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Abstract 25 

Combining human genomics with proteomics is becoming a powerful tool for drug discovery. 26 
Associations between genetic variants and protein levels can uncover disease mechanisms, 27 
clinical biomarkers, and candidate drug targets. To date, most population-level proteogenomic 28 
studies have focused on common alleles through genome-wide association studies (GWAS). 29 
Here, we studied the contribution of rare protein-coding variants to 1,472 plasma proteins 30 
abundances measured via the Olink Explore 1536 assay in 50,829 UK Biobank human exomes. 31 
Through a variant-level exome-wide association study (ExWAS), we identified 3,674 rare and 32 
significant protein quantitative trait loci (pQTLs), of which 76% were undetected in a prior GWAS 33 
performed on the same cohort, and we found that rare pQTLs are less likely to be random in 34 
their variant effect annotation. In gene-based collapsing analyses, we identified an additional 35 
166 significant gene-protein pQTL signals that were undetected through single-variant analyses. 36 
Of the total 456 protein-truncating variant (PTV)-driven cis-pQTLs in the gene-based collapsing 37 
analysis, 99.3% were associated with decreased protein levels. We demonstrate how this 38 
resource can identify allelic series and propose biomarkers for several candidate therapeutic 39 
targets, including GRN, HSD17B13, NLRC4, and others. Finally, we introduce a new collapsing 40 
analysis framework that combines PTVs with missense cis-pQTLs that are associated with 41 
decreased protein abundance to bolster genetic discovery statistical power. Our results 42 
collectively highlight a considerable role for rare variation in plasma protein abundance and 43 
demonstrate the utility of plasma proteomics in gene discovery and unravelling mechanisms of 44 
action.   45 
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Introduction 46 

Proteins are a cell’s functional unit, and changes in protein abundance can profoundly affect 47 

biological processes and human health. Genetic variation, either within or near the protein-48 

encoding gene (cis) or anywhere else in the genome (trans), can dramatically impact protein 49 

expression, folding, secretion, and function. Moreover, most medicines exert their effects by 50 

modulating protein levels or function. Identifying genetic variants that affect protein levels (i.e., 51 

protein quantitative trait loci, or pQTLs) has the potential to elucidate disease mechanisms, 52 

reveal new drug targets, and enhance biomarker discovery.  53 

 Proteins circulating in the blood can originate from multiple organs and cell types and 54 

include actively secreted proteins and those that leak from damaged cells elsewhere in the 55 

body. The plasma proteome can thus provide a snapshot of the current state of human health.1 56 

Recent advances in high-throughput aptamer- and antibody-based proteomic platforms have 57 

enabled population-scale measurements of plasma proteins. Studies integrating plasma protein 58 

measurements with genotype array data have identified thousands of associations between 59 

genetic variants and plasma protein concentrations.2-4 These transformational pQTL atlases 60 

have helped prioritize candidate causal genes at genome-wide association study (GWAS) loci 61 

and have revealed potential drug repositioning opportunities. However, because these studies 62 

used genotype array data, the identified pQTLs were mainly common, non-coding variants, and 63 

often confounded by correlated non-causal signals. Compared to common variants, rarer 64 

protein-coding variants tend to confer much larger biological effect sizes, but their role in 65 

influencing human plasma protein abundances remains largely unknown.  66 

 Here, we systematically evaluated the role of rare variation in plasma protein abundance 67 

by analyzing exome sequence data and plasma levels of 1,472 plasma protein abundances 68 

measured in 50,829 UK Biobank participants. We first performed variant- and gene-level 69 

association tests to identify the cis- and trans- influences of protein-coding variation on plasma 70 

protein levels across the allele frequency spectrum. We then demonstrated how the inclusion of 71 

cis-acting missense variants in a traditional gene-level collapsing analyses framework augments 72 

drug target discovery and validation studies. 73 

 74 

Results 75 

UKB-PPP cohort characteristics 76 

We performed proteomic profiling on blood plasma samples collected from 54,273 UKB 77 

participants using the Olink Explore 1536 platform, which measures 1,472 protein analytes and 78 

1,463 unique proteins. As previously described, the UKBiobank Pharma Plasma Proteome 79 
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cohort (UKB-PPP) includes plasma collections from 46,673 randomly selected participants 80 

(“randomised baseline”), 6,365 individuals chosen by the UKB-PPP consortium members 81 

(“consortium-selected”), and 1,268 individuals who participated in the COVID-19 repeat imaging 82 

study at multiple visits2. Exome sequencing data were available for 51,545 (95%) of these 83 

54,273 participants, which we processed through our previously published cloud-based 84 

pipeline.5 Through rigorous sample QC, we removed samples with low sequencing quality and 85 

from closely related individuals as previously described (Methods). After further quality control 86 

based on the proteomics data (Methods), 50,829 (94%) multi-ancestry samples were available 87 

for downstream analyses. Of these, 47,345 (87%) were of European descent.  88 

   89 

Protein QTL signals through ExWAS  90 

In our previous UKB-PPP paper, we used microarray data to perform pQTL mapping for 1,463 91 

protein assays and identified 10,248 primary genetic associations.2 These analyses were limited 92 

to common variants and imputed rarer variants. Here, with the availability of whole-exome 93 

sequencing data, we directly tested for associations between variants with minor allele 94 

frequencies (MAF) as low as 0.005% in individuals of European ancestry without relying on 95 

imputation. We first performed an exome-wide, variant-level pQTL association test (ExWAS) 96 

between 1,472 plasma protein abundances and 626,929 exome sequencing variants identified 97 

in 47,345 UK Biobank participants (Fig. 1A and Supplementary Table 1; Methods). We 98 

performed an n-of-one permutation analysis (2.8 billion statistical tests) to define a variant-level 99 

significance threshold as previously described.5 Based on this null distribution, we identified 100 

p≤1x10-8 as an appropriate p-value threshold (Methods, Supplementary Table 2). Genomic 101 

inflation was well-controlled with a median λGC of 1.04 (95% range 1.00 – 1.10) 102 

(Supplementary Fig. 1, Supplementary Table 3). 103 

We next compared the concordance between variant-level associations for variants 104 

included in our ExWAS that were also included in our prior GWAS,2 including imputed variants. 105 

The effect sizes (β) of nominally significant ExWAS protein-coding pQTLs (p<1x10-4) strongly 106 

correlated with the microarray-derived pQTLs (r2=0.96, Supplementary Fig. 2). Furthermore, 107 

98% of the study-wide significant autosomal common pQTLs (MAF > 0.1%) in our study were 108 

also significant in the prior UKB-PPP GWAS (Fig. 1B). However, among the rare (MAF≤0.1%) 109 

autosomal pQTLs from our ExWAS analysis, only 24% were significant in the GWAS. These 110 

results illustrate the importance of exome sequencing in detecting associations for well-powered 111 

rarer variants.  112 
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We found a total of 5,355 (16.2%) coding variants that significantly affected the 113 

abundance of the encoded protein (i.e., cis-pQTLs). We also identified 10,768 (32.6%) coding 114 

variants that affected the abundance of any other protein that was greater than 1 megabase pair 115 

(Mbp) away from the protein directly encoded by the gene harboring the variant (i.e., trans-116 

pQTLs) (Supplementary Table 1 - ExWAS plt1x10-6). Finally, we identified 16,887 (51.2%) 117 

trans pQTLs that fell within 1 Mbp of the gene encoding the protein whose level was altered, 118 

which we refer to as “trans-gene, cis-position” pQTLs. We reasoned that many trans-gene, cis-119 

position pQTLs were contaminated by linkage disequilibrium (LD). In support of this, the relative 120 

proportion of cis- and trans-pQTLs differed among rare variants (MAF≤ 0.1%), in which 1,465 121 

(47.3%) were cis-pQTLs, 592 (19.1%) were trans pQTLs, and 1,042 (33.6%) were trans-gene, 122 

cis-position pQTLs.  123 

As purifying selection keeps variants that negatively impact fitness at low frequencies in 124 

the population, there is generally an inverse relationship between effect sizes and allele 125 

frequencies for variants that influence fitness-related traits. The median absolute effect size (β) 126 

of rare cis-pQTLs was 1.86, whereas the median absolute effect size of common cis-pQTLs was 127 

0.32 (Wilcoxon P<10-300). Similarly, the absolute effect sizes of rare trans-pQTLs (median 128 

|β|=1.22) were significantly larger than the effect sizes of common trans-pQTLs (median 129 

|β|=0.07; Wilcoxon P<10-300) (Fig. 1C). Finally, even among rare variants, the effect sizes of cis-130 

pQTLs (median |β| = 1.86) were greater than trans-pQTLs (median |β| = 1.22; Wilcoxon 131 

P=6.8x10-125) (Fig. 1D).   132 

We next explored the number of cis-pQTLs per variant class across the allele frequency 133 

spectrum. Among the common cis-pQTLs, the proportions of PTVs, missense variants, 134 

synonymous variants, and non-coding variants closely matched the proportions observed for the 135 

total variants included in the ExWAS (i.e., the expected null distribution). In comparison, PTVs 136 

and missense variants encompassed a significantly larger percentage of rare (MAF<0.1%) and 137 

ultra-rare (MAF<0.01%) cis-pQTLs (Fig. 1D, Supplementary Table 4). These results reinforce 138 

the observation that the common protein-coding pQTLs are more confounded by linkage 139 

disequilibrium (LD), making it challenging to confidently ascribe causality to these variants 140 

without additional experimental data.   141 

This catalogue of protein-coding pQTLs allows us to compare the effects of different 142 

classes of protein-coding variants on protein abundances. Of the 1,465 significant rare cis-143 

pQTLs, 345 (23.5%) were protein-truncating variants (PTVs), 983 (67.1%) were missense or 144 

inframe indel variants, 63 (4.3%) were synonymous variants, and 74 (5.1%) were noncoding 145 

variants (Fig 1E; Supplementary Table 4). As expected, nearly all the rare cis-pQTLs 146 
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corresponding to PTVs were associated with decreased protein abundances (n=335 of 345; 147 

97%). Of the remaining 10 cis-pQTL PTVs associated with increased protein abundances, five 148 

(50%) occurred in the last exon of the encoding gene, suggesting these variants may result in 149 

truncated transcripts that escape nonsense-mediated decay (NMD). Two of the 10 variants 150 

were annotated as loss of splice donor sites. Rare cis-pQTL missense variants and inframe 151 

indels had more variable effects, though most still decreased protein abundances (n=810/983; 152 

82%). In comparison, among the significant rare trans-pQTLs, only 30% (26/87) of PTVs and 153 

23% (159/702) of missense variants/indels were associated with decreased protein 154 

abundances.  155 

There has been tremendous interest in identifying allelic series, in which multiple 156 

variants in a gene influence a phenotype with a range of effect sizes, to prioritise candidate drug 157 

targets.6,7 Missense variants are particularly valuable in discovering allelic series because they 158 

can have variable biological effects, ranging from complete or partial loss-of-function, to neutral, 159 

to gain-of-function. We thus explored how often missense variants within the same gene had 160 

similar effects on protein abundance, focusing on 117 genes with at least five rare (MAF ≤ 161 

0.1%) missense cis-pQTLs. Most often, rare missense variants within the same gene had a 162 

similar effect on protein abundance. For 100 out of these 117 genes (85%), at least 75% of the 163 

significant missense pQTLs decreased protein abundance. In the remaining 17 genes, the 164 

percentage of protein-lowering missense variants ranged from 17% to 60% (Supplementary 165 

Table 1). However, we note that we cannot rule out epitope effects, in which a sequence variant 166 

affects antibody binding either through directly altering the binding site or changing protein 167 

structure. Consequently, such effects may also result in decreased protein abundance. 168 

However, if epitope effects had a systematic impact on missense cis-pQTL signals, we would 169 

expect to see a preferential enrichment of missense variants even among the common variant 170 

cis-pQTLs. Because we see that the variant effect proportions among the common variant cis-171 

pQTL closely match the expected null distribution (Fig 1E), it suggests that it is unlikely that 172 

epitope effects are a major driver of missense cis-pQTL signals. Nonetheless, this large 173 

catalogue of pQTLs will enable rapid hypothesis generation and validation for the identification 174 

of allelic series, which can be complemented by more targeted molecular studies.  175 
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 176 
Figure 1. Exome-wide association study. (A) Summary of significant (p≤1x10-8) cis and trans 177 
pQTLs across the genome, limited to variants with a minor allele frequency (MAF) < 0.1%. (B) 178 
Percentage of significant rare (MAF≤0.1%) and common (MAF>0.1%) ExWAS pQTLs that were 179 
also significant in the UKB-PPP GWAS. (C) Effect size distributions of cis- versus trans-pQTLs 180 
stratified by allele frequency. (D) Effect sizes of rare (MAF≤0.1%) pQTLs. (E) The proportion of 181 
significant cis-pQTLs per variant class across three minor allele frequency (MAF) bins. “All tested 182 
variants” refers to the total number of variants occurring in the genes corresponding to the proteins 183 
measured via the Olink platform that were included in the ExWAS. For all plots, if the same 184 
genotype-protein association was detected in multiple ExWAS models, we retained the association 185 
with the smallest p-value. (F) Effect sizes of significant rare pQTLs in each variant class (PTV = 186 
protein-truncating variant). 187 

 188 
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 189 

Protein QTL signals detected through gene-level collapsing analysis 190 

Because the power to identify statistically significant variant-level associations decreases with 191 

MAF, we next performed gene-level collapsing analyses. In this approach, we aggregate rare 192 

variants that meet a pre-defined set of criteria (i.e., “qualifying variants” or “QVs”) in each gene 193 

and test for the aggregate effect on protein levels. Here, we used ten QV models introduced in 194 

our previous UKB phenome-wide association study (PheWAS), including one synonymous 195 

variant model that serves as an empirical negative control (Supplementary Table 5). These 196 

models collectively capture genetic contributions across various genetic architectures 197 

(www.azphewas.com).5 Another benefit of this approach in the setting of pQTL discovery is that 198 

aggregating effects across a gene should mitigate against any potential epitope effects that 199 

might arise in the variant-level setting. 200 

 201 
Figure 2. Gene-level collapsing analysis. (A) Miami plot of gene-protein abundance associations 202 
across nine collapsing models. We excluded the empirical null synonymous model. The y-axis is 203 
capped at 60. (B) The number of unique significant (p≤1x10-8) protein abundance associations per 204 
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gene across the collapsing models. (C) The effect sizes of significant gene-protein associations in 205 
each collapsing model are stratified by cis versus trans effects. 206 
 207 
In total, we tested the association between 18,885 genes and 1,472 plasma protein 208 

levels in 47,345 individuals of European ancestry (Supplementary Table 6). To define an 209 

appropriate significance threshold for the collapsing analyses, we considered two different null 210 

distributions: one from an n-of-1 permutation analysis (n=276 million permutation-based 211 

statistical tests) and the other based on a synonymous variant collapsing model (i.e., empirical 212 

null; n=27.6M statistical tests) (Methods, Supplementary Tables 7 and 8). Both approaches 213 

converged on a p-value threshold of p≤1x10-8, consistent with the ExWAS threshold (Methods).  214 

We identified 4,984 significant associations across the nine non-synonymous collapsing 215 

models (Fig. 2A). Of these, there were 1,330 unique gene-protein abundance associations, 216 

including 693 (52%) cis associations, 582 (44%) trans associations, and 55 (4%) trans-gene, 217 

cis-position signals. This relatively low percentage of cis-position, trans-gene associations 218 

compared to the ExWAS (4% vs. 51%) highlights the strength of rare variant collapsing analysis 219 

in mitigating contamination due to LD.  220 

Notably, 166 (12.5%) of the 1,330 gene-protein abundance signals identified via 221 

collapsing analysis did not achieve study-wide significance in the ExWAS, illustrating the 222 

increased power of this approach. Of the associations that only reached significance in the 223 

collapsing analysis, 40 (24.1%) were cis-pQTLs. (Supplementary Table 6). The greatest 224 

contribution to the 2,948 cis-pQTL collapsing signals came from the flexdmg model (560/2948 225 

[19%]), followed by the ptvraredmg model (524/2948 [18%]) and the ptv model (456/2948 226 

[15%]). In contrast to recent claims that synonymous variants are nearly as deleterious as 227 

nonsynonymous variants, we found only two significant gene-level cis-pQTL under the 228 

synonymous (syn) collapsing model (Supplementary Table 8).8,9    229 

Most pQTLs identified in the collapsing analysis were only associated with changes in 230 

abundance of a single protein (Fig. 2B). Among the trans loci, 90% of genes were associated 231 

with three or fewer proteins. However, certain genes appeared to be trans-pQTL “hotspots,” 232 

associated with over 20 different protein abundances. This included, ASGR1 (n=153), GNPTAB 233 

(n=29), STAB1 (n=47), and STAB2 (n=26). ASGR1, which encodes a subunit of the 234 

asialoglycoprotein receptor, also appeared to be a trans-pQTL hotspot in our prior GWAS and 235 

several other large pQTL studies.2,3,10 GNPTAB encodes the alpha and beta subunits of 236 

GlcNAc-1-phosphotransferase, which selectively adds GlcNAc-1-phosphate to mannose 237 

residues of lysosomal hydrolases. The resulting mannose-6-phosphate (M6P) residues signal 238 

that the lysosomal hydrolase should be transported to the lysosome.11 Untagged proteins 239 
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instead are secreted into the blood and extracellular space.12 Recessive loss-of-function 240 

mutations in GNPTAB are associated with Mucolipidosis III, a severe, multi-system lysosomal 241 

storage disorder (LSD) resulting in the accumulation of lysosomal substrates.13 Of the GNPTAB 242 

trans-pQTLs detected in the collapsing model, 28 (97%) are lysosomal proteins,14,15 12 of which 243 

have been associated with other LSDs (Supplementary Table 9).16 Moreover, all 29 of these 244 

proteins showed increased plasma levels in PTV carriers, suggestive of reduced lysosomal 245 

targeting. Notably, there are efforts to therapeutically increase GNPTAB activity to enhance the 246 

cellular uptake of other lysosomal proteins involved in other LSDs, which could improve the 247 

efficacy of enzyme replacement therapies.17  248 

Of 456 significant cis pQTL signals in the ptv model, 453 (99%) were associated with 249 

decreased abundance of the encoded protein, as expected. In contrast, only 54 (20%) of the 250 

267 significant trans pQTL signals from the ptv model were associated with decreased protein 251 

levels. Some possible explanations for these signals include the loss of upstream regulators, 252 

reduced negative feedback, or compensatory changes. For example, we found that PTVs in 253 

EPOR, encoding the erythropoietin receptor, were associated with increased EPO, highlighting 254 

an example of compensatory upregulation (‘flexdmg’ model; p=3.5x10-30; β=0.86, 95% CI: 0.72-255 

1.01).18  256 

We observed similar patterns for the remaining collapsing models (Fig. 2C). Two of the 257 

collapsing models (“UR” and “URmtr”) consider ultra-rare (gnomAD MAF=0%, UKB 258 

MAF≤0.005%) PTVs and missense mutations predicted to be damaging via REVEL.19 The only 259 

difference between these two models is that “URmtr” only includes missense variants that fall in 260 

constrained regions of a gene based on the missense tolerance ratio (“MTR”; Methods).20 We 261 

compared the effect sizes between these two models to test the discriminative ability of MTR. 262 

The median absolute beta of cis loci identified through the “URmtr” model was -1.53 compared 263 

to -1.37 for the “UR” model (Wilcoxon P= 5.2x10-7) (Fig. 2C). Thus, this population genetics-264 

based approach can effectively prioritize functional missense variants and offers a valuable 265 

layer of information on top of in silico pathogenicity predictors. 266 

 267 

Pan-ancestry collapsing analysis 268 

Including individuals of non-European ancestry in genetic studies promotes healthcare equity 269 

and can boost genetic discovery. We performed a pan-ancestry collapsing analysis on 50,829 270 

UK Biobank participants, including the original 47,345 European ancestry samples plus 3,484 271 

individuals from African, Asian, and other ancestries. In this combined analysis, there were 550 272 

unique study-wide significant gene-protein abundance associations that were not significant in 273 
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the European ancestry analyses, and 163 associations that were significant in the European 274 

ancestry analyses that did not reach study-wide significance in the pan-ancestry analysis 275 

(Supplementary Table 6). Of the newly significant associations, 302 (55%) were cis, 240 (44%) 276 

were trans, and 8 (1%) were cis-position, trans-gene (Supplementary Table 10). An example 277 

of an association that only achieved significance in the pan-ancestry analysis was the trans 278 

association between PTVs in HBB and increased levels of the monocarboxylic acid transporter 279 

encoded by SLC16A1 (β=1.85; 95% CI: [1.33-2.37]; p=2.8x10-12). This association likely only 280 

reached significance in the pan-ancestry analysis due to the relative enrichment of PTVs in HBB 281 

variants in non-European ancestries, namely individuals of South Asian ancestry, as observed 282 

in our prior UKB exome study.5 Another well-known trans association that only became 283 

significant in the pan-ancestry analysis included PTVs in ATM, associated with ataxia 284 

telangiectasia and several cancers, with increased levels of alpha-fetoprotein (P=9.16x10-9, 285 

β=0.47, 95% CI: [0.31, 0.63]).21 These results add to the growing examples of how increased 286 

genetic diversity can increase power for detecting genetic associations.  287 

 288 

Insights into biological pathways 289 

Trans associations can reflect protein-protein interactions between the encoded protein at the 290 

locus and the target protein. Several trans associations from the collapsing analyses capture 291 

known interactions. For example, PTVs in PSAP, encoding prosaposin, were associated with 292 

increased plasma abundances of progranulin (GRN; p=6.6x10-17; β=2.60, 95% CI:1.99-3.21) 293 

and cathepsin B (p=1.3x10-11, β=2.10, 95% CI: 1.49-2.70) (Supplementary Table 6). There 294 

was also a near-significant association between PTVs in PSAP and increased cathepsin D 295 

(p=9.5x10-8, β=1.61, 95% CI: 1.02-2.20). PSAP encodes a pro-protein that is cleaved by 296 

cathepsin D in the lysosome into four separate saposins. Recessive variants in PSAP are 297 

associated with various lysosomal storage disorders.22 Likewise, haploinsufficiency of GRN is 298 

associated with frontotemporal lobar degeneration (FTLD),23,24 and complete loss is associated 299 

with a lysosomal storage disorder called neuronal ceroid lipofuscinosis.25 Prior work has shown 300 

that PSAP (prosaposin) heterodimerizes with progranulin to regulate transport to the lysosome 301 

and regulates progranulin levels.26,27  302 

 Our analyses also robustly identified several trans associations between ligand-receptor 303 

pairs. For example, there was a significant association between nonsynonymous variants in 304 

TSHR, encoding the thyroid stimulating hormone receptor, and increased thyroid stimulating 305 

hormone (TSHB) (‘flexdmg’ model; p=2.1x10-32; β=0.66, 95% CI: 0.55-0.76) (Supplementary 306 

Table 6). Likewise, we robustly identified a trans association between mutations in FLT3, 307 
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encoding the fms-related tyrosine kinase 3, and increased levels of the FLT3 ligand (FLT3LG; 308 

‘ptvraredmg’ model; p= 6.2x10-21; β=0.82, 95% CI: 0.65-0.99) (Supplementary Table 6). 309 

Although we highlighted well-known ligand-receptor pairs here, we anticipate that this trans-310 

pQTL atlas could also help identify or suggest ligands for orphan receptors (https://astrazeneca-311 

cgr-publications.github.io/pqtl-browser). 312 

 This resource also enables the discovery of functional biological networks. For example, 313 

we observed four rare NLRC4 protein-coding variants in the ExWAS that were associated with 314 

substantial changes in plasma levels of the proinflammatory cytokine IL-18 (Supplementary 315 

Table 1). These included one frameshift variant and one missense variant associated with 316 

reduced protein levels, and two putatively gain-of-function missense variants associated with 317 

higher levels (Table 1). Only one of these variants was detected in our previous GWAS of the 318 

same cohort.2 NLRC4 encodes the NLR family CARD domain-containing protein 4 that is 319 

involved in inflammasome activation.28 Prior studies have shown that rare, hypermorphic 320 

missense variants in this gene cause autosomal dominant infantile enterocolitis, characterized 321 

by recurrent flares of autoinflammation with elevated IL-18 and IL-1β levels.29 IL-18 has also 322 

been implicated as an inflammatory mediator of several other autoimmune diseases.30 We did 323 

not find any significant associations between any of these four mutations and clinically relevant 324 

phenotypes in our published phenome-wide association study of 470,000 UK Biobank exomes 325 

(https://azphewas.com).5 These data suggest that pharmacologic inhibition of NLRC4 may be 326 

safe. They also demonstrate that some rare putative gain-of-function mutations in this gene may 327 

not be sufficient to cause an observable phenotype, highlighting the value of this resource in 328 

clinical diagnostic settings.  329 

 330 

NLRC4 variant Consequence IL-18 beta, [95% CI] P-value UKB European 
MAF 

chr2:32252592:CA>C Frameshift -1.15, [-1.42, -0.89] 2.2x10-17 0.05% 

chr2:32238296:C>A Missense 
(p.Gly786Val) 

-0.74 [-0.83, -0.65] 3.2x10-60 0.5% 

chr2:32224523:C>A Missense  
(p.Asp1009Tyr) 

2.00 [1.40, 2.59] 5.0x10-11 0.01% 

chr2:32250993:C>T Missense 
(p.Gly291Ser) 

1.97 [1.20, 2.74] 5.0x10-7 0.006% 

Table 1. NLRC4 allelic series. The four trans-pQTLs in NLRC4 associated with changes in IL-18 331 
levels from the ExWAS. MAF = minor allele frequency.  332 

 333 

 Beyond mapping protein regulatory pathways, this rich catalogue of protein-coding 334 

pQTLs can address several components of drug development, including the identification of 335 

novel genetic targets, discovering mechanisms of actions or biomarkers for drug targets, safety 336 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.09.511476doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.09.511476
http://creativecommons.org/licenses/by-nc-nd/4.0/


profiling, and drug repositioning opportunities. For example, there have been recent efforts to 337 

inhibit HSD17B13 based on the discovery that a splice variant (rs72613567) in this gene may 338 

protect against chronic liver disease.31 Our ExWAS revealed that this splice variant also 339 

associated with altered levels of HYAL1 (P=7.4x10-10, β=-0.06, 95% CI: [-0.07, 0.04]), SMPD1 340 

(P=2.2x10-11, β=-0.05, 95% CI: [-0.06, -0.03]), CES3 (P=1.5x10-12,  β=0.07, 95% CI: [0.05, 341 

0.08]), GUSB (P=7.9x10-9, β=0.04, 95% CI: [0.03-0.05]), and PDGFC (P=4.8x10-9, β=0.04, 95% 342 

CI: [0.03, 0.06]) (Supplementary Table 1). Further research into the individual and combined 343 

effects of these previously undescribed relationships could help elucidate how this splice variant 344 

confers the observed reduced liver disease risk.  345 

These vignettes provide some examples of how this expansive pQTL resource can aid 346 

many different drug discovery efforts (Fig. 3A). We have made the ExWAS and collapsing 347 

pQTLs publicly available through a pQTL-specific interactive portal to empower the broader 348 

research community (Fig. 3B; https://astrazeneca-cgr-publications.github.io/pqtl-browser).  349 
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 350 
 351 

Figure 3. pQTL atlas and interactive browser. (A) Illustration of potential 352 
applications of this trans-pQTL atlas to drug development. The chord diagram 353 
represents trans-pQTLs detected in our collapsing analysis (p≤1x10-8). (B) The 354 
AstraZeneca pQTL browser, highlighting LDLR as an example user query. Users 355 
can browse pQTLs from both the ExWAS and gene-based collapsing analyses 356 
using an intuitive range of parameters and thresholds.  357 

 358 

Clonal haematopoiesis of indeterminate potential 359 

The age-related acquisition of somatic mutations that lead to clonal expansion of 360 

haematopoietic stem cell populations (i.e., clonal haematopoiesis, or “CH”) has been associated 361 

with an increased risk of haematological cancer, cardiovascular disease, infection, cytopenia, 362 

and other diseases.32,33 To identify plasma protein changes with CH, we performed a gene-level 363 

collapsing analysis in which we defined QVs as clonal somatic variants in 15 genes recurrently 364 
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mutated in myeloid cancers (see Methods) using a predefined list of variants and considered 365 

four different variant allele frequency (VAF) cut offs (Supplementary Table 11). In this setting, 366 

we excluded 290 individuals diagnosed with a haematological malignancy diagnosis pre-dating 367 

sample collection.  We observed that the most significant (p≤1x10-8) associations were achieved 368 

with VAF≥ 10% cut-off (Supplementary Table 12). Under this model, we detected 13 trans 369 

protein associations with somatic mutations in JAK2, five with TET2, four with SRSF2, and three 370 

with ASXL1. Strikingly, there was no overlap between the protein abundances associated with 371 

each of these four genes, suggesting distinct downstream effects of the somatic events 372 

detected in each.  373 

 374 
Figure 4. Clonal haematopoiesis trans-pQTL associations. (A) Chord diagram 375 
illustrating significant (p≤1x10-8) trans-pQTLs associated with somatic mutations in 376 
JAK2. (B) Significant trans-pQTLs associated with somatic mutations in TET2. Red lines 377 
indicate positive betas and black lines indicate negative betas. Line width is proportional 378 
to the absolute beta. For each gene, we plotted associations that were significant in any 379 
of the four collapsing models.  380 
 381 
Somatic JAK2 mutations frequently cause Philadelphia-negative myeloproliferative 382 

neoplasms (including polycythaemia vera, essential thrombocythemia and primary 383 

myelofibrosis), which are associated with thromboembolic disease.34 Three of the JAK2 trans-384 

pQTLs include proteins involved in the integrin β2 pathway, including FCGR2A, GP1BA, and 385 

ICAM2. Prior work has shown that the most common JAK2 missense variant associated with 386 

myeloproliferative disorders (V617F) can promote venous thrombosis through activation of this 387 

pathway.35 The largest effect size was seen with CXCL11, encoding a chemokine. 388 

Somatic mutations in TET2 were associated with increased levels of the cytokine 389 

tyrosine kinase FLT3 (p=9.7x10-15, β=-0.50, 95% CI: [0.38, 0.63]) and decreased levels of the 390 
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FLT3 ligand, FLT3LG (p=8.0x10-54, β=-0.95, 95% CI: [-1.01, -0.83]). FLT3 is a key regulator of 391 

hematopoietic stem cell proliferation and dendritic cell differentiation.36 Two other TET2 392 

associations included increased abundances of CD1C and CLEC4C, which are markers of 393 

conventional dendritic cells and plasmacytoid dendritic cells, respectively.37 Prior work has 394 

shown that roughly 30% of patients with acute myeloid leukaemia (AML) carry FLT3-activating 395 

mutations, the presence of which portend poor outcomes.38 There are now FLT3 inhibitors that 396 

have been found to improve survival of patients with AML.39,40 If the relationship between CH-397 

TET2 and FLT3 is causal, this could suggest potential repositioning and precision medicine 398 

opportunities.  399 

 400 

Augmenting PTV-driven PheWAS associations with proteomics 401 

Understanding the functional consequences of protein-coding variants is critical to uncovering 402 

the genetic underpinnings of diseases. In the setting of gene discovery studies, it can be 403 

especially challenging to distinguish between putatively pathogenic and benign missense 404 

variants. In rare-variant aggregated collapsing analyses, researchers typically prioritise rare 405 

missense variants based on in silico predictions of how damaging that variant might be to the 406 

structure or function of a protein. While in silico scores help distinguish between neutral and 407 

potentially damaging missense variants, even the most well-performing scores only modestly 408 

correlate with experimental measures of protein function.41 There has thus been considerable 409 

interest in performing in vitro mutagenesis screens to determine the effects of many possible 410 

variants within a gene. However, the availability of protein measurements across tens of 411 

thousands of individuals can be considered a human in vivo mutagenesis screen since we have 412 

direct measurements of how individual observed variants impact protein levels among those 413 

carriers. We thus sought to leverage this conceptual framework in the setting of a phenome-414 

wide association study. 415 

In our previous rare-variant collapsing phenome-wide association study on 281,104 UKB 416 

exomes, we observed that the PTV collapsing models accounted for the greatest number of 417 

significant gene-phenotype relationships.5 Here, using a more extensive set of 419,387 UK 418 

Biobank exomes, we augmented our standard PTV model with missense variants associated 419 

with reduced protein abundance (i.e., ExWAS cis-pQTLs with P<0.0001; see Methods). We 420 

defined two new collapsing models: “ptvolink,” in which we included PTVs and missense pQTLs 421 

with a MAF < 0.1%, and “ptvolink2pcnt,” in which we relaxed the MAF threshold of missense 422 

variants to <2% (Methods, Fig. 5A, Supplementary Table 5). We tested for associations 423 
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between genes encoding the Olink measured proteins and 10,017 binary and 584 quantitative 424 

phenotypes (Supplementary Tables 13 and 14).  425 

 426 
Figure 5. pQTL-informed collapsing analyses. (A) Schematic representing the pQTL-informed 427 
collapsing framework. Blue diamonds represent missense pQTLs that would be included as 428 
qualifying variants in the ptvolink model and ptvolink2pcnt model. PTVs, illustrated as X’s, are 429 
included in both models. (B)The p-values of gene-level associations with binary traits that improved 430 
when including PTVs and missense cis-pQTLs (pExWAS<0.0001, ptvlolink (orange) – MAF<0.1%, 431 
ptvolink2pvnt (blue) MAF<2%). (C) Same as (A) but for quantitative trait associations. The x-axis is 432 
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capped at 10-300. LDL = low density lipoprotein; HDL = high density lipoprotein. The dashed line 433 
indicates the study-wide significance threshold of p≤1x10-8. 434 
 435 

The standard ptv collapsing model detected significant associations for five genes that 436 

encoded proteins measured on the Olink platform, including ACVRL1 and ENG with hereditary 437 

haemorrhagic telangiectasia, GRN with dementia, NOTCH1 with chronic lymphocytic leukemia, 438 

and PCSK9 with hypercholesterolemia (P=4.0x10-17, OR=0.35; 95% CI: 0.27-0.46) (Fig. 5B, 439 

Supplementary Table 15). The significance of the well-known association between the loss of 440 

PCSK9 and protection from hypercholesterolemia markedly improved in the pQTL-informed 441 

model (ptvolink2pcnt: P=8.7x10-112, OR= 0.63, 95% CI: [0.60, 0.65]). Including these missense 442 

variants, which tended to have more modest effects on protein abundance than PTVs, resulted 443 

in a weaker effect size but also clearly increased statistical power. Meanwhile, the signal of the 444 

four other gene-phenotype associations was diluted in the pQTL-informed missense models 445 

(Supplementary Table 15).   446 

Impressively, nine genes that did not achieve genome-wide significance in the standard 447 

ptv collapsing model achieved significance in at least one of the pQTL-informed models (Fig. 448 

5B). The p-value of the association between ANGPTL3 and dyslipidemia improved from 1.1x10-449 
8 (OR= 0.58, 95%CI: 0.48-0.71) to 9.6x10-17 (“ptvolink”; OR=0.57, 95% CI: 0.50-0.66). The 450 

association between VWF and Von Willebrand’s disease also improved from 6.9x10-6 to 2.0x10-451 
13. Other examples included KEL with hypertrophic skin disorders; PROC with thrombophlebitis; 452 

LPL with hypercholesterolemia; MICA with hypothyroidism, ANGPTL4 with 453 

hypercholesterolemia; TNFRSF8 and protection from asthma, and SPARC with special 454 

screening examinations (Fig. 5B and Supplementary Table 15). The second strongest 455 

association for SPARC was with basal cell carcinoma, suggesting that this signal arose from 456 

screening for skin cancer (ptvolink2pcnt P=4.5x10-6, β=2.9, 95% CI: [2.0, 4.4]).  457 

We also identified several quantitative trait associations that increased in significance 458 

using these new collapsing models (Fig. 5C and Supplementary Table 16). Consistent with the 459 

improved p-values for related binary phenotypes, the associations between PCSK9, ANGPTL4, 460 

LPL, and ANGPTL3 with lipid-related traits all improved under the ptvolink and ptvolink2pcnt 461 

models. We also found that the association between EPO and increased haematocrit only 462 

achieved significance in the ptvolink2pcnt model (P=2.2x10-83, β=-0.24, 95% CI: [-0.27, -0.22). 463 

PTVs in this gene are a well-established cause of erythrocytosis.42 We also detected newly 464 

significant associations between PEAR1 (endothelial aggregation receptor) and decreased 465 

mean platelet volume (ptvolink2pcnt P=6.8x10-27, β=-0.26, 95% CI: [-0.31, -0.21]) and between 466 

CA1 (carbonic anhydrase) and increased reticulocyte count (P=9.5x10-20, β=0.40, 95% CI: 467 
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[0.32, 0.49]). Collectively, these results illustrate how including cis pQTLs missense variants 468 

detected through an orthogonal proteomics approach can enhance conventional loss-of-function 469 

gene collapsing analyses.  470 

 471 

Discussion 472 

We performed the most extensive rare variant proteogenomics studies to date, including 1,472 473 

plasma protein abundances measured in 50,829 UK Biobank human exomes. Our results 474 

highlight the importance of exome sequencing for rare variant associations, as most rare variant 475 

pQTLs (MAF < 0.1%) were not detected in prior GWAS. Rare cis- and trans- pQTLs conferred 476 

significantly larger effect sizes than common variant pQTLs. In the ExWAS and gene-level 477 

collapsing analysis, cis-pQTLs corresponding to PTVs nearly always were associated with 478 

decreased protein levels, highlighting the robustness of these associations as well as the Olink 479 

platform. Rare trans-pQTLs had weaker and more variable effect sizes with respect to 480 

directionality than rare cis-pQTLs.  481 

 We highlighted several examples of how this protein-coding pQTL atlas can address 482 

challenges in drug discovery and clinical pipelines, such as the description of an allelic series in 483 

NLRC4 and previously undescribed plasma biomarkers for HSD17B13. Beyond our proof-of-484 

concept examples, we anticipate that this resource will provide novel insights into protein 485 

regulatory networks, discovery of upstream trans regulators of target genes whose inhibition 486 

could increase target protein levels, performing target safety assessments, and identifying drug 487 

repositioning opportunities (Fig. 3A). Through our pQTL browser and our previously published 488 

UKB phenome-wide association study (PheWAS) browser (azphewas.com), researchers can 489 

now readily identify genetically anchored disease-protein abundance associations.  490 

 We additionally identified associations between somatic mutations in known CH genes 491 

and different protein abundances. Consistent with prior findings that the risks of different 492 

diseases are differentially associated across CH gene mutations, we found that each CH gene 493 

was associated with a distinct proteomic fingerprint. TET2 associations were enriched for genes 494 

involved in dendritic cell biology, consistent with the literature association between TET2-CH 495 

and inflammation.  496 

 We also introduced a new gene discovery framework that incorporated missense variant 497 

cis-pQTLs with classical PTVs. We found that inclusion of these missense cis-pQTLs increased 498 

our power to detect gene-phenotype associations, particularly for genes expressed in tissues 499 

known to contribute to the plasma proteome, such as the liver. Although the p-values improved 500 

by many orders of magnitude, the effect sizes tended to be smaller in the pQTL-informed 501 
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models compared to the PTV-only models, suggesting that the missense variants had less 502 

severe effects than PTVs in the corresponding genes. This collapsing framework was limited to 503 

the genes that encoded proteins included in the Olink assay. This framework could be extended 504 

to proteomics studies of other tissues or broader plasma proteome assessments in future 505 

studies.  506 

    507 
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Methods 508 

UKB Cohort 509 

The UKB is a prospective study of approximately 500,000 participants 40–69 years of age at 510 

recruitment. Participants were recruited in the UK between 2006 and 2010 and are continuously 511 

followed.43 The average age at recruitment for sequenced individuals was 56.5 years and 54% 512 

of the sequenced cohort comprises those of the female sex. Participant data include health 513 

records that are periodically updated by the UKB, self-reported survey information, linkage to 514 

death and cancer registries, collection of urine and blood biomarkers, imaging data, 515 

accelerometer data, genetic data, and various other phenotypic endpoints.44 All study 516 

participants provided informed consent. 517 

 518 

Olink Proteogenomics Study Cohort 519 

Olink proteomic profiling was conducted on blood plasma samples collected from 54,273 UKB 520 

participants using the Olink Explore 1536 platform. This platform measured 1,472 protein 521 

analytes, reflecting 1,463 unique proteins measured across the four Olink panels that comprise 522 

the 1536 panel (Cardiometabolic, Inflammation, Neurology, and Oncology). The data were 523 

processed in 7 batches by Olink. Details of UKB Proteomics participant selection (across the 524 

46,673 randomized, the 6,365 consortia selected and the 1,268 individuals participating in the 525 

COVID-19 repeat imaging study) alongside the sample handling have been thoroughly 526 

documented in Supplementary Information in Sun, et al.2 527 

 For WES-based proteogenomic analyses, we analysed the    (95%) samples with 528 

available paired-exome sequence data. Next, we required that samples pass Olink NPX quality 529 

control as described in Sun et al. resulting in a test cohort reduction to 51,359 (95%). Given the 530 

increased variability described in Sun et al., we excluded samples in the pilot batch or with only 531 

post-COVID imaging study sampling to obtain a combined cohort of 51,291 (95%) participants. 532 

We then pruned this cohort for up to second-degree genetic relatedness (no pair with a kinship 533 

coefficient exceeding 0.1769, n= 462), resulting in 50,829 (94%) participants available for the 534 

multi-ancestry analyses performed in this paper. Europeans are the most well-represented 535 

genetic ancestry in the UKB. We identified the participants with European genetic ancestry 536 

based on Peddy45 Pr(EUR)>0.98 (n=47,464). We then performed finer-scale ancestry pruning of 537 

these individuals, retaining those within four standard deviations from the mean across the first 538 

four principal components, resulting in a final cohort of 47,345 (87%) individuals for the 539 

proteogenomic analyses. 540 

 541 
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Sequencing 542 

Whole-exome sequencing data for UKB participants were generated at the Regeneron Genetics 543 

Center (RGC) as part of a pre-competitive data generation collaboration between AbbVie, 544 

Alnylam Pharmaceuticals, AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer, Regeneron, and 545 

Takeda. Genomic DNA underwent paired-end 75-bp whole-exome sequencing at Regeneron 546 

Pharmaceuticals using the IDT xGen v1 capture kit on the NovaSeq6000 platform. Conversion 547 

of sequencing data in BCL format to FASTQ format and the assignments of paired-end 548 

sequence reads to samples were based on 10-base barcodes, using bcl2fastq v2.19.0. Exome 549 

sequences from 469,809 UKB participants were made available to the Exome Sequencing 550 

consortium in May 2022. Initial quality control was performed by Regeneron and included sex 551 

discordance, contamination, unresolved duplicate sequences, and discordance with microarray 552 

genotyping data checks.46 553 

 554 

AstraZeneca Centre for Genomics Research (CGR) bioinformatics pipeline 555 

The 469,809 UKB exome sequences were processed at AstraZeneca from their unaligned 556 

FASTQ state. A custom-built Amazon Web Services (AWS) cloud computing platform running 557 

Illumina DRAGEN Bio-IT Platform Germline Pipeline v3.0.7 was used to align the reads to the 558 

GRCh38 genome reference and perform single-nucleotide variant (SNV) and insertion and 559 

deletion (indel) calling. SNVs and indels were annotated using SnpEFF v4.347 against Ensembl 560 

Build 38.92.48 We further annotated all variants with their genome Aggregation Database 561 

(gnomAD) MAFs (gnomAD v2.1.1 mapped to GRCh38).49 We also annotated missense variants 562 

with MTR and REVEL scores.19,20 The AstraZeneca pipeline output files including the VCFs are 563 

available through UKB Showcase (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=172). 564 

 565 

ExWAS 566 

We tested the 626,929 variants identified in at least four individuals from the 47,345 European 567 

ancestry UKB exomes that passed both exome and Olink sample quality checks. Variants were 568 

required to pass the following quality control criteria: minimum coverage 10X; percent of 569 

alternate reads in heterozygous variants ≥ 0.2; binomial test of alternate allele proportion 570 

departure from 50% in heterozygous state P > 1 × 10−6; genotype quality score (GQ) ≥ 20; 571 

Fisher’s strand bias score (FS) ≤ 200 (indels) ≤ 60 (SNVs); mapping quality score (MQ) ≥ 40; 572 

quality score (QUAL) ≥ 30; read position rank sum score (RPRS) ≥ -2; mapping quality rank 573 

sum score (MQRS) ≥ -8; DRAGEN variant status = PASS; the variant site is not missing (that is, 574 

less than 10X coverage) in 10% or more of sequences; the variant did not fail any of the 575 
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aforementioned quality control in 5% or more of sequences; the variant site achieved tenfold 576 

coverage in 30% or more of gnomAD exomes, and if the variant was observed in gnomAD 577 

exomes, 50% or more of the time those variant calls passed the gnomAD quality control filters 578 

(gnomAD exome AC/AC_raw ≥ 50%). In our previous UK biobank exome sequencing study we 579 

also created dummy phenotypes to correspond to each of the four exome sequence delivery 580 

batches to identify and exclude from analyses genes and variants that reflected sequencing 581 

batch effects; we provided these as a cautionary list resource for other UKB exome researchers 582 

as Supplementary Tables 25–27 in Wang et al.5 Since then, an additional fifth batch of exomes 583 

was released, for which we identified an additional 382 cautionary variants (Supplementary 584 

Table 17) on top of the original 8,365 previously described. We report the filtered-out ExWAS 585 

results from all 8,747 cautionary variants in Supplementary Table 17. 586 

 Variant-level pQTL p-values were generated adopting a linear regression (correcting for 587 

age, sex, age*sex, age*age, age*age*sex, PC1, PC2, PC3, PC4, batch2, batch3, batch4, 588 

batch5, batch6, batch7 and a panel specific measure of time between measurement and 589 

sampling). Three distinct genetic models were studied: genotypic (AA versus AB versus BB), 590 

dominant (AA + AB versus BB), and recessive (AA versus AB + BB), where A denotes the 591 

alternative allele and B denotes the reference allele. For ExWAS analysis, we used a 592 

significance cut-off of P≤1×10-8. To support the use of this threshold, we performed an n-of-1 593 

permutation on the full ExWAS pQTL analysis. 24 of 2.8 billion permuted tests had P≤1×10-8 594 

(Supplementary Table 2). At this P≤1 × 10-8 threshold, the expected number of ExWAS pQTL 595 

false positives is 24 out of the 207,409 observed significant associations (0.01%). 596 

 597 

Collapsing analysis 598 

As previously described, to perform collapsing analyses we aggregated variants within each 599 

gene that fit a given set of criteria, identified as qualifying variants.5,50,51 In total, we performed 600 

nine non-synonymous collapsing analyses, including eight dominant and one recessive model, 601 

plus a 10th synonymous variant model that serves as an empirical negative control. In each 602 

model, for each gene, the proportion of cases was compared to the proportion of controls for 603 

individuals carrying one or more qualifying variants in that gene. The exception is the recessive 604 

model, where a participant must have two qualifying alleles, either in homozygous or potential 605 

compound heterozygous form. Hemizygous genotypes for the X chromosome were also 606 

qualified for the recessive model. The qualifying variant criteria for each collapsing analysis 607 

model adopted in this study are in Supplementary Table 5. These models vary in terms of 608 

allele frequency (from private up to a maximum of 1%), predicted consequence (for example, 609 
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PTV or missense), and REVEL and MTR scores. Based on SnpEff annotations, we defined 610 

synonymous variants as those annotated as ‘synonymous_variant’. We defined PTVs as 611 

variants annotated as exon_loss_variant, frameshift_variant, start_lost, stop_gained, stop_lost, 612 

splice_acceptor_variant, splice_donor_variant, gene_fusion, bidirectional_gene_fusion, 613 

rare_amino_acid_variant, and transcript_ablation. We defined missense as: 614 

missense_variant_splice_region_variant, and missense_variant. Non-synonymous variants 615 

included: exon_loss_variant, frameshift_variant, start_lost, stop_gained, stop_lost, 616 

splice_acceptor_variant, splice_donor_variant, gene_fusion, bidirectional_gene_fusion, 617 

rare_amino_acid_variant, transcript_ablation, conservative_inframe_deletion, 618 

conservative_inframe_insertion, disruptive_inframe_insertion, disruptive_inframe_deletion, 619 

missense_variant_splice_region_variant, missense_variant, and protein_altering_variant. 620 

Collapsing analysis P-values were generated by using linear regression, correcting for 621 

age and sex. For all models, we applied the following quality control filters: minimum coverage 622 

10X; annotation in CCDS transcripts (release 22; approximately 34 Mb); at most 80% alternate 623 

reads in homozygous genotypes; percent of alternate reads in heterozygous variants ≥ 0.25 and 624 

≤ 0.8; binomial test of alternate allele proportion departure from 50% in heterozygous state P > 625 

1 × 10−6; GQ ≥ 20; FS ≤ 200 (indels) ≤ 60 (SNVs); MQ ≥ 40; QUAL ≥ 30; read position rank 626 

sum score ≥ −2; MQRS ≥ −8; DRAGEN variant status = PASS; the variant site achieved tenfold 627 

coverage in ≥ 25% of gnomAD exomes, and if the variant was observed in gnomAD exomes, 628 

the variant achieved exome z-score ≥ −2.0 and exome MQ ≥ 30. 629 

The list of 18,885 studied genes and corresponding coverage statistics of how well each 630 

protein-coding gene is represented across all individuals by the exome sequence data is 631 

available in Supplementary Table 19. Moreover, we had previously created dummy 632 

phenotypes to correspond to each of the five exome sequence delivery batches to identify and 633 

exclude from analyses 46 genes that were enriched for exome sequencing batch effects; these 634 

cautionary lists were made available in Supplementary Tables 25–27 of Wang et al 2021.5 635 

Gene-based pQTL p-values were generated adopting a linear regression (correcting for age, 636 

sex, age*sex, age*age, age*age*sex, PC1, PC2, PC3, PC4, batch1, batch2, batch3, batch4, 637 

batch5, batch6, and batch7). For the pan-ancestry analysis we included additional categorical 638 

covariates to capture broad ancestry (European, African, East Asian, and South Asian).  639 

For gene-based collapsing analyses, we used a significance cut-off of P≤1×10-8. To 640 

support the use of this threshold, we ran the synonymous (empirical null) collapsing model and 641 

found only five events achieved a signal below this threshold. Moreover, we performed an n-of-1 642 

permutation on the full collapsing pQTL analysis. Only 3 of 276 million permuted tests had 643 
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P≤1×10-8 (Supplementary Table 7). At this P≤1×10-8 threshold, the expected number of 644 

collapsing pQTL false positives is 3 out of the 4,984 (0.06%) observed significant associations.  645 

 646 

Down-sampled analysis 647 

To test the robustness of the ExWAS and collapsing analysis pQTLs, we compared the 648 

correlation between the p-values derived from the full cohort to a down-sampled subset of 649 

40,567 samples and observed very strong correlations (Supplementary Figure 3).  650 

 651 

Phenotypes 652 

We studied two main phenotypic categories: binary and quantitative traits taken from the April 653 

2022 data release that was accessed on 6 April 2022 as part of UKB applications 26041 and 654 

65851. To parse the UKB phenotypic data, we adopted our previously described PEACOCK 655 

package, located at https://github.com/astrazeneca-cgr-publications/PEACOK.5  656 

 The PEACOK R package implementation focuses on separating phenotype matrix 657 

generation from statistical association tests. It also allows statistical tests to be performed 658 

separately on different computing environments, such as on a high-performance computing 659 

cluster or an AWS Batch environment. Various downstream analyses and summarizations were 660 

performed using R v3.6.1 https://cran.r-project.org. R libraries data.table (v1.12.8; 661 

https://CRAN.R-project.org/package=data.table), MASS (7.3-51.6; 662 

https://www.stats.ox.ac.uk/pub/MASS4/), tidyr (1.1.0; https://CRAN.R-project.org/package=tidyr) 663 

and dplyr (1.0.0; https://CRAN.R-project.org/package=dplyr) were also used. 664 

 For UKB tree fields, such as the ICD-10 hospital admissions (field 41202), we studied 665 

each leaf individually and studied each subsequent higher-level grouping up to the ICD-10 root 666 

chapter as separate phenotypic entities. Furthermore, for the tree-related fields, we restricted 667 

controls to participants who did not have a positive diagnosis for any phenotype contained 668 

within the corresponding chapter to reduce potential contamination due to genetically related 669 

diagnoses. A minimum of 30 cases were required for a binary trait to be studied. In addition to 670 

studying UKB algorithmically defined outcomes, we studied union phenotypes for each ICD-10 671 

phenotype. These union phenotypes are denoted by a ‘Union’ prefix and the applied mappings 672 

are available in Supplementary Table 1 of Wang et al. 2021.5 673 

In total, we studied 10,017 binary and 584 quantitative phenotypes. As previously 674 

described, for all binary phenotypes, we matched controls by sex when the percentage of 675 

female cases was significantly different (Fisher’s exact two-sided P < 0.05) from the percentage 676 

of available female controls. This included sex-specific traits in which, by design, all controls 677 
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would be the same sex as cases.5 All phenotypes and corresponding chapter mappings for all 678 

phenotypes are provided in Supplementary Table 7. 679 

 680 

Detecting clonal haematopoiesis somatic mutations 681 

To detect putative clonal haematopoiesis, somatic variants we used the same GRCh38 genome 682 

reference aligned reads as for germline variant calling, and ran somatic variant calling with 683 

GATK’s Mutect2 (v.4.2.2.0).52 This analysis focused on the 74 genes previously curated as 684 

being recurrently mutated in myeloid cancers.33 To remove potential recurrent artifacts we 685 

filtered variants using a panel of normals created from 200 of the youngest UKB participants 686 

without a haematologic malignancy diagnosis. Subsequent filtering was performed with GATK's 687 

FilterMutectCalls, including the filtering of read orientation artifacts using priors generated with 688 

LearnReadOrientationModel.  689 

From the variant calls, clonal somatic variants were identified using a predefined list of 690 

gene-specific variant effects and specific missense variants (Supplementary Table 20). Only 691 

PASS variant calls with 0.03 ≤ Variant Allele Frequency (VAF) ≤ 0.4 and Allelic Depth (AD) ≥ 3 692 

were included. For each gene we validated the identified variants collectively as somatic by 693 

inspection of the age versus population prevalence profile (Supplementary Figure 4) and 694 

limited further analysis to a set of 15 genes. 695 

 696 

Implementing the 470K missense pQTL-augmented PheWAS 697 

In this study, we repeated our published PheWAS here adopting the now 469,809 available UK 698 

Biobank exomes and 10,017 binary endpoints alongside 584 quantitative endpoints. To 699 

determine whether novel signals could be detected after augmenting our standard ptv collapsing 700 

analysis model with cis-acting missense variants identified among the UKB Proteomics subset 701 

to correlate with a reduction in corresponding protein levels. We set our cis-pQTL missense p-702 

value inclusion threshold to p<0.0001 from the previously described exWAS analyses and 703 

require a negative cis-acting beta. We identified 3,093 missense variants with cis-acting 704 

negative betas (p<0.0001) among the genes encoding the 1,472 Olink protein analytes. 919 705 

(62%) distinct genes carried at least one of these 3,093 missense variants.5 To assess 706 

improved signal detection over the baseline ptv collapsing model, we introduced two new 707 

collapsing models “ptvolink” and “ptvolink2pcnt”. ptvolink adopts the baseline ptv collapsing 708 

model with the only deviation being the inclusion of the 3,093 missense variants that also qualify 709 

the QC and MAF criteria as adopted for the ptv collapsing model. ptvolink2pcnt is a repeat of 710 

the ptvolink collapsing model but permits missense variants with a MAF in the UK Biobank 711 
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population as high as 2% as long as they were among the list of 3,093 missense variants 712 

identified to have a p<0.0001 negative beta cis-pQTL signals in the Olink ExWAS analyses. Full 713 

model descriptions are available in Supplementary Table 5. These new cis-pQTL missense ptv 714 

augmented collapsing models were then compared to the standard collapsing models. 715 

There may be instances where reduced protein levels reflect a disruption of antibody 716 

binding rather than a true biological signal. In the setting of collapsing analysis, in which we 717 

aggregate many variant effects in a gene, we expect these events to represent only a modest 718 

fraction of a gene’s complete allelic series. Moreover, in the context of this assessment, the 719 

inclusion of missense pQTLs would be expected to act conservatively (i.e., diluting the value of 720 

including such missense in the PTV proteogenomic-augmented PheWAS collapsing analyses). 721 

The UK Biobank exomes cohort that was adopted for this refreshed PheWAS analysis 722 

was sampled from the available 469,809 UK Biobank exome sequences. We excluded from 723 

analyses 118 (0.025%) sequences that achieved a VerifyBAMID freemix (contamination) level 724 

of 4% or higher,53 and an additional five sequences (0.001%) where less than 94.5% of the 725 

consensus coding sequence (CCDS release 22) achieved a minimum of tenfold read depth.54 726 

Using exome sequence-derived genotypes for 43,889 biallelic autosomal SNVs located 727 

in coding regions as input to the kinship algorithm included in KING v2.2.3,55 we generated 728 

pairwise kinship coefficients for all remaining samples. We used the 729 

ukb_gen_samples_to_remove() function from the R package ukbtools v0.11.356 to choose a 730 

subset of individuals within which no pair had a kinship coefficient exceeding 0.1769, to exclude 731 

predicted first-degree relatives. For each related pair, this function removes whichever member 732 

has the highest number of relatives above the provided threshold. Through this process, an 733 

additional 24,116 (5.1%) sequences were removed from downstream analyses. We predicted 734 

genetic ancestries from the exome data using peddy v0.4.2 with the ancestry labeled 1,000 735 

Genomes Project as reference.45 Of the 445,570 remaining UKB sequences, 24,790 (5.3%) had 736 

a Pr(European) ancestry prediction of less than 0.95. Focusing on the remaining 420,780 UKB 737 

participants, we further restricted the European ancestry cohort to those within ±4 s.d. across 738 

the top four principal component means. This resulted in 419,387 (89.3%) participants of 739 

European ancestry who were included in these cis-pQTL modified analyses.  740 

To remove potential concerns of circularity we repeated the above ptvolink and 741 

ptvolink2pcnt collapsing model PheWAS; however, this time we removed UK Biobank 742 

participants from the PheWAS analyses if they were part of the UKB Proteomics cohort of 743 

47,345 individuals adopted to select the 3,093 cis-pQTL missense variants. These results are 744 

reflected in ptvolinknoppp and ptvolink2pcntnoppp outputs (Supplementary Table 21). 745 
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