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Abstract 
 
Many different solutions to predicting the cognate epitope target of a T-cell receptor (TCR) have 
been proposed. However several questions on the advantages and disadvantages of these 
different approaches remain unresolved, as most methods have only been evaluated within the 
context of their initial publications and data sets. Here, we report the findings of the first public 
TCR-epitope prediction benchmark performed on 23 prediction models in the context of the 
ImmRep 2022 TCR-epitope specificity workshop. This benchmark revealed that the use of 
paired-chain alpha-beta, as well as CDR1/2 or V/J information, when available, improves 
classification obtained with CDR3 data, independent of the underlying approach. In addition, we 
found that straight-forward distance-based approaches can achieve a respectable performance 
when compared to more complex machine-learning models. Finally, we highlight the need for a 
truly independent follow-up benchmark and provide recommendations for the design of such a 
next benchmark. 
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Introduction 
 
A key challenge within immunoinformatics is the prediction of the target epitope for a T-cell 
receptor (TCR) sequence. Indeed, the recognition of an epitope by a T-cell receptor (TCR) is an 
essential step for the activation of T-cells and thus critical for a functioning adaptive immune 
system. Epitopes are short peptides presented by the major histocompatibility complex (MHC) 
on the surface of antigen-presenting cells, allowing cognate TCRs to bind them and to confer 
specificity to the T cell. TCRs consist of a heterodimer, most commonly of an alpha- and a beta 
chain. Each of these chains are the result of a V(D)J somatic recombination event during T-cell 
maturation. Due to the randomness of this recombination process, each T-cell clone expresses 
a potentially unique TCR and thus has a unique epitope specificity. This high TCR diversity 
allows the adaptive immune system to respond to the myriad of seen and unseen threats. 
 
The advent of high-throughput adaptive immune receptor repertoire (AIRR) sequencing 
techniques allows to access the TCR sequences of large parts of T-cell repertoires. However, 
the sheer numbers of existing TCRs mean that most of the TCRs encountered in an experiment 
may not have been characterized before. Moreover, while the presence of specific TCRs in a 
population of T-cells can now often be established, their cognate epitope targets mostly remain 
unknown. Because epitope recognition is crucial for pathogen defense, vaccine response, tumor 
control and autoimmune diseases and since TCR specificity helps understanding the function of 
a T cell, it is essential to learn to decipher it.  
 
During the past years, several solutions to unravel and predict the specificity and the cognate 
epitope target of a TCR have been proposed, ranging from a simple database look-up to deep 
learning-based prediction models. The advantages and disadvantages of these different 
approaches have not yet been systematically examined, most having only been evaluated 
within the context of their initial publications and data sets. In addition, the annotation of TCR-
epitope pairs is a complex problem: the promiscuity of TCR-epitope binding and the technical 
but also experimental variations underlying paired TCR-epitope data make the identification of a 
clear signal difficult [1]. There is thus a clear need to benchmark existing TCR-epitope prediction 
approaches, enabling the field to progress towards an understanding of the principles 
underlying T-cell specificity. 
 
Here we report the findings of the first public TCR-epitope prediction benchmark performed in 
the context of the ImmRep 2022 TCR-epitope specificity workshop 
(https://www.pks.mpg.de/immrep22). Leading scientists in the field as well as junior researchers 
interested in the TCR specificity problem were invited to participate and were offered datasets to 
train and test a collection of existing prediction models. The aim of the workshop was to 
evaluate and compare the obtained outputs to classify the approaches and most importantly, to 
help identify an ideal dataset and optimal evaluation strategies for future follow-up efforts. 
Describing the outcome of the workshop, we attempt to group the selected and tested methods, 
both - based on the TCR feature input as well as on the underlying prediction algorithm - in an 
attempt to identify patterns within the performance results. We conclude the report with lessons 
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learned on the TCR-epitope problem from this first benchmarking study and make several 
recommendations towards future attempts at benchmarking. 
 
Materials and Methods 
 
Construction of the training- and test data 
 
The benchmark data set was derived from the VDJdb database (downloaded on 23/06/2022). 
VDJdb is a curated database of TCRs with known antigen specificities [2]. Only those TCR-
epitope pairs with paired alpha-beta chain data were collected. Any duplicated TCR-epitopes 
were removed, as defined by V/J gene usage as well as the CDR3 (complementarity 
determining region) sequence for both the alpha- and the beta chain. Only TCR-epitope pairs 
obtained by tetramer- or dextramer-sort were retained. Furthermore, all the dextramer-sort 
entries originating from the 10X technical report [3] were excluded because of the high reported 
cross-reactivity of these TCRs [1]. Lastly, only those 17 MHC-epitopes that had at least 50 
unique TCR sequences were retained. 
A full list of epitopes and the number of their associated TCR is provided in Table S1. To 
constitute the negative control data set, unpublished paired alpha-beta chain TCR sequences 
without peptide specificity information and obtained from 10x genomics sequencing of 
CD8+CD96+ T cells from 11 control individuals were provided by A. Eugster. The entire data 
was subsequently separated into “positive”/”negative” training- and test data sets as follows. 
The “positive” set for each epitope under consideration was extracted from the VDJdb as 
described. The “negative” set for each epitope was constructed by randomly sampling a set of 
TCRs specific to any of the other 16 epitopes. The size of this negative set was three times 
larger than the number of the positive TCRs for the epitope in consideration. The negative set 
was further expanded by randomly sampling TCRs from the negative control dataset to obtain 
twice the number of positive TCRs. Thus, the final set for each epitope had a negative/positive 
ratio of 5:1. For instance, for the epitope “ATDALMTGF” with 132 positive TCRs, there are 660 
negative TCRs, of which 396 TCRs originated from the swapping of the TCRs from other 
epitopes while 264 TCRs were sampled from the negative control data. The data was then split 
randomly into a training and test set in the ratio of 80:20.  
 
Models applied 
 
In total, 23 TCR-epitope prediction models were trained and tested during the course of the 
workshop, which can be found in table 1. Most approaches have been previously published, or 
are novel variants of existing models. These variations were created specifically for the 
workshop to explore the added benefit of integrating specific information types for the TCR-
epitope prediction problem, notably the integration of specific TCR chain data. For comparison 
purposes, a ‘Random’ model was included, which produced scores between zero and one, 
based on the Numpy random number generator. 
 
Evaluation of prediction performance 
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Models were trained on the available training set for each epitope, or on all available training 
sets where appropriate for multi-label models. To decrease information leakage, the models 
were only allowed to train on the available data and any pre-training steps on TCR specificity 
were excluded. A decision value was then assigned to each TCR in the test data set for a given 
epitope with a blinded ground truth with respect to negative and positive samples. The ground 
truth of the test set was thus not available to workshop participants during model training and 
application. 
 
Two data set setups were utilized to evaluate the models. The first included a mixture of positive 
and negative test data for each epitope, with the target epitope being known. Thus, each model 
had to score the likelihood of the TCRs included in the dataset binding to the specified epitope. 
From these results, the area under the ROC curve (AUC) was calculated. In the second setup, 
all positive test data from the previous setup were merged, and each method was challenged to 
provide predictions for every possible epitope seen during training. The epitopes were then 
ranked for each TCR from the most likely to the least likely according to the predictions of the 
model, and the rank of the true epitope was enumerated. As an epitope has multiple true TCRs, 
an average rank was calculated across all TCRs for one epitope. All prediction scores were then 
collected and analyzed with the same evaluation script, which calculated the AUC / the average 
rank for each epitope, as well as the average over all epitopes.  
 
Github and data repository 
 
The data sets and evaluation scripts can be found at 
https://github.com/viragbioinfo/IMMREP_2022_TCRSpecificity. 
 
Results 
 
No relation between size of the training data and model performance. 
 
When benchmarked on the 17 MHC-epitope test data, all methods reached a non-random 
performance (AUC > 0.5) for most epitopes, as can be seen in figure S1. This demonstrates 
that independent of the method used, it is possible to classify unseen TCRs for a given epitope 
within this dataset. Only the SARS-CoV-2-derived epitope NQKLIANQF consistently scored 
poorly or even randomly across all methods (AUC 0.539 mean ± 0.065 s.d.). In contrast, the 
easiest to predict epitope, NYNYLYRLF, also a known SARS-CoV-2 epitope, featured a near-
perfect classification for most methods (AUC 0.956 mean ± 0.042 s.d.). TCRs for both the NQK 
and NYN epitopes were derived from the same MHC-dextramer study [13], thus there is no 
experimental difference in how the TCRs were collected or from which individuals. Furthermore, 
both epitopes had very similar training data sizes, namely 112 and 88 respectively. An overall 
analysis did show a strong relationship the performance and the similarity between TCR 
sequences in the training set (quantified as the average Levenshtein distance between the 
CDR3 sequences), as can be seen in Figure 1. The strongly performing NYN epitope had an 
average Levenshtein distance of 12.6 within its training CDR3 sequences, while the NQK 
epitope featured an average distance of 17.7. This relationship was found to be consistent 
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across most tested methods, as can be seen in figure S4. Therefore, those epitopes that had 
many highly similar TCR sequences seemed to be easier to classify within the presented held-
out data set-up. 
 
Distance-based methods provide a good baseline prediction 
 
Methods that annotate unseen TCRs for binding a specific seen epitope can be broadly divided 
into two categories, namely distance-based methods and feature-based classification methods. 
Distance-based methods, such as TCRbase, mainly use a single distance metric to calculate 
the similarity between unseen TCRs and seen TCRs in the training data, independent of the 
epitope. In its simplest iteration, this can be the amount of amino acid mismatches between the 
two CDR3 sequences (i.e. the Hamming distance). If the distance is below a given threshold, an 
unseen TCR can be judged sufficiently similar to the training set TCR to be annotated with the 
same epitope. The distance metric itself can then be considered a confidence estimate of the 
method, where larger distances are considered less reliable annotations. More commonly, these 
distance-based methods rely on a k-nearest neighbor approach (k-NN), as is the case for all 
distance-based methods used in this benchmark. Within these k-NNs, it is the label of the k 
most similar TCRs that is used to predict the target epitope. 
 
Feature-based methods are defined here as those that try to identify common patterns 
underlying the training set TCRs that bind a given epitope. These patterns then form the basis 
of predicting the binding preference of unseen TCRs. The underlying model is always a 
supervised machine learning method, where the known TCRs binding each epitope are 
provided as training data. The result is therefore a fitted model, which can then be applied to 
any unseen TCR. These are distinct from the distance-based methods as they try to learn which 
features are important for each epitope. However, as can be seen in figure 2, some distance-
based approaches have a performance that is very close to those of the best performing 
feature-based methods. This supports the use of these methods as a comparative baseline, as 
any new, more complex methodologies claiming to learn TCR-epitope patterns should be 
required to outperform basic matching algorithms. 
 
An additional distinction can be made between those machine-learning approaches that train 
one model for each epitope separately (peptide-specific) or one model for all epitopes 
simultaneously (pan-specific). However, research has shown that even in the latter case, most 
pan-specific methods internally act as having a model per epitope [12]. This is because the 
generalisation of epitope-TCR pairing across different epitopes is still currently challenging due 
to the so far rather limited number of peptides characterized by TCR data [14]. This also 
matches with the found results in this study, as there seemed to be no consistent difference 
between these two approaches, as can be seen in Table S2.  
 
Combining alpha and beta chain improves epitope prediction 
 
Historically, the majority of methods to address the TCR-epitope specificity problem focus on 
the CDR3 sequence of the beta chain only for predictions, as historical TCR sequencing efforts 
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have mainly only characterized the TCR beta chain. However, the TCR heterodimer complex 
exists of both alpha and beta chains, and both are known to make contacts with the epitope 
[15]. Paired alpha-beta chain information is still rare as it requires TCR sequencing at the single 
cell level, but prior studies have suggested that prediction performance can be increased by 
using information from both chains, alpha and beta [16]. The current benchmark data set only 
included the TCR-epitope entries with paired alpha- and beta chain information. This allowed a 
direct comparison between methods only using one of the two chains, by only using the relevant 
part of the input data. In this manner, the difference in prediction performance using either 
alpha, beta, or both chains could be assessed on the same TCR-epitope pair training- and test 
data. As can be seen in figure 3, methods that use both chains (alpha and beta) consistently 
outperform methods that only use a single chain (alpha or beta). The same trend can be seen at 
the level of individual AUCs, as seen in table S2 and figure S2, where the most performant 
method per epitope is usually one that uses both chains. Furthermore, when clustering the 
individual performances, the use of single or both chains can be seen as the most prominent 
grouping factor, as can be seen in figure S3.  
 
Integrating V/J gene usage or CDR1/CDR2 improves epitope prediction 
 
Most methods focus only on the CDR3 region of the beta (or alpha chain) of the TCR, as this 
region is the most variable and responsible for the majority of contacts with the epitope 
residues. Even though the CDR1 and CDR2 of a TCR are wholly determined by the V gene 
usage, they add a degree of variability to the chains and facilitate the crucial contacts between 
the TCR and the epitope-MHC complex. To investigate the complementary information 
contained in V/J genes and CDR1/CDR2 segments, we can divide methods into three 
categories based on their inputs:  i) Only requiring CDR3 amino acid sequence (cdr3) as the 
input, ii) Requiring the CDR1/CDR2/CDR3 amino acid sequence (cdr123) as the input, and iii) 
Requiring the CDR3 amino acid sequence as well as the V/J gene usage (vjcdr3). From the 
average performance results, as seen in figure 4, we observed that methods that consider the 
CDR1/CDR2 regions, either directly (cdr123) or indirectly (vjcdr3), outperform those that only 
consider the CDR3 amino acid sequence. However, considering the amino acid sequence of the 
CDR1 and CDR2 regions does not, in this setting, seem to have any improvement over simply 
considering the V gene annotation itself. Some methods, such as tcrdist3, do utilize a prior 
alignment of these regions to calculate their difference (as well as an additional variable loop 
between CDR2 and CDR3 which is given the name “CDR2.5”), and thus already formulate the 
concept that some CDR1/CDR2 are more similar than others. 
 
Epitope ranking mostly, but not always follows binary classification performance 
 
Prior sections have focused on method performance as calculated by the AUC of the ROC 
curve, thus the trade-off between false negatives and false positives for the binary classification 
problem. However, epitope-TCR pairing is not a true binary classification problem, as each TCR 
needs to be theoretically matched with any epitope. For this reason, we considered the epitope 
rank as an alternative metric, where the score for the correct epitope of a TCR is judged against 
all other trained epitopes on the same TCR. In this instance, a lower score is considered better 
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and a score of 1 signifies a perfect prediction for an epitope. As this required applying the model 
for each epitope on the same data set, this could not be accomplished for every method 
previously tested. Some methods were not able to create models for each epitope, others did 
not provide the option to predict per epitope. As can be seen in Figure 5, the relative 
performance across models between AUC and ranked epitope has remained relatively stable. 
The most performant method with regards to AUC remains the most performant method with 
regards to the epitope rank. This is not unsurprising as the AUC already captures the difference 
in prediction scores between a positive pair and a negative pair. The key difference is that the 
epitope rank focuses solely on the positive pairs. Indeed, the overall ranking between some 
methods does change, as can be seen in supplemental table S3. Most notably, basic clustering 
approaches, such as TCRbase, score relatively better on average epitope rank than AUC. This 
can be attributed to the fact that these methods do not hold the concept of a negative 
background, as they are searching for TCRs similar to those TCRs known to bind an epitope. 
Thus, it can be expected that these methods are less able to distinguish negative samples, 
despite being proficient in the annotation of positive samples with the right epitope. 
 
Discussion 
 
Limitations of the benchmark 
 
While many methods were included into this benchmark, our effort was not exhaustive. The 
wealth of currently existing methods for TCR-epitope prediction makes it impossible to compare 
them all in a single effort. In addition, many methods that have been described in the literature 
unfortunately lack a publicly accessible code/interface. 
 
In addition, ground-truth true negative data does not exist within the TCR-epitope context. Two 
strategies to circumvent this problem were combined for this benchmark: swapped TCR-epitope 
pairs and unrelated repertoires from healthy individuals without epitope knowledge as 
background sequences. Both have their advantages and disadvantages. Swapping TCR-
epitope pairs by considering the TCRs positive for one epitope as being negative for another, 
means that methods can in theory learn the TCR patterns associated with the negative epitopes 
in training and test data. Utilizing unrelated, healthy repertoires has the disadvantage that there 
may be an experimental and/or biological bias in the data. This lends itself to the possibility that 
any model may learn the distinction between positive and negative based on such biases alone. 
In addition, healthy repertoire data is not free of potential misannotations, due to the presence of 
T cells specific for common dominant epitopes also present in the positive data. As highlighted 
by the difference in performance ranking based on AUC and epitope ranking, classifiers 
potentially do have a tendency to learn patterns within the negative data that changes how they 
will consider the problem. This benchmark is far too limited to provide a solid answer to what 
negative strategy is most appropriate, and this remains an important topic for future research. 
 
Another key choice involved the lack of removal of similar TCRs from the test set compared to 
the training data set. This would have required a strict definition of what constitutes a sufficiently 
similar TCR. There does not currently exist a common consensus of how different a TCR can be 
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before it can be expected to no longer bind the same epitope. Furthermore, whether to include 
or exclude similar TCRs from the datasets is a decision that depends fully on the downstream 
application. Mostly, the end goal of these methods is to identify epitope-specific TCR pairs 
among a large TCR sequence repertoire extracted independently. It is already known that public 
clonotypes do occur across different individuals, and that small subsets of TCRs can be 
successfully annotated with their epitopes just by matching their TCR sequences to annotated 
TCR sequences of a database [17–19]. However, public clonotypes are the exception rather 
than the rule. Removal of the highly similar TCRs from the test set does allow evaluation to what 
degree these methods are capable of linking distant TCRs to the correct epitope. This results in 
a far more limited positive test set, with more focus on the classification of the negative 
samples. 
 
Finally, many methods are hampered in their success by the current limited training data set 
size. Thus their measured performance is not representative of their theoretical potential with an 
unrestricted training data set. For example, several methods have shown improvements by 
utilizing transfer learning or pre-training steps, which are not possible with this limited 
benchmark [5]. In addition, methods using only beta-chain data can typically rely on a larger 
dataset than methods with both alpha and beta chains, which may explain their poorer 
performance in this instance. The performing data set curation from paired chain data also had 
an impact on the size of the training and the test set of a few epitopes. For instance, two TCRs 
would be considered for evaluation if their alpha chains are different, implying that they are 
overall different but they may collapse to a single TCR if their beta chain is identical.  
Furthermore, the dataset used here and split into test- and training data sets was derived from 
the same experiments. This was necessary given the current scarcity of available TCR-epitope 
specific data. Ideally, the train-test split would be derived from independent experiments to 
avoid any experimental information bleed, however this can only be done for a very limited 
number of epitopes.  
 
The shape and scope of future benchmarks 
 
The goal of this study was to evaluate the possibility of a benchmark between methods and 
highlight important lessons learned from this pilot study. Due to the aforementioned limitations, 
no strong conclusions should be made about the superiority of one approach to another at this 
point. Regardless of the limitations, an independent benchmark has become necessary due to a 
rapid surge in the number of the TCR-epitope prediction tools. It is no longer feasible or 
reasonable to expect a single study to compare to all other existing methods. Furthermore, as 
highlighted in this study, the choice of data set on which to evaluate can have a large impact on 
the performance. Related is the commonly accepted phenomenon that a method will always 
score best when applied by its own authors and on the data set in the paper where it is 
introduced.  
 
Other prediction-focused fields have embraced the idea of an open competition where methods 
are benchmarked on the same never-before-seen data set. This is a way to independently 
evaluate the wide variety of methods that are available, but also to drive the field forward and 
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enable it to reach new heights. As a conclusion of the ImmRep TCR-epitope specificity 
workshop, we strongly encourage the organization of similar competitions focused on the TCR-
epitope prediction problem. The most essential choice will be the origin of the test data as many 
options are available, from a stratified approach as highlighted here, to the integration of 
simulated datasets with a known ground truth [20]. The ideal data set for such a challenge 
would unequivocally be an unpublished independent data set with both TCRs with known 
epitope-specificity, as well as TCRs without this information.. As highlighted in this study, it 
would ideally involve paired alpha-beta TCR sequence data, and would therefore likely be 
derived from a single cell sequencing experiment. In addition, the use of oligo-tagged multimers 
would enable both identification of those TCRs that are specific for an epitope, along with those 
that are likely not. Furthermore, this data set should contain multiple previously studied 
epitopes, so as to compare the epitope rank beyond the straight-forward classification problem. 
The technology to create such a dataset is currently available, and therefore only requires the 
willingness of either funders, institutes or companies to provide it. 
 
Conclusions 
 
This study contains an initial large-scale benchmark of epitope-TCR prediction methods. It was 
not meant to be exhaustive, nor should the results be overly interpreted as the data set was 
limited and the evaluation superficial. Several important observations could nevertheless be 
established. The use of paired-chain alpha-beta data, as well as CDR1/2 or V/J information, 
improves classification when this data is available, independent of the underlying approach. 
Straight-forward clustering approaches can achieve a respectable performance and should be 
used as a valid benchmark for future studies. Finally, there is a large need for a true 
independent benchmark on the myriad of methods within the field. 
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Tables 
 
Table 1: List of models tested. 

Name Chain CDR 
usage 

Distance/ 
Machine 
Learning 

Reference 

diffrbm_alpha* alpha cdr3 ML [unpublished] 

diffrbm_beta* beta cdr3 ML [unpublished] 

netTCR_CDR123_ab* alpha-beta cdr123 ML [4] 
 

netTCR_CDR3_ab* alpha-beta cdr3 ML [4] 

netTCR_CDR3_b* beta cdr3 ML [4] 

pMTnet beta cdr3 ML [5] 

Random - - - Numpy random number generator 

SETE beta cdr3 ML [6] 

sonia_a* alpha cdr3 ML [7] 

sonia_b* beta cdr3 ML [7] 

sonia_ab* alpha-beta cdr3 ML [7] 

TCRbase_CDR123_ab* alpha-beta cdr123 Distance https://services.healthtech.dtu.dk/se
rvice.php?TCRbase-1.0 

TCRbase_CDR3_ab* alpha-beta cdr3 Distance https://services.healthtech.dtu.dk/se
rvice.php?TCRbase-1.0 

TCRbase_CDR3_b* beta cdr3 Distance https://services.healthtech.dtu.dk/se
rvice.php?TCRbase-1.0 

TCR-BERT beta cdr3 ML [8] 

TCRAI alpha-beta vjcdr3 ML [1] 

tcrdist3_a* alpha cdr123 Distance [9] 

tcrdist3_b* beta cdr123 Distance [9] 
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tcrdist3_ab* alpha-beta cdr123 Distance [9] 

tcrex_a* alpha vjcdr3 ML [10] 

tcrex_b* beta vjcdr3 ML [10] 

tcrex_ab* alpha-beta vjcdr3 ML [10] 

TCRGP alpha-beta cdr123 ML [11] 

TITAN* beta cdr3 ML [12] 
 

 *These models have been trained and applied by one of the original model authors, and thus can be considered 
having an advantage. 

 
 
Figure legends 

 
Figure 1: Relationship between the prediction performance and similarity of TCR sequences in 
the training set. The x-axis shows the average Levenshtein distance between the CDR3 
sequences in the training data set. The y-axis shows the micro AUC for each epitope and each 
method. 
 
Figure 2: Average microAUC by approach. Distance-based methods to the left annotate TCRs 
based on the similarity to known epitope-specific TCRs. Feature-based approaches use 
machine learning to learn associated features specific to an epitope, which is then used for 
classification. 
 
Figure 3: Comparison of average microAUC of methods considering both TCR chains (Alpha-
Beta) and methods that only consider the beta chain (Beta) or the alpha chain (Alpha). The lines 
denote those methods that use the same architecture but with different input. 
 
Figure 4: Average performance by CDR region usage. From left to right, methods using only 
CDR3 amino acid sequence, methods that use CDR3 and V/J genes, and methods that use 
CDR1,CDR2,CDR3 amino acid sequences as input.  The lines denote those methods that use 
the same architecture but with different input. 
 
Figure 5: Average performance of methods based on microAUC in the binary classification 
problem (x-axis) plotted against the epitope rank performance for multi-label prediction (y-axis). 
Each dot in the plot represents a single method. 
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