5 Primary bile acids

4 Cholic acid 25

5 Tauroursodeoxycholic acid 2.5

6 Taurodeoxycholic acid 7.5

7 Glycoursodeoxycholic acid 1 i .

8 Glzcodeoxychoxiic acid 0.5 Secondary bile acids
9 Ursodeoxycholic acid 25

10 Deoxycholic acid 50

11 Sulfadimethoxine 5 Sulfa antibiotics

Extended Data Table 1 | External controls spiked in the Quartet metabolite
reference materials.
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849

. Liquid Chromatograph . Mass Spectrometer Metabolites
Lab Strategies (LC) Instrument Chromatographic Column (MS) Instrument Coverage
Targeted Waters ACQUITY UPLC BEH Amide AB SCIEX QTRAP
T-L1 (MRM based) ~ 'Vaters ACQUITY UPLC (17um, 2.1 x 100 mm column) 5500 ”
Agilent Technologies 1290 Waters ACQUITY UPLC BEH Amide AB SCIEX Triple TOF
U-L1 Untargeted Infinity UHPLC (1.7um, 2.1 x100 mm column) 6600 203
Agilent Technologies 1290 Waters ACQUITY UPLC BEH Amide AB SCIEX Triple TOF
U-L2 Untargeted Infinity UHPLC (L.7pm, 2.1 x 100 mm column) 6600 400
. Thermo Fisher
U-L3 Untargeted Waters ACQUITY UPLC Waters ACQUITY UPLC BEH Amide Q Exactive and 262
(1.7pm, 2.1 x 150 mm column) Orbi
rbitrap
Waters ACQUITY UPLC BEH C18 (1.7pM, i
T-L4 Targeted Waters ACQUITY UPLC 2.1 %100 mm column) Waters Xevo TQ-S 148
Waters ACQUITY UPLC HSS T3 (1.8M,
T-L5 Targeted AB SCIEX ExionLC 2.1 %100 mm column) and BEH C8 (L.7um, B SCIEX QTRAP 462
(MRM based) 6500+
2.1 %100 mm column)
T-L6 Targeted AB SCIEX ExionLC Waters XBridge BEH Amide (3.5pm, 4.6 < AB SCIEX QTRAP 207

(MRM based)

100mm column)

6500+

850

851 Extended Data Table 2 | Experimental methods of metabolomics profiling in each dataset.

852
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Fold

HMDB ID Metabolite name change KEGG ID Class
HMDB0000902 NAD 3.23 C00003 (5'->5"-dinucleotides
HMDB0001173 5'-Methylthioadenosine 1.82 C00170 5'-deoxyribonucleosides
HMDB0001185 S-Adenosylmethionine 1.57 C00019 5'-deoxyribonucleosides
HMDBO0000714 Hippuric acid -1.81 C01586 Benzene and substituted derivatives
HMDB0000001 1-Methylhistidine 1.49 C01152 Carboxylic acids and derivatives
HMDB0000052 Argininosuccinic acid 2.9 C03406 Carboxylic acids and derivatives
HMDB0000092 Dimethylglycine -1.29 C01026 Carboxylic acids and derivatives
HMDB0000159 L-Phenylalanine -1.67 C00079 Carboxylic acids and derivatives
HMDB0000161 L-Alanine -1.37 C00041 Carboxylic acids and derivatives
HMDB0000187 L-Serine 1.52 C00065 Carboxylic acids and derivatives
HMDB0000191 L-Aspartic acid 2.21 C00049 Carboxylic acids and derivatives
HMDB0000202 Methylmalonic acid 1.44 C02170 Carboxylic acids and derivatives
HMDB0000214 Ornithine 1.97 C00077 Carboxylic acids and derivatives
HMDB0000254 Succinic acid 1.38 C00042 Carboxylic acids and derivatives
HMDB0000267 Pyroglutamic acid -1.76 C01879 Carboxylic acids and derivatives
HMDBO0000517 L-Arginine 2.02 C00062 Carboxylic acids and derivatives
HMDBO0000883 L-Valine -1.29 C00183 Carboxylic acids and derivatives
HMDB0000904 Citrulline -2.55 C00327 Carboxylic acids and derivatives
HMDB0001325 N6,N6,N6-Trimethyl-L-lysine 1.83 C03793 Carboxylic acids and derivatives
HMDBO0001511 Phosphocreatine 1.48 C02305 Carboxylic acids and derivatives
HMDB0001539 Asymmetric dimethylarginine 2.49 C03626 Carboxylic acids and derivatives
HMDB0000300 Uracil -1.39 C00106 Diazines
HMDB0000086 Glycerophosphocholine 5.18 C00670 Glycerophospholipids
HMDB0000126 Glycerol 3-phosphate 2.1 C00093 Glycerophospholipids
HMDB0000190 L-Lactic acid -1.93 C00186 Hydroxy acids and derivatives
HMDB0001311 D-Lactic acid -2.62 C00256 Hydroxy acids and derivatives
HMDB0000157 Hypoxanthine -1.36 C00262 Imidazopyrimidines
HMDB0000292 Xanthine -2.4 C00385 Imidazopyrimidines
HMDB0001096 Carbamoy! phosphate 1.4 C00169 Organic phosphoric acids and derivatives
HMDBO0000097 Choline -1.3 C00114 Organonitrogen compounds
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853
854

HMDB0000210
HMDB0000230
HMDB0000247
HMDB0000613
HMDBO0000765
HMDBO0000855
HMDBO0000779
HMDB0000133
HMDB0000195
HMDB0000299
HMDB0000045
HMDB0000089
HMDB0000296
HMDBO0000788
HMDBO0000095
HMDB0000288
HMDB0001564

Pantothenic acid
N-Acetylneuraminic acid
Sorbitol
Erythronic acid
Mannitol
Nicotinamide riboside
Phenyllactic acid
Guanosine
Inosine
Xanthosine
Adenosine monophosphate
Cytidine
Uridine
Orotidine
Cytidine monophosphate
Uridine 5'-monophosphate
CDP-ethanolamine

151
-3.76
-2.47
-1.92
-2.41
2.09
-1.72
-1.68
-1.57
1.62
1.46
-1.33
-1.41
-2.54
1.97
1.95
1.82

C00864
C19910
C00794

C00392
C03150
C01479
C00387
C00294
C01762
C00020
C00475
C00299
C01103
C00055
C00105
C00570

Organooxygen compounds
Organooxygen compounds
Organooxygen compounds
Organooxygen compounds
Organooxygen compounds
Organooxygen compounds
Phenylpropanoic acids
Purine nucleosides
Purine nucleosides
Purine nucleosides
Purine nucleotides
Pyrimidine nucleosides
Pyrimidine nucleosides
Pyrimidine nucleosides
Pyrimidine nucleotides
Pyrimidine nucleotides
Pyrimidine nucleotides

Extended Data Table 3 | Reference datasets of D5toD6.
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Fold

HMDB ID Metabolite name change KEGG ID Class
HMDBO0000902 NAD 1.58 C00003 (5'->5"-dinucleotides
HMDBO0000462 Allantoin 1.42 C01551 Azoles
HMDBO0000056 beta-Alanine 1.38 C00099 Carboxylic acids and derivatives
HMDB0000064 Creatine 1.33 C00300 Carboxylic acids and derivatives
HMDBO0000072 cis-Aconitic acid 1.5 C00417 Carboxylic acids and derivatives
HMDB0000094 Citric acid 1.66 C00158 Carboxylic acids and derivatives
HMDB0000112 gamma-Aminobutyric acid -1.63 C00334 Carboxylic acids and derivatives
HMDB0000148 L-Glutamic acid 1.29 C00025 Carboxylic acids and derivatives
HMDBO0000176 Maleic acid 1.37 C01384 Carboxylic acids and derivatives
HMDBO0000177 L-Histidine -1.43 C00135 Carboxylic acids and derivatives
HMDB0000182 L-Lysine 1.48 C00047 Carboxylic acids and derivatives
HMDB0000202 Methylmalonic acid 1.77 C02170 Carboxylic acids and derivatives
HMDB0000254 Succinic acid 1.85 C00042 Carboxylic acids and derivatives
HMDBO0000446 N-alpha-Acetyl-L-lysine 1.38 C12989 Carboxylic acids and derivatives
HMDBO0000517 L-Arginine 1.37 C00062 Carboxylic acids and derivatives
HMDB0000562 Creatinine 1.29 C00791 Carboxylic acids and derivatives
HMDBO0000766 N-Acetyl-L-alanine 1.31 Carboxylic acids and derivatives
HMDBO0001511 Phosphocreatine 1.77 C02305 Carboxylic acids and derivatives
HMDB0000235 Thiamine 1.78 C00378 Diazines
HMDBO0000300 Uracil 1.36 C00106 Diazines
HMDB0000201 L-Acetylcarnitine -1.37 Fatty Acyls
HMDB0000222 Palmitoylcarnitine -1.6 C02990 Fatty Acyls
HMDB0000086 Glycerophosphocholine 1.28 C00670 Glycerophospholipids
HMDB0000156 Malic acid 1.76 C00149 Hydroxy acids and derivatives
HMDB0000190 L-Lactic acid 1.58 C00186 Hydroxy acids and derivatives
HMDB0000157 Hypoxanthine 1.28 C00262 Imidazopyrimidines
HMDB0000292 Xanthine 1.58 C00385 Imidazopyrimidines
HMDBO0000935 Uridine diphosphate glucuronic acid 2.45 C00167 Lactones
HMDB0000062 L-Carnitine 1.39 C00318 Organonitrogen compounds
HMDB0001257 Spermidine 1.63 C00315 Organonitrogen compounds
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855
856

HMDB0000210
HMDB0000613
HMDBO0000855
HMDB0000217
HMDB0000299
HMDBO0000175
HMDB0001554
HMDB0000229
HMDB0000296
HMDB0000286
HMDB0000288
HMDB0000290
HMDB0000295
HMDB0000653

Pantothenic acid
Erythronic acid

Nicotinamide riboside

NADP
Xanthosine
Inosinic acid
Xanthylic acid

Nicotinamide ribotide

Uridine

Uridine diphosphate glucose
Uridine 5'-monophosphate
Uridine diphosphate-N-acetylglucosamine
Uridine 5'-diphosphate

Cholesterol sulfate

1.55
1.53
3.09
1.59
2.22
1.5
2.01
1.84
1.38
1.49
1.67
2.18
1.91
-1.32

C00864

C03150
C00006
C01762
C00130
C00655
C00455
C00299
C00029
C00105
C00043
C00015
C18043

Organooxygen compounds
Organooxygen compounds
Organooxygen compounds
Phenols
Purine nucleosides
Purine nucleotides
Purine nucleotides
Pyridine nucleotides
Pyrimidine nucleosides
Pyrimidine nucleotides
Pyrimidine nucleotides
Pyrimidine nucleotides
Pyrimidine nucleotides
Steroids and steroid derivatives

Extended Data Table 4 | Reference datasets of F7toD6.
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Fold

HMDB ID Metabolite name change KEGG ID Class
HMDB0001173 5'-Methylthioadenosine 1.78 C00170 5'-deoxyribonucleosides
HMDB0001185 S-Adenosylmethionine 1.98 C00019 5'-deoxyribonucleosides
HMDBO0000462 Allantoin 1.64 C01551 Azoles
HMDB0000001 1-Methylhistidine -1.37 C01152 Carboxylic acids and derivatives
HMDBO0000043 Betaine 1.28 Carboxylic acids and derivatives
HMDBO0000056 beta-Alanine 3.48 C00099 Carboxylic acids and derivatives
HMDB0000092 Dimethylglycine 1.26 C01026 Carboxylic acids and derivatives
HMDB0000094 Citric acid 1.91 C00158 Carboxylic acids and derivatives
HMDB0000112 gamma-Aminobutyric acid 1.43 C00334 Carboxylic acids and derivatives
HMDB0000128 Guanidoacetic acid 1.58 C00581 Carboxylic acids and derivatives
HMDB0000148 L-Glutamic acid 1.42 C00025 Carboxylic acids and derivatives
HMDB0000158 L-Tyrosine -1.77 C00082 Carboxylic acids and derivatives
HMDB0000159 L-Phenylalanine -1.76 C00079 Carboxylic acids and derivatives
HMDB0000172 L-Isoleucine -1.54 C00407 Carboxylic acids and derivatives
HMDBO0000177 L-Histidine -1.65 C00135 Carboxylic acids and derivatives
HMDB0000202 Methylmalonic acid 1.81 C02170 Carboxylic acids and derivatives
HMDB0000254 Succinic acid 1.71 C00042 Carboxylic acids and derivatives
HMDB0000267 Pyroglutamic acid 1.85 C01879 Carboxylic acids and derivatives
HMDB0000446 N-alpha-Acetyl-L-lysine 1.37 C12989 Carboxylic acids and derivatives
HMDBO0000517 L-Arginine 1.3 C00062 Carboxylic acids and derivatives
HMDB0000562 Creatinine 1.43 C00791 Carboxylic acids and derivatives
HMDB0000687 L-Leucine -1.45 C00123 Carboxylic acids and derivatives
HMDB0000812 N-Acetyl-L-aspartic acid 1.57 C01042 Carboxylic acids and derivatives
HMDB0000883 L-Valine -1.28 C00183 Carboxylic acids and derivatives
HMDB0001511 Phosphocreatine 2.73 C02305 Carboxylic acids and derivatives
HMDB0001539 Asymmetric dimethylarginine 1.4 C03626 Carboxylic acids and derivatives
HMDB0002931 N-Acetylserine 1.46 Carboxylic acids and derivatives
HMDB0000300 Uracil 1.85 C00106 Diazines
HMDB0000824 Propionylcarnitine 1.38 C03017 Fatty Acyls
HMDBO0005065 Oleoylcarnitine 1.34 Fatty Acyls
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857
858

HMDBO0000156
HMDBO0000157
HMDB0000292
HMDBO0001366
HMDBO0000935
HMDBO0000939
HMDB0000251
HMDB0000097
HMDBO0001565
HMDB0000210
HMDB0000230
HMDBO0000613
HMDBO0000625
HMDBO0000855
HMDB0000033
HMDB0000217
HMDBO0000050
HMDB0000058
HMDB0001554
HMDB0000290
HMDB0000295

Malic acid
Hypoxanthine
Xanthine
Purine
Uridine diphosphate glucuronic acid
S-Adenosylhomocysteine
Taurine
Choline
Phosphorylcholine
Pantothenic acid
N-Acetylneuraminic acid
Erythronic acid
Gluconic acid
Nicotinamide riboside
Carnosine
NADP
Adenosine
Cyclic AMP
Xanthylic acid

Uridine diphosphate-N-acetylglucosamine

Uridine 5'-diphosphate

1.33
-1.28
-1.86
-2.29
2.76
1.44
1.41
1.29
1.32
1.89
-2.5
211
1.66
3.35
1.84
3.21
2.09
2
3.06
2.01
3.65

C00149
C00262
C00385
C15587
C00167
C00021
C00245
C00114
C00588
C00864
C19910

C00257
C03150
C00386
C00006
C00212
C00575
C00655
C00043
C00015

Hydroxy acids and derivatives
Imidazopyrimidines
Imidazopyrimidines
Imidazopyrimidines

Lactones
Lactones
Organic sulfonic acids and derivatives
Organonitrogen compounds
Organonitrogen compounds
Organooxygen compounds
Organooxygen compounds
Organooxygen compounds
Organooxygen compounds
Organooxygen compounds
Peptidomimetics
Phenols
Purine nucleosides
Purine nucleotides
Purine nucleotides
Pyrimidine nucleotides
Pyrimidine nucleotides

Extended Data Table 5 | Reference datasets of M8toD6.
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861 Extended Data Fig. 2 | Concordance of detected metabolites among
862 laboratories.

863 The intersection size of detected metabolites among seven datasets generated in

864  different laboratories was shown.
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867 Extended Data Fig. 3 | Ratio-based metabolite profiling improves the stability
868 of continuous monitoring of each metabolite measurement.

869  The Levey-Jennings plot of metabolites detected in all 15 batches. Different colors
870  represent different groups of metabolites, indicating systematic deviation > 43 SD; >
871 2 SD, and others.
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874 Extended Data Fig. 4 | Scatter plot matrices for SNR, Recall and RC
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