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Abstract

We introduce an innovative statistical framework to optimize and benchmark polygenic risk score
(PRS) models using summary statistics of genome-wide association studies. This framework
builds upon our previous work and can fine-tune virtually all existing PRS models while accounting
for linkage disequilibrium. In addition, we provide an ensemble learning strategy named PUMA-
CUBS to combine multiple PRS models into an ensemble score without requiring external data
for model fitting. Through extensive simulations and analysis of many complex traits in the UK
Biobank, we demonstrate that this approach closely approximates gold-standard analytical
strategies based on external validation, and substantially outperforms state-of-the-art PRS
methods. We argue that PUMA-CUBS is a powerful and general modeling technique that can
continue to combine the best-performing PRS methods out there through ensemble learning and
could become an integral component for all future PRS applications.
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Introduction

Genetic risk prediction is a main focus in human genetics research and a key step towards
precision medicine’*. Continued success in genome-wide association studies (GWAS) in the past
decade has facilitated the development of polygenic risk scores (PRS) that aggregate the effects
of millions of single nucleotide polymorphisms (SNPs) for many complex traits*®. Compared to
earlier statistical methods that require individual-level data for model training’"°, PRS which only
relies on GWAS summary data is much more generally applicable due to the wide availability of
GWAS summary statistics. Although earlier PRS models struggled to produce accurate prediction
results, recent and more sophisticated PRS methods have achieved substantially improved
prediction accuracy through statistical regularization and biological data integration'"". In
numerous studies, PRS has shown promising performance in stratifying disease risk and great
potential in informing early lifestyle changes or medical interventions'®2".

Despite the progress, several lingering challenges create a significant gap between PRS
methodology and applications. A main recurring issue we highlight (and address) throughout the
paper is that PRS modelers often assume the existence of independent individual-level datasets
that can be used for additional model tuning. But in practice, GWAS summary statistics are used
for PRS model training, meaning that conventional sample splitting schemes cannot be used.
Additional datasets that are independent from both training and testing samples also rarely exist.
This suggests that model-tuning samples will have to come from the precious testing dataset
which inevitably reduces the sample size and statistical power in downstream applications.

This disconnection between impractical method requirements and limited data availability can
lead to a variety of problems. For example, many PRS methods have tuning parameters that
could substantially swing model performance when not chosen properly'>'%2224_Conventionally,
these parameters need to be fine-tuned on a separate dataset with individual-level genotypes and
phenotypes. Although some recent methods employ fully Bayesian or empirical Bayesian
techniques to bypass model fine-tuning®>?’, these hyperparameter-free PRS do not always
outperform fine-tuned models, trading predictive accuracy for computational feasibility?®2°.
Second, no PRS method universally outperforms all other approaches. The empirical
performance of a PRS model depends on GWAS sample size, genetic architecture of the
phenotype, quality of GWAS summary statistics, and heterogeneity between training and testing
samples®®>®. Thus, it is of great interest to systematically and impartially benchmark various PRS
methods for each trait, ideally in an independent dataset''%**. Third, several recent studies have
applied ensemble learning which combines multiple PRS models via another regression?2°. This
brute-force approach has shown superior performance compared to any single PRS method but
is data-demanding — the second level regression model needs to be fit on a separate dataset.
Finally, we note that it may be of interest to combine all these tasks in practice, e.g., benchmarking
an ensemble learner that combines multiple PRS models which all need to be tuned separately.
Now this truly becomes mission impossible.

In this paper, we seek a solution to these problems. We base our statistical framework on PUMAS,
a method we recently introduced to perform Monte Carlo cross-validation (MCCV) using GWAS
summary statistics®>. We have shown that PUMAS can effectively fine-tune PRS models with
clumped SNPs* and the approach has since been adopted in other applications® . Here, we
first demonstrate that PUMAS can fine-tune and benchmark state-of-the-art PRS models without
SNP pruning. Second, we introduce an extension to the PUMAS framework named PUMA-CUBS
which is a highly innovative strategy to perform ensemble learning using GWAS summary data
alone. Taken together, we showcase a sophisticated statistical framework for fine-tuning,
benchmarking, and combining PRS models using GWAS summary statistics as input. We


https://doi.org/10.1101/2022.10.26.513833
http://creativecommons.org/licenses/by-nc-nd/4.0/

demonstrate the performance of our approach through extensive simulations and analysis of 19
complex traits in UK Biobank (UKB). On average, the PUMA-CUBS ensemble PRS achieves a
6.54% relative gain in predictive R? compared to LDpred2 and a 15.00% gain compared to PRS-
CS, respectively. We also apply our method to 31 well-powered GWAS with publicly available
summary statistics and provide a catalog of ensemble PRS with benchmarked predictive
performance.

Results
Method Overview

First, we present an overview of the PUMA-CUBS workflow. Statistical details and technical
discussions are presented in the Methods section. For illustration, first we assume individual-
level data is available. In this case, we would divide the samples into 4 independent sets for PRS
training, model fine-tuning, constructing ensemble PRS, and benchmarking model performance,
respectively (Figure 1A). The main goal of our new approach is to mimic this procedure when
only summary statistics are available. Using PUMAS, we could sample marginal association
statistics for a subset of individuals in the GWAS®. Doing this repeatedly, we could divide the full
GWAS summary data to corresponding training, tuning, ensemble learning, and testing summary
statistics (Figure 1B). Using these four sets of sub-sampled summary statistics, we train a series
of PRS models, fine-tune each PRS model to select the besting tuning parameters, apply PUMA-
CUBS to combine PRS models through linear regression, and finally evaluate the predictive
performance of PRS models. The entire procedure only requires GWAS summary statistics and
linkage disequilibrium (LD) references as input.
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Figure 1. Workflow of PRS constructlon and evaluation. (A) Conventional approach divides the entire
individual-level dataset to different subset of samples for each of 4 stages of PRS analysis. (B) PUMA-
CUBS directly partitions the full summary-level data to corresponding summary statistics for different
analytical purposes.
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Figure 2. Comparison of PUMA-CUBS and MCCYV in UKB simulation. (A and C) Simulation results for
quantitative traits. (B and D) Simulation results for binary traits with balanced case-control ratio. Proportion
of causal variants is 0.1% in A and B, and 20% in C and D. The heritability is set to be 0.5 in all panels. Y-
axis: predictive R? across 4 repeats of MCCV; X-axis (left to right): lassosum models (red boxes) with tuning
parameter settings: s=0.2 and A=0.005, s=0.2 and A=0.01, s=0.5 and A=0.005, s=0.5 and A=0.01, s=0.9
and A=0.005, s=0.9 and A=0.01. LDpred2 models (green boxes): non-infinitesimal with p=0.1, non-
infinitesimal with p=0.01, non-infinitesimal with p=0.001, non-infinitesimal with p=auto, and infinitesimal
model. PRS-CS (blue boxes): $=0.01, 0.0001, and auto. Finally, the purple box shows the results of
ensemble PRS. Results for remaining simulation settings are summarized in Supplementary Figures 1-7
and Supplementary Tables 1-4.

Simulation results

We performed simulations using imputed genotype data from UKB to demonstrate that PUMAS
and PUMA-CUBS can fine-tune, combine, and benchmark PRS models. We included 100,000
independent individuals of European descent and 944,547 HapMap3 SNPs in the analysis. We
simulated phenotypes with heritability of 0.2, 0.5, and 0.8 and randomly assigned causal variants
under sparse and polygenic settings to mimic different types of genetic architecture (Methods).
We performed GWAS and obtained marginal association statistics. We then implemented
PUMAS and PUMA-CUBS to conduct a 4-fold MCCYV to train, optimize, and evaluate lassosum,
PRS-CS, LDpred2, and an ensemble PRS which combines all three methods?2>%, For
comparison, we also implemented a MCCV procedure using individual-level UKB data. We
partitioned the UKB dataset into 4 mutually exclusive datasets. We used datasets 1 and 2 to train



and fine-tune each PRS method, then used the third dataset to fit a regression to combine multiple
PRS. We evaluated each PRS method in the fourth dataset and reported PRS prediction accuracy
quantified by R?. We describe implementation details of both summary-statistics-based and
individual-level-data-based MCCV in Methods.

Overall, we observed highly consistent results between PUMAS/PUMA-CUBS and MCCYV for both
quantitative and binary phenotypes (Figure 2; Supplementary Figures 1-7; Supplementary
Tables 1-4). In addition, summary statistics-based approaches can closely approximate R?
values obtained from model-tuning and benchmarking techniques using individual-level data.
PUMA-CUBS also constructed scores that were highly concordant with ensemble PRS built from
individual-level data which universally outperformed all PRS models used as input.

PUMAS can fine-tune and benchmark PRS methods

Next, we demonstrate that PUMAS effectively fine-tunes PRS models and performs accordantly
with the gold standard external validation approach based on individual-level data. We applied
PUMAS to 16 quantitative traits and 3 diseases in UKB (Supplementary Tables 5-6). After quality
control, the UKB dataset contained 375,064 independent individuals and 1,030,187 SNPs
(Methods). We applied a 9-to-1 data split to hold out 10% of the samples for external validation,
and performed GWAS for all traits using 90% of the samples. We applied 4-fold MCCV
implemented in PUMAS to train and fine-tune three PRS models (i.e., LDpred2, lassosum, and
PRS-CS which have been demonstrated to achieve high prediction accuracy in a recent
benchmark study?22°26-2%) ysing only summary statistics. For external validation, we trained PRS
models using summary statistics and calculated PRS prediction accuracy on the holdout dataset.
We report the best tuning parameters for LDpred2, lassosum, and PRS-CS and corresponding
R? obtained from both PUMAS and external validation.

Our summary-statistics-based approach showed highly consistent model-tuning performance for
all analyzed traits compared to external validation (Figure 3, Supplementary Figures 8-26;
Supplementary Tables 7-8). Among 19 traits, PUMAS and external validation selected the same
best tuning parameters 19, 17, and 11 times for lassosum, LDpred2, and PRS-CS, respectively.
When the model tuning results were different between PUMAS and external validation, both
approaches still selected models with very similar prediction accuracy. In addition, PUMAS
provided precise R? estimates for all models compared to external validation, advocating the use
of our summary-statistics-based approach for PRS model benchmarking.

We also observed that the parameter-tuning results are accordant with the analyzed traits’ genetic
architecture. For both height and monocyte count, PUMAS accurately selected the best tuning
parameters based on external validation (Figure 3A-B), but the selected models were not the
same between these two traits. Height is known to be extremely polygenic with more than 12,000
independent GWAS signals in the latest GWAS*. In comparison, fewer loci have been found to
significantly associate with monocyte count*'. Our model-tuning results suggest that polygenic
prediction models fit best for height (e.g., LDpred2-Infinitesimal and PRS-CS with ¢ = 0.01) while
sparser PRS models with stronger regularization (e.g., PRS-CS with ¢ = 0.0001) provide better
prediction accuracy for monocyte count.

Finally, PUMAS can also effectively estimate predictive R? for binary traits (Figure 3C-D). To
calculate interpretable R? for binary outcomes, PUMAS first transforms GWAS summary statistics
obtained from logistic regressions to the linear regression scale, and then computes R? on the



observed scale****. To show that such transformation is valid, we trained two sets of PRS models
using both transformed and original logistic regression summary statistics for 3 disease traits and
observed nearly identical PRS performance between two approaches (Supplementary Table 8;
Supplementary Figures 24-26). Details in the implementation of binary trait analysis and
summary statistics transformation are presented in Methods.
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Figure 3. Comparing PUMAS results with external validation. Four panels show the model-tuning
results for (A) height, (B) monocyte count, (C) coronary artery disease, and (D) high blood pressure. Y-axis:
average predictive R? across 4-fold replications from PUMAS; X-axis: predictive R? evaluated by external
validation on the holdout dataset. Each data points represents a PRS model with different tuning
parameters and the shape of data points indicate three different PRS methods: LDpred2, PRS-CS, and
lassosum. The best tuning parameter setting suggested by PUMAS for each PRS method is highlighted
and colored. The dashed red line is fitted regression line between PRS R? from PUMAS and external
validation. Pearson correlations between two sets of results are shown in each panel. Detailed model-tuning
results for all 19 traits are summarized in Supplementary Tables 7-8 and Supplementary Figures 8-26.



Ensemble learning via PUMA-CUBS substantially improves PRS prediction accuracy

Here we apply PUMA-CUBS, the ensemble learning extension of PUMAS, to UKB traits and show
that ensemble PRS has superior prediction accuracy compared to each PRS method and our
summary statistics-based approach is comparable to ensemble learning results based on
individual-level data. We constructed linearly combined scores of lassosum, PRS-CS, and
LDpred2. Using individual-level data, we split the 10% UKB holdout dataset into two equally sized
subsets. We fitted a multiple regression on the first holdout set to aggregate the best-performing
PRS models trained and tuned from GWAS summary statistics, and then evaluated the ensemble
score’s prediction accuracy using the second holdout set. For comparison, we implemented
PUMA-CUBS to conduct 4-fold MCCV to perform ensemble learning using summary statistics
alone and assess its performance on the second holdout set.

Our approach showed almost identical performance compared to individual-level data results
(Figure 4A), showcasing PUMA-CUBS’ ability to benchmark and construct ensemble PRS
without requiring additional datasets. In addition, ensemble PRS achieved the highest prediction
accuracy for all traits compared with three input PRS models (Supplementary Figure 27;
Supplementary Table 9). The ensemble PRS using individual-level data as input had an average
15.77% and 7.25% relative gain in R? compared to PRS-CS-auto and LDpred2-auto while the
PUMA-CUBS ensemble PRS delivered a similar 15.00% and 6.54% R? increase respectively
(Figure 4B), highlighting the substantial gain in prediction accuracy from ensemble learning.
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Constructing and benchmarking ensemble PRS for 31 complex traits

Finally, we applied PUMA-CUBS to provide a comprehensive catalog of ensemble PRS for 31
publicly available GWAS summary statistics with varying sample size and genetic architecture.
The detailed information and selecting criteria for GWAS summary-level data are summarized in
Methods and Supplementary Table 10. We employed extensive quality controls to pinpoint and
calibrate misspecifications in GWAS summary statistics following a recent study®’
(Supplementary Table 11). We also transformed logistic summary statistics to linear scale to
produce interpretable R? for binary traits****. For each trait, we reported prediction accuracy of
the best performing PRS model and ensemble PRS. The full results of the PRS catalog are
presented in Supplementary Table 12. The predictive performance of ensemble PRS is
correlated with estimated trait heritability, and the predictive R? ranged from 0.001 to 0.227 across
31 traits, showing highly diverse predictive performance of genetic risk prediction. We also note
that ensemble PRS improved predictive R? for every trait in the analysis with an average increase
of 31.36% compared to PRS-CS-auto (Supplementary Figure 28). Among 31 complex diseases
and traits, we observed the highest prediction improvement for rheumatoid arthritis (103.8%),
Alzheimer’s disease (71.96%, 83.68%, and 98.82% on three datasets), ischaemic stroke (69.48%
and 78.35% on two datasets), and Parkinson’s disease (75.55%).

0.25
Traits cCD
e Binary
Continuous
0.20
Effective N
e <60k
@ 60k~200k o:P
@ 200k~400k
0.15 ® >- 400k scz
uc
[}
Ql
o
0.10 IGAP2019 -
A ‘
PROC
BIP
[}
0.05
&
Marioni2018 o ADHD
Jansen%%’(Q MDD ASD_ SSRD
AlSA :;Somrn\iaQSnoring " Stress
0.00 HF bTsD
0.0 0.1 0.2 0.3 0.4 0.5

h2

Figure 5. An ensemble PRS catalog for 31 complex traits. Y-axis: average predictive R? of PUMA-CUBS
ensemble PRS; X-axis: heritability estimates from LD score regression*. Size of data points indicates the



effective sample size of each GWAS. Binary traits and continuous traits are highlighted with different colors.
Detailed PRS benchmark results are presented in Supplementary Table 12.

Another observation is that the ensemble PRS R? exceeded the estimated trait heritability for all
three Alzheimer’s disease GWAS. To demonstrate that this is not an artifact from overestimating
predictive R?, we conducted additional analysis (Methods) using IGAP 2019 Alzheimer's GWAS
summary statistics*® and compared our results with external validation based on 2,600
Alzheimer’s disease cases and 5,200 healthy controls in UKB (Supplementary Table 13). The
R? of AD PRS obtained from external validation also exceeded estimated heritability (h?=0.072,
SE=0.012) and the results were consistent with PUMAS R? estimation (Supplementary Figure
29; Supplementary Table 14). We hypothesized that this is driven by the APOE region which
contributes an unusually large fraction of AD risk*’**°. Indeed, after removing 383 SNPs in the
APOQOE region from IGAP 2019 AD summary statistics (Methods), we observed a steep decline in
R? for both external validation and PUMAS. Both R? values became substantially lower than the
estimated h? of 0.066 without APOE region (SE=0.009; Supplementary Table 14).

Discussion

Fine-tuning and benchmarking PRS models are challenging tasks due to the need of external
individual-level datasets that are independent from the input GWAS. In this work, we extended
our PUMAS approach to incorporate LD and fine-tune state-of-the-art PRS methods. In both
simulations and analysis of UKB traits, we observed high concordance between PUMAS and
results based on external validation using holdout samples. In addition, we presented a novel
framework named PUMA-CUBS to perform ensemble learning and create combined PRS using
only GWAS summary statistics. We showed that ensemble PRS created by PUMA-CUBS closely
approximates scores built from holdout samples. Further, these ensemble scores substantially
outperformed state-of-the-art PRS methods for all complex traits we analyzed in the study. Finally,
we applied PUMA-CUBS to a collection of publicly available GWAS summary statistics and
provided a comprehensive catalog of benchmarked and optimized PRS.

Our work presents several major advances that will impact future PRS applications. First, our
method fills an important gap between PRS methodological research and its real-world
applications. Currently, many PRS methods still have tuning parameters and grid search on
external individual-level datasets remains the most common technique for fine-tuning these
models. In practice, this kind of data can either be impossible to obtain, or need to be split from
testing samples which could hurt statistical power in PRS applications®2. Our method provides a
universal solution to PRS model fine-tuning. Second, model benchmarking is another major
challenge in the field which conventionally relies on external validation data. Comprehensive and
unbiased benchmarking allows researchers to compare the effectiveness of different PRS
methods for particular traits of interest, and importantly, estimate PRS predictive accuracy without
using testing samples. We note that although some advanced PRS approaches do not require
model fine-tuning anymore, no existing methods could benchmark model performance using a
single set of GWAS summary data, which is crucial for model selection, power calculation, and
study design. Our approach now provides a solution to this problem. Third, the ensemble learning
approach which combines multiple predictive models through a second level regression has been
viewed as a highly effective but data-demanding approach?®2°33 A major advance in this study is
the introduction of PUMA-CUBS which allows ensemble learning on GWAS summary statistics.
We note that this approach not only showcased a substantial gain over existing PRS methods,
but is generally applicable to future PRS developments. If a future PRS approach shows



promising improvements compared to older methods, that new approach can also be incorporated
into the ensemble PRS. In our view, PUMA-CUBS is not a competing approach for any existing
PRS model, but instead is a flexible and general modeling technique that combines the best-
performing methods out there and should be applied to all future PRS applications.

Our study has several limitations. First, we have constrained statistical analysis in this study to
the European ancestral population. PRS is known to transfer poorly in terms of prediction
accuracy for non-European populations which could exacerbate the disparity in genomic medicine
between ancestral groups®°'. It is an important future direction to systematically optimize and
benchmark PRS for diverse ancestral populations which would require incorporation of multiple
sets of ancestry-specific GWAS and LD references. Although we did not explore this topic in this
paper, our recent work introduced parallel ideas to tackle the challenges in multi-ancestry genetic
risk prediction®®. Second, analyses in this study were limited to GWAS summary statistics
computed from independent samples. It remains to be investigated whether application of these
approaches will be affected if the input GWAS summary statistics were obtained from linear mixed
models with related samples or family-based designs®***. Future work will focus on developing
statistical methods to correct for sample relatedness or demonstrate robustness to these issues.
That said, we expect PRS model-tuning to remain valid even with sample relatedness since the
inflation in R? should be uniform across various tuning parameter settings, although biases may
be introduced to the predictive R? which could affect benchmarking efforts. Third, our current
analyses focused only on lassosum, PRS-CS, and LDpred2. While it serves to support the
superiority of ensemble PRS as a proof of concept, more PRS methods need to be jointly modeled
and evaluated in the future, including scores that leverage auxiliary information including
functional annotation™'* or multiple phenotypes'®'"*°. Finally, collinearity among PRS models
could arise when using multiple regression to combine a large number of scores since some PRS
methods tend to yield similar results. Therefore, another future direction is to incorporate variable
selection strategies into our ensemble learning framework which could also involve penalized
regression.

To sum up, we presented a sophisticated statistical framework to fine-tune, combine, and
benchmark PRS methods using only GWAS summary statistics. This is a statistically novel and
computationally efficient approach with flexible implementation that can handle a variety of
applications. We have demonstrated its performance through careful and comprehensive
analyses, and we argue that this framework presents highly innovative and generally applicable
features that should become the default in many future PRS studies.

Methods
Sampling distribution of summary statistics

We adopt a commonly used linear model framework to quantify the relationship between a
quantitative trait and SNP genotypes:

Y=XB+e€

Here, Y denotes the trait, X = (X4, ..., X,,) denotes the genotypes of p SNPs, B € R? denotes their
true effect sizes, and € denotes the random error that is independent from X and follows a normal
distribution with mean zero and some variance 7. Lety and x = (x,,...,X,) denote the observed



values for Y and X from N independent individuals. For simplicity, we assume both y and x; (j =
1,...,p) are centered. Then, GWAS summary statistics can be denoted as:

B, =xIx) " (Ty) (1)
&2

A _ j ) 2

SEB;) - Dx'x; (2)

where € =y —x; [?j are the residuals from the marginal linear regression between the trait and
the j-th SNP. To train, fine-tune, combine, and benchmark PRS models, independent datasets
are required to avoid overfitting. We have previously proposed a flexible statistical framework to
generate training and fine-tuning datasets when only GWAS summary statistics are available®.
Here, we generalize this statistical framework in two different directions. First, we allow our
method to incorporate LD information. We note that this extension is similar to some recent work
built on our initial PUMAS paper®’=°. Second, we allow the method to partition full GWAS
summary statistics into more than two datasets for various analytical purposes. Let y®) and x ()
denote phenotype and genotype data for any arbitrary subset of N individuals with sample size
N®), When N is large enough, we have previously shown that by central limit theorem?>®:

xTy ~ N(NE(XTY), NVar(X"Y))
x®'y®) ~ NINOEXTY), NOVarXTY))

where XTY = (X,Y,...,X,Y)". Then, given the observed summary-level data from GWAS, the
conditional distribution of summary statistics of a subset of GWAS samples is

N® . (N—N(S))N(S),2>

3

X y®|xTy ~ N (
where 2 is the observed variance-covariance matrix for XTY. To subsample summary statistics
x® y®) | we need to estimate xTy and £ first. Recall formula (1) for marginal regression
coefficient estimation, x]-Ty can be calculated using f?j and ijx]- which is proportional to SNP
variance and can be estimated by minor allele frequency (MAF) reported from GWAS or imputed

from LD reference panel. On the other hand, deriving X is more complicated and we discuss how
£ is estimated using summary statistics and an LD reference panel in the following section.

Estimate variance-covariance matrix of summary statistics

Let D denote the SNP correlation matrix and d;; denote the correlation between the j-th and the
k-th SNPs. Let X be the true covariance matrix of summary statistics with diagonal and off-
diagonal elements denoted as X; and X;;, respectively. For convenience, we write Y = XB + € =
X11+...+X,B, + € = X;B; + €, where €; = }.;.;.; X;; + €. Then the diagonal terms of the X can
be written as



I = Var(XY)
= ﬂszar(ij) + Var(X;e;) + ZﬁjCov(X]-z,Xjej)
= pEVar(X?) + Var[Xj(E X, B + €)] + 2B;Cov(X?, X;€;)
{ii#j

We partition all SNPs in the genome into 2 sets. Let S; be the index set that contains all SNPs
that are independent from the j-th SNP and S, be the set with all remaining SNPs that are in LD
with the j-th SNP. Then we can further expand Z; by

5= BVar(x?) + Var[Xj(Z X8y + €)1 + Var([X;( 2 X, B0 +

gESy g'es,

ZCOU[XJ-(Z X8, + €),X;( 2 X 1B, + 2B;Cov(X2, X;€))

gES, g’ESZ
= ﬁ]-ZVar(ij) + Var[Xj(z: XyBy +6)] + 2 ﬁj, Var(X;Xy) +
gES g'€s,
2 2 Bg;Bgy Cov(XXyy, XjXgr) + 2 2 By Cov[Xje, X;X 1] +
91€52,92€52,.91% 92 g'€s,
2 2 2 ByByrCov[X;Xy, XX ;1] + 2B;Cov (X}, X;€))
gES1 g'es,

We can simplify £; based on two commonly made assumptions. First, any given SNP should be
in linkage equilibrium with the vast majority of SNPs in the genome. Therefore, we can safely
assert |S;| » |S2|. Second, each individual SNP’s effect on the phenotype is typically very small
such that the products of any effect sizes are negligible in practice. Taken together, we can reduce
the expansion of £; by discarding SNPs in S, which eventually allows us to treat X; and ¢; as
independent in practice:

I~ Var[X]-(Z XqBy +€)]
€S,
~ Var[Xjef]
E(X?e?) — [E(X;€))]?
~ EMXPE(E)

Note that E(X]-Z) can be easily approximated using an MAF-based estimator, denoted as 67, that
may be obtained either from the full GWAS summary statistics or the LD reference data. For
E(ejz), we can estimate its value by standard error of effect size estimation from GWAS summary

data using formula (2). In this way we can obtain an estimator of £; as
AN
% = N[SE(B )67 (4)

To estimate off-diagonal terms X;, we now write Y = XB + € = X, +... +X,5, + € = X;5; +
XiBr + €ji, where €, = Yiigqj iy Xifi + €. Under the same assumption where the magnitude of
SNP effects is very small, we can simplify X, by:



Zjp = Cov[X;(X;B; + XBr + €1), Xi(X; B + XiBr + €j1)]

= Cov(XjZBj,Xijﬁj) + Cov(X;Xy Bk, X; Xy f;) + Cov(Xj€jr, X; Xy ;) +
Cov(X7 B, XiBr) + Cov(X; Xy P, X7 Bi) + Cov(Xj€jn, XZ i) +
Cov(XjZBj,Xkejk) + Cov(XjXy Bk, Xk€jk) + Cov(X;€j, Xi€ji)
Cov(Xj€jw, X;XiB;) + Cov(X;€ji, X2 Bi) + Cov (X7 Bj, Xuejx) +
Cov(X; Xy P, Xk€ji) + Cov(X;€jx, Xi€jx)
~ Cov(Xj€j, Xi€jk)

Q

In a similar fashion, we further partition all SNPs in the genome other than the j-th and the k-th
SNP into two sets. Let S; denote the collection of SNPs that are independent from both the j-th
and the k-th SNPs, and S, includes the remaining SNPs that are in LD with either the j-th or the
k-th SNP. Based on a similar rationale, we can safely assume that |S3| > |S,|. Then, by ignoring
SNPs in S, and thus treating X; and X, as being independent from €;,, we express X;;, as:

Cov(Xjejin Xgi) = CovIX;( ) Xify+ ), X)) Xify+ )] + CovlX;( Y Xyfy) X)) Xify+ )]

l€S; lES; l'es, lES;
+ CovlX; () Xy + ). X ( ). Xyl + CovlX;( ) Xy X ) Xuf)]
leSs l'es, l'es, l'es,
~ Covl () Xy + XD Xif + €]
€S, 1€S,

= Cov[Xjejk,Xiejk]
~ EXX)E(e})

where E(X;X)) can be directly estimated by the LD correlation matrix and MAF-based SNP
variance estimator. For E(ejzk), it is the residual variance from a two-SNP regression model and

should be smaller than both E(ejz) and E(e2). In practice, we can approximate it by the smaller
eTe. ATo
value between % and % . Therefore, the numerical approximation for X, becomes

A

A 5\~ 5\~ 12
L = Nd;;6;6 mln{SE(,Bj)aj,SE(Bk)ak} (5)
Now we can then generate summary statistic from the multivariate normal distribution in formula
(3). Note that our earlier subsampling framework is a special case where SNPs are independent

and its only difference with the current method is the estimation of f:jk. In the next session we will
discuss how to subsample summary statistics efficiently from a multivariate normal distribution.

Strategy for subsampling summary statistics

Next, we discuss how to partition full GWAS summary statistics into K independent subsets of
GWAS samples, denoted as x®'y®, .. x®" 'y for K > 2. When K = 2, formula (3) can be
directly applied to divide GWAS summary statistics into two independent sets. Otherwise, let
N®, . N® denote the corresponding sample size for each subset of individuals and N =
YK N©®. By formula (3), we can subsample x®"y® from xTy observed in the complete GWAS
summary data. After that, we calculate summary statistics excluding NV individuals from the first



subset as x(D y(-D = xTy — xW"y( To generate summary statistics for any following subset

numbered ¢ + 1 (i.e., xt*D y+D) for ¢ = 1,..., K — 2, we update the conditional distribution in (3)
with the new “full” GWAS summary statistics and correspondent total sample size:

NED  coryeo (N EHN )Ny )
y

_— 6
N-Xt_, NG * N-Yt N® (6)

X(t+1)Ty(t+1) |X(_t)Ty(_t) ~ N (

where x(‘t)Ty(‘t) represents summary statistics excluding first t subsets of individuals. This
subsampling strategy guarantees that every subset is independent from each other and avoids
overfitting when K > 2. Finally, for the last subset K, we can directly calculate its summary
statistics by x®)" y(®) = xTy — YE-1x©)7y() Together, this is a flexible framework for generating
summary statistics and can be used for various types of PRS analyses as we discuss in later
sections.

It is a difficult task to subsample summary statistics for all SNPs in the genome simultaneously
given the large dimension of genotype and imputed data. Even if PRS modeling is restricted to
HapMap3 SNPs, it remains challenging to subsample x©"y(® for more than one million SNPs
altogether®®. To efficiently generate data, we partition the whole genome into approximately
independent LD blocks and subsample summary statistics for SNPs in each LD block
separately®®®’. Then £ becomes a sparse block-diagonal matrix, i.e., T = diag(Zp,). Within each
LD block, the empirical SNP correlation matrix may not always be positive-definite and thus
making it impossible to randomly generate data from that LD block. A straightforward remedy is
to conduct eigen decomposition for any ’f:Dithat is negative definite, manually change negative
eigenvalues to 0’s, and obtain an approximation of fDi that is positive semi-definite. Note that this
may not be the best approach and other methods for estimating LD blocks can also be applied®®°.

Evaluate predictive performance of PRS

Here, we generalize the summary-statistics-based PRS evaluation scheme proposed in our
previous work to incorporate LD. We denote PRS as a weighted sum of allele counts across many
SNPs:

A

Y =Xw

where w € R? is a vector of SNP weights, which can be marginal regression coefficients from
GWAS or post-hoc effect size estimates. If individual-level data is available, then R? evaluated on
any holdout dataset (y*),x®)) can be calculated as

[Cov(y(s)’ S\’(s))]z (Z{V(l) yL(S)’\ (s) _ nw %)2
Var(yO)War(§®) 5N (5 (s)) 5N (5 y(s))z

Rmdwzdual

where J; is the PRS for the i-th person, y®) is the mean phenotypic value, and §() is the mean
PRS value in holdout dataset s. On the other hand, we have shown that when only summary
statistics of the holdout dataset is available and SNPs are independent, R? j;yiqua CaN be
approximated by®:



N

p
10 zz: w252
N<s>2 -y jer 70

N(S)

1 —\2 &
) _v®) ~ J T | o A ZAg
N(S); (yi y ) max [N _ 1] Nm]ax{SE(ﬁ]) G’}

52 (N%s)Z 1WX J(S) y(s))

nold ~ Nm]aX{SE(ﬁj) 6]-2}25-’:1 w? 6?2
given that X, y© and § are centered. In practice, we use the 90% quantile instead of
m}ax{SE(/?j)z&jz} to get a robust estimate of Var(y(). When LD is present, the approximations

for Cov(y®,§)) and Var(y®) remain the same. For Var(§), it can now be approximated by
o Var(x))w, with Var(x*)) estimated using the LD correlation matrix and MAF calculated from
the reference panel. Taken together, we have

1
A2 (WZ LW X ,(S) y)? )
= —A - —
Nm;fiX{SE(ﬁj) 67} (BF_y T j WHG7 + wiwi .56y
Note that similar versions of this formula have been tested and applied in the literature?="8_ In

practice, we can directly calculate PRS on the LD reference genotype data and use the sample
variance of PRS to replace Y.7_,; Yy wj 67 + w;w,.d;;.6;6, for optimal computational efficiency.

The PUMAS framework

Given the flexible framework we introduced for subsampling GWAS summary data and evaluating
PRS based on summary statistics, PUMAS becomes a special case where the entire GWAS

summary-level data is partitioned into a training and a tuning dataset, denoted as x(""y(" and
x Ty PUMAS first draws xW y(t from (3) and then calculates x( "y py xTy —

xt "y () For each SNP, the marginal effect size and its standard error from the training set can

be calculated as
A(tr)
B

j

A(tr) N A
SE@; ) = /WSE(L?].)

Then these summary statistics from the training dataset can be used to train any PRS methods
that use GWAS summary statistics as input. R? of the PRS model assessed on the fine-tuning
dataset can be approximated by replacing x® y® with x®W"y(t™ and changing the
corresponding sample size in formula (7). This procedure can be repeated k times to implement
a k-fold Monte Carlo cross-validation (MCCV) to select the best-performing tuning parameter.
When there is a set of tuning parameters A in a PRS framework, that is, g 1) = Xw(4), PUMAS
chooses the optimal tuning parameter 1 by

T
= [N 3}?]-1X](tr) y )
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A = argmax Rip (1)

where RZ, denotes the mean R?Z, across k-fold MCCV. This cross-validation technique also
applies to models that are hyperparameter-free or fine-tuned in advance. When the goal is to pick
the best PRS model among a total of M PRS methods, the best model m can be selected by

M = argmax RZp(m, 1)
m=12,..M

where 1,, is the besting tuning parameter for PRS framework m.

Combining multiple PRS with PUMA-CUBS

Next, we introduce PUMA-CUBS, an extension of PUMAS that applies ensemble learning to
combine multiple PRS using GWAS summary statistics. To do this, PUMA-CUBS further partitions
the full GWAS association results to 4 independent sets of summary statistics corresponding to
training (x( y(M), tuning (xt™"y(t™), ensemble training (x©M y(€M), and testing (xO"y®)
summary statistics. Using formula (6), we subsample summary statistics iteratively and compute
Xy () = xTy _ x(tWTyn) _ getmTyler) _x®OTy(® | Like PUMAS, PUMA-CUBS first
conducts k-fold MCCV using training and tuning summary statistics to pick the best tuning
parameter for each PRS method. Then, it trains each optimal PRS model’'s weight on the
ensemble training data and evaluates the combined PRS on the testing summary statistics. A
straightforward and intuitive way of combining PRS is through multiple linear regression. However,
if individual-level genotype and phenotype data is not available, we cannot fit the regression in
the conventional way. Below we illustrate how to calculate regression coefficients using summary-
level data alone. We define the multiple linear regression model on the ensemble training dataset
as:

yletr) — a, X 7 getr) +a, X ?Z(etr) + ot ay X ?I\Eletr) + €prs
where a = [a; a5 ... ay]T are PRS weights for M PRS methods. We also define
2 =[50 950 . 97| = xCenw
as the observed PRS matrix with dimension N x M, and W = [w; w, ... wy,] are ap XM
SNP weights matrix for p SNPs from M methods. To obtain the least squares estimator of a, that

is & = (sz)_lzTy(e"), we need to estimate zTz and zTy(¢'") separately. In fact, under the
assumption that genotype and phenotype are both centered, we can show that

27z~ N . 38, (8)

ZTy(etr) ~ WTX(etr)Ty(etr) (9)

where Z, is the empirical covariance matrix of the PRS matrix z. In practice, we can estimate Z,
by calculating PRSs and their sample covariance matrix on a reference LD genotype dataset or
approximate it by computing W'DW. Taken (8) and (9) together, we can estimate PRS weights
using only summary statistics. Then we take the average PRS weights across k folds, i.e., a =

% ;?:1 @;, and use it as the PRS weight to combine optimized PRSs. Finally, we modify equation

(7) to calculate predictive R? for ensemble PRS on the testing summary-level data:



1 _rour ®T () 2
22 [Fma Wy
Rensembie = SN2 A2y 1o — (10)
N max{SE(B;) 67} a’L,a
J

In the end, PUMA-CUBS reports the average prediction accuracy of ensemble PRS across k
folds. Note that PUMA-CUBS can benchmark all PRS models in addition to the ensemble PRS
on the testing summary statistics since it is independent from training and tuning datasets.
Therefore, PUMA-CUBS becomes a highly flexible framework to train, fine-tune, combine, and
evaluate PRS models based on GWAS summary statistics.

Binary phenotypes

There are two challenges when applying PUMAS and PUMA-CUBS to binary phenotypes. First,
summary statistics obtained from logistic regression frameworks violate the linear regression
model assumption in our derivation. Therefore equations (3) and (6) are not directly appliable to
subsampling summary statistics for binary traits because XY calculation is non-trivial for log odds
ratios. Second, squared Pearson correlation between a binary outcome and PRS using logistic
regression coefficients as input is less interpretable and rarely reported. On the other hand, area
under the ROC curve (AUC) is often the preferred metric to quantify PRS accuracy for binary
outcome. AUC calculation based on summary statistics has been developed but is not yet
generalized to handle whole genome data, making it difficult to evaluate more sophisticated PRS
methods that leverage contributions from millions of SNPs when individual-level data is not
accessible®. Here we propose a simple solution that allows us to apply PUMAS and PUMA-CUBS
to binary phenotypes and report interpretable R?. For binary traits, R? on the observed scale (i.e.,
R2,,) has been defined and discussed in the literature as an alternative metric for evaluating PRS
prediction accuracy**. R%, is the squared correlation between PRS and 0-1 status where PRS
uses effect sizes estimated from linear probability model (LPM, i.e., linear regression between the
binary response and SNP allele counts) as inputs®'. If GWAS summary-level data is acquired
from linear probability model, then PUMAS and PUMA-CUBS can be directly applied to calculate
R2, . for binary traits®*. When LPM summary statistics are not available, since a single SNP has
very weak effect on the phenotypic outcome in practice, we can still safely approximate LMP
coefficient estimations using Z-score from logistic regression***3. Specifically, we can calculate
v(1-v)
X[ X;
statistics and v is the sample prevalence. Then, we can use [?,-_LPM and correspondent standard
error SE(Bjpm) = to apply PUMAS and PUMA-CUBS to dichotomous phenotypes.
2

Eventually, if it is preferred to transform RZ, . to R? on the liability scale (Rlzl-abi”ty) which can be

comparable across different studies and phenotypes, such transformation has been developed
using sample and population prevalence*.

,[?LLPM = Zj 10gistic X where Z; 1,4istic 18 Z-score for the j-th SNP from logistic summary

v(1-v)
T
Xj X]'

Sample size imputation

In this section, we discuss how to handle sample size misspecification in GWAS summary
statistics when applying our approach. Sample size misspecification is common in published
GWAS datasets since many studies often do not report SNP-specific sample size and only
provide a maximum sample size for the entire study. This is sub-optimal for PRS training if variant-



level samples sizes differ substantially (e.g., in meta-analysis). A recent study has extensively
investigated sample size misspecification in marginal association statistics and observed
consistently decreased PRS prediction accuracy when the issue is not properly addressed®'. For
PUMAS and PUMA-CUBS, incorrect sample sizes will both affect the quality of subsampled
summary statistics and bias the estimation of predictive R%. To address this issue, we employed
the approach proposed in Privé et al. to impute and conduct quality control on variant-specific
sample size®'. Specifically, when the summary-level data does not provide sample size
information for each SNP, we first impute sample size and remove SNPs with imputed sample
size smaller than 70% and larger than 110% of reported maximum sample size. For summary
statistics that provides per-SNP sample sizes, we simply removed variants with sample size
smaller than 70% of the largest sample size. On the other hand, to make sure formula (7) and
(10) work for summary statistics with varying SNP-specific sample sizes, we enforce all summary
statistics other than training summary statistics to have the same sample size for every SNP. We
achieve this by subsampling all other summary statistics first where we can specify subset size

and calculate (™ y (") at |ast.

PRS training

We trained lassosum, PRS-CS, and LDpred2 models for all PRS analyses in this study??2>2°.
lassosum is a penalized regression framework that trains lasso regression coefficients for SNPs
in each LD blocks with tuning parameters s and A, where s controls the sparsity of LD matrix and
A is the penalty term that regularizes shrinkage of effect sizes. PRS-CS and LDpred2 are both
Bayesian PRS frameworks with different prior assumptions for the SNP effect size distribution.
PRS-CS has a global shrinkage parameter ¢ that uniformly shrinks its continuous prior
distribution for each SNP and includes a fully Bayesian approach that automatically learns ¢
during model fitting. LDpred2 is an extension of LDpred that places a point normal prior on SNP
effects based on tuning parameter p that represents the proportion of causal variants in the
genome (LDpred non-inf and LDpred2_grid) or a univariate normal prior on all SNPs that doesn’t
require model-tuning (LDpred/LDpred2-Inf)'?. Like PRS-CS, LDpred2 can also employ an
empirical Bayesian approach to optimize p on the training summary statistics. For implementation,
we trained PRS-CS (v1.0.0) models using UKB European LD reference for simulation study and
1000 Genomes European LD reference for real data analysis. We followed PGS server pipeline
to implement lassosum (R package ‘lassosum’ v0.4.5) and LDpred2 (R package ‘bigsnpr’
v1.9.11)%22862 Dye to larger computational burden, we implemented LDpred2 on each
chromosome separately and only used the estimated heritability from LD-score regression as the
tuning parameter h? in LDpred2*°. For real data analysis in UKB we constructed both non-sparse
and sparse versions of LDpred2 models. We employed more shrinkage on LDpred2-auto model
(shrink_corr = 0.5) and LDpred2_grid models (low_h?=0.1*h?) when analyzing publicly available
GWAS summary statistics to ensure model convergence. We only trained PRS models on
HapMap3 SNPs in all analyses throughout this study. The best tuning parameter for lassosum
was obtained through grid search. For LDpred2 and PRS-CS, we compared grid search with
empirical Bayesian models to find the best parameter.

Simulation settings
We conducted simulations using UKB genotype data imputed to the Haplotype Reference

Consortium reference. We removed samples who are not of European ancestry and genetic
variants with MAF below 0.01, imputation R? below 0.9, Hardy-Weinberg equilibrium test p-value



below 1e-6, or missing genotype call rate greater than 2%. We further extracted variants in the
HapMap3 SNP list and 1000 Genome Project Phase Il LD reference data for European ancestry
from PRS-CS. 377,509 samples and 944,547 variants remained after quality control. Then, we
randomly selected 100,000 samples to be the training dataset and 1,000 samples as the LD
genotype reference for our summary-statistics-based approach. To generate trait values, we

simulated true effect sizes from a point normal distribution, i.e., 8;~(1 — p)d, + pN(0, IZ—;) where

p is the proportion of causal variants, §, is point mass at 0, h? is the total heritability of the
phenotype, and M is the total number of SNPs”'2. We did not simulate associations between SNP
true effects on the allelic scale and MAF since previous analysis has shown minimal difference in
performance between PUMAS and PRS validation using individual-level data®%*. We chose p to
be 0.1% and 20% corresponding to sparse and polygenic genetic models, and h? = 0.2,0.5,0.8
to create a total of 6 simulation settings with various types of genetic architecture. Within each
setting, we randomly selected causal variants across the whole genome. Then we simulated
quantitative traits by adding up the SNP allele counts weighted by their true effect sizes and
randomly generated gaussian noises scaled based on trait heritability. We fitted marginal linear
regression in PLINK to obtain GWAS summary statistics in each setting®.

We compared PUMA-CUBS with 4-fold MCCV. To implement 4-fold MCCV, in each fold we
randomly selected 60% of all samples to form the training dataset (N=60,000), 20% as the tuning
dataset (N=20,000), 10% as the ensemble training dataset (N=10,000), and the remaining 10%
as the testing dataset (N=10,000). We conducted GWAS on the training data and used summary
statistics to train PRS models, fine-tuned PRS methods on the tuning data, obtained optimized
PRSs’ weights in the ensemble score by fitting multiple linear regression on the ensemble training
data, and finally evaluated each PRS model’s predictive R? on the testing data. For PUMA-CUBS,
we first used all samples (N=100,000) to fit marginal linear regression and obtained the full
summary statistics. In a similar fashion, we partitioned the full summary statistics to training
summary data (N=60,000), tuning summary data (N=20,000), ensemble learning summary data
(N=10,000) and testing summary data (N=10,000) for corresponding PRS analysis. Similarly, we
compared PUMAS with 4-fold MCCV by using only the training and tuning summary-level and
individual-level data for two approaches, respectively. In all simulations, we used 1000 Genomes
Project European LD dataset provided by the PRS-CS software to subsample summary statistics.
Both lassosum and LDpred2 model training used the holdout UKB LD genotype data (N=1,000)
as the LD reference. We implemented lassosum with s = 0.2,0.5,0.9 and 1 = 0.005,0.01, PRS-
CS with ¢ = 0.0001, 0.01, auto, LDpred2 with p = 0.001, 0.01, 0.1, auto and the infinitesimal model.
We repeated this procedure four times and calculated average R? to pick the best set of tuning
parameters for both approaches.

We conducted additional simulations to demonstrate that PUMAS and PUMA-CUBS can be
applied to binary traits. For each setting in the quantitative simulation study, we dichotomized the
continuous phenotype (i.e., true liability value under a liability threshold model) using either the
median or 90% quantile to acquire balanced (5-to-5) and unbalanced (1-to-9) case-control ratios.
Therefore, we have a total of 12 binary simulation settings. We fitted logistic regressions in PLINK
to obtain GWAS summary statistics in each setting and transformed logistic regression summary
statistics to the linear scale****%*, We then compared PUMAS and PUMA-CUBS with MCCV. We
computed R? on the observed scale (i.e., R? between PRS and 0-1 status) and transformed it to
R? on the liability scale by**:

v(l—v)
Rlziability = [¢(d>‘1(1 IR ‘U))]Z Rgbs




where v is prevalence, ¢ and ®~! are the pdf and inverse cdf of the standard normal distribution.

UKB data analysis

We applied our approach to 16 quantitative traits and 3 diseases in UKB. The list of UKB
phenotypes is presented in Supplementary Tables 5-6. The imputed UKB genotype data
consists of 375,064 independent individuals of European ancestry and 1,030,187 variants after
quality control. We used Hail (v0.2.57) to perform linear regression for quantitative traits while
adjusting for sex, age polynomials to the power of two, interactions between sex and age
polynomials, and top 20 principal components®. For 3 disease outcomes, we obtained GWAS
summary statistics via regenie (v3.0.3) accounting for sex, age polynomials to the power of 3,
interactions between sex and age polynomials, and top 10 principal components as
recommended®.

We compared PUMAS with external validation using a holdout subset of UKB samples. For
external validation of quantitative traits, we randomly selected 38,521 samples with non-missing
phenotypic measurements for all traits to form the holdout dataset. The remaining samples for
each phenotype were used as training data. In this way, we implemented an approximately 9-to-
1 training-testing split. Similarly for each binary outcome, we continued to employ a 9-to-1 sample
partition while matching the case-control ratio between the training and holdout datasets. Detailed
sample size information for all traits is included in Supplementary Tables 5-6. Then, we
conducted GWAS on the training data and obtained summary statistics. For quantitative traits, we
computed and evaluated PRS models on the entire holdout set and reported predictive R?
between PRS and phenotypes with covariates regressed out. For disease traits, we constructed
PRS models and calculated R? on the observed scale using both linear probability model
summary statistics and logistic model summary statistics. For all phenotypes, the holdout set of
quantitative traits (N=38,521) was also used as LD reference data for PRS model training. For
comparison, we applied PUMAS to partition the same GWAS summary-level data used in MCCV
to 75% training summary statistics and 25% tuning summary statistics. We used the holdout
dataset (N=38,521) for summary statistics subsampling® and as the LD reference for lassosum
and LDpred2 model training. We estimated variance of PRS models based on a smaller subset
(N=1,000) of the holdout data when evaluating PRS performance. This procedure was repeated
4 times and we reported the average R? for each PRS model. In all simulations, we implemented
lassosum with s = 0.2,0.5,0.9 and A = 0.005,0.01, PRS-CS with ¢ = 0.0001, 0.01, auto, LDpred2
with p = 0.001, 0.01, 0.1, auto and the infinitesimal model.

Next, we compared PUMA-CUBS with the training-testing split approach for ensemble learning
on the holdout dataset. For PUMA-CUBS, we partitioned full GWAS summary statistics into
training (60%), tuning (20%), and ensemble training (10%) summary statistics to train PRS
models based on a grid of tuning parameters, select the best tuning parameter setting for each
PRS method, and fit a second level regression to obtain regression weights for fine-tuned PRS
models. We then randomly partitioned the holdout dataset into two equally sized subsets. We
used PUMA-CUBS to obtain PRS models’ regression weights and then constructed and
evaluated the ensemble PRS on the second half of the holdout set. PRS models with negative
weights were removed from linear combination. In comparison, for the training-testing split
approach based on individual-level data, we used the first half of the holdout set to fit multiple
linear regression to obtain regression coefficients for fine-tuned lassosum, LDpred2, and PRS-
CS scores. Then we computed and evaluated the ensemble PRS models on the second half of
the holdout data. In all analyses, we trained lassosum with s = 0.2,0.9 and 4 = 0.001, 0.01, 0.1,



PRS-CS with ¢ = 0.0001,0.01, auto, LDpred2 with p = 0.001,0.01, 0.1, auto and the infinitesimal
model.

Building a catalog of PUMA-CUBS ensemble scores

We applied PUMA-CUBS to a collection of publicly available GWAS summary statistics. We
selected complex diseases and traits with a minimal case sample size of 5,000 and a total sample
size of 50,000, respectively. We excluded studies that performed GWAS on related samples and
retained traits with significant heritability estimation (p-value below 0.05) from LD score
regression®. In the end, we obtained a list of 31 GWAS summary statistics including 23 binary
outcomes and 8 complex traits as summarized in Supplementary Table 10. For each summary
statistics, we kept HapMap 3 SNPs that passed a series of quality control criteria listed in
Supplementary Table 11, including transformation of logistic summary statistics and imputation
of per-SNP sample size. Then we applied PUMA-CUBS to each phenotype to implement 4-fold
MCCV by partitioning the summary statistics to training (60%), tuning (20%), ensemble training
(10%), and testing (10%) datasets. We used 1000 Genomes Project Phase Ill European samples
as the LD panel for summary statistics subsampling, PRS model fitting and benchmarking. We
implemented lassosum with s =0.2,0.5,09 and A1=0.0050.01 , PRS-CS with ¢ =
0.0001,0.01, auto , LDpred2 with p =0.001,0.01,0.1,auto and the infinitesimal model. We
reported average predictive R? of ensemble PRS, the best single PRS model, PRS-CS-auto and
LDpred2-auto on the testing summary statistics.

We conducted additional analysis to investigate the validity of predictive R? of ensemble PRS for
Alzheimer’s disease. We used IGAP 2019 Alzheimer's GWAS summary statistics to train PRS
models and included 2,600 Alzheimer’s disease cases of European ancestry from the UKB cohort
in the external validation dataset*®. The data fields used for Alzheimer’s cases extraction are
presented in Supplementary Table 13. We randomly selected 5,200 independent UKB samples
not diagnosed with Alzheimer’s disease to use as healthy controls to match the case-control ratio
in the IGAP 2019 study. Together, we obtained a UKB external validation dataset with 7,800
samples in total. We applied PUMAS to IGAP 2019 GWAS summary-level data and compared its
performance with external validation. We compared R? from both approaches with and without
removing the APOE region from GWAS summary statistics. We excluded the APOE region from
PRS analysis by removing variants between base pairs 45,116,911 and 46,318,605 (hg19) on
chromosome 19.

Data and code availability

PUMAS/PUMA-CUBS software is freely available at https://github.com/glu-lab/PUMAS.
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