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 2 

Abstract 19 

Various laboratory-developed metabolomic methods lead to big challenges in inter-laboratory 20 

comparability and effective integration of diverse datasets. As part of the Quartet Project, we 21 

established a publicly available suite of four metabolite reference materials derived from B-22 

lymphoblastoid cell lines from a family quartet of parents and monozygotic twin daughters. 23 

We generated comprehensive LC-MS based metabolomic data from the Quartet reference 24 

materials using targeted and untargeted strategies in different laboratories. High variabilities in 25 

the qualitative and quantitative metabolomic measurements were observed across laboratories. 26 

Moreover, the Quartet multi-sample-based quality metrics were developed for objectively 27 

assessing the reliability of metabolomic profiling in detecting intrinsic biological differences 28 

among difference groups of samples. Importantly, the ratio-based metabolomic profiling, by 29 

scaling the absolute values of a study sample relative to those of a universal reference sample, 30 

enables data integration in long-term measurements across difference laboratories or platforms. 31 

Thus, we constructed the ratio-based high-confidence reference datasets between two reference 32 

samples, providing "ground truth" for inter-laboratory proficiency test, which enables objective 33 

assessment of various metabolomic methods. Our study provided the community with rich 34 

resources and best practice for objective assessment of inter-laboratory measurements and data 35 

integration, ensuring reliable large-scale and longitudinal metabolomic profiling. 36 
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Introduction 38 

Metabolomics is a powerful tool to discover biomarkers distinguishing biological differences 39 

in metabolite abundances related to disease diagnosis, prognosis and treatment effects1,2. 40 

However, the differences among such biological states are generally subtle and influenced by 41 

technical variations introduced by instruments and processing procedures3–7. Moreover, in 42 

large metabolomics cohort studies, batch effects are inevitable when integrating multiple 43 

batches of datasets from long-term measurement or collaboration among multiple 44 

laboratories5,8–10. Thus, it is crucial to assure the reliability of each batch of metabolomics 45 

measurement, as well as the integration of multiple batches of data in long-term or cross-46 

laboratory studies so that the real signals (biological differences) can be distinguished from 47 

technical noises (unwanted variations)11–14. 48 

    Publicly available reference materials (RMs) are indispensable for inter-laboratory 49 

reliability assessment of current practices15–21. RMs in large quantities are suitable to distribute 50 

for community-wide use with the advantages of homogeneity, long-term stability, and 51 

availability of corresponding reference datasets12. At present, metabolite RMs have been 52 

mainly developed and distributed by the U.S. National Institute of Standards and Technology 53 

(NIST), involving many biospecimen types such as plasma, serum, urine, and liver22–24. By 54 

providing various types of RMs, as well as reference material suites from multiple biological 55 

states, the coverage of metabolites in the reference dataset has been improved, making it 56 

possible to compare and assess the reliability of data based on research objectives25,26. However, 57 

there is no renewable metabolomics reference materials suite from cultured cell lines, which 58 

represent an indispensable sample type in metabolomics studies. 59 

    Quality control (QC) metrics for objective performance evaluation are critically important. 60 

Reproducibility is one of the most widely used QC metrics, exemplified by correlations or 61 

coefficient of variation27,28. It helps to assess the level of unwanted variations introduced by 62 

the sample processing and detection procedures through repeated measurements of a universal 63 

reference material29. However, a high reproducibility from repeated measurements of a single 64 

sample does not guarantee a high resolution in identifying inherent biological differences (i.e., 65 

signals) among various sample groups. Identification of differentially expressed metabolites 66 

and development of predictive models to classy different sample groups are the two major goals 67 

for quantitative metabolomics technologies. Therefore, QC metrics pertinent to such research 68 

purposes are crucial to measure the ability to discriminate intrinsic biological differences 69 

among multiple sample groups30,31. Accuracy is another important QC metric, which is 70 
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assessed through comparison of the measured metabolite concentrations with the “ground truth” 71 

in the reference datasets25. However, it is unachievable for evaluating the accuracy of 72 

untargeted metabolomic profiling, wherein the quantitatively measured values are usually 73 

calculated as relative output of instrumental response, which is notoriously incomparable 74 

between batches, protocols, instruments, or laboratories. Objective assessment of 75 

quantification accuracy of untargeted metabolomics is essential to ensure the reliable detection 76 

of biological differences in clinical biomarker discovery. Therefore, it is crucial to develop 77 

quality metrics to objectively evaluate the reproducibility and accuracy of metabolomics 78 

datasets at the level of detecting biological differences despite the choice of measurement 79 

strategies32. 80 

Reliable integration of large-scale metabolomic data is a prerequisite for robust biomarker 81 

discovery and validation. Even if the intra-batch data is of high quality, batch effects are 82 

everywhere in large-scale metabolomics studies. In-house QC samples are widely used in long-83 

term measurement within a single laboratory. Profiling QC samples along with study samples 84 

helps to assess the stability of measurement in each batch, and to ensure efficient integration 85 

of multiple batches by removing batch effects introduced by unwanted variations over a time 86 

span27,33–38. A pooled QC sample in the form of a mixture of the study samples has been widely 87 

used in this scenario, but it failed to ensure reliable data integration, mainly because the “pooled 88 

QC sample” is not identical across studies or across laboratories 35,39,40 and the one QC sample 89 

based metrics are not pertinent to research purposes as mentioned above. Therefore, there is a 90 

lack of best practice for objective assessment of data integration using reference materials32, 91 

which may hinder the cross-batch, cross-laboratory, and cross-study data integration for 92 

exploring new biological insights.  93 

As part of the Quartet Project (chinese-quartet.org) to provide “ground truth” as well as 94 

best practices for the quality control and data integration of multiomics profiling, we 95 

established the publicly available Quartet metabolite RMs and reference datasets. The Quartet 96 

metabolite RMs enabled the research purpose related QC metric, i.e., the multi-sample based 97 

signal-to-noise ratio (SNR), for assessing the ability of discriminating the inherent biological 98 

differences among sample groups. In addition, we also demonstrated that the ratio-based 99 

metabolomic profiling using universal reference material(s) can enable the long-term and 100 

cross-laboratory data integration in large scale and multi-center metabolomics studies. 101 

 102 
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Results 103 

Overview of the study design 104 

In this study, we aim to provide the community with multi-sample based metabolite reference 105 

materials (RMs) suite and reference datasets for the inter-laboratory reliability assessment of 106 

metabolomic profiling using a wide range of analytical techniques. The Quartet metabolite 107 

RMs were prepared as part of the Quartet Project in which matched reference materials of DNA, 108 

RNA, proteins, and metabolites were simultaneously manufactured from the same batch of 109 

cultured cells. Four immortalized B-lymphoblastoid cell lines were derived from a Chinese 110 

Quartet family including father (F7), mother (M8), and their monozygotic twin daughters (D5 111 

and D6) (Fig. 1a). The cellular metabolites were extracted using methanol: water (6:1) solution 112 

(Extended Data Fig. 1). Eleven external controls were added into the cellular extracts at 113 

known amounts. These spike-ins include ten flora metabolites and one xenobiotic compound, 114 

sulfadimethoxine (Extended Data Table 1). The cellular extracts were aliquoted into 1000 115 

vials per cell line and then vacuum frozen dried. Each vial of the Quartet metabolite RM 116 

contains dried cellular metabolites extracted from approximately 106 cells, which are suitable 117 

for most LC-MS/MS based metabolomic profiling. Additionally, the metabolite RMs were 118 

formulated as dried cellular extracts, so they cannot be used for QC of sample extraction steps. 119 

For inter-laboratory reliability assessment of metabolomic profiling, we generated multi-120 

laboratory datasets using untargeted and targeted strategies (Fig. 1b). Three replicates of each 121 

Quartet sample were measured within a batch in six laboratories. In each laboratory, the 122 

metabolomic methods have been developed independently using different liquid 123 

chromatograph (LC) and mass spectrometer (MS) instruments, which is the current practice in 124 

the field of metabolomic profiling (Extended Data Table 2). One laboratory 4 (T-L4) used a 125 

targeted metabolomic method to calculate the metabolite concentration with standard 126 

calibration curves, and for other targeted metabolomic methods the quantification was 127 

performed by relative metabolite abundance detected by multiple reaction monitoring (MRM). 128 

For the untargeted metabolomic methods, quantification was accomplished by relative 129 

metabolite abundance detected by precursor ions. For long-term stability monitoring of the 130 

Quartet metabolite RMs, three replicates of each Quartet sample were measured monthly in T-131 

L4 for two years. Overall, 180 metabolomic profiles were collected. 132 

 133 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.01.514762doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514762
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

High variabilities in the qualitative and quantitative metabolomic 134 

measurements  135 

We evaluated the qualitative and quantitative performance of metabolomics using the Quartet 136 

reference materials in different laboratories. High variabilities were found in the qualitative 137 

and quantitative metabolomic measurements. 138 

The number of metabolites detected by each laboratory varied considerably, ranging from 139 

79 (T-L1) to 462 (T-L5, Fig. 2a). Untargeted metabolomic strategies are usually regarded as a 140 

tool for profiling all metabolites present in a sample. However, there was no obvious advantage 141 

in the number of detected metabolites using untargeted strategies. For example, the number of 142 

detected metabolites using untargeted profiling in U-L1 was only 204, whereas the targeted 143 

strategy in T-L5 detected the largest number of metabolites, up to 462. We also compared the 144 

number of detected metabolites using different filtering criteria. Coefficient of variance (CV) 145 

was used to evaluate the reproducibility of measurement from technical replicates of the same 146 

single sample, whereas intraclass correlation coefficient (ICC) was applied to measure the 147 

reliability of metabolites from aspects of reproducibility and discriminability of multiple 148 

samples in test-retest analysis. We defined the reproducibly and reliably detectable metabolites 149 

with combined criteria of CV < 30% and ICC > 0.4, and the percentages ranged from 36% to 150 

90%. A laboratory using untargeted strategies (U-L2) detected 402 metabolites, but only 36% 151 

of them were detected reproducibly and reliably (Fig. 2a). On the other side, although another 152 

laboratory using untargeted strategies (U-L3) detected 304 metabolites, 59% of these 153 

metabolites were recognized as reliable (Fig. 2a).  154 

Pearson correlation coefficient (PCC) of pairs of technical replicates indicated the 155 

reproducibility of quantitative profiles, while PCC of pairs of different Quartet metabolite RMs 156 

indicated the level of discriminability of biological differences. As shown in Fig. 2b, the PCC 157 

of technical replicates of D5 was high in each of the seven datasets, ranging from 0.989 to 158 

0.999. However, the PPC between D5 and D6 was also high, ranging from 0.945 to 0.989 (Fig. 159 

2c). For example, the PCC of technical replicates in T-L4 was 0.999, indicating high 160 

reproducibility. However, the PCC between different samples in the same laboratory was 0.989, 161 

indicating low discriminability. These results indicated that a high reproducibility of technical 162 

replicates does not guarantee a high resolution in identifying inherent biological differences 163 

(discriminability) between different sample groups (Fig. 2d). In addition, there was a negative 164 

correlation between PCC of technical replicates and (1-PCC) of difference sample groups (Fig. 165 

2e). 166 
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Identification of differential abundance metabolites (DAMs) is a major goal of biomarker 167 

discovery using metabolomic technologies. However, as shown in Fig. 2f where the volcano 168 

plots were used to display the magnitude of the fold change versus the statistical significance 169 

level, big differences in both the fold changes and statistical significance levels were seen when 170 

comparing the same sample pairs. The number of DAMs ranged from ~10 to ~120 in D5/D6, 171 

F7/D6, and M8/D6 comparisons (Fig. 2g). In two of the laboratories (T_L5 and U_L3) that 172 

identified the highest number of DAMs, most of the DAMs were more highly expressed in D6 173 

than in D5, F7, and M8 at T-L5. However, most of the DAMs were more highly expressed in 174 

D5, F7, and M8 than in D6 at U-L3. Taken together, these results implicated that achieving 175 

high inter-laboratory reproducibility of DAMs was challenging. 176 

 177 

Inter-laboratory reliability assessment by Quartet based signal-to-noise ratio   178 

Based on the Quartet multi-sample design, we designed a signal-to-noise ratio (SNR) metric to 179 

take reproducibility and discriminability into consideration simultaneously. SNR is calculated 180 

as the ratio of the averaged distance between different Quartet samples (“signal”) to the 181 

averaged distances between technical replicates for each sample (“noise”) on a 2D-PCA scatter 182 

plot (Fig. 3c)41,43, where a higher SNR indicates better reproducibility and discriminability (Fig. 183 

3). As expected, for a measurement to be considered reliable, the sample-to-sample difference 184 

should be bigger than variation of technical replicates. 185 

We computed the SNR for each batch of metabolomic profiling (4 sample × 3 replicates) 186 

using metabolites detected in all 12 samples in the batch. As shown in the PCA, the first two 187 

principal components demonstrated clear separation among the four reference samples in good-188 

quality metabolomic profiling data, but not in poor-quality data (Fig. 3a). Astonishingly, high 189 

variabilities in data quality were observed in these metabolomic datasets (range 4.6~27.1). 190 

After filtering with combined criteria (CV<30% and ICC>0.4) to retain the reliably detectable 191 

metabolites, the SNRs were slightly improved but the relative quality ranking of batches did 192 

not change obviously (Fig. 3b). Fig. 3d illustrated the SNRs calculated with metabolites 193 

filtered with different criteria, indicating the robustness of SNRs in evaluating the laboratory-194 

specific reliability with or without filtering metabolites. 195 

We also ranked the quality of the metabolomic datasets generated in different laboratories 196 

using different QC metrics, including the percentages of retained metabolites using different 197 

filtering criteria (CV<30%; ICC>0.4; CV<30% and ICC>0.4), PCC of technical replicates, the 198 
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numbers of DAMs, and SNR calculated with or without filtering. As shown in Fig. 3e, the 199 

inter-laboratory data quality rankings were not entirely concordant using different QC metrics. 200 

T-L5 outperformed others in terms of the numbers of discovered DAMs, but did not perform 201 

well by other QC metrics. These results implicated that more DAMs did not guarantee good 202 

data quality, which can be confound by false positive discovery. In addition, T-L4 performed 203 

well by PCC of technical replicates, but did not perform well by SNR or DAMs. These results 204 

suggested that correlation of replicates from one reference material did not have enough 205 

resolution in identifying the among-sample differences.  206 

The overall concordances among these QC results were also evaluated in Fig. 3f. QC results 207 

assessed by DAMs showed low concordance with all the other results, and the percentages of 208 

retained features after filtering (CV<30% and ICC>0.4) was highly correlated with SNR. These 209 

data suggested that the inter-laboratory data quality assessments were dependent on the QC 210 

metrics being used. PCC of technical replicates from one reference material and the number of 211 

DAMs between two reference materials did not show enough resolution in metabolomic 212 

profiling quality in identifying differences among sample groups. The Quartet multi-sample 213 

based SNR provided an objective QC metric for inter-laboratory reliability assessment for a 214 

wide range of metabolomic technologies. 215 

 216 

Ratio-based metabolite profiling enables data integration across laboratories 217 

To evaluate the reliability of metabolomic data integration, we examined the qualitative and 218 

quantitative performance of the integrated data generated in different laboratories. We first 219 

evaluated the qualitative concordance of detected metabolites among these datasets. However, 220 

most detected metabolites were reported by only one laboratory, and merely six metabolites 221 

were reported in all the seven metabolomic datasets (Fig. 4a). The intersection size of detected 222 

metabolites among different laboratories were shown in Extended Data Fig. 2, and there 223 

were only 58 metabolites detected by all the three global metabolomic profiling strategies. 224 

These results demonstrated the poor concordance of metabolite identification across different 225 

laboratories. 226 

To further evaluate the quantitative reliability of cross-laboratory integration of metabolomic 227 

data at absolute abundance level, we first compared the differences between PCCs of technical 228 

replicates and those between different reference sample groups. However, the differences 229 

between the two types of PCCs were not dramatic (Fig. 4b, Left). Hierarchical cluster analysis 230 
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(HCA) and principal component analysis (PCA) were also used to visualize the magnitude of 231 

technical variation of data integration at the absolute abundance level. The integrated cross-232 

laboratory metabolomic profiling data were first clustered by batch (laboratory) but not by 233 

different sample groups (Fig. 4c). Similar results were demonstrated in PCA (Fig. 4e), where 234 

the first principal component (PC1) clearly showed the dramatic differences between the six 235 

batches of data and the distinct Quartet samples cannot be separated. 236 

Importantly, after converting the absolute abundance data to a ratio scale relative to the same 237 

reference material (D6) on a metabolite-by-metabolite basis in each batch, significant 238 

differences between PCCs of technical replicates and those of different samples were found 239 

(Fig. 4b, Right). Similar results were supported by HCA and PCA plots (Figs. 4d and 4f). 240 

After ratio-based scaling, the metabolomic profiling relative to D6 first clustered by the four 241 

different Quartet sample groups (Fig. 4d). PCA plots showed clear separation of the four 242 

groups of reference samples (D5, D6, F7, and M8) and the drastic batch effects seen at the 243 

absolute abundance (Figs. 4c and 4e) largely disappeared. 244 

Our results showed that batch effects were prevalent in cross-laboratory metabolomic data 245 

integration at the absolute abundance level, presenting a real challenge for large-scale 246 

integrative analyses of multi-center data. Fortunately, the cross-laboratory data reliability can 247 

be greatly improved by converting the absolute abundance to a ratio-based metabolomic 248 

profiling using universal reference materials such as the Quartet metabolite reference materials.  249 

 250 

Ratio-based metabolite profiling improves data integration in long-term 251 

measurement 252 

In order to evaluate the long-term stability of metabolomic profiling, we generated a total of 253 

15 batches of Quartet metabolomic data in T-L4 over a period of two years. This targeted 254 

metabolomic strategy calculates the concentration of each metabolite with a specific standard 255 

calibration curve, and is referred to as the “absolute” quantification approach of metabolomic 256 

profiling and regarded as one of the most reliable ones. 257 

We first evaluated the qualitative concordance of detected metabolites in long-term 258 

measurement. We found that only 100 out of 148 metabolites (67.6%) were detected in all the 259 

15 batches of datasets (Fig. 5a). Thus, the stability of metabolite identification was still not 260 

ideal even for the absolute quantification metabolomics strategy. 261 
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To further evaluate the quantitative stability of long-term metabolomic data at the absolute 262 

concentration level, we first compared the differences between PCCs of technical replicates 263 

and those between different reference sample groups. There existed significant differences 264 

between the two types of PCCs (Fig. 5b). HCA and PCA were also used to visualize the 265 

magnitude of technical variation of data integration at the absolute concentration level. Most 266 

of the samples in the integrated long-term metabolomic dataset were clustered by different 267 

sample groups, but several M8 samples mis-clustered into the F7 sample group (Figs. 5d and 268 

5f). In addition, the Quartet signal-to-noise ratio was calculated to be 13.3 for the integrated 269 

dataset, indicating a good separation among different Quartet samples. 270 

We also integrated the long-term metabolomic datasets by converting the absolute 271 

concentration values to a ratio scale relative to those of the same reference material (D6) on a 272 

metabolite-by-metabolite basis per batch. The difference between PCCs of technical replicates 273 

and PCCs of different samples, a surrogate of discriminability, increased dramatically from 274 

0.009 (absolute, Fig. 5b) to 0.532 (relative, Fig. 5c). Similar results were observed by HCA 275 

and PCA plots (Figs. 5e and 5g). After ratio-based scaling, all the samples clustered correctly 276 

by different Quartet sample groups (Fig. 5e). The Quartet signal-to-noise ratio was improved 277 

slightly from 13.3 to 13.5 (Fig. 5g). Using the Levey-Jennings plot, we continuously 278 

monitored each metabolite measurement across runs (Extended Data Fig. 3). There were 57, 279 

14, and 10 metabolites deviated from the mean beyond ±3 SD for 3 RMs (D5, F7, M8), 280 

demonstrating evidence of systematic errors (Extended Data Fig. 3, up). After ratio-based 281 

scaling to D6 sample, the number of systematically deviated metabolites decreased to 8, 282 

11, and 15 for D5, F7, and M8, respectively (Extended Data Fig. 3, down). 283 

These results showed that the reliability of long-term metabolomic profiling measurement 284 

can still be improved by converting the absolute concentration values to a ratio scale using 285 

universal reference materials such as the Quartet metabolite reference materials.  286 

 287 

Construction of ratio-based Quartet metabolite reference datasets 288 

In order to provide “ground truth” reference datasets for evaluating the accuracy of 289 

metabolomic quantification, we constructed the ratio-based metabolomic reference 290 

datasets by scaling the absolute abundance values of D5, F7, and M8 relative to those of 291 

D6. Fig. 6a illustrated the workflow of consensus integration from seven metabolomics 292 

datasets from different laboratories. First, the metabolites detected in all three replicates in 293 
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each dataset were defined as detected metabolites, and the union of the detected metabolites in 294 

all the seven datasets were 939, 944, 948, and 948 for the four reference materials (D5, D6, F7, 295 

and M8). Secondly, 210 reproducibly detectable metabolites were retained in all the four 296 

reference samples in more than one dataset. Thirdly, ratio-based values were calculated using 297 

differential abundance metabolites (DAMs) for each sample pair (D5/D6, F7/D6, or M8/D6) 298 

with p < 0.05 in more than one dataset. Finally, the high-confidence ratio-based reference value 299 

for each metabolite is defined as a geometric mean of fold-changes calculated from each 300 

replicate of more than one dataset. After these filtrations, the first release of the Quartet ratio-301 

based metabolomic datasets (v.1.0) for each sample pair (D5/D6, F7/D6, and M8/D6) 302 

contained 47, 44, and 51 high-confidence metabolites, respectively (Extended Data Tables 3-303 

5).  304 

The union of high-confidence reference metabolites for the three sample pairs were 305 

annotated into 10 classes according to the HMDB database (https://hmdb.ca) (Fig. 6b). The 306 

most abundant class was carboxylic acids and derivatives, with 36 metabolites contained in the 307 

reference datasets. The ratio values for the high-confidence reference metabolites for each 308 

sample pair were summarized in Fig. 6c, covering a wide range of fold-changes from -4.4 to 309 

5.1. With the advance in metabolomic technologies and the generation of additional datasets, 310 

the Quartet metabolomic reference datasets will be updated periodically through the Quartet 311 

Data Portal46 (http://chinese-quartet.org). 312 

 313 

Best practice for inter-laboratory proficiency test of metabolomic profiling 314 

using the Quartet metabolite reference materials 315 

Inter-laboratory proficiency test is essential to achieve reliable metabolomic profiling. We 316 

recommend profiling the Quartet reference materials (e.g., four samples × three replicates) 317 

for method validation. We provided two types of QC metrics for quality assessment of 318 

quantitative metabolomic datasets. One is the Quartet multi-sample based SNR to measure 319 

the ability to discriminate the intrinsic biological differences among different reference 320 

samples. The other is the quantitative concordance between the evaluated batch of data 321 

and the reference datasets, calculated by relative correlation (RC). The recall of detected 322 

DAMs was recommended to qualitatively assess the accuracy against the Quartet reference 323 

datasets (Fig. 7a).  324 
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We evaluated the laboratory proficiency for each of the 22 batches of metabolomic 325 

datasets using targeted or untargeted strategies with SNR, RC, and recall. As shown in 326 

Fig. 7b, the relative quality rankings using different QC metrics were not concordant. The 327 

correlations among the three metric values were relatively low (Extended Data Fig. 4), 328 

therefore a total score would be better to rank the quality of metabolomic datasets. Using 329 

the total score calculated using SNR, RC, and recall with each metric value scaled from 0 330 

to 10, we found that the inter-laboratory proficiency was not dependent on the 331 

metabolomic strategy. The top one laboratory proficiency was achieved in U_L3 using an 332 

untargeted strategy. The three datasets with the worst laboratory proficiency (U-L1, T-L5, 333 

and U-L2) were generated in three laboratories using either untargeted or targeted 334 

strategies. These results supported the notion that the Quartet metabolite reference 335 

materials and related QC metrics were suitable for a wide range of metabolomic 336 

technologies using both targeted and untargeted strategies. In addition, the standardized 337 

QC workflow for inter-laboratory comparisons can be performed through the Quartet Data 338 

Portal46, where the relative quality ranking among the cumulative metabolomic datasets 339 

can be obtained. 340 

  341 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.01.514762doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514762
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Discussion 342 

As part of the Quartet project41, we provide the community the first suite of renewable 343 

metabolite reference materials, with matched DNA42, RNA43, and protein44 isolated from 344 

the same immortalized cell lines. The intended use of the Quartet metabolite reference 345 

materials includes intra-laboratory quality control, inter-laboratory proficiency test, and 346 

quality assurance of large-scale metabolomic data generation and integration.  347 

We also defined the ratio-based reference datasets as abundance ratios of sample pairs 348 

(D5/D6, F7/D6, and M8/D6) between the Quartet reference materials, providing “ground 349 

truth” for assessing the quantification accuracy of a wide range of metabolomic 350 

technologies. There are two clear advantages of the ratio-based reference datasets. First, 351 

the ratio-based quantification can mitigate technical variations seen at the absolute-level 352 

quantification, because the instrumental output can systematically change by different 353 

laboratory-developed methods41,45. Therefore, the Quartet ratio-based reference datasets 354 

are suitable for proficiency test and method validation of a wide range of targeted and non-355 

targeted metabolomic strategies using various LC-MS instruments. Secondly, the accuracy 356 

and reproducibility of the ratio-based metabolite qualification indicate the ability of a 357 

metabolomic measurement procedure in distinguishing the biological differences among 358 

sample groups, which is a basis for biomarker discovery and validation using metabolomic 359 

technologies. Although the v1.0 of the metabolite reference datasets covers only 92 360 

metabolites, the reference datasets will be updated periodically through the Quartet Data 361 

Portal (http://chinese-quartet.org/) community-wide participation46. Our study suggested a 362 

paradigm shift of defining the ground truth for assessing the accuracy of metabolomic 363 

profiling. 364 

The Quartet multi-sample based SNR is developed as an objective QC metric for 365 

assessing the ability in identifying intrinsic biological differences between various groups 366 

of samples, which is the basis for the development and application of metabolomic 367 

profiling based clinical diagnostics. Compared with the previously widely used one-368 

sample based technical reproducibility for quality assessment of quantitative profiling, the 369 

unique Quartet SNR guaranteed a high resolution in identifying serious quality issues. An 370 

obvious limitation of any “ground truth” dependent QC metrics is due to their reliance on 371 

easily detectable metabolites. However, the Quartet based SNR is applicable for assessing 372 

the reliability of global metabolomic profiling without considering the ground truth, 373 
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making it a complementary and broadly applicable approach for objective quality 374 

assessment. 375 

Using the Quartet metabolite reference materials for inter-laboratory proficiency testing, 376 

high variabilities of the qualitative and quantitative metabolomic measurements were 377 

observed across laboratories. We found that the best and worst performing batches were 378 

all generated using the untargeted metabolomics strategies. This result suggested that the 379 

intrinsic laboratory proficiency was critically important for developing in-house 380 

untargeted metabolomics strategies, consistent with a previous report47. In addition, even 381 

for an “absolute” quantification method using a targeted strategy that quantifies each 382 

metabolite by standard calibration curves within the same laboratory, clear technical 383 

variations were observed by continuously measuring the same Quartet reference materials 384 

over a long period of time. This result implicated that profiling reference materials in each 385 

batch along with the study samples help monitor long-term data quality and technical drift 386 

within a laboratory. 387 

Importantly, the multi-sample based SNR can also be used to objectively monitor and 388 

correct batch effects. To achieve reliable data integration from long-term and cross-laboratory 389 

large-scale metabolomics profiling, we recommend using universal reference materials per-390 

batch along with study samples. As long as the integrated datasets maintain the ability to 391 

differentiate the different Quartet samples, the reliability of the metabolomic data from the 392 

study samples for further exploratory metabolomic biomarker discovery is assured. 393 

Our study also demonstrated the potential utility of the Quartet reference materials as a 394 

universal reference sample to scale the absolute abundance to ratio-based metabolomic 395 

profiling. The ratio-based metabolomic profiling was suitable for internal quality control in 396 

longitudinal measurement within a laboratory, and it can also be used to calibrate the 397 

metabolomic profiling in multiple centers. Even if the metabolomic methods were developed 398 

using different wet-lab operation procedures on different LC-MS instruments, the ratio-based 399 

metabolomic data integration was reliable enough for differentiating the various Quartet 400 

reference materials. The intrinsic batch-effect resistant characteristics of the ratio-based 401 

profiling is also demonstrated by other quantitative omics profiling technologies, such as 402 

methylomics, transcriptomics, and proteomics41, 43, 45. 403 

Although we demonstrated the importance of using the Quartet metabolite reference 404 

materials and corresponding QC metrics in ensuring reliable biological discovery, there are 405 
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some limitations beyond the scope of this study. First, the Quartet metabolite reference 406 

materials were extracted cellular metabolites in the form of lyophilized power and could 407 

not be applied to in the QC of the sample preparation procedures. Moreover, the 408 

metabolites extracted from cells could not fully cover metabolites from other sources of 409 

biospecimen, such as plasma, serum and tumor tissues, which may hinder the wider 410 

application of the Quartet reference materials especially when the matrix of the study 411 

samples is largely different from cellular extractants. However, with the Quartet multi-412 

sample design, the reference data dependent and independent QC metrics could be used to 413 

comprehensively assess the system-specific reliability of biological discoveries. 414 

In summary, as an important part of the Quartet multiomics reference materials suites 415 

consisting DNA, RNA, proteins, and metabolites, the Quartet metabolite reference 416 

materials, the reference datasets, and the corresponding quality metrics help lay the 417 

foundation for reliable discovery of metabolomic differences through quality control of 418 

the intra- and inter-laboratory data generation and integration processes. 419 

 420 
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Methods 547 

Ethics approval and consent to participate 548 

The study was approved by the IRB (Institutional Review Board) of the School of Life 549 

Sciences, Fudan University (BE2050) and conformed to the principles set out in the 1975 550 

Declaration of Helsinki. Written informed consent to participate in multiomics research 551 

and allow collection of biospecimens was approved by the IRB and obtained from the 552 

Quartet family that includes monozygotic twin daughters (D5 and D6) and their parents 553 

(father, F7 and mother, M8) in Taizhou, Jiangsu Province, China. 554 

Quartet immortalized B-lymphoblastoid cell lines 555 

Quartet immortalized B-lymphoblastoid cell lines were established through the infection 556 

with Epstein-Barr virus (EBV)48 and culturing using the protocols described in the Quartet 557 

main paper41. Briefly, immortalized lymphoblastoid cell lines were obtained by isolating 558 

peripheral blood mononuclear cells (PBMCs), sorting naive B cells and infecting with 559 

EBV by centrifugation at 2000 rpm for 1 hour. Lymphoblastoid cell lines were cultured in 560 

RPMI 1640 supplemented with 15% of non-inactivated FBS and 1% Penicillin-Streptomycin. 561 

Flasks were incubated on the horizontally position at 37℃ under 5% CO2. Cell cultures were 562 

split every three days for maintenance as described in the literature49. Cells growing in 563 

suspension were centrifuged at 300 g for 5 min to obtain cell pellets and were washed twice 564 

with cold PBS, then store at -80℃. About 1×1011 cells were harvested for each cell line in 565 

the same batch to ensure that matched multiomics reference materials were extracted from 566 

the same batch of cultured cells. About 1.1×109 cells per cell line were used for generating 567 

Quartet metabolite reference materials. In all cases, all cell lines were handled in parallel 568 

using exactly the same reagents and equipment, and experiments were initiated at the same 569 

time-point of the day. 570 

Metabolite extraction 571 

 572 

Metabolites were extracted from EBV immortalized lymphoblastoid cell lines in L4 573 

(Laboratory 4). At first, we thawed cells (11 tubes per sample, 1×108 cells per tube) slowly 574 

on ice-bath to minimize potential sample degradation, and then added 2.4 mL ice cold methanol 575 

solution (methanol: water = 6:1) to each tube of samples. Then, the ice water bath was under 576 

ultrasonic treatment for 3 times, each time for 3 s, with an interval of 2 minutes, power 10%. 577 

Then we found that the cell mass at the bottom of the tube was completely broken by ultrasound 578 
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and appeared as white emulsion. Finally, after centrifugation at 4500 g, 4℃, 20 minutes 579 

(Allegra X-15R, Beckman Coulter, Inc., Indianapolis, IN, USA), we transferred supernatant 580 

containing extracted metabolites to a new centrifuge tube. 581 

Quartet metabolite reference materials 582 

Eleven external controls were spiked into the supernatant at known concentrations as internal 583 

standards, including ten metabolites commonly found in plasma (Indoleacetic acid, 584 

Taurocholic acid, Glycocholic acid, Cholic acid, Tauroursodeoxycholic acid, 585 

Taurodeoxycholic acid, Glycoursodeoxycholic acid, Glycodeoxycholic acid, Ursodeoxycholic 586 

acid, and Deoxycholic acid) and one drug sulfadimethoxine (Extended Data Table 1). For each 587 

Quartet sample, supernatant containing metabolites extracted from 1.1×109 cells and 11 spike-588 

ins were aliquoted into 1,000 vials using an automated liquid handler (Biomek 4000, Beckman 589 

Coulter, Inc., Brea, California, USA), with 5 μL solution per tube. After centrifugation at 4℃ 590 

and under vacuum (Labconco, Kansas City, Missouri, USA) for 50 minutes, water was 591 

removed, and we obtained the Quartet metabolite reference materials in the form of lyophilized 592 

power. Reference materials from different Quartet samples were clearly marked with 593 

differently colored dispensing caps and labels. The tube cap colors of the reference materials 594 

D5, D6, F7, and M8 are blue, green, yellow, and red, respectively. We stored the Quartet 595 

metabolite reference materials at -80℃ and shipped with dry ice. 596 

Sample preparation 597 

We distributed 12 vials (triplicates for each Quartet sample) of the Quartet metabolite reference 598 

materials as a batch to each laboratory and offered basic guidance on sample preparation. The 599 

same sample running order (D5-1, D6-1, F7-1, M8-1, D5-2, D6-2, F7-2, M8-2, D5-3, D6-3, 600 

F7-3, and M8-3) in each batch was maintained among all laboratories.  601 

T-L1/U-L1 602 

Samples were first centrifuged before the researchers added 200 µL acetonitrile-water (1:1, v/v) 603 

to reconstitute. The solution was then centrifuged at 14,000 rcf for 15 min at 4°C to extract 604 

supernatant for MS analysis.  605 

U-L2 606 

The researchers added 100 μL of 50% acetonitrile to reconstitute (containing isotope-labeled 607 

internal standard mixture). The solution was vortexed for 30 s, and sonicated in ice-water bath 608 
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for 10 min. After centrifugation at 13000 rpm for 15 min at 4 °C, the supernatant of 70 μL was 609 

transferred into the sample bottle and tested on the machine.  610 

U-L3 611 

The researchers added 500 μL of ice-cold 80% methanol solution to dissolve the sample. Then 612 

the solution was divided into five fractions: two for analysis by two separate reverse phases 613 

(RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one for 614 

analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-615 

MS/MS with negative ion mode ESI, and one sample was reserved for backup. Samples were 616 

placed briefly on a TurboVap® (Zymark) to remove the organic solvent.  The sample extracts 617 

were stored overnight under nitrogen before preparation for analysis.  618 

T-L4 619 

The researchers added 350 μL of ice-cold 50% methanol solution to dilute the sample. The 620 

plate was then stored at 20°C for 20 minutes and then centrifuged at 4000g for 30 minutes at 621 

4°C. They transferred 135 μL of supernatant to a new 96-well plate, which contained 15 μL of 622 

internal standard per well. Serial dilutions of derivatized standards were added to the left wells. 623 

The plate was sealed for LC-MS analysis.  624 

T-L5 625 

The researchers added the 500 μL of 10% methanol solution to dissolve the powder, and then 626 

injected samples into LC-MS for analysis.  627 

T-L6 628 

The researchers added 100 µL reconstituted solution (acetonitrile: water=1:1) of HPLC-grade 629 

to the 1.5 mL EP tube containing the dried metabolites, and vortexed for 1 min; centrifuged at 630 

15,000 rpm for 10 min at 4°C (Note: the centrifuge needs to be pre-cooled); used a 200 µL 631 

pipette to draw about 60 µL of the supernatant and transfer to the injection vial, making sure 632 

that there are no air bubbles at the bottom of the liner or the injection vial; mixed the remaining 633 

liquid in the same sample EP tube (took an equal volume) into the same 1.5 mL EP tube, 634 

centrifuged at 15,000 rpm for 10 min at 4°C, transferred the supernatant to the injection vial as 635 

QC sample (Note: the whole process needs to be operated on ice). 636 

Laboratory instrument 637 

Each laboratory used different HPLC/UPLC or MS/MS platforms to detect and quantify 638 

metabolites (details in Extended Data Table 2). L1 used Waters UPLC-MRM with AB SCIEX 639 
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QTRAP 5500 mass spectrometers by targeted strategy (T-L1) and Agilent UHPLC with AB 640 

SCIEX Triple TOF 6600 mass spectrometers by untargeted strategy (U-L1). L2 used HPLC 641 

with SCIEX mass spectrometers by untargeted strategy (U-L2). L3 used Waters UPLC with 642 

Thermo Fisher Q Exactive and Orbitrap mass spectrometers by untargeted strategy (U-L3). L4 643 

used Waters UPLC with a Waters Xevo TQ-S mass spectrometer by targeted strategy (T-L4). 644 

L5 and L6 used AB SCIEX Exion UPLC-MRM with AB SCIEX QTRAP® 6500+ mass 645 

spectrometers by targeted strategy (T-L5 and T-L6).  646 

Data processing 647 

Raw data acquired using UPLC-MS were pre-processed by each participating laboratory to 648 

provide structured data in .xls format for subsequent statistical analysis. Chromatography-MS 649 

data for a single sample are a matrix of m/z versus retention time (or index) versus ion current 650 

or intensity.  651 

T-L1 652 

MRM raw data were extracted by MRMAnalyzer (R), and the peak area of each metabolite 653 

was obtained. More detailed description can be found in reference50. 654 

U-L1 655 

The raw data was converted into mzXML format by ProteoWizard. The researchers used the 656 

XCMS program for peak alignment, retention time correction and peak area extraction. For 657 

structure identification of metabolites, accurate mass matching (<25 ppm) and secondary 658 

spectrum matching were used to search the laboratory's inhouse-built database.  659 

U-L2  660 

The researchers used ProteoWizard software to convert the original mass spectrum into 661 

mzXML format and XCMS for retention time correction, peak identification, peak extraction, 662 

peak integration, and peak alignment. An inhouse-built secondary mass spectrometry database 663 

was used in parallel to identify the peaks.  664 

U-L3 665 

The researchers used ThermoFisher Scientific software Xcalibur QuanBrowser for peak 666 

detection and integration. A detailed description of data processing including chromatographic 667 

alignment, QC practices and compound identification can be found in reference51.  668 
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T-L4 669 

The raw data files generated by UPLC-MS/MS were processed using the QuanMET software 670 

(v2.0, Metabo-Profile, Shanghai, China) to perform peak integration, calibration, and 671 

quantitation for each metabolite.  672 

T-L5  673 

The detection of the experimental samples using MRM (Multiple Reaction Monitoring) were 674 

based on T-L5 inhouse database. The Q3 was used for metabolite quantification. The Q1, Q3, 675 

RT (retention time), DP (declustering potential) and CE (collision energy) were used for 676 

metabolite identification. The data files generated by HPLC-MS/MS were processed using the 677 

SCIEX OS Version 1.4 to integrate and correct the peak. The main parameters were set as 678 

follows: minimum peak height, 500; signal/noise ratio, 5; Gaussian smooth width, 1. The area 679 

of each peak represents the relative content of the corresponding metabolite.  680 

T-L6 681 

The MRM raw data were extracted by OS-MQ software (AB SCIEX), and the peak area value 682 

of each metabolite was obtained.  683 

Data integration 684 

We collected 264 metabolomics profiles at the metabolite level from all laboratories, with each 685 

laboratory provided HMDB (Human Metabolome Database, https://hmdb.ca) IDs 686 

corresponding to the metabolites.  687 

We integrated these metabolomics profiles first by their HMDB IDs and then by metabolite 688 

names. Metabolites were annotated into different classes with the information downloaded 689 

from HMDB (https://hmdb.ca/system/downloads/current/hmdb_metabolites.zip, released on 690 

2021-11-17). 691 

Performance metrics 692 

Based on Quartet metabolite RMs and RDs, we constructed three types of performance metrics 693 

to comprehensively evaluate the reproducibility and accuracy of each laboratory in detecting 694 

biological differences.  Among them, signal-to-noise ratio (SNR) was designed to evaluate the 695 

ability of each laboratory in extracting different Quartet samples from technical replicates. 696 

Recall of differential abundance metabolites (DAMs) and relative correlation (RC) were 697 
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computed based on the reference datasets and were designed to evaluate the ability and 698 

accuracy in detection of biological differences among Quartet sample pairs. 699 

Signal-to-noise ratio (SNR) 700 

We measured SNR through comparing the average Euclidean distances between different 701 

Quartet samples (“signals”) to those between different technical replicates of the same Quartet 702 

sample(“noises”) computed based on the first two principal components of PCA, which was 703 

same to other companion articles from the Quartet multiomics project. SNR was defined as the 704 

following equation: 705 

𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(
𝑚 × (𝑛

2
)

(𝑚
2

) × 𝑛 × 𝑛
×

∑ ∑ ∑ ∑ ∑ 𝑊𝑝
2
𝑝=1 (𝑃𝐶𝑝,𝑖,𝑥 − 𝑃𝐶𝑝,𝑗,𝑦)2𝑛

𝑗=1
𝑛
𝑖=1

𝑚−𝑥
𝑦=1

𝑚
𝑥=1

∑ ∑ ∑ ∑ 𝑊𝑝
2
𝑝=1 (𝑃𝐶𝑝,𝑖,𝑥 − 𝑃𝐶𝑝,𝑗,𝑥)2𝑛−𝑥

𝑗=1
𝑛
𝑖=1

𝑚
𝑥=1

) 706 

Here, 𝑚 was the number of different groups of samples, and 𝑛 was the number of technical 707 

replicates of the same sample group. The variances explained by the pth principal component 708 

(𝑃𝐶𝑝) was noted as 𝑊𝑝 . 𝑃𝐶𝑝,𝑖,𝑥, 𝑃𝐶𝑝,𝑗,𝑥 and 𝑃𝐶𝑝,𝑗,𝑦represent the value of ith and jth replicate of 709 

sample 𝑥 or sample 𝑦 on pth principal component, respectively. 710 

Recall 711 

We computed Recall for the assessment of qualitative agreement with the RDs, as the fraction 712 

of the differential abundance metabolites (DAMs) in RDs that are successfully retrieved. Here 713 

recall is the number of measured DAMs (p < 0.05, t test) divided by the number of DAMs 714 

should be identified as RDs. 715 

Relative correlation (RC) 716 

We measured RC for the assessment of quantitative consistency with the RDs. First, we 717 

calculated the average log2 abundance of each metabolite of each Quartet sample. Based on 718 

the average log2 abundance, we computed relative abundance values of metabolites of each 719 

sample pair (log2 ratios to D6) overlapped with the RDs in each laboratory. Finally, the Pearson 720 

correlation was computed between the measured relative abundance values and consensual 721 

ones in the RDs. 722 

Statistical analysis 723 

We used R version 4.0.5 and associated packages to perform all statistical analysis. All 724 

statistical tests described in this work were two-sided. Tests involving comparisons of 725 

distributions were done using ‘wilcox.test’ unless otherwise specified. Intraclass correlation 726 

coefficient (ICC) was computed based on package irr (v0.84.1), using two-way model and 727 
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estimated by the agreement between raters to compute differences in judges' mean ratings. We 728 

plotted all results based on R package ggplot2 (v3.3.6), cowplot (v1.1.1), ComplexUpset 729 

(v1.3.3), ggpubr (v0.4.0), ggsci (v2.9) and GGally (v2.1.2). 730 

Materials Availability 731 

The Quartet metabolite reference materials can be requested for research use from the 732 

Quartet Data Portal (http://chinese-quartet.org/) under the Administrative Regulations of 733 

the People’s Republic of China on Human Genetic Resources. 734 

Data and Code Availability  735 

The Quartet metabolite Reference datasets could also be downloaded from the Quartet 736 

Data Portal. Metabolomics profiles generated from all laboratories included in this article 737 

could be downloaded from National Omics Data Encyclopedia (NODE project 738 

OEP000970, https://www.biosino.org/node/project/detail/OEP000970) under the 739 

regulation of the Human Genetic Resources Administration of China (HGRAC). 740 

Acknowledgments 741 

This study was supported in part by National Key R&D Project of China 742 

(2018YFE0201603 and 2018YFE0201600), the National Natural Science Foundation of 743 

China (31720103909 and 32170657), Shanghai Municipal Science and Technology Major 744 

Project (2017SHZDZX01), State Key Laboratory of Genetic Engineering (SKLGE-2117), 745 

and the 111 Project (B13016). Some of the illustrations in this paper were created with 746 

BioRender.com. 747 

Author contributions 748 

Y.Z., L.S., and Y.Y. conceived and oversaw the study. Y.Z., P.Z., K.Z., H.W., W.H. 749 

cultured the cell lines, prepared or characterized the metabolite reference materials. Y.Z., 750 

K.Z., and Y.X. coordinated and/or performed metabolomic data generation. N.Z., P.Z., 751 

Q.C., Y.L., L.R., J.Y., Y.Y., Y.Z., and L.S. performed data analysis and/or interpretation. 752 

J.Y. and Y.L. managed the datasets. N.Z., Y.Z., and L.S. wrote the manuscript. All authors 753 

reviewed and approved the manuscript.  754 

Competing interest declaration 755 

The authors declare no competing financial interests. 756 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.01.514762doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514762
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

Figures  757 

 758 

Fig. 1 | Study overview. 759 

a, Preparation of the Quartet metabolite reference materials. Four B-lymphoblastoid cell lines 760 

(LCLs) of a family quartet including Father (F7), Mother (M8), and monozygotic twin 761 

daughters (D5 and D6) were used for extracting metabolites. Eleven spike-ins were added to 762 

the cell extract and aliquoted into 1,000 tubes per-sample. b, Data generation. LC-MS based 763 

targeted (T-) and untargeted (U-) metabolomic datasets were generated in different laboratories 764 

for inter-laboratory reliability assessment. Long-term monitoring was conducted using 765 

untargeted strategy within a laboratory (T-L4) for two years. 766 

 767 

 768 

 769 

 770 

 771 

 772 

  773 
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 774 

Fig. 2 | High variabilities in the qualitative and quantitative metabolomic 775 

measurements. 776 

a, Numbers of detected metabolites in each metabolomic measurement using different filtering 777 

criteria, including no filtering (all detected metabolites in any of the samples), no missing 778 

(metabolites detected in all 12 samples); CV (Coefficient of variance) < 30%; ICC (intraclass 779 

correlation coefficient) > 0.04; CV < 30% & ICC > 0.04. b, Reprehensive scatter plots of 780 

technical replicates (D5-1 and D5-2). c, Reprehensive scatter plots of different samples (D5-1 781 

and D6-1). d, Pearson correlation coefficient (PCC) of pairs of technical replicates and of 782 

different Quartet samples in each measurement; e, Negative correlation between 783 

reproducibility (PCC of technical replicates) and discriminability (1-PCC of different samples). 784 

f, Differential abundance metabolites (DAMs) analysis for three sample pairs. Volcano plots 785 

were used to display the magnitude of the fold change versus the statistical significance level 786 

in each measurement. g, Numbers of DAMs identified for three sample pairs in each 787 

measurement. 788 

 789 

  790 
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 791 

Fig. 3 | Inter-laboratory reliability assessment by Quartet based Signal-to-792 

Noise ratio. 793 

a and b, Reliability assessment using signal-to-noise ratio (SNR) in different laboratories with 794 

(a) or without (b) filtration. The results were visualized by PCA plots. The number of features 795 

used and the calculated SNR were shown above each plot. c, Schematic diagram of SNR 796 

calculated as the ratio of the averaged distance between different Quartet samples (“signal”) to 797 

the averaged distances between technical replicates for each sample (“noise”) on a 2D-PCA 798 

scatter plot. d, SNRs calculated with metabolites filtered with different criteria. e, The inter-799 

laboratory data quality was ranked using different QC metrics, including the percentages of 800 

retained metabolites using different filtering criteria (CV<30%; ICC>0.4; CV<30% and 801 

ICC>0.4), PCC of technical replicates, the number of DAMs, and SNR calculated with or 802 

without filtering. f, The concordances of data quality ranking using different QC metrics. 803 
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 804 

Fig. 4 | Ratio-based metabolite profiling enables data integration across 805 

laboratories.  806 

a, Qualitative concordance of metabolite identification. The numbers of metabolites detected 807 

in different batches of metabolomic datasets were shown. b, Pearson correlation 808 

coefficients (PCCs) of pairs of technical replicates and of different Quartet samples were 809 

compared using quantitative datasets at abundance level or ratio to D6 level. c and d, Cross-810 

lab data integration was visualized by hierarchical cluster analysis (HCA) at absolute 811 

abundance level (c) and relative ratio to D6 level (d). e and f, Cross-lab data integration 812 

assessment using signal-to-noise ratio (SNR) by principal component analysis (PCA) at 813 

absolute abundance level (e) and relative ratio to D6 level (f).   814 
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 815 

Fig. 5 | Ratio-based metabolite profiling improves data integration in long-816 

term monitoring. 817 

a, Qualitative concordance of metabolite identification. The numbers of metabolites detected 818 

in each batch of metabolomic datasets were shown. b and c, Pearson correlation 819 

coefficients (PCCs) of pairs of technical replicates and of different Quartet samples were 820 

compared using quantitative datasets at abundance level (b) or ratio to D6 level (c). d and e, 821 

Cross-batch data integration was visualized by hierarchical cluster analysis (HCA) at absolute 822 

abundance level (d) and relative ratio to D6 level (e). e and f, Cross-batch data integration 823 

assessment using signal-to-noise ratio (SNR) by principal component analysis (PCA) at 824 

absolute abundance level (f) and relative ratio to D6 level (g). 825 
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 826 

Fig. 6 | Integration of ratio-based Quartet metabolite reference datasets.  827 

a, The workflow of integration of ratio-based metabolite reference datasets. b, The number of 828 

metabolites in high-confidence reference datasets annotated into 10 classes according to the 829 

HMDB database. b, The distribution histogram of fold changes of the high-confidence 830 

reference metabolites for three sample pairs. 831 
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 833 

Fig. 7 | Best practice for inter-laboratory proficiency test of metabolomic 834 

profiling using Quartet metabolite reference materials. 835 

a, Flowchart of an inter-laboratory proficiency test using the Quartet metabolite reference 836 

materials. b, Inter-laboratory proficiency for each of the 22 batches of metabolomic datasets 837 

using targeted or untargeted strategies with SNR, RC, and recall. The overall performance was 838 

classified into four levels (Great, Good, Fair, and Bad) 839 

  840 
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Extended data 841 

 842 

 843 

Extended Data Fig. 1 | Steps of the preparation of Quartet metabolite 844 

reference materials.  845 
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No. External controls Amount (pmol) Comment 

1 Indoleacetic acid 25 Intestinal bacteria metabolite 

2 Taurocholic acid 1 

Primary bile acids 3 Glycocholic acid 5 

4 Cholic acid 25 

5 Tauroursodeoxycholic acid 2.5 

Secondary bile acids 

6 Taurodeoxycholic acid 7.5 

7 Glycoursodeoxycholic acid 1 

8 Glycodeoxycholic acid 0.5 

9 Ursodeoxycholic acid 25 

10 Deoxycholic acid 50 

11 Sulfadimethoxine 5 Sulfa antibiotics 

Extended Data Table 1 | External controls spiked in the Quartet metabolite 847 

reference materials. 848 
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 849 

Lab Strategies 
Liquid Chromatograph 

(LC) Instrument 
Chromatographic Column 

Mass Spectrometer 

(MS) Instrument 
Metabolites 

Coverage 

T-L1 
Targeted 

(MRM based) 
Waters ACQUITY UPLC 

Waters ACQUITY UPLC BEH Amide 

(l.7μm, 2.1 x 100 mm column) 

AB SCIEX QTRAP 

5500 
79 

U-L1 Untargeted 
Agilent Technologies 1290 

Infinity UHPLC 

Waters ACQUITY UPLC BEH Amide 

(1.7µm, 2.1 × 100 mm column) 

AB SCIEX Triple TOF 

6600 
203 

U-L2 Untargeted 
Agilent Technologies 1290 

Infinity UHPLC 

Waters ACQUITY UPLC BEH Amide 

(1.7µm, 2.1 x 100 mm column) 

AB SCIEX Triple TOF 

6600 
400 

U-L3 Untargeted Waters ACQUITY UPLC 
Waters ACQUITY UPLC BEH Amide 

(1.7µm, 2.1 x 150 mm column) 

Thermo Fisher 

Q Exactive and 

Orbitrap 

262 

T-L4 Targeted Waters ACQUITY UPLC 
Waters ACQUITY UPLC BEH C18 (1.7µM,  

2.1 × 100 mm column) 
Waters Xevo TQ-S 148 

T-L5 
Targeted 

(MRM based) 
AB SCIEX ExionLC 

Waters ACQUITY UPLC HSS T3 (1.8µM,  

2.1 × 100 mm column) and BEH C8 (1.7µm, 

2.1 × 100 mm column) 

AB SCIEX QTRAP 

6500+ 
462 

T-L6 
Targeted 

(MRM based) 
AB SCIEX ExionLC 

Waters XBridge BEH Amide (3.5µm, 4.6 × 

100mm column)  

AB SCIEX QTRAP 

6500+ 
207 

 850 

Extended Data Table 2 | Experimental methods of metabolomics profiling in each dataset. 851 
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HMDB ID Metabolite name 
Fold 

change 
KEGG ID Class 

HMDB0000902 NAD 3.23 C00003 (5'->5')-dinucleotides 

HMDB0001173 5'-Methylthioadenosine 1.82 C00170 5'-deoxyribonucleosides 

HMDB0001185 S-Adenosylmethionine 1.57 C00019 5'-deoxyribonucleosides 

HMDB0000714 Hippuric acid -1.81 C01586 Benzene and substituted derivatives 

HMDB0000001 1-Methylhistidine 1.49 C01152 Carboxylic acids and derivatives 

HMDB0000052 Argininosuccinic acid 2.9 C03406 Carboxylic acids and derivatives 

HMDB0000092 Dimethylglycine -1.29 C01026 Carboxylic acids and derivatives 

HMDB0000159 L-Phenylalanine -1.67 C00079 Carboxylic acids and derivatives 

HMDB0000161 L-Alanine -1.37 C00041 Carboxylic acids and derivatives 

HMDB0000187 L-Serine 1.52 C00065 Carboxylic acids and derivatives 

HMDB0000191 L-Aspartic acid 2.21 C00049 Carboxylic acids and derivatives 

HMDB0000202 Methylmalonic acid 1.44 C02170 Carboxylic acids and derivatives 

HMDB0000214 Ornithine 1.97 C00077 Carboxylic acids and derivatives 

HMDB0000254 Succinic acid 1.38 C00042 Carboxylic acids and derivatives 

HMDB0000267 Pyroglutamic acid -1.76 C01879 Carboxylic acids and derivatives 

HMDB0000517 L-Arginine 2.02 C00062 Carboxylic acids and derivatives 

HMDB0000883 L-Valine -1.29 C00183 Carboxylic acids and derivatives 

HMDB0000904 Citrulline -2.55 C00327 Carboxylic acids and derivatives 

HMDB0001325 N6,N6,N6-Trimethyl-L-lysine 1.83 C03793 Carboxylic acids and derivatives 

HMDB0001511 Phosphocreatine 1.48 C02305 Carboxylic acids and derivatives 

HMDB0001539 Asymmetric dimethylarginine 2.49 C03626 Carboxylic acids and derivatives 

HMDB0000300 Uracil -1.39 C00106 Diazines 

HMDB0000086 Glycerophosphocholine 5.18 C00670 Glycerophospholipids 

HMDB0000126 Glycerol 3-phosphate 2.1 C00093 Glycerophospholipids 

HMDB0000190 L-Lactic acid -1.93 C00186 Hydroxy acids and derivatives 

HMDB0001311 D-Lactic acid -2.62 C00256 Hydroxy acids and derivatives 

HMDB0000157 Hypoxanthine -1.36 C00262 Imidazopyrimidines 

HMDB0000292 Xanthine -2.4 C00385 Imidazopyrimidines 

HMDB0001096 Carbamoyl phosphate 1.4 C00169 Organic phosphoric acids and derivatives 

HMDB0000097 Choline -1.3 C00114 Organonitrogen compounds 
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HMDB0000210 Pantothenic acid 1.51 C00864 Organooxygen compounds 

HMDB0000230 N-Acetylneuraminic acid -3.76 C19910 Organooxygen compounds 

HMDB0000247 Sorbitol -2.47 C00794 Organooxygen compounds 

HMDB0000613 Erythronic acid -1.92  Organooxygen compounds 

HMDB0000765 Mannitol -2.41 C00392 Organooxygen compounds 

HMDB0000855 Nicotinamide riboside 2.09 C03150 Organooxygen compounds 

HMDB0000779 Phenyllactic acid -1.72 C01479 Phenylpropanoic acids 

HMDB0000133 Guanosine -1.68 C00387 Purine nucleosides 

HMDB0000195 Inosine -1.57 C00294 Purine nucleosides 

HMDB0000299 Xanthosine 1.62 C01762 Purine nucleosides 

HMDB0000045 Adenosine monophosphate 1.46 C00020 Purine nucleotides 

HMDB0000089 Cytidine -1.33 C00475 Pyrimidine nucleosides 

HMDB0000296 Uridine -1.41 C00299 Pyrimidine nucleosides 

HMDB0000788 Orotidine -2.54 C01103 Pyrimidine nucleosides 

HMDB0000095 Cytidine monophosphate 1.97 C00055 Pyrimidine nucleotides 

HMDB0000288 Uridine 5'-monophosphate 1.95 C00105 Pyrimidine nucleotides 

HMDB0001564 CDP-ethanolamine 1.82 C00570 Pyrimidine nucleotides 

Extended Data Table 3 | Reference datasets of D5toD6. 853 
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HMDB ID Metabolite name 
Fold 

change 
KEGG ID Class 

HMDB0000902 NAD 1.58 C00003 (5'->5')-dinucleotides 

HMDB0000462 Allantoin 1.42 C01551 Azoles 

HMDB0000056 beta-Alanine 1.38 C00099 Carboxylic acids and derivatives 

HMDB0000064 Creatine 1.33 C00300 Carboxylic acids and derivatives 

HMDB0000072 cis-Aconitic acid 1.5 C00417 Carboxylic acids and derivatives 

HMDB0000094 Citric acid 1.66 C00158 Carboxylic acids and derivatives 

HMDB0000112 gamma-Aminobutyric acid -1.63 C00334 Carboxylic acids and derivatives 

HMDB0000148 L-Glutamic acid 1.29 C00025 Carboxylic acids and derivatives 

HMDB0000176 Maleic acid 1.37 C01384 Carboxylic acids and derivatives 

HMDB0000177 L-Histidine -1.43 C00135 Carboxylic acids and derivatives 

HMDB0000182 L-Lysine 1.48 C00047 Carboxylic acids and derivatives 

HMDB0000202 Methylmalonic acid 1.77 C02170 Carboxylic acids and derivatives 

HMDB0000254 Succinic acid 1.85 C00042 Carboxylic acids and derivatives 

HMDB0000446 N-alpha-Acetyl-L-lysine 1.38 C12989 Carboxylic acids and derivatives 

HMDB0000517 L-Arginine 1.37 C00062 Carboxylic acids and derivatives 

HMDB0000562 Creatinine 1.29 C00791 Carboxylic acids and derivatives 

HMDB0000766 N-Acetyl-L-alanine 1.31  Carboxylic acids and derivatives 

HMDB0001511 Phosphocreatine 1.77 C02305 Carboxylic acids and derivatives 

HMDB0000235 Thiamine 1.78 C00378 Diazines 

HMDB0000300 Uracil 1.36 C00106 Diazines 

HMDB0000201 L-Acetylcarnitine -1.37  Fatty Acyls 

HMDB0000222 Palmitoylcarnitine -1.6 C02990 Fatty Acyls 

HMDB0000086 Glycerophosphocholine 1.28 C00670 Glycerophospholipids 

HMDB0000156 Malic acid 1.76 C00149 Hydroxy acids and derivatives 

HMDB0000190 L-Lactic acid 1.58 C00186 Hydroxy acids and derivatives 

HMDB0000157 Hypoxanthine 1.28 C00262 Imidazopyrimidines 

HMDB0000292 Xanthine 1.58 C00385 Imidazopyrimidines 

HMDB0000935 Uridine diphosphate glucuronic acid 2.45 C00167 Lactones 

HMDB0000062 L-Carnitine 1.39 C00318 Organonitrogen compounds 

HMDB0001257 Spermidine 1.63 C00315 Organonitrogen compounds 
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HMDB0000210 Pantothenic acid 1.55 C00864 Organooxygen compounds 

HMDB0000613 Erythronic acid 1.53  Organooxygen compounds 

HMDB0000855 Nicotinamide riboside 3.09 C03150 Organooxygen compounds 

HMDB0000217 NADP 1.59 C00006 Phenols 

HMDB0000299 Xanthosine 2.22 C01762 Purine nucleosides 

HMDB0000175 Inosinic acid 1.5 C00130 Purine nucleotides 

HMDB0001554 Xanthylic acid 2.01 C00655 Purine nucleotides 

HMDB0000229 Nicotinamide ribotide 1.84 C00455 Pyridine nucleotides 

HMDB0000296 Uridine 1.38 C00299 Pyrimidine nucleosides 

HMDB0000286 Uridine diphosphate glucose 1.49 C00029 Pyrimidine nucleotides 

HMDB0000288 Uridine 5'-monophosphate 1.67 C00105 Pyrimidine nucleotides 

HMDB0000290 Uridine diphosphate-N-acetylglucosamine 2.18 C00043 Pyrimidine nucleotides 

HMDB0000295 Uridine 5'-diphosphate 1.91 C00015 Pyrimidine nucleotides 

HMDB0000653 Cholesterol sulfate -1.32 C18043 Steroids and steroid derivatives 

Extended Data Table 4 | Reference datasets of F7toD6. 855 
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HMDB ID Metabolite name 
Fold 

change 
KEGG ID Class 

HMDB0001173 5'-Methylthioadenosine 1.78 C00170 5'-deoxyribonucleosides 

HMDB0001185 S-Adenosylmethionine 1.98 C00019 5'-deoxyribonucleosides 

HMDB0000462 Allantoin 1.64 C01551 Azoles 

HMDB0000001 1-Methylhistidine -1.37 C01152 Carboxylic acids and derivatives 

HMDB0000043 Betaine 1.28  Carboxylic acids and derivatives 

HMDB0000056 beta-Alanine 3.48 C00099 Carboxylic acids and derivatives 

HMDB0000092 Dimethylglycine 1.26 C01026 Carboxylic acids and derivatives 

HMDB0000094 Citric acid 1.91 C00158 Carboxylic acids and derivatives 

HMDB0000112 gamma-Aminobutyric acid 1.43 C00334 Carboxylic acids and derivatives 

HMDB0000128 Guanidoacetic acid 1.58 C00581 Carboxylic acids and derivatives 

HMDB0000148 L-Glutamic acid 1.42 C00025 Carboxylic acids and derivatives 

HMDB0000158 L-Tyrosine -1.77 C00082 Carboxylic acids and derivatives 

HMDB0000159 L-Phenylalanine -1.76 C00079 Carboxylic acids and derivatives 

HMDB0000172 L-Isoleucine -1.54 C00407 Carboxylic acids and derivatives 

HMDB0000177 L-Histidine -1.65 C00135 Carboxylic acids and derivatives 

HMDB0000202 Methylmalonic acid 1.81 C02170 Carboxylic acids and derivatives 

HMDB0000254 Succinic acid 1.71 C00042 Carboxylic acids and derivatives 

HMDB0000267 Pyroglutamic acid 1.85 C01879 Carboxylic acids and derivatives 

HMDB0000446 N-alpha-Acetyl-L-lysine 1.37 C12989 Carboxylic acids and derivatives 

HMDB0000517 L-Arginine 1.3 C00062 Carboxylic acids and derivatives 

HMDB0000562 Creatinine 1.43 C00791 Carboxylic acids and derivatives 

HMDB0000687 L-Leucine -1.45 C00123 Carboxylic acids and derivatives 

HMDB0000812 N-Acetyl-L-aspartic acid 1.57 C01042 Carboxylic acids and derivatives 

HMDB0000883 L-Valine -1.28 C00183 Carboxylic acids and derivatives 

HMDB0001511 Phosphocreatine 2.73 C02305 Carboxylic acids and derivatives 

HMDB0001539 Asymmetric dimethylarginine 1.4 C03626 Carboxylic acids and derivatives 

HMDB0002931 N-Acetylserine 1.46  Carboxylic acids and derivatives 

HMDB0000300 Uracil 1.85 C00106 Diazines 

HMDB0000824 Propionylcarnitine 1.38 C03017 Fatty Acyls 

HMDB0005065 Oleoylcarnitine 1.34  Fatty Acyls 
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HMDB0000156 Malic acid 1.33 C00149 Hydroxy acids and derivatives 

HMDB0000157 Hypoxanthine -1.28 C00262 Imidazopyrimidines 

HMDB0000292 Xanthine -1.86 C00385 Imidazopyrimidines 

HMDB0001366 Purine -2.29 C15587 Imidazopyrimidines 

HMDB0000935 Uridine diphosphate glucuronic acid 2.76 C00167 Lactones 

HMDB0000939 S-Adenosylhomocysteine 1.44 C00021 Lactones 

HMDB0000251 Taurine 1.41 C00245 Organic sulfonic acids and derivatives 

HMDB0000097 Choline 1.29 C00114 Organonitrogen compounds 

HMDB0001565 Phosphorylcholine 1.32 C00588 Organonitrogen compounds 

HMDB0000210 Pantothenic acid 1.89 C00864 Organooxygen compounds 

HMDB0000230 N-Acetylneuraminic acid -2.5 C19910 Organooxygen compounds 

HMDB0000613 Erythronic acid 2.11  Organooxygen compounds 

HMDB0000625 Gluconic acid 1.66 C00257 Organooxygen compounds 

HMDB0000855 Nicotinamide riboside 3.35 C03150 Organooxygen compounds 

HMDB0000033 Carnosine 1.84 C00386 Peptidomimetics 

HMDB0000217 NADP 3.21 C00006 Phenols 

HMDB0000050 Adenosine 2.09 C00212 Purine nucleosides 

HMDB0000058 Cyclic AMP 2 C00575 Purine nucleotides 

HMDB0001554 Xanthylic acid 3.06 C00655 Purine nucleotides 

HMDB0000290 Uridine diphosphate-N-acetylglucosamine 2.01 C00043 Pyrimidine nucleotides 

HMDB0000295 Uridine 5'-diphosphate 3.65 C00015 Pyrimidine nucleotides 

Extended Data Table 5 | Reference datasets of M8toD6. 857 
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 859 

 860 

Extended Data Fig. 2 | Concordance of detected metabolites among 861 

laboratories. 862 

The intersection size of detected metabolites among seven datasets generated in 863 

different laboratories was shown.  864 
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 866 

Extended Data Fig. 3 | Ratio-based metabolite profiling improves the stability 867 

of continuous monitoring of each metabolite measurement. 868 

The Levey-Jennings plot of metabolites detected in all 15 batches. Different colors 869 

represent different groups of metabolites, indicating systematic deviation > ±3 SD; > 870 

±2 SD, and others. 871 
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 873 

Extended Data Fig. 4 | Scatter plot matrices for SNR, Recall and RC 874 
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