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Abstract 
 
We introduce an innovative statistical framework to optimize and benchmark polygenic risk score 
(PRS) models using summary statistics of genome-wide association studies. This framework 
builds upon our previous work and can fine-tune virtually all existing PRS models while accounting 
for linkage disequilibrium. In addition, we provide an ensemble learning strategy named PUMA-
CUBS to combine multiple PRS models into an ensemble score without requiring external data 
for model fitting. Through extensive simulations and analysis of many complex traits in the UK 
Biobank, we demonstrate that this approach closely approximates gold-standard analytical 
strategies based on external validation, and substantially outperforms state-of-the-art PRS 
methods. We argue that PUMA-CUBS is a powerful and general modeling technique that can 
continue to combine the best-performing PRS methods out there through ensemble learning and 
could become an integral component for all future PRS applications. 
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Introduction 
 
Genetic risk prediction is a main focus in human genetics research and a key step towards 
precision medicine1-3. Continued success in genome-wide association studies (GWAS) in the past 
decade has facilitated the development of polygenic risk scores (PRS) that aggregate the effects 
of millions of single nucleotide polymorphisms (SNPs) for many complex traits4-6. Compared to 
earlier statistical methods that require individual-level data for model training7-10, PRS which only 
relies on GWAS summary data is much more generally applicable due to the wide availability of 
GWAS summary statistics. Although earlier PRS models struggled to produce accurate prediction 
results, recent and more sophisticated PRS methods have achieved substantially improved 
prediction accuracy through statistical regularization and biological data integration11-17. In 
numerous studies, PRS has shown promising performance in stratifying disease risk and great 
potential in informing early lifestyle changes or medical interventions18-21.  
 
Despite the progress, several lingering challenges create a significant gap between PRS 
methodology and applications. A main recurring issue we highlight (and address) throughout the 
paper is that PRS modelers often assume the existence of independent individual-level datasets 
that can be used for additional model tuning. But in practice, GWAS summary statistics are used 
for PRS model training, meaning that conventional sample splitting schemes cannot be used. 
Additional datasets that are independent from both training and testing samples also rarely exist. 
This suggests that model-tuning samples will have to come from the precious testing dataset 
which inevitably reduces the sample size and statistical power in downstream applications.  
 
This disconnection between impractical method requirements and limited data availability can 
lead to a variety of problems. For example, many PRS methods have tuning parameters that 
could substantially swing model performance when not chosen properly12-15,22-24. Conventionally, 
these parameters need to be fine-tuned on a separate dataset with individual-level genotypes and 
phenotypes. Although some recent methods employ fully Bayesian or empirical Bayesian 
techniques to bypass model fine-tuning25-27, these hyperparameter-free PRS do not always 
outperform fine-tuned models, trading predictive accuracy for computational feasibility28,29. 
Second, no PRS method universally outperforms all other approaches. The empirical 
performance of a PRS model depends on GWAS sample size, genetic architecture of the 
phenotype, quality of GWAS summary statistics, and heterogeneity between training and testing 
samples30-33. Thus, it is of great interest to systematically and impartially benchmark various PRS 
methods for each trait, ideally in an independent dataset11,30,34. Third, several recent studies have 
applied ensemble learning which combines multiple PRS models via another regression28,29. This 
brute-force approach has shown superior performance compared to any single PRS method but 
is data-demanding – the second level regression model needs to be fit on a separate dataset. 
Finally, we note that it may be of interest to combine all these tasks in practice, e.g., benchmarking 
an ensemble learner that combines multiple PRS models which all need to be tuned separately. 
Now this truly becomes mission impossible. 
 
In this paper, we seek a solution to these problems. We base our statistical framework on PUMAS, 
a method we recently introduced to perform Monte Carlo cross-validation (MCCV) using GWAS 
summary statistics35. We have shown that PUMAS can effectively fine-tune PRS models with 
clumped SNPs36 and the approach has since been adopted in other applications37-39. Here, we 
first demonstrate that PUMAS can fine-tune and benchmark state-of-the-art PRS models without 
SNP pruning. Second, we introduce an extension to the PUMAS framework named PUMA-CUBS 
which is a highly innovative strategy to perform ensemble learning using GWAS summary data 
alone. Taken together, we showcase a sophisticated statistical framework for fine-tuning, 
benchmarking, and combining PRS models using GWAS summary statistics as input. We 
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demonstrate the performance of our approach through extensive simulations and analysis of 19 
complex traits in UK Biobank (UKB). On average, the PUMA-CUBS ensemble PRS achieves a 
6.54% relative gain in predictive R2 compared to LDpred2 and a 15.00% gain compared to PRS-
CS, respectively. We also apply our method to 31 well-powered GWAS with publicly available 
summary statistics and provide a catalog of ensemble PRS with benchmarked predictive 
performance. 
 
 
 
Results 
 
Method Overview 
 
First, we present an overview of the PUMA-CUBS workflow. Statistical details and technical 
discussions are presented in the Methods section. For illustration, first we assume individual-
level data is available. In this case, we would divide the samples into 4 independent sets for PRS 
training, model fine-tuning, constructing ensemble PRS, and benchmarking model performance, 
respectively (Figure 1A). The main goal of our new approach is to mimic this procedure when 
only summary statistics are available. Using PUMAS, we could sample marginal association 
statistics for a subset of individuals in the GWAS35. Doing this repeatedly, we could divide the full 
GWAS summary data to corresponding training, tuning, ensemble learning, and testing summary 
statistics (Figure 1B). Using these four sets of sub-sampled summary statistics, we train a series 
of PRS models, fine-tune each PRS model to select the besting tuning parameters, apply PUMA-
CUBS to combine PRS models through linear regression, and finally evaluate the predictive 
performance of PRS models. The entire procedure only requires GWAS summary statistics and 
linkage disequilibrium (LD) references as input. 
 

 
Figure 1. Workflow of PRS construction and evaluation. (A) Conventional approach divides the entire 
individual-level dataset to different subset of samples for each of 4 stages of PRS analysis. (B) PUMA-
CUBS directly partitions the full summary-level data to corresponding summary statistics for different 
analytical purposes. 
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Figure 2. Comparison of PUMA-CUBS and MCCV in UKB simulation. (A and C) Simulation results for 
quantitative traits. (B and D) Simulation results for binary traits with balanced case-control ratio. Proportion 
of causal variants is 0.1% in A and B, and 20% in C and D. The heritability is set to be 0.5 in all panels. Y-
axis: predictive 𝑅! across 4 repeats of MCCV; X-axis (left to right): lassosum models (red boxes) with tuning 
parameter settings: s=0.2 and λ=0.005, s=0.2 and λ=0.01, s=0.5 and λ=0.005, s=0.5 and λ=0.01, s=0.9 
and λ=0.005, s=0.9 and λ=0.01. LDpred2 models (green boxes): non-infinitesimal with p=0.1, non-
infinitesimal with p=0.01, non-infinitesimal with p=0.001, non-infinitesimal with p=auto, and infinitesimal 
model. PRS-CS (blue boxes): 𝜙=0.01, 0.0001, and auto. Finally, the purple box shows the results of 
ensemble PRS. Results for remaining simulation settings are summarized in Supplementary Figures 1-7 
and Supplementary Tables 1-4. 
 
 
Simulation results 
 
We performed simulations using imputed genotype data from UKB to demonstrate that PUMAS 
and PUMA-CUBS can fine-tune, combine, and benchmark PRS models. We included 100,000 
independent individuals of European descent and 944,547 HapMap3 SNPs in the analysis. We 
simulated phenotypes with heritability of 0.2, 0.5, and 0.8 and randomly assigned causal variants 
under sparse and polygenic settings to mimic different types of genetic architecture (Methods). 
We performed GWAS and obtained marginal association statistics. We then implemented 
PUMAS and PUMA-CUBS to conduct a 4-fold MCCV to train, optimize, and evaluate lassosum, 
PRS-CS, LDpred2, and an ensemble PRS which combines all three methods22,25,26. For 
comparison, we also implemented a MCCV procedure using individual-level UKB data. We 
partitioned the UKB dataset into 4 mutually exclusive datasets. We used datasets 1 and 2 to train 



and fine-tune each PRS method, then used the third dataset to fit a regression to combine multiple 
PRS. We evaluated each PRS method in the fourth dataset and reported PRS prediction accuracy 
quantified by 𝑅! . We describe implementation details of both summary-statistics-based and 
individual-level-data-based MCCV in Methods.  
 
Overall, we observed highly consistent results between PUMAS/PUMA-CUBS and MCCV for both 
quantitative and binary phenotypes (Figure 2; Supplementary Figures 1-7; Supplementary 
Tables 1-4). In addition, summary statistics-based approaches can closely approximate 𝑅! 
values obtained from model-tuning and benchmarking techniques using individual-level data. 
PUMA-CUBS also constructed scores that were highly concordant with ensemble PRS built from 
individual-level data which universally outperformed all PRS models used as input. 
 
 
PUMAS can fine-tune and benchmark PRS methods 
 
Next, we demonstrate that PUMAS effectively fine-tunes PRS models and performs accordantly 
with the gold standard external validation approach based on individual-level data. We applied 
PUMAS to 16 quantitative traits and 3 diseases in UKB (Supplementary Tables 5-6). After quality 
control, the UKB dataset contained 375,064 independent individuals and 1,030,187 SNPs 
(Methods). We applied a 9-to-1 data split to hold out 10% of the samples for external validation, 
and performed GWAS for all traits using 90% of the samples. We applied 4-fold MCCV 
implemented in PUMAS to train and fine-tune three PRS models (i.e., LDpred2, lassosum, and 
PRS-CS which have been demonstrated to achieve high prediction accuracy in a recent 
benchmark study22,25,26,29) using only summary statistics. For external validation, we trained PRS 
models using summary statistics and calculated PRS prediction accuracy on the holdout dataset. 
We report the best tuning parameters for LDpred2, lassosum, and PRS-CS and corresponding 
𝑅! obtained from both PUMAS and external validation. 
 
Our summary-statistics-based approach showed highly consistent model-tuning performance for 
all analyzed traits compared to external validation (Figure 3, Supplementary Figures 8-26; 
Supplementary Tables 7-8). Among 19 traits, PUMAS and external validation selected the same 
best tuning parameters 19, 17, and 11 times for lassosum, LDpred2, and PRS-CS, respectively. 
When the model tuning results were different between PUMAS and external validation, both 
approaches still selected models with very similar prediction accuracy. In addition, PUMAS 
provided precise R2 estimates for all models compared to external validation, advocating the use 
of our summary-statistics-based approach for PRS model benchmarking.  
 
We also observed that the parameter-tuning results are accordant with the analyzed traits’ genetic 
architecture. For both height and monocyte count, PUMAS accurately selected the best tuning 
parameters based on external validation (Figure 3A-B), but the selected models were not the 
same between these two traits. Height is known to be extremely polygenic with more than 12,000 
independent GWAS signals in the latest GWAS40. In comparison, fewer loci have been found to 
significantly associate with monocyte count41. Our model-tuning results suggest that polygenic 
prediction models fit best for height (e.g., LDpred2-Infinitesimal and PRS-CS with 𝜙 = 0.01) while 
sparser PRS models with stronger regularization (e.g., PRS-CS with 𝜙 = 0.0001) provide better 
prediction accuracy for monocyte count.  
 
Finally, PUMAS can also effectively estimate predictive 𝑅! for binary traits (Figure 3C-D). To 
calculate interpretable 𝑅! for binary outcomes, PUMAS first transforms GWAS summary statistics 
obtained from logistic regressions to the linear regression scale, and then computes 𝑅! on the 



observed scale42-44. To show that such transformation is valid, we trained two sets of PRS models 
using both transformed and original logistic regression summary statistics for 3 disease traits and 
observed nearly identical PRS performance between two approaches (Supplementary Table 8; 
Supplementary Figures 24-26). Details in the implementation of binary trait analysis and 
summary statistics transformation are presented in Methods. 
 

 
Figure 3. Comparing PUMAS results with external validation. Four panels show the model-tuning 
results for (A) height, (B) monocyte count, (C) coronary artery disease, and (D) high blood pressure. Y-axis: 
average predictive 𝑅! across 4-fold replications from PUMAS; X-axis: predictive 𝑅! evaluated by external 
validation on the holdout dataset. Each data points represents a PRS model with different tuning 
parameters and the shape of data points indicate three different PRS methods: LDpred2, PRS-CS, and 
lassosum. The best tuning parameter setting suggested by PUMAS for each PRS method is highlighted 
and colored. The dashed red line is fitted regression line between PRS 𝑅! from PUMAS and external 
validation. Pearson correlations between two sets of results are shown in each panel. Detailed model-tuning 
results for all 19 traits are summarized in Supplementary Tables 7-8 and Supplementary Figures 8-26. 
 



 
Ensemble learning via PUMA-CUBS substantially improves PRS prediction accuracy 
 
Here we apply PUMA-CUBS, the ensemble learning extension of PUMAS, to UKB traits and show 
that ensemble PRS has superior prediction accuracy compared to each PRS method and our 
summary statistics-based approach is comparable to ensemble learning results based on 
individual-level data. We constructed linearly combined scores of lassosum, PRS-CS, and 
LDpred2. Using individual-level data, we split the 10% UKB holdout dataset into two equally sized 
subsets. We fitted a multiple regression on the first holdout set to aggregate the best-performing 
PRS models trained and tuned from GWAS summary statistics, and then evaluated the ensemble 
score’s prediction accuracy using the second holdout set. For comparison, we implemented 
PUMA-CUBS to conduct 4-fold MCCV to perform ensemble learning using summary statistics 
alone and assess its performance on the second holdout set.  
 
Our approach showed almost identical performance compared to individual-level data results 
(Figure 4A), showcasing PUMA-CUBS’ ability to benchmark and construct ensemble PRS 
without requiring additional datasets. In addition, ensemble PRS achieved the highest prediction 
accuracy for all traits compared with three input PRS models (Supplementary Figure 27; 
Supplementary Table 9). The ensemble PRS using individual-level data as input had an average 
15.77% and 7.25% relative gain in 𝑅! compared to PRS-CS-auto and LDpred2-auto while the 
PUMA-CUBS ensemble PRS delivered a similar 15.00% and 6.54% 𝑅! increase respectively 
(Figure 4B), highlighting the substantial gain in prediction accuracy from ensemble learning. 
 

 
Figure 4. Constructing ensemble PRS for UKB traits. (A) Comparing two sets of ensemble PRS 
obtained from PUMA-CUBS and individual-level data. The gray dashed line is the diagonal line. (B) 
Comparing ensemble PRS with input PRS methods. Y-axis: relative percentage increase in 𝑅! compared 
to PRS-CS-auto; X-axis: 4 sets of PRS models, including the best single PRS suggested by PUMAS, the 
best single PRS selected based on the first individua-level holdout set, the ensemble PRS obtained from 
PUMA-CUBS, and the ensemble PRS trained from individual-level data. All 𝑅! values were computed using 
the second half of holdout dataset. 
 
 



Constructing and benchmarking ensemble PRS for 31 complex traits 
 
Finally, we applied PUMA-CUBS to provide a comprehensive catalog of ensemble PRS for 31 
publicly available GWAS summary statistics with varying sample size and genetic architecture. 
The detailed information and selecting criteria for GWAS summary-level data are summarized in 
Methods and Supplementary Table 10. We employed extensive quality controls to pinpoint and 
calibrate misspecifications in GWAS summary statistics following a recent study31 
(Supplementary Table 11). We also transformed logistic summary statistics to linear scale to 
produce interpretable 𝑅! for binary traits42-44. For each trait, we reported prediction accuracy of 
the best performing PRS model and ensemble PRS. The full results of the PRS catalog are 
presented in Supplementary Table 12. The predictive performance of ensemble PRS is 
correlated with estimated trait heritability, and the predictive 𝑅! ranged from 0.001 to 0.227 across 
31 traits, showing highly diverse predictive performance of genetic risk prediction. We also note 
that ensemble PRS improved predictive 𝑅! for every trait in the analysis with an average increase 
of 31.36% compared to PRS-CS-auto (Supplementary Figure 28). Among 31 complex diseases 
and traits, we observed the highest prediction improvement for rheumatoid arthritis (103.8%), 
Alzheimer’s disease (71.96%, 83.68%, and 98.82% on three datasets), ischaemic stroke (69.48% 
and 78.35% on two datasets), and Parkinson’s disease (75.55%).  
 

 
Figure 5. An ensemble PRS catalog for 31 complex traits. Y-axis: average predictive 𝑅! of PUMA-CUBS 
ensemble PRS; X-axis: heritability estimates from LD score regression45. Size of data points indicates the 



effective sample size of each GWAS. Binary traits and continuous traits are highlighted with different colors. 
Detailed PRS benchmark results are presented in Supplementary Table 12. 
 
Another observation is that the ensemble PRS 𝑅! exceeded the estimated trait heritability for all 
three Alzheimer’s disease GWAS. To demonstrate that this is not an artifact from overestimating 
predictive 𝑅!, we conducted additional analysis (Methods) using IGAP 2019 Alzheimer’s GWAS 
summary statistics46 and compared our results with external validation based on 2,600 
Alzheimer’s disease cases and 5,200 healthy controls in UKB (Supplementary Table 13). The 
𝑅! of AD PRS obtained from external validation also exceeded estimated heritability (ℎ!=0.072, 
SE=0.012) and the results were consistent with PUMAS 𝑅! estimation (Supplementary Figure 
29; Supplementary Table 14). We hypothesized that this is driven by the APOE region which 
contributes an unusually large fraction of AD risk47-49. Indeed, after removing 383 SNPs in the 
APOE region from IGAP 2019 AD summary statistics (Methods), we observed a steep decline in 
𝑅! for both external validation and PUMAS. Both 𝑅! values became substantially lower than the 
estimated ℎ! of 0.066 without APOE region (SE=0.009; Supplementary Table 14). 
 
 
 
Discussion 
 
Fine-tuning and benchmarking PRS models are challenging tasks due to the need of external 
individual-level datasets that are independent from the input GWAS. In this work, we extended 
our PUMAS approach to incorporate LD and fine-tune state-of-the-art PRS methods. In both 
simulations and analysis of UKB traits, we observed high concordance between PUMAS and 
results based on external validation using holdout samples. In addition, we presented a novel 
framework named PUMA-CUBS to perform ensemble learning and create combined PRS using 
only GWAS summary statistics. We showed that ensemble PRS created by PUMA-CUBS closely 
approximates scores built from holdout samples. Further, these ensemble scores substantially 
outperformed state-of-the-art PRS methods for all complex traits we analyzed in the study. Finally, 
we applied PUMA-CUBS to a collection of publicly available GWAS summary statistics and 
provided a comprehensive catalog of benchmarked and optimized PRS. 
 
Our work presents several major advances that will impact future PRS applications. First, our 
method fills an important gap between PRS methodological research and its real-world 
applications. Currently, many PRS methods still have tuning parameters and grid search on 
external individual-level datasets remains the most common technique for fine-tuning these 
models. In practice, this kind of data can either be impossible to obtain, or need to be split from 
testing samples which could hurt statistical power in PRS applications32. Our method provides a 
universal solution to PRS model fine-tuning. Second, model benchmarking is another major 
challenge in the field which conventionally relies on external validation data. Comprehensive and 
unbiased benchmarking allows researchers to compare the effectiveness of different PRS 
methods for particular traits of interest, and importantly, estimate PRS predictive accuracy without 
using testing samples. We note that although some advanced PRS approaches do not require 
model fine-tuning anymore, no existing methods could benchmark model performance using a 
single set of GWAS summary data, which is crucial for model selection, power calculation, and 
study design. Our approach now provides a solution to this problem. Third, the ensemble learning 
approach which combines multiple predictive models through a second level regression has been 
viewed as a highly effective but data-demanding approach28,29,33. A major advance in this study is 
the introduction of PUMA-CUBS which allows ensemble learning on GWAS summary statistics. 
We note that this approach not only showcased a substantial gain over existing PRS methods, 
but is generally applicable to future PRS developments. If a future PRS approach shows 



promising improvements compared to older methods, that new approach can also be incorporated 
into the ensemble PRS. In our view, PUMA-CUBS is not a competing approach for any existing 
PRS model, but instead is a flexible and general modeling technique that combines the best-
performing methods out there and should be applied to all future PRS applications. 
 
Our study has several limitations. First, we have constrained statistical analysis in this study to 
the European ancestral population. PRS is known to transfer poorly in terms of prediction 
accuracy for non-European populations which could exacerbate the disparity in genomic medicine 
between ancestral groups50,51. It is an important future direction to systematically optimize and 
benchmark PRS for diverse ancestral populations which would require incorporation of multiple 
sets of ancestry-specific GWAS and LD references. Although we did not explore this topic in this 
paper, our recent work introduced parallel ideas to tackle the challenges in multi-ancestry genetic 
risk prediction39. Second, analyses in this study were limited to GWAS summary statistics 
computed from independent samples. It remains to be investigated whether application of these 
approaches will be affected if the input GWAS summary statistics were obtained from linear mixed 
models with related samples or family-based designs52-54. Future work will focus on developing 
statistical methods to correct for sample relatedness or demonstrate robustness to these issues. 
That said, we expect PRS model-tuning to remain valid even with sample relatedness since the 
inflation in 𝑅! should be uniform across various tuning parameter settings, although biases may 
be introduced to the predictive 𝑅! which could affect benchmarking efforts. Third, our current 
analyses focused only on lassosum, PRS-CS, and LDpred2. While it serves to support the 
superiority of ensemble PRS as a proof of concept, more PRS methods need to be jointly modeled 
and evaluated in the future, including scores that leverage auxiliary information including 
functional annotation13,14 or multiple phenotypes15,17,55. Finally, collinearity among PRS models 
could arise when using multiple regression to combine a large number of scores since some PRS 
methods tend to yield similar results. Therefore, another future direction is to incorporate variable 
selection strategies into our ensemble learning framework which could also involve penalized 
regression. 
 
To sum up, we presented a sophisticated statistical framework to fine-tune, combine, and 
benchmark PRS methods using only GWAS summary statistics. This is a statistically novel and 
computationally efficient approach with flexible implementation that can handle a variety of 
applications. We have demonstrated its performance through careful and comprehensive 
analyses, and we argue that this framework presents highly innovative and generally applicable 
features that should become the default in many future PRS studies.  
 
 
 
Methods 
 
Sampling distribution of summary statistics 
 
We adopt a commonly used linear model framework to quantify the relationship between a 
quantitative trait and SNP genotypes: 

𝑌 = 𝐗𝛃 + 𝜖 

Here, 𝑌 denotes the trait, 𝐗 = (𝐗", … , 𝐗#) denotes the genotypes of 𝑝 SNPs, 𝛃 ∈ ℝ# denotes their 
true effect sizes, and 𝜖 denotes the random error that is independent from 𝐗 and follows a normal 
distribution with mean zero and some variance 𝜎$!. Let 𝐲 and 𝐱 = (𝐱", . . . , 𝐱#) denote the observed 



values for 𝑌 and 𝐗 from 𝑁 independent individuals. For simplicity, we assume both 𝐲 and 𝐱% (𝑗 =
1,… , 𝑝) are centered. Then, GWAS summary statistics can be denoted as: 

𝛽̂% = (𝐱%&𝐱%)'"(𝐱%&𝐲) (1) 

𝑆𝐸(𝛽̂%) = = 𝛜̂%
&
𝛜̂%

(𝑁 − 1)𝐱%&𝐱%
 (2) 

where  𝛜@% = 𝐲 − 𝐱% 	𝛽B% are the residuals from the marginal linear regression between the trait and 
the 𝑗-th SNP. To train, fine-tune, combine, and benchmark PRS models, independent datasets 
are required to avoid overfitting. We have previously proposed a flexible statistical framework to 
generate training and fine-tuning datasets when only GWAS summary statistics are available35. 
Here, we generalize this statistical framework in two different directions. First, we allow our 
method to incorporate LD information. We note that this extension is similar to some recent work 
built on our initial PUMAS paper37,39. Second, we allow the method to partition full GWAS 
summary statistics into more than two datasets for various analytical purposes. Let 𝑦()) and 𝑥()) 
denote phenotype and genotype data for any arbitrary subset of 𝑁 individuals with sample size 
𝑁()). When 𝑁 is large enough, we have previously shown that by central limit theorem35: 

𝐱&𝐲 ∼ 𝐍G𝑁𝐸(𝐗&𝑌), 𝑁𝑉𝑎𝑟(𝐗&𝑌)K 

𝐱())!𝐲()) ∼ 𝐍(𝑁())𝐸(𝐗&𝑌), 𝑁())𝑉𝑎𝑟(𝐗&𝑌)) 

where 𝐗&𝑌 = (𝑋"𝑌, . . . , 𝑋#𝑌)& . Then, given the observed summary-level data from GWAS, the 
conditional distribution of summary statistics of a subset of GWAS samples is 

 
𝐱())!𝐲())|𝐱&𝐲 ∼ 𝐍N

𝑁())

𝑁
𝐱&𝐲,

G𝑁 − 𝑁())K𝑁())

𝑁
𝚺PQ (3) 

where 𝚺P is the observed variance-covariance matrix for 𝐗&𝑌. To subsample summary statistics 
𝐱())!𝐲()) , we need to estimate 𝐱&𝐲  and 𝚺P  first. Recall formula (1) for marginal regression 
coefficient estimation, 𝐱%&𝐲 can be calculated using 𝛽̂%  and 𝐱%&𝐱%  which is proportional to SNP 
variance and can be estimated by minor allele frequency (MAF) reported from GWAS or imputed 
from LD reference panel. On the other hand, deriving 𝚺 is more complicated and we discuss how 
𝚺P is estimated using summary statistics and an LD reference panel in the following section. 
 
 
Estimate variance-covariance matrix of summary statistics 
 
Let 𝐷 denote the SNP correlation matrix and 𝑑%+ denote the correlation between the 𝑗-th and the 
𝑘-th SNPs. Let 𝚺 be the true covariance matrix of summary statistics with diagonal and off-
diagonal elements denoted as 𝚺% and 𝚺%+, respectively. For convenience, we write 𝑌 = 𝐗𝛃 + 𝜖 =
𝑋"𝛽"+. . . +𝑋#𝛽# + 𝜖 = 𝑋%𝛽% + 𝜖%, where 𝜖% = ∑ 𝑋,𝛽, + 𝜖,:,.% . Then the diagonal terms of the 𝚺 can 
be written as 



𝚺% = 𝑉𝑎𝑟(𝑋%𝑌)
= 𝑉𝑎𝑟[𝑋%(𝑋%𝛽% + 𝜖%)]
= 𝛽%!𝑉𝑎𝑟(𝑋%!) + 𝑉𝑎𝑟(𝑋%𝜖%) + 2𝛽%𝐶𝑜𝑣(𝑋%!, 𝑋%𝜖%)

= 𝛽%!𝑉𝑎𝑟(𝑋%!) + 𝑉𝑎𝑟[𝑋%(\ 𝑋,
,:,.%

𝛽, + 𝜖)] + 2𝛽%𝐶𝑜𝑣(𝑋%!, 𝑋%𝜖%)

 

We partition all SNPs in the genome into 2 sets. Let 𝑆" be the index set that contains all SNPs 
that are independent from the 𝑗-th SNP and 𝑆! be the set with all remaining SNPs that are in LD 
with the 𝑗-th SNP. Then we can further expand 𝚺% by 

𝚺% = 𝛽%!𝑉𝑎𝑟(𝑋%!) + 𝑉𝑎𝑟[𝑋%(\ 𝑋/𝛽/ + 𝜖
/∈1"

)] + 𝑉𝑎𝑟[𝑋%( \ 𝑋/#𝛽/#
/#∈1$

)] +

2𝐶𝑜𝑣[𝑋%(\ 𝑋/𝛽/ + 𝜖
/∈1"

), 𝑋%( \ 𝑋/#𝛽/#
/#∈1$

)] + 2𝛽%𝐶𝑜𝑣(𝑋%!, 𝑋%𝜖%)

= 𝛽%!𝑉𝑎𝑟(𝑋%!) + 𝑉𝑎𝑟[𝑋%(\ 𝑋/𝛽/ + 𝜖
/∈1"

)] + \ 𝛽/#
!

/#∈1$

𝑉𝑎𝑟(𝑋%𝑋/#) +

2 \ 𝛽/"#𝛽/$#𝐶𝑜𝑣(𝑋%𝑋/"# , 𝑋%𝑋/$# )
/"#∈1$,/$#∈1$,/"#./$#

+ 2 \ 𝛽/#𝐶𝑜𝑣[𝑋%𝜖, 𝑋%𝑋/#]
/#∈1$

+

2 \ \ 𝛽/𝛽/#𝐶𝑜𝑣[𝑋%𝑋/, 𝑋%𝑋/#]
/#∈1$/∈1"

+ 2𝛽%𝐶𝑜𝑣(𝑋%!, 𝑋%𝜖%)

 

We can simplify 𝚺% based on two commonly made assumptions. First, any given SNP should be 
in linkage equilibrium with the vast majority of SNPs in the genome. Therefore, we can safely 
assert |𝑆"| ≫ |𝑆!|. Second, each individual SNP’s effect on the phenotype is typically very small 
such that the products of any effect sizes are negligible in practice. Taken together, we can reduce 
the expansion of 𝚺%  by discarding SNPs in 𝑆! which eventually allows us to treat 𝑋%  and 𝜖%  as 
independent in practice: 

𝚺% ≈ 𝑉𝑎𝑟[𝑋%(\ 𝑋/𝛽/ + 𝜖
/∈1"

)]

≈ 𝑉𝑎𝑟[𝑋%𝜖%]
= 𝐸(𝑋%!𝜖%!) − [𝐸(𝑋%𝜖%)]!

≈ 𝐸(𝑋%!)𝐸(𝜖%!)

 

Note that 𝐸(𝑋%!) can be easily approximated using an MAF-based estimator, denoted as 𝜎@%!, that 
may be obtained either from the full GWAS summary statistics or the LD reference data. For 
𝐸(𝜖%!), we can estimate its value by standard error of effect size estimation from GWAS summary 
data using formula (2). In this way we can obtain an estimator of 𝚺% as 

 𝚺̂% = 𝑁[𝑆𝐸(𝛽̂%)𝜎@%
!]! (4) 

To estimate off-diagonal terms 𝚺%+ , we now write 𝑌 = 𝐗𝛃 + 𝜖 = 𝑋"𝛽"+. . . +𝑋#𝛽# + 𝜖 = 𝑋%𝛽% +
𝑋+𝛽+ + 𝜖%+, where 𝜖%+ = ∑ 𝑋,𝛽,,:,∉{%,+} + 𝜖. Under the same assumption where the magnitude of 
SNP effects is very small, we can simplify 𝚺%+ by: 



𝚺%+ = 𝐶𝑜𝑣[𝑋%(𝑋%𝛽% + 𝑋+𝛽+ + 𝜖%+), 𝑋+(𝑋%𝛽% + 𝑋+𝛽+ + 𝜖%+)]
= 𝐶𝑜𝑣(𝑋%!𝛽% , 𝑋%𝑋+𝛽%) + 𝐶𝑜𝑣(𝑋%𝑋+𝛽+ , 𝑋%𝑋+𝛽%) + 𝐶𝑜𝑣(𝑋%𝜖%+ , 𝑋%𝑋+𝛽%) +

𝐶𝑜𝑣(𝑋%!𝛽% , 𝑋+!𝛽+) + 𝐶𝑜𝑣(𝑋%𝑋+𝛽+ , 𝑋+!𝛽+) + 𝐶𝑜𝑣(𝑋%𝜖%+ , 𝑋+!𝛽+) +
𝐶𝑜𝑣(𝑋%!𝛽% , 𝑋+𝜖%+) + 𝐶𝑜𝑣(𝑋%𝑋+𝛽+ , 𝑋+𝜖%+) + 𝐶𝑜𝑣(𝑋%𝜖%+ , 𝑋+𝜖%+)

≈ 𝐶𝑜𝑣(𝑋%𝜖%+ , 𝑋%𝑋+𝛽%) + 𝐶𝑜𝑣(𝑋%𝜖%+ , 𝑋+!𝛽+) + 𝐶𝑜𝑣(𝑋%!𝛽% , 𝑋+𝜖%+) +
𝐶𝑜𝑣(𝑋%𝑋+𝛽+ , 𝑋+𝜖%+) + 𝐶𝑜𝑣(𝑋%𝜖%+ , 𝑋+𝜖%+)

≈ 𝐶𝑜𝑣(𝑋%𝜖%+ , 𝑋+𝜖%+)

 

In a similar fashion, we further partition all SNPs in the genome other than the 𝑗-th and the 𝑘-th 
SNP into two sets. Let 𝑆6 denote the collection of SNPs that are independent from both the 𝑗-th 
and the 𝑘-th SNPs, and 𝑆7 includes the remaining SNPs that are in LD with either the 𝑗-th or the 
𝑘-th SNP. Based on a similar rationale, we can safely assume that |𝑆6| ≫ |𝑆7|. Then, by ignoring 
SNPs in 𝑆7 and thus treating 𝑋% and 𝑋+ as being independent from 𝜖%+, we express 𝚺%+ as: 

𝐶𝑜𝑣(𝑋%𝜖%+ , 𝑋+𝜖%+) = 𝐶𝑜𝑣[𝑋%(\ 𝑋8𝛽8 + 𝜖
8∈1%

), 𝑋+(\ 𝑋8𝛽8 + 𝜖
8∈1%

)] + 𝐶𝑜𝑣[𝑋%(\ 𝑋8#𝛽8#
8#∈1&

), 𝑋+(\ 𝑋8𝛽8 + 𝜖
8∈1%

)]

+	𝐶𝑜𝑣[𝑋%(\ 𝑋8𝛽8 + 𝜖
8∈1%

), 𝑋+(\ 𝑋8#𝛽8#
8#∈1&

)] + 𝐶𝑜𝑣[𝑋%(\ 𝑋8#𝛽8#
8#∈1&

), 𝑋+(\ 𝑋8#𝛽8#
8#∈1&

)]

≈ 𝐶𝑜𝑣[𝑋%(\ 𝑋8𝛽8 + 𝜖
8∈1%

), 𝑋+(\ 𝑋8𝛽8 + 𝜖
8∈1%

)]

≈ 𝐶𝑜𝑣[𝑋%𝜖%+ , 𝑋,𝜖%+]
≈ 𝐸(𝑋%𝑋+)𝐸(𝜖%+! )

 

where 𝐸(𝑋%𝑋+) can be directly estimated by the LD correlation matrix and MAF-based SNP 
variance estimator. For 𝐸(𝜖%+! ), it is the residual variance from a two-SNP regression model and 
should be smaller than both 𝐸(𝜖%!) and 𝐸(𝜖+!). In practice, we can approximate it by the smaller 

value between 
𝛜:'
!𝛜:'
;'"

 and 𝛜:(
!𝛜:(
;'"

	. Therefore, the numerical approximation for 𝚺%+ becomes 

 𝚺̂%+ = 𝑁𝑑%+𝜎@%𝜎@+minb𝑆𝐸G𝛽B%K𝜎@% , 𝑆𝐸G𝛽B+K𝜎@+c
! (5) 

Now we can then generate summary statistic from the multivariate normal distribution in formula 
(3). Note that our earlier subsampling framework is a special case where SNPs are independent 
and its only difference with the current method is the estimation of 𝚺̂%+. In the next session we will 
discuss how to subsample summary statistics efficiently from a multivariate normal distribution. 
 
 
Strategy for subsampling summary statistics 
 
Next, we discuss how to partition full GWAS summary statistics into 𝐾 independent subsets of 
GWAS samples, denoted as 𝐱(")!𝐲("), … , 𝐱(<)!𝐲(<) for 𝐾 > 2. When 𝐾 = 2, formula (3) can be 
directly applied to divide GWAS summary statistics into two independent sets. Otherwise, let 
𝑁("), … , 𝑁(<)  denote the corresponding sample size for each subset of individuals and 𝑁 =
∑ 𝑁())<
)=" . By formula (3), we can subsample 𝐱(")!𝐲(") from 𝐱&𝐲 observed in the complete GWAS 

summary data. After that, we calculate summary statistics excluding 𝑁(") individuals from the first 



subset as 𝐱('")!𝐲('") = 𝐱&𝐲 − 𝐱(")!𝐲("). To generate summary statistics for any following subset 
numbered 𝑡 + 1 (i.e., 𝐱(>?")!𝐲(>?"))  for 𝑡 = 1,… , 𝐾 − 2, we update the conditional distribution in (3) 
with the new “full” GWAS summary statistics and correspondent total sample size: 

 
𝐱(>?")!𝐲(>?")|𝐱('>)!𝐲('>) ∼ 𝐍N

𝑁(>?")

𝑁 − ∑ 𝑁())>
)="

𝐱('>)!𝐲('>),
G𝑁 − ∑ 𝑁())>?"

)=" K𝑁(>?")

𝑁 − ∑ 𝑁())>
)="

𝚺PQ (6) 

where 𝐱('>)!𝐲('>)  represents summary statistics excluding first 𝑡  subsets of individuals. This 
subsampling strategy guarantees that every subset is independent from each other and avoids 
overfitting when 𝐾 > 2. Finally, for the last subset 𝐾 , we can directly calculate its summary 
statistics by 𝐱(<)!𝐲(<) = 𝐱&𝐲 − ∑ 𝐱())!𝐲())<'"

)=" . Together, this is a flexible framework for generating 
summary statistics and can be used for various types of PRS analyses as we discuss in later 
sections. 
 
It is a difficult task to subsample summary statistics for all SNPs in the genome simultaneously 
given the large dimension of genotype and imputed data. Even if PRS modeling is restricted to 
HapMap3 SNPs, it remains challenging to subsample 𝐱())!𝐲()) for more than one million SNPs 
altogether26. To efficiently generate data, we partition the whole genome into approximately 
independent LD blocks and subsample summary statistics for SNPs in each LD block 
separately56,57. Then 𝚺P becomes a sparse block-diagonal matrix, i.e., 𝚺P = 𝑑𝑖𝑎𝑔(𝚺P@)). Within each 
LD block, the empirical SNP correlation matrix may not always be positive-definite and thus 
making it impossible to randomly generate data from that LD block. A straightforward remedy is 
to conduct eigen decomposition for any 𝚺P@)that is negative definite, manually change negative 
eigenvalues to 0’s, and obtain an approximation of 𝚺P@) that is positive semi-definite. Note that this 
may not be the best approach and other methods for estimating LD blocks can also be applied58,59. 
 
 
Evaluate predictive performance of PRS 
 
Here, we generalize the summary-statistics-based PRS evaluation scheme proposed in our 
previous work to incorporate LD. We denote PRS as a weighted sum of allele counts across many 
SNPs: 

𝑌̂ = 𝐗𝛚 

where 𝛚 ∈ ℝ# is a vector of SNP weights, which can be marginal regression coefficients from 
GWAS or post-hoc effect size estimates. If individual-level data is available, then 𝑅! evaluated on 
any holdout dataset G𝐲()), 𝐱())K can be calculated as 
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where 𝑦@, is the PRS for the 𝑖-th person, 𝐲())nnnnn is the mean phenotypic value, and 𝐲@())nnnnn is the mean 
PRS value in holdout dataset 𝑠. On the other hand, we have shown that when only summary 
statistics of the holdout dataset is available and SNPs are independent, 𝑅,AB,C,BDE8!  can be 
approximated by35: 

	



1
𝑁())\l𝑦@,

()) − 𝐲@())nnnnnp
!

;(+)

,="

≈\ 𝑤%!𝜎@%!
#

%="
	

1
𝑁())\l𝑦,

()) − 𝐲())nnnnnp
!

;(+)

,="

≈ max
%
u
𝛜@%F𝛜@%
𝑁 − 1

v ≈ 𝑁max
%
{𝑆𝐸G𝛽B%K

!
𝜎@%!} 

𝑅yAGH@! ≈
l 1
𝑁()) ∑ 𝑤%𝐱%

())F𝐲())#
%=" p

!

𝑁max
%
{𝑆𝐸G𝛽B%K

!
𝜎@%!} ∑ 𝑤%!

#
%=" 𝜎@%!

 

given that 𝐱()) , 𝐲()) , and 𝐲@())  are centered. In practice, we use the 90% quantile instead of 
max
%
{𝑆𝐸G𝛽B%K

!
𝜎@%!} to get a robust estimate of 𝑉𝑎𝑟G𝐲())K. When LD is present, the approximations 

for 𝐶𝑜𝑣G𝐲()), 𝐲@())K and 𝑉𝑎𝑟G𝐲())K remain the same. For 𝑉𝑎𝑟G𝐲@())K, it can now be approximated by 
𝛚&𝑉𝑎𝑟G𝐱())K𝛚, with 𝑉𝑎𝑟G𝐱())K estimated using the LD correlation matrix and MAF calculated from 
the reference panel. Taken together, we have 
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Note that similar versions of this formula have been tested and applied in the literature22,37,38. In 
practice, we can directly calculate PRS on the LD reference genotype data and use the sample 
variance of PRS to replace ∑ ∑ 𝑤%!𝜎@%! +𝑤%𝑤+𝑑%+𝜎@%𝜎@++.%

#
%="  for optimal computational efficiency. 

 
 
The PUMAS framework 
 
Given the flexible framework we introduced for subsampling GWAS summary data and evaluating 
PRS based on summary statistics, PUMAS becomes a special case where the entire GWAS 
summary-level data is partitioned into a training and a tuning dataset, denoted as 𝐱(>I)!𝐲(>I) and 
𝐱(>A)!𝐲(>A) . PUMAS first draws 𝐱(>A)!𝐲(>A)  from (3) and then calculates 𝐱(>I)!𝐲(>I)  by 𝐱&𝐲 −
𝐱(>A)!𝐲(>A). For each SNP, the marginal effect size and its standard error from the training set can 
be calculated as 

𝛽̂%
(>I)

= [𝑁(>I) 𝜎%
!]'"𝐱%

(>I)!𝐲(>I) 

𝑆𝐸(𝛽̂%
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) = =
𝑁
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Then these summary statistics from the training dataset can be used to train any PRS methods 
that use GWAS summary statistics as input. 𝑅! of the PRS model assessed on the fine-tuning 
dataset can be approximated by replacing 𝐱())!𝐲())  with 𝐱(>A)!𝐲(>A)  and changing the 
corresponding sample size in formula (7). This procedure can be repeated 𝑘 times to implement 
a 𝑘-fold Monte Carlo cross-validation (MCCV) to select the best-performing tuning parameter. 
When there is a set of tuning parameters 𝛌 in a PRS framework, that is, 𝑌̂ (𝜆) = 𝐗𝛚(𝜆), PUMAS 
chooses the optimal tuning parameter 𝜆B by 



𝜆̂ = argmax
J∈𝛌

	𝑅nH@! (𝜆) 

where 	𝑅nH@!  denotes the mean 𝑅yH@!  across 𝑘 -fold MCCV. This cross-validation technique also 
applies to models that are hyperparameter-free or fine-tuned in advance. When the goal is to pick 
the best PRS model among a total of 𝑀 PRS methods, the best model 𝑚o  can be selected by 

𝑚o = argmax
L=",!,…,N

	𝑅nH@! G𝑚, 𝜆BLK 

where 𝜆BL is the besting tuning parameter for PRS framework 𝑚. 
 
 
Combining multiple PRS with PUMA-CUBS 
 
Next, we introduce PUMA-CUBS, an extension of PUMAS that applies ensemble learning to 
combine multiple PRS using GWAS summary statistics. To do this, PUMA-CUBS further partitions 
the full GWAS association results to 4 independent sets of summary statistics corresponding to 
training (𝐱(>I)!𝐲(>I)), tuning (𝐱(>A)!𝐲(>A)), ensemble training (𝐱($>I)!𝐲($>I)), and testing (𝐱(>)!𝐲(>)) 
summary statistics. Using formula (6), we subsample summary statistics iteratively and compute 
𝐱(>I)!𝐲(>I) = 𝐱&𝐲 − 𝐱(>A)!𝐲(>A) − 𝐱($>I)!𝐲($>I) − 𝐱(>)!𝐲(>) . Like PUMAS, PUMA-CUBS first 
conducts 𝑘 -fold MCCV using training and tuning summary statistics to pick the best tuning 
parameter for each PRS method. Then, it trains each optimal PRS model’s weight on the 
ensemble training data and evaluates the combined PRS on the testing summary statistics. A 
straightforward and intuitive way of combining PRS is through multiple linear regression. However, 
if individual-level genotype and phenotype data is not available, we cannot fit the regression in 
the conventional way. Below we illustrate how to calculate regression coefficients using summary-
level data alone. We define the multiple linear regression model on the ensemble training dataset 
as: 

𝑌($>I) = 𝛼" × 𝑌y	"
($>I) + 𝛼! × 𝑌y!

($>I) +⋯+ 𝛼N × 𝑌yN
($>I) + 𝜖#I) 

where 𝛂 = [𝛼"	𝛼!… 	𝛼N]& are PRS weights for 𝑀 PRS methods. We also define  
𝐳 = �𝐲@"

($>I)	𝐲@!
($>I)… 	𝐲@N

($>I)� = 𝐱($>I)𝐖 
as the observed PRS matrix with dimension 𝑁($>I) ×𝑀, and 𝐖 = [𝐰"	𝐰!… 	𝐰N]  are a 𝑝 ×𝑀 
SNP weights matrix for 𝑝 SNPs from 𝑀 methods. To obtain the least squares estimator of 𝛂, that 
is 𝛂o = G𝐳O𝐳K'𝟏𝐳O𝐲($>I) , we need to estimate 𝐳O𝐳  and 𝐳O𝐲($>I)  separately. In fact, under the 
assumption that genotype and phenotype are both centered, we can show that 

 𝐳&𝐳 ≈ 𝑁($>I) ⋅ 𝚺P𝐳 (8) 

 𝐳&𝐲($>I) ≈ 𝐖&𝐱($>I)
&
𝐲($>I) (9) 

where 𝚺P𝐳 is the empirical covariance matrix of the PRS matrix 𝐳. In practice, we can estimate 𝚺P𝐳 
by calculating PRSs and their sample covariance matrix on a reference LD genotype dataset or 
approximate it by computing 𝐖&𝐃𝐖. Taken (8) and (9) together, we can estimate PRS weights 
using only summary statistics. Then we take the average PRS weights across 𝑘 folds, i.e., 𝛂� =
"
+
∑ 𝛂o%+
%=" , and use it as the PRS weight to combine optimized PRSs. Finally, we modify equation 

(7) to calculate predictive 𝑅! for ensemble PRS on the testing summary-level data: 
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In the end, PUMA-CUBS reports the average prediction accuracy of ensemble PRS across 𝑘 
folds. Note that PUMA-CUBS can benchmark all PRS models in addition to the ensemble PRS 
on the testing summary statistics since it is independent from training and tuning datasets. 
Therefore, PUMA-CUBS becomes a highly flexible framework to train, fine-tune, combine, and 
evaluate PRS models based on GWAS summary statistics. 
 
 
Binary phenotypes 
 
There are two challenges when applying PUMAS and PUMA-CUBS to binary phenotypes. First, 
summary statistics obtained from logistic regression frameworks violate the linear regression 
model assumption in our derivation. Therefore equations (3) and (6) are not directly appliable to 
subsampling summary statistics for binary traits because 𝐗&𝑌 calculation is non-trivial for log odds 
ratios. Second, squared Pearson correlation between a binary outcome and PRS using logistic 
regression coefficients as input is less interpretable and rarely reported. On the other hand, area 
under the ROC curve (AUC) is often the preferred metric to quantify PRS accuracy for binary 
outcome. AUC calculation based on summary statistics has been developed but is not yet 
generalized to handle whole genome data, making it difficult to evaluate more sophisticated PRS 
methods that leverage contributions from millions of SNPs when individual-level data is not 
accessible60. Here we propose a simple solution that allows us to apply PUMAS and PUMA-CUBS 
to binary phenotypes and report interpretable 𝑅!. For binary traits, 𝑅! on the observed scale (i.e., 
𝑅GR)! ) has been defined and discussed in the literature as an alternative metric for evaluating PRS 
prediction accuracy44. 𝑅GR)!  is the squared correlation between PRS and 0-1 status where PRS 
uses effect sizes estimated from linear probability model (LPM, i.e., linear regression between the 
binary response and SNP allele counts) as inputs61. If GWAS summary-level data is acquired 
from linear probability model, then PUMAS and PUMA-CUBS can be directly applied to calculate 
𝑅GR)!  for binary traits53. When LPM summary statistics are not available, since a single SNP has 
very weak effect on the phenotypic outcome in practice, we can still safely approximate LMP 
coefficient estimations using Z-score from logistic regression42,43. Specifically, we can calculate 

𝛽B%,HSN ≈ 𝑍%,8G/,)>,T × �
C("'C)
U'
!U'

	 where 𝑍%,8G/,)>,T  is Z-score for the 𝑗-th SNP from logistic summary 

statistics and 𝑣 is the sample prevalence. Then, we can use 𝛽B%,HSN and correspondent standard 

error 𝑆𝐸G𝛽B%,HSNK ≈ �
C("'C)
U'
!U'

 to apply PUMAS and PUMA-CUBS to dichotomous phenotypes. 

Eventually, if it is preferred to transform 𝑅GR)!  to 𝑅! on the liability scale (𝑅8,ER,8,>V! ) which can be 
comparable across different studies and phenotypes, such transformation has been developed 
using sample and population prevalence44. 
 
 
Sample size imputation 
 
In this section, we discuss how to handle sample size misspecification in GWAS summary 
statistics when applying our approach. Sample size misspecification is common in published 
GWAS datasets since many studies often do not report SNP-specific sample size and only 
provide a maximum sample size for the entire study. This is sub-optimal for PRS training if variant-



level samples sizes differ substantially (e.g., in meta-analysis). A recent study has extensively 
investigated sample size misspecification in marginal association statistics and observed 
consistently decreased PRS prediction accuracy when the issue is not properly addressed31. For 
PUMAS and PUMA-CUBS, incorrect sample sizes will both affect the quality of subsampled 
summary statistics and bias the estimation of predictive 𝑅!. To address this issue, we employed 
the approach proposed in Privé et al. to impute and conduct quality control on variant-specific 
sample size31. Specifically, when the summary-level data does not provide sample size 
information for each SNP, we first impute sample size and remove SNPs with imputed sample 
size smaller than 70% and larger than 110% of reported maximum sample size. For summary 
statistics that provides per-SNP sample sizes, we simply removed variants with sample size 
smaller than 70% of the largest sample size. On the other hand, to make sure formula (7) and 
(10) work for summary statistics with varying SNP-specific sample sizes, we enforce all summary 
statistics other than training summary statistics to have the same sample size for every SNP. We 
achieve this by subsampling all other summary statistics first where we can specify subset size 
and calculate 𝐱(>I)!𝐲(>I) at last. 
 
 
PRS training 
 
We trained lassosum, PRS-CS, and LDpred2 models for all PRS analyses in this study22,25,26. 
lassosum is a penalized regression framework that trains lasso regression coefficients for SNPs 
in each LD blocks with tuning parameters 𝑠 and 𝜆, where 𝑠 controls the sparsity of LD matrix and 
𝜆 is the penalty term that regularizes shrinkage of effect sizes. PRS-CS and LDpred2 are both 
Bayesian PRS frameworks with different prior assumptions for the SNP effect size distribution. 
PRS-CS has a global shrinkage parameter 𝜙  that uniformly shrinks its continuous prior 
distribution for each SNP and includes a fully Bayesian approach that automatically learns 𝜙 
during model fitting. LDpred2 is an extension of LDpred that places a point normal prior on SNP 
effects based on tuning parameter 𝑝 that represents the proportion of causal variants in the 
genome (LDpred non-inf and LDpred2_grid) or a univariate normal prior on all SNPs that doesn’t 
require model-tuning (LDpred/LDpred2-Inf)12. Like PRS-CS, LDpred2 can also employ an 
empirical Bayesian approach to optimize 𝑝 on the training summary statistics. For implementation, 
we trained PRS-CS (v1.0.0) models using UKB European LD reference for simulation study and 
1000 Genomes European LD reference for real data analysis. We followed PGS server pipeline 
to implement lassosum (R package ‘lassosum’ v0.4.5) and LDpred2 (R package ‘bigsnpr’ 
v1.9.11)22,28,62. Due to larger computational burden, we implemented LDpred2 on each 
chromosome separately and only used the estimated heritability from LD-score regression as the 
tuning parameter ℎ! in LDpred245. For real data analysis in UKB we constructed both non-sparse 
and sparse versions of LDpred2 models. We employed more shrinkage on LDpred2-auto model 
(shrink_corr = 0.5) and LDpred2_grid models (low_h2=0.1*h2) when analyzing publicly available 
GWAS summary statistics to ensure model convergence. We only trained PRS models on 
HapMap3 SNPs in all analyses throughout this study. The best tuning parameter for lassosum 
was obtained through grid search. For LDpred2 and PRS-CS, we compared grid search with 
empirical Bayesian models to find the best parameter. 
 
 
Simulation settings 
 
We conducted simulations using UKB genotype data imputed to the Haplotype Reference 
Consortium reference. We removed samples who are not of European ancestry and genetic 
variants with MAF below 0.01, imputation 𝑅! below 0.9, Hardy-Weinberg equilibrium test p-value 



below 1e-6, or missing genotype call rate greater than 2%. We further extracted variants in the 
HapMap3 SNP list and 1000 Genome Project Phase III LD reference data for European ancestry 
from PRS-CS. 377,509 samples and 944,547 variants remained after quality control. Then, we 
randomly selected 100,000 samples to be the training dataset and 1,000 samples as the LD 
genotype reference for our summary-statistics-based approach. To generate trait values, we 
simulated true effect sizes from a point normal distribution, i.e., 𝛽%~(1 − 𝑝)𝛿W + 𝑝N(0,

X$

N#
) where 

𝑝 is the proportion of causal variants, 𝛿W  is point mass at 0, ℎ!  is the total heritability of the 
phenotype, and 𝑀 is the total number of SNPs7,12. We did not simulate associations between SNP 
true effects on the allelic scale and MAF since previous analysis has shown minimal difference in 
performance between PUMAS and PRS validation using individual-level data35,63. We chose 𝑝 to 
be 0.1% and 20% corresponding to sparse and polygenic genetic models, and ℎ! = 0.2, 0.5, 0.8 
to create a total of 6 simulation settings with various types of genetic architecture. Within each 
setting, we randomly selected causal variants across the whole genome. Then we simulated 
quantitative traits by adding up the SNP allele counts weighted by their true effect sizes and 
randomly generated gaussian noises scaled based on trait heritability. We fitted marginal linear 
regression in PLINK to obtain GWAS summary statistics in each setting64.  
 
We compared PUMA-CUBS with 4-fold MCCV. To implement 4-fold MCCV, in each fold we 
randomly selected 60% of all samples to form the training dataset (N=60,000), 20% as the tuning 
dataset (N=20,000), 10% as the ensemble training dataset (N=10,000), and the remaining 10% 
as the testing dataset (N=10,000). We conducted GWAS on the training data and used summary 
statistics to train PRS models, fine-tuned PRS methods on the tuning data, obtained optimized 
PRSs’ weights in the ensemble score by fitting multiple linear regression on the ensemble training 
data, and finally evaluated each PRS model’s predictive 𝑅! on the testing data. For PUMA-CUBS, 
we first used all samples (N=100,000) to fit marginal linear regression and obtained the full 
summary statistics. In a similar fashion, we partitioned the full summary statistics to training 
summary data (N=60,000), tuning summary data (N=20,000), ensemble learning summary data 
(N=10,000) and testing summary data (N=10,000) for corresponding PRS analysis. Similarly, we 
compared PUMAS with 4-fold MCCV by using only the training and tuning summary-level and 
individual-level data for two approaches, respectively. In all simulations, we used 1000 Genomes 
Project European LD dataset provided by the PRS-CS software to subsample summary statistics. 
Both lassosum and LDpred2 model training used the holdout UKB LD genotype data (N=1,000) 
as the LD reference. We implemented lassosum with 𝑠 = 0.2, 0.5, 0.9 and 𝜆 = 0.005, 0.01, PRS-
CS with 𝜙 = 0.0001, 0.01, 𝑎𝑢𝑡𝑜, LDpred2 with 𝑝 = 0.001, 0.01, 0.1, 𝑎𝑢𝑡𝑜 and the infinitesimal model. 
We repeated this procedure four times and calculated average 𝑅! to pick the best set of tuning 
parameters for both approaches. 
 
We conducted additional simulations to demonstrate that PUMAS and PUMA-CUBS can be 
applied to binary traits. For each setting in the quantitative simulation study, we dichotomized the 
continuous phenotype (i.e., true liability value under a liability threshold model) using either the 
median or 90% quantile to acquire balanced (5-to-5) and unbalanced (1-to-9) case-control ratios. 
Therefore, we have a total of 12 binary simulation settings. We fitted logistic regressions in PLINK 
to obtain GWAS summary statistics in each setting and transformed logistic regression summary 
statistics to the linear scale42,43,64. We then compared PUMAS and PUMA-CUBS with MCCV. We 
computed 𝑅! on the observed scale (i.e., 𝑅! between PRS and 0-1 status) and transformed it to 
𝑅! on the liability scale by44: 
 

𝑅8,ER,8,>V! =
𝑣(1 − 𝑣)

[𝜙(Φ'"(1 − 𝑣))]!
𝑅GR)! 	 



where 𝑣 is prevalence,	𝜙 and Φ'" are the pdf and inverse cdf of the standard normal distribution. 
 
 
UKB data analysis 
 
We applied our approach to 16 quantitative traits and 3 diseases in UKB. The list of UKB 
phenotypes is presented in Supplementary Tables 5-6. The imputed UKB genotype data 
consists of 375,064 independent individuals of European ancestry and 1,030,187 variants after 
quality control. We used Hail (v0.2.57) to perform linear regression for quantitative traits while 
adjusting for sex, age polynomials to the power of two, interactions between sex and age 
polynomials, and top 20 principal components65. For 3 disease outcomes, we obtained GWAS 
summary statistics via regenie (v3.0.3) accounting for sex, age polynomials to the power of 3, 
interactions between sex and age polynomials, and top 10 principal components as 
recommended66. 
 
We compared PUMAS with external validation using a holdout subset of UKB samples. For 
external validation of quantitative traits, we randomly selected 38,521 samples with non-missing 
phenotypic measurements for all traits to form the holdout dataset. The remaining samples for 
each phenotype were used as training data. In this way, we implemented an approximately 9-to-
1 training-testing split. Similarly for each binary outcome, we continued to employ a 9-to-1 sample 
partition while matching the case-control ratio between the training and holdout datasets. Detailed 
sample size information for all traits is included in Supplementary Tables 5-6. Then, we 
conducted GWAS on the training data and obtained summary statistics. For quantitative traits, we 
computed and evaluated PRS models on the entire holdout set and reported predictive 𝑅! 
between PRS and phenotypes with covariates regressed out. For disease traits, we constructed 
PRS models and calculated 𝑅!  on the observed scale using both linear probability model 
summary statistics and logistic model summary statistics. For all phenotypes, the holdout set of 
quantitative traits (N=38,521) was also used as LD reference data for PRS model training. For 
comparison, we applied PUMAS to partition the same GWAS summary-level data used in MCCV 
to 75% training summary statistics and 25% tuning summary statistics. We used the holdout 
dataset (N=38,521) for summary statistics subsampling56 and as the LD reference for lassosum 
and LDpred2 model training. We estimated variance of PRS models based on a smaller subset 
(N=1,000) of the holdout data when evaluating PRS performance. This procedure was repeated 
4 times and we reported the average 𝑅! for each PRS model. In all simulations, we implemented 
lassosum with 𝑠 = 0.2, 0.5, 0.9 and 𝜆 = 0.005, 0.01, PRS-CS with 𝜙 = 0.0001, 0.01, 𝑎𝑢𝑡𝑜, LDpred2 
with 𝑝 = 0.001, 0.01, 0.1, 𝑎𝑢𝑡𝑜 and the infinitesimal model. 
 
Next, we compared PUMA-CUBS with the training-testing split approach for ensemble learning 
on the holdout dataset. For PUMA-CUBS, we partitioned full GWAS summary statistics into 
training (60%), tuning (20%), and ensemble training (10%) summary statistics to train PRS 
models based on a grid of tuning parameters, select the best tuning parameter setting for each 
PRS method, and fit a second level regression to obtain regression weights for fine-tuned PRS 
models. We then randomly partitioned the holdout dataset into two equally sized subsets. We 
used PUMA-CUBS to obtain PRS models’ regression weights and then constructed and 
evaluated the ensemble PRS on the second half of the holdout set. PRS models with negative 
weights were removed from linear combination. In comparison, for the training-testing split 
approach based on individual-level data, we used the first half of the holdout set to fit multiple 
linear regression to obtain regression coefficients for fine-tuned lassosum, LDpred2, and PRS-
CS scores. Then we computed and evaluated the ensemble PRS models on the second half of 
the holdout data. In all analyses, we trained lassosum with 𝑠 = 0.2, 0.9 and 𝜆 = 0.001, 0.01, 0.1, 



PRS-CS with 𝜙 = 0.0001, 0.01, 𝑎𝑢𝑡𝑜, LDpred2 with 𝑝 = 0.001, 0.01, 0.1, 𝑎𝑢𝑡𝑜 and the infinitesimal 
model. 
 
 
Building a catalog of PUMA-CUBS ensemble scores 
 
We applied PUMA-CUBS to a collection of publicly available GWAS summary statistics. We 
selected complex diseases and traits with a minimal case sample size of 5,000 and a total sample 
size of 50,000, respectively. We excluded studies that performed GWAS on related samples and 
retained traits with significant heritability estimation (p-value below 0.05) from LD score 
regression45. In the end, we obtained a list of 31 GWAS summary statistics including 23 binary 
outcomes and 8 complex traits as summarized in Supplementary Table 10. For each summary 
statistics, we kept HapMap 3 SNPs that passed a series of quality control criteria listed in 
Supplementary Table 11, including transformation of logistic summary statistics and imputation 
of per-SNP sample size. Then we applied PUMA-CUBS to each phenotype to implement 4-fold 
MCCV by partitioning the summary statistics to training (60%), tuning (20%), ensemble training 
(10%), and testing (10%) datasets. We used 1000 Genomes Project Phase III European samples 
as the LD panel for summary statistics subsampling, PRS model fitting and benchmarking. We 
implemented lassosum with 𝑠 = 0.2, 0.5, 0.9  and 𝜆 = 0.005, 0.01 , PRS-CS with 𝜙 =
0.0001, 0.01, 𝑎𝑢𝑡𝑜 , LDpred2 with 𝑝 = 0.001, 0.01, 0.1, 𝑎𝑢𝑡𝑜  and the infinitesimal model. We 
reported average predictive 𝑅! of ensemble PRS, the best single PRS model, PRS-CS-auto and 
LDpred2-auto on the testing summary statistics. 
 
We conducted additional analysis to investigate the validity of predictive 𝑅! of ensemble PRS for 
Alzheimer’s disease. We used IGAP 2019 Alzheimer’s GWAS summary statistics to train PRS 
models and included 2,600 Alzheimer’s disease cases of European ancestry from the UKB cohort 
in the external validation dataset46. The data fields used for Alzheimer’s cases extraction are 
presented in Supplementary Table 13. We randomly selected 5,200 independent UKB samples 
not diagnosed with Alzheimer’s disease to use as healthy controls to match the case-control ratio 
in the IGAP 2019 study. Together, we obtained a UKB external validation dataset with 7,800 
samples in total. We applied PUMAS to IGAP 2019 GWAS summary-level data and compared its 
performance with external validation. We compared 𝑅! from both approaches with and without 
removing the APOE region from GWAS summary statistics. We excluded the APOE region from 
PRS analysis by removing variants between base pairs 45,116,911 and 46,318,605 (hg19) on 
chromosome 19. 
 
 
Data and code availability 
 
PUMAS/PUMA-CUBS software is freely available at https://github.com/qlu-lab/PUMAS.  
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