

1 Influences of rare protein-coding genetic variants on the human plasma 2 proteome in 50,829 UK Biobank participants

3
4 Ryan S. Dhindsa^{1*}, Oliver S. Burren^{2*}, Benjamin B. Sun³, Bram P. Prins², Dorota Matelska², Eleanor
5 Wheeler², Jonathan Mitchell², Erin Oerton², Ventzislava A. Hristova¹, Katherine R. Smith², Keren Carss²,
6 Sebastian Wasilewski², Andrew R. Harper⁴, Dirk S. Paul², Margarete A. Fabre², Heiko Runz³, Coralie
7 Viollet², Benjamin Challis⁵, Adam Platt⁶, AstraZeneca Genomics Initiative⁺, Dimitrios Vitsios², Euan A.
8 Ashley⁷, Christopher D. Whelan³, Menelas N. Pangalos⁸, Quanli Wang¹, Slavé Petrovski^{2,9}

9
10 ¹Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, US

11 ²Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK

12 ³Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US

13 ⁴Clinical Development, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals
14 R&D, AstraZeneca, Cambridge, UK

15 ⁵Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and
16 Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK

17 ⁶Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology,
18 BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK

19 ⁷Department of Medicine, Division of Cardiology, Stanford University, Palo Alto, CA, USA

20 ⁸BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK

21 ⁹Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia

22 * These authors contributed equally

23 + A list of authors and their affiliations appears in the supplementary information file

24

25 **Abstract**

26 Combining human genomics with proteomics is becoming a powerful tool for drug discovery.
27 Associations between genetic variants and protein levels can uncover disease mechanisms,
28 clinical biomarkers, and candidate drug targets. To date, most population-level proteogenomic
29 studies have focused on common alleles through genome-wide association studies (GWAS).
30 Here, we studied the contribution of rare protein-coding variants to 1,472 plasma proteins
31 abundances measured via the Olink Explore 1536 assay in 50,829 UK Biobank human exomes.
32 Through a variant-level exome-wide association study (ExWAS), we identified 3,674 rare and
33 significant protein quantitative trait loci (pQTLs), of which 76% were undetected in a prior GWAS
34 performed on the same cohort, and we found that rare pQTLs are less likely to be random in
35 their variant effect annotation. In gene-based collapsing analyses, we identified an additional
36 166 significant gene-protein pQTL signals that were undetected through single-variant analyses.
37 Of the total 456 protein-truncating variant (PTV)-driven *cis*-pQTLs in the gene-based collapsing
38 analysis, 99.3% were associated with decreased protein levels. We demonstrate how this
39 resource can identify allelic series and propose biomarkers for several candidate therapeutic
40 targets, including *GRN*, *HSD17B13*, *NLRC4*, and others. Finally, we introduce a new collapsing
41 analysis framework that combines PTVs with missense *cis*-pQTLs that are associated with
42 decreased protein abundance to bolster genetic discovery statistical power. Our results
43 collectively highlight a considerable role for rare variation in plasma protein abundance and
44 demonstrate the utility of plasma proteomics in gene discovery and unravelling mechanisms of
45 action.

46 **Introduction**

47 Proteins are a cell's functional unit, and changes in protein abundance can profoundly affect
48 biological processes and human health. Genetic variation, either within or near the protein-
49 encoding gene (*cis*) or anywhere else in the genome (*trans*), can dramatically impact protein
50 expression, folding, secretion, and function. Moreover, most medicines exert their effects by
51 modulating protein levels or function. Identifying genetic variants that affect protein levels (i.e.,
52 protein quantitative trait loci, or pQTLs) has the potential to elucidate disease mechanisms,
53 reveal new drug targets, and enhance biomarker discovery.

54 Proteins circulating in the blood can originate from multiple organs and cell types and
55 include actively secreted proteins and those that leak from damaged cells elsewhere in the
56 body. The plasma proteome can thus provide a snapshot of the current state of human health.¹
57 Recent advances in high-throughput aptamer- and antibody-based proteomic platforms have
58 enabled population-scale measurements of plasma proteins. Studies integrating plasma protein
59 measurements with genotype array data have identified thousands of associations between
60 genetic variants and plasma protein concentrations.²⁻⁴ These transformational pQTL atlases
61 have helped prioritize candidate causal genes at genome-wide association study (GWAS) loci
62 and have revealed potential drug repositioning opportunities. However, because these studies
63 used genotype array data, the identified pQTLs were mainly common, non-coding variants, and
64 often confounded by correlated non-causal signals. Compared to common variants, rarer
65 protein-coding variants tend to confer much larger biological effect sizes, but their role in
66 influencing human plasma protein abundances remains largely unknown.

67 Here, we systematically evaluated the role of rare variation in plasma protein abundance
68 by analyzing exome sequence data and plasma levels of 1,472 plasma protein abundances
69 measured in 50,829 UK Biobank participants. We first performed variant- and gene-level
70 association tests to identify the *cis*- and *trans*- influences of protein-coding variation on plasma
71 protein levels across the allele frequency spectrum. We then demonstrated how the inclusion of
72 *cis*-acting missense variants in a traditional gene-level collapsing analyses framework augments
73 drug target discovery and validation studies.

74

75 **Results**

76 **UKB-PPP cohort characteristics**

77 We performed proteomic profiling on blood plasma samples collected from 54,273 UKB
78 participants using the Olink Explore 1536 platform, which measures 1,472 protein analytes and
79 1,463 unique proteins. As previously described, the UKBiobank Pharma Plasma Proteome

80 cohort (UKB-PPP) includes plasma collections from 46,673 randomly selected participants
81 (“randomised baseline”), 6,365 individuals chosen by the UKB-PPP consortium members
82 (“consortium-selected”), and 1,268 individuals who participated in the COVID-19 repeat imaging
83 study at multiple visits². Exome sequencing data were available for 51,545 (95%) of these
84 54,273 participants, which we processed through our previously published cloud-based
85 pipeline.⁵ Through rigorous sample QC, we removed samples with low sequencing quality and
86 from closely related individuals as previously described (**Methods**). After further quality control
87 based on the proteomics data (**Methods**), 50,829 (94%) multi-ancestry samples were available
88 for downstream analyses. Of these, 47,345 (87%) were of European descent.

89

90 **Protein QTL signals through ExWAS**

91 In our previous UKB-PPP paper, we used microarray data to perform pQTL mapping for 1,463
92 protein assays and identified 10,248 primary genetic associations.² These analyses were limited
93 to common variants and imputed rarer variants. Here, with the availability of whole-exome
94 sequencing data, we directly tested for associations between variants with minor allele
95 frequencies (MAF) as low as 0.005% in individuals of European ancestry without relying on
96 imputation. We first performed an exome-wide, variant-level pQTL association test (ExWAS)
97 between 1,472 plasma protein abundances and 626,929 exome sequencing variants identified
98 in 47,345 UK Biobank participants (**Fig. 1A** and **Supplementary Table 1**; Methods). We
99 performed an n-of-one permutation analysis (2.8 billion statistical tests) to define a variant-level
100 significance threshold as previously described.⁵ Based on this null distribution, we identified
101 $p \leq 1 \times 10^{-8}$ as an appropriate p-value threshold (Methods, **Supplementary Table 2**). Genomic
102 inflation was well-controlled with a median λ_{GC} of 1.04 (95% range 1.00 – 1.10)
103 (**Supplementary Fig. 1**, **Supplementary Table 3**).

104 We next compared the concordance between variant-level associations for variants
105 included in our ExWAS that were also included in our prior GWAS,² including imputed variants.
106 The effect sizes (β) of nominally significant ExWAS protein-coding pQTLs ($p < 1 \times 10^{-4}$) strongly
107 correlated with the microarray-derived pQTLs ($r^2 = 0.96$, **Supplementary Fig. 2**). Furthermore,
108 98% of the study-wide significant autosomal common pQTLs (MAF > 0.1%) in our study were
109 also significant in the prior UKB-PPP GWAS (**Fig. 1B**). However, among the rare (MAF $\leq 0.1\%$)
110 autosomal pQTLs from our ExWAS analysis, only 24% were significant in the GWAS. These
111 results illustrate the importance of exome sequencing in detecting associations for well-powered
112 rarer variants.

113 We found a total of 5,355 (16.2%) coding variants that significantly affected the
114 abundance of the encoded protein (i.e., *cis*-pQTLs). We also identified 10,768 (32.6%) coding
115 variants that affected the abundance of any other protein that was greater than 1 megabase pair
116 (Mbp) away from the protein directly encoded by the gene harboring the variant (i.e., *trans*-
117 pQTLs) (**Supplementary Table 1 - ExWAS plt1x10-6**). Finally, we identified 16,887 (51.2%)
118 *trans* pQTLs that fell within 1 Mbp of the gene encoding the protein whose level was altered,
119 which we refer to as “*trans*-gene, *cis*-position” pQTLs. We reasoned that many *trans*-gene, *cis*-
120 position pQTLs were contaminated by linkage disequilibrium (LD). In support of this, the relative
121 proportion of *cis*- and *trans*-pQTLs differed among rare variants (MAF≤ 0.1%), in which 1,465
122 (47.3%) were *cis*-pQTLs, 592 (19.1%) were *trans* pQTLs, and 1,042 (33.6%) were *trans*-gene,
123 *cis*-position pQTLs.

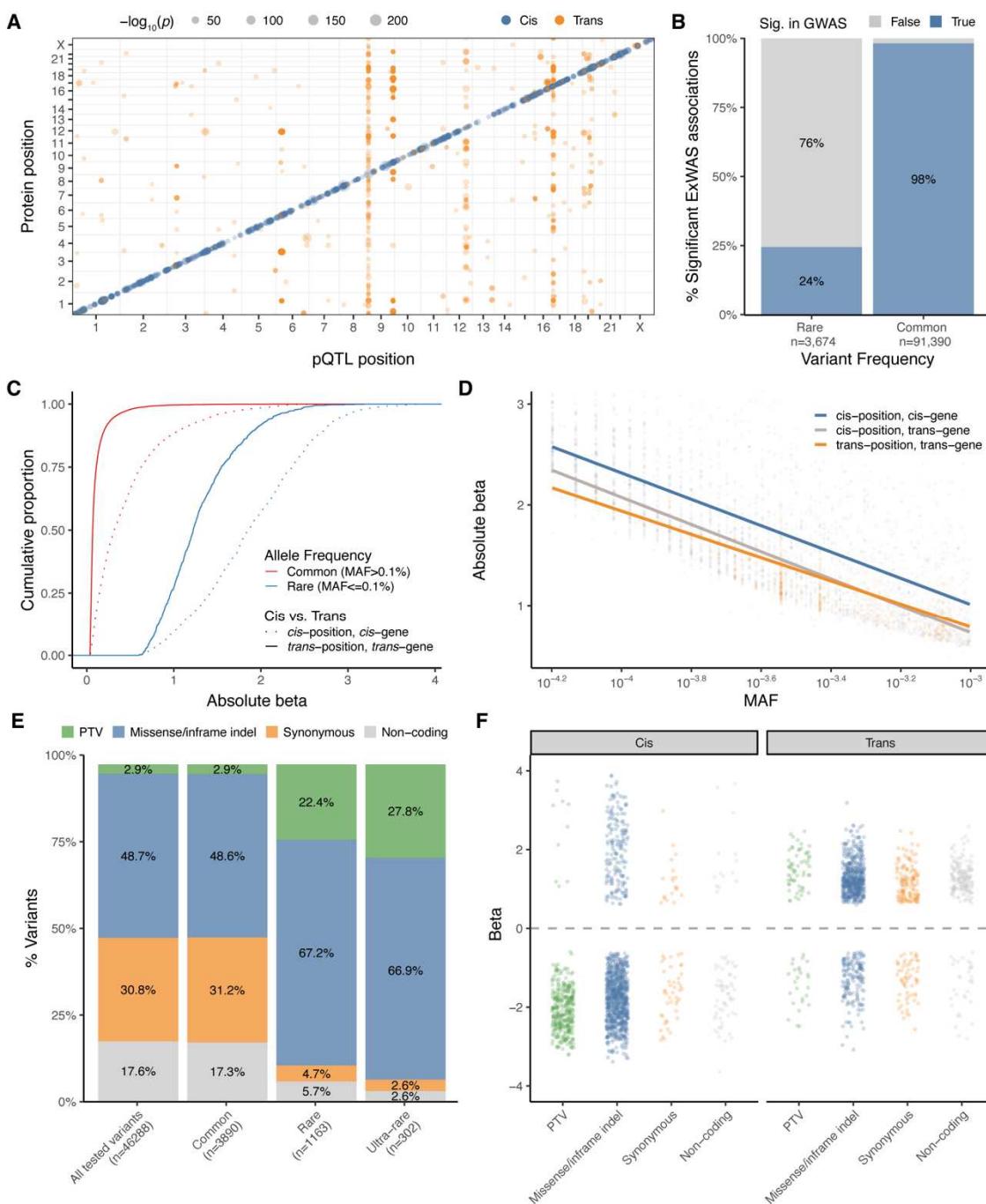
124 As purifying selection keeps variants that negatively impact fitness at low frequencies in
125 the population, there is generally an inverse relationship between effect sizes and allele
126 frequencies for variants that influence fitness-related traits. The median absolute effect size (β)
127 of rare *cis*-pQTLs was 1.86, whereas the median absolute effect size of common *cis*-pQTLs was
128 0.32 (Wilcoxon $P<10^{-300}$). Similarly, the absolute effect sizes of rare *trans*-pQTLs (median
129 $|\beta|=1.22$) were significantly larger than the effect sizes of common *trans*-pQTLs (median
130 $|\beta|=0.07$; Wilcoxon $P<10^{-300}$) (**Fig. 1C**). Finally, even among rare variants, the effect sizes of *cis*-
131 pQTLs (median $|\beta| = 1.86$) were greater than *trans*-pQTLs (median $|\beta| = 1.22$; Wilcoxon
132 $P=6.8\times10^{-125}$) (**Fig. 1D**).

133 We next explored the number of *cis*-pQTLs per variant class across the allele frequency
134 spectrum. Among the common *cis*-pQTLs, the proportions of PTVs, missense variants,
135 synonymous variants, and non-coding variants closely matched the proportions observed for the
136 total variants included in the ExWAS (i.e., the expected null distribution). In comparison, PTVs
137 and missense variants encompassed a significantly larger percentage of rare (MAF<0.1%) and
138 ultra-rare (MAF<0.01%) *cis*-pQTLs (**Fig. 1D, Supplementary Table 4**). These results reinforce
139 the observation that the common protein-coding pQTLs are more confounded by linkage
140 disequilibrium (LD), making it challenging to confidently ascribe causality to these variants
141 without additional experimental data.

142 This catalogue of protein-coding pQTLs allows us to compare the effects of different
143 classes of protein-coding variants on protein abundances. Of the 1,465 significant rare *cis*-
144 pQTLs, 345 (23.5%) were protein-truncating variants (PTVs), 983 (67.1%) were missense or
145 inframe indel variants, 63 (4.3%) were synonymous variants, and 74 (5.1%) were noncoding
146 variants (**Fig 1E; Supplementary Table 4**). As expected, nearly all the rare *cis*-pQTLs

147 corresponding to PTVs were associated with decreased protein abundances (n=335 of 345;
148 97%). Of the remaining 10 *cis*-pQTL PTVs associated with increased protein abundances, five
149 (50%) occurred in the last exon of the encoding gene, suggesting these variants may result in
150 truncated transcripts that escape nonsense-mediated decay (NMD). Two of the 10 variants
151 were annotated as loss of splice donor sites. Rare *cis*-pQTL missense variants and inframe
152 indels had more variable effects, though most still decreased protein abundances (n=810/983;
153 82%). In comparison, among the significant rare *trans*-pQTLs, only 30% (26/87) of PTVs and
154 23% (159/702) of missense variants/indels were associated with decreased protein
155 abundances.

156 There has been tremendous interest in identifying allelic series, in which multiple
157 variants in a gene influence a phenotype with a range of effect sizes, to prioritise candidate drug
158 targets.^{6,7} Missense variants are particularly valuable in discovering allelic series because they
159 can have variable biological effects, ranging from complete or partial loss-of-function, to neutral,
160 to gain-of-function. We thus explored how often missense variants within the same gene had
161 similar effects on protein abundance, focusing on 117 genes with at least five rare (MAF \leq
162 0.1%) missense *cis*-pQTLs. Most often, rare missense variants within the same gene had a
163 similar effect on protein abundance. For 100 out of these 117 genes (85%), at least 75% of the
164 significant missense pQTLs decreased protein abundance. In the remaining 17 genes, the
165 percentage of protein-lowering missense variants ranged from 17% to 60% (**Supplementary**
166 **Table 1**). However, we note that we cannot rule out epitope effects, in which a sequence variant
167 affects antibody binding either through directly altering the binding site or changing protein
168 structure. Consequently, such effects may also result in decreased protein abundance.
169 However, if epitope effects had a systematic impact on missense cis-pQTL signals, we would
170 expect to see a preferential enrichment of missense variants even among the common variant
171 *cis*-pQTLs. Because we see that the variant effect proportions among the common variant cis-
172 pQTL closely match the expected null distribution (**Fig 1E**), it suggests that it is unlikely that
173 epitope effects are a major driver of missense cis-pQTL signals. Nonetheless, this large
174 catalogue of pQTLs will enable rapid hypothesis generation and validation for the identification
175 of allelic series, which can be complemented by more targeted molecular studies.

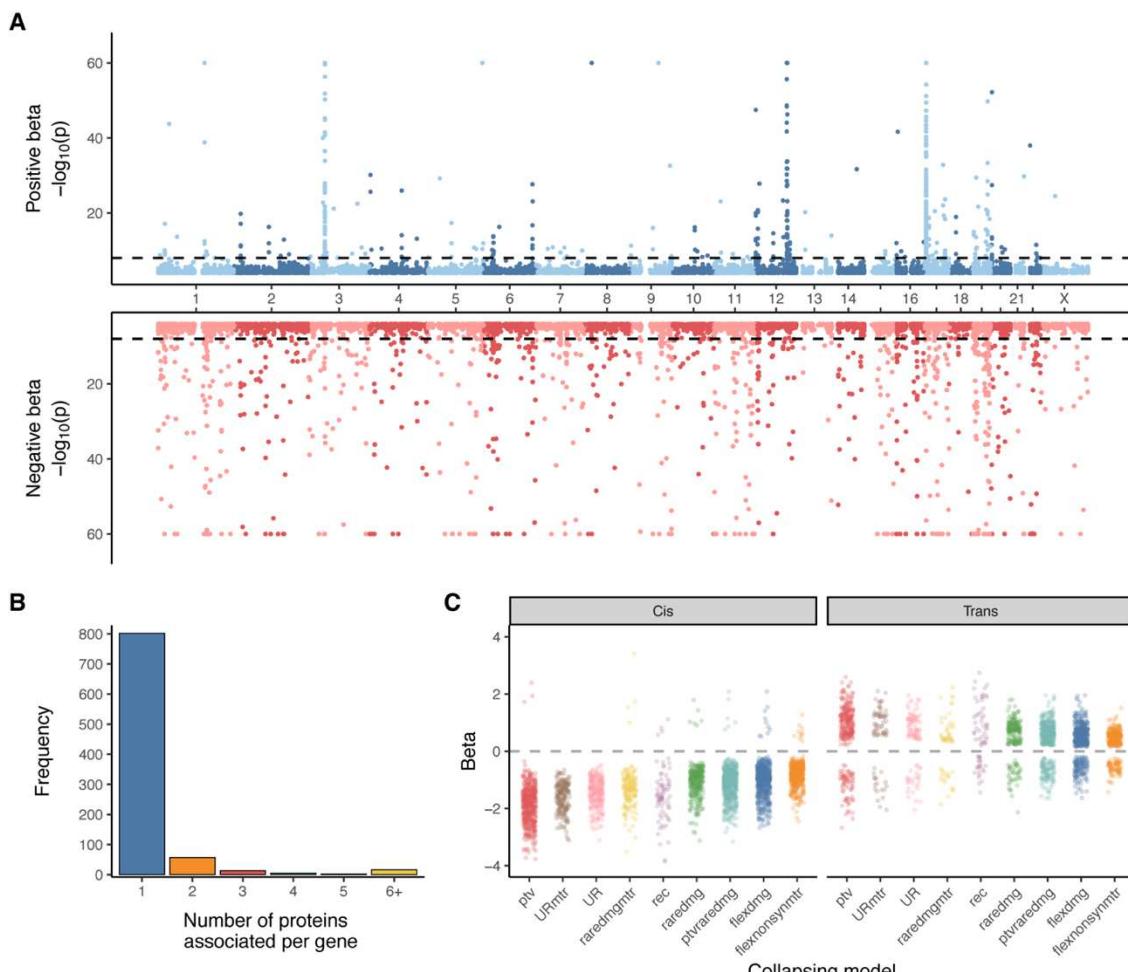


176
177 Cis-pQTL MAF bin
178 **Figure 1. Exome-wide association study.** (A) Summary of significant ($p \leq 1 \times 10^{-8}$) *cis* and *trans*
179 pQTLs across the genome, limited to variants with a minor allele frequency (MAF) $< 0.1\%$. (B)
180 Percentage of significant rare (MAF $\leq 0.1\%$) and common (MAF $> 0.1\%$) ExWAS pQTLs that
181 were also significant in the UKB-PPP GWAS. (C) Effect size distributions of *cis*- versus *trans*-pQTLs
182 stratified by allele frequency. (D) Effect sizes of rare (MAF $\leq 0.1\%$) pQTLs. (E) The proportion of
183 significant *cis*-pQTLs per variant class across three minor allele frequency (MAF) bins. “All tested
184 variants” refers to the total number of variants occurring in the genes corresponding to the proteins
185 measured via the Olink platform that were included in the ExWAS. For all plots, if the same
186 genotype-protein association was detected in multiple ExWAS models, we retained the association
187 with the smallest p-value. (F) Effect sizes of significant rare pQTLs in each variant class (PTV =
188 protein-truncating variant).

189

190 **Protein QTL signals detected through gene-level collapsing analysis**

191 Because the power to identify statistically significant variant-level associations decreases with
192 MAF, we next performed gene-level collapsing analyses. In this approach, we aggregate rare
193 variants that meet a pre-defined set of criteria (i.e., “qualifying variants” or “QVs”) in each gene
194 and test for the aggregate effect on protein levels. Here, we used ten QV models introduced in
195 our previous UKB phenotype-wide association study (PheWAS), including one synonymous
196 variant model that serves as an empirical negative control (**Supplementary Table 5**). These
197 models collectively capture genetic contributions across various genetic architectures
198 (www.asphewas.com).⁵ Another benefit of this approach in the setting of pQTL discovery is that
199 aggregating effects across a gene should mitigate against any potential epitope effects that
200 might arise in the variant-level setting.



201

202 **Figure 2. Gene-level collapsing analysis.** (A) Miami plot of gene-protein abundance associations
203 across nine collapsing models. We excluded the empirical null synonymous model. The y-axis is
204 capped at 60. (B) The number of unique significant ($p \leq 1 \times 10^{-8}$) protein abundance associations per

205 gene across the collapsing models. **(C)** The effect sizes of significant gene-protein associations in
206 each collapsing model are stratified by *cis* versus *trans* effects.
207

208 In total, we tested the association between 18,885 genes and 1,472 plasma protein
209 levels in 47,345 individuals of European ancestry (**Supplementary Table 6**). To define an
210 appropriate significance threshold for the collapsing analyses, we considered two different null
211 distributions: one from an n-of-1 permutation analysis (n=276 million permutation-based
212 statistical tests) and the other based on a synonymous variant collapsing model (i.e., empirical
213 null; n=27.6M statistical tests) (Methods, **Supplementary Tables 7** and **8**). Both approaches
214 converged on a p-value threshold of $p \leq 1 \times 10^{-8}$, consistent with the ExWAS threshold (**Methods**).
215

216 We identified 4,984 significant associations across the nine non-synonymous collapsing
217 models (**Fig. 2A**). Of these, there were 1,330 unique gene-protein abundance associations,
218 including 693 (52%) *cis* associations, 582 (44%) *trans* associations, and 55 (4%) *trans*-gene,
219 *cis*-position signals. This relatively low percentage of *cis*-position, *trans*-gene associations
220 compared to the ExWAS (4% vs. 51%) highlights the strength of rare variant collapsing analysis
in mitigating contamination due to LD.

221 Notably, 166 (12.5%) of the 1,330 gene-protein abundance signals identified via
222 collapsing analysis did not achieve study-wide significance in the ExWAS, illustrating the
223 increased power of this approach. Of the associations that only reached significance in the
224 collapsing analysis, 40 (24.1%) were *cis*-pQTLs. (**Supplementary Table 6**). The greatest
225 contribution to the 2,948 *cis*-pQTL collapsing signals came from the flexdmg model (560/2948
226 [19%]), followed by the ptvraredmg model (524/2948 [18%]) and the ptv model (456/2948
227 [15%]). In contrast to recent claims that synonymous variants are nearly as deleterious as
228 nonsynonymous variants, we found only two significant gene-level *cis*-pQTL under the
229 synonymous (syn) collapsing model (**Supplementary Table 8**).^{8,9}

230 Most pQTLs identified in the collapsing analysis were only associated with changes in
231 abundance of a single protein (**Fig. 2B**). Among the *trans* loci, 90% of genes were associated
232 with three or fewer proteins. However, certain genes appeared to be *trans*-pQTL “hotspots,”
233 associated with over 20 different protein abundances. This included, ASGR1 (n=153), GNPTAB
234 (n=29), STAB1 (n=47), and STAB2 (n=26). ASGR1, which encodes a subunit of the
235 asialoglycoprotein receptor, also appeared to be a *trans*-pQTL hotspot in our prior GWAS and
236 several other large pQTL studies.^{2,3,10} GNPTAB encodes the alpha and beta subunits of
237 GlcNAc-1-phosphotransferase, which selectively adds GlcNAc-1-phosphate to mannose
238 residues of lysosomal hydrolases. The resulting mannose-6-phosphate (M6P) residues signal
239 that the lysosomal hydrolase should be transported to the lysosome.¹¹ Untagged proteins

240 instead are secreted into the blood and extracellular space.¹² Recessive loss-of-function
241 mutations in *GNPTAB* are associated with Mucolipidosis III, a severe, multi-system lysosomal
242 storage disorder (LSD) resulting in the accumulation of lysosomal substrates.¹³ Of the *GNPTAB*
243 *trans*-pQTLs detected in the collapsing model, 28 (97%) are lysosomal proteins,^{14,15} 12 of which
244 have been associated with other LSDs (**Supplementary Table 9**).¹⁶ Moreover, all 29 of these
245 proteins showed increased plasma levels in PTV carriers, suggestive of reduced lysosomal
246 targeting. Notably, there are efforts to therapeutically increase *GNPTAB* activity to enhance the
247 cellular uptake of other lysosomal proteins involved in other LSDs, which could improve the
248 efficacy of enzyme replacement therapies.¹⁷

249 Of 456 significant *cis* pQTL signals in the ptv model, 453 (99%) were associated with
250 decreased abundance of the encoded protein, as expected. In contrast, only 54 (20%) of the
251 267 significant *trans* pQTL signals from the ptv model were associated with decreased protein
252 levels. Some possible explanations for these signals include the loss of upstream regulators,
253 reduced negative feedback, or compensatory changes. For example, we found that PTVs in
254 *EPOR*, encoding the erythropoietin receptor, were associated with increased EPO, highlighting
255 an example of compensatory upregulation ('flexdmg' model; $p=3.5\times 10^{-30}$; $\beta=0.86$, 95% CI: 0.72-
256 1.01).¹⁸

257 We observed similar patterns for the remaining collapsing models (**Fig. 2C**). Two of the
258 collapsing models ("UR" and "URmtr") consider ultra-rare (gnomAD MAF=0%, UKB
259 MAF $\leq 0.005\%$) PTVs and missense mutations predicted to be damaging via REVEL.¹⁹ The only
260 difference between these two models is that "URmtr" only includes missense variants that fall in
261 constrained regions of a gene based on the missense tolerance ratio ("MTR"; Methods).²⁰ We
262 compared the effect sizes between these two models to test the discriminative ability of MTR.
263 The median absolute beta of *cis* loci identified through the "URmtr" model was -1.53 compared
264 to -1.37 for the "UR" model (Wilcoxon $P= 5.2\times 10^{-7}$) (**Fig. 2C**). Thus, this population genetics-
265 based approach can effectively prioritize functional missense variants and offers a valuable
266 layer of information on top of *in silico* pathogenicity predictors.

267

268 **Pan-ancestry collapsing analysis**

269 Including individuals of non-European ancestry in genetic studies promotes healthcare equity
270 and can boost genetic discovery. We performed a pan-ancestry collapsing analysis on 50,829
271 UK Biobank participants, including the original 47,345 European ancestry samples plus 3,484
272 individuals from African, Asian, and other ancestries. In this combined analysis, there were 550
273 unique study-wide significant gene-protein abundance associations that were not significant in

274 the European ancestry analyses, and 163 associations that were significant in the European
275 ancestry analyses that did not reach study-wide significance in the pan-ancestry analysis
276 (**Supplementary Table 6**). Of the newly significant associations, 302 (55%) were *cis*, 240 (44%)
277 were *trans*, and 8 (1%) were *cis*-position, *trans*-gene (**Supplementary Table 10**). An example
278 of an association that only achieved significance in the pan-ancestry analysis was the *trans*
279 association between PTVs in *HBB* and increased levels of the monocarboxylic acid transporter
280 encoded by *SLC16A1* ($\beta=1.85$; 95% CI: [1.33-2.37]; $p=2.8\times 10^{-12}$). This association likely only
281 reached significance in the pan-ancestry analysis due to the relative enrichment of PTVs in *HBB*
282 variants in non-European ancestries, namely individuals of South Asian ancestry, as observed
283 in our prior UKB exome study.⁵ Another well-known *trans* association that only became
284 significant in the pan-ancestry analysis included PTVs in *ATM*, associated with ataxia
285 telangiectasia and several cancers, with increased levels of alpha-fetoprotein ($P=9.16\times 10^{-9}$,
286 $\beta=0.47$, 95% CI: [0.31, 0.63]).²¹ These results add to the growing examples of how increased
287 genetic diversity can increase power for detecting genetic associations.

288

289 **Insights into biological pathways**

290 *Trans* associations can reflect protein-protein interactions between the encoded protein at the
291 locus and the target protein. Several *trans* associations from the collapsing analyses capture
292 known interactions. For example, PTVs in *PSAP*, encoding prosaposin, were associated with
293 increased plasma abundances of progranulin (*GRN*; $p=6.6\times 10^{-17}$; $\beta=2.60$, 95% CI: 1.99-3.21)
294 and cathepsin B ($p=1.3\times 10^{-11}$, $\beta=2.10$, 95% CI: 1.49-2.70) (**Supplementary Table 6**). There
295 was also a near-significant association between PTVs in *PSAP* and increased cathepsin D
296 ($p=9.5\times 10^{-8}$, $\beta=1.61$, 95% CI: 1.02-2.20). *PSAP* encodes a pro-protein that is cleaved by
297 cathepsin D in the lysosome into four separate saposins. Recessive variants in *PSAP* are
298 associated with various lysosomal storage disorders.²² Likewise, haploinsufficiency of *GRN* is
299 associated with frontotemporal lobar degeneration (FTLD),^{23,24} and complete loss is associated
300 with a lysosomal storage disorder called neuronal ceroid lipofuscinosis.²⁵ Prior work has shown
301 that *PSAP* (prosaposin) heterodimerizes with progranulin to regulate transport to the lysosome
302 and regulates progranulin levels.^{26,27}

303 Our analyses also robustly identified several *trans* associations between ligand-receptor
304 pairs. For example, there was a significant association between nonsynonymous variants in
305 *TSHR*, encoding the thyroid stimulating hormone receptor, and increased thyroid stimulating
306 hormone (*TSHB*) ('flexdmg' model; $p=2.1\times 10^{-32}$; $\beta=0.66$, 95% CI: 0.55-0.76) (**Supplementary**
307 **Table 6**). Likewise, we robustly identified a *trans* association between mutations in *FLT3*,

308 encoding the fms-related tyrosine kinase 3, and increased levels of the FLT3 ligand (FLT3LG;
309 'ptvraredmg' model; $p = 6.2 \times 10^{-21}$; $\beta = 0.82$, 95% CI: 0.65-0.99) (**Supplementary Table 6**).
310 Although we highlighted well-known ligand-receptor pairs here, we anticipate that this *trans-*
311 pQTL atlas could also help identify or suggest ligands for orphan receptors (<https://astrazeneca-cgr-publications.github.io/pqtl-browser>).

312 This resource also enables the discovery of functional biological networks. For example,
313 we observed four rare NLRC4 protein-coding variants in the ExWAS that were associated with
314 substantial changes in plasma levels of the proinflammatory cytokine IL-18 (**Supplementary**
315 **Table 1**). These included one frameshift variant and one missense variant associated with
316 reduced protein levels, and two putatively gain-of-function missense variants associated with
317 higher levels (**Table 1**). Only one of these variants was detected in our previous GWAS of the
318 same cohort.² *NLRC4* encodes the NLR family CARD domain-containing protein 4 that is
319 involved in inflammasome activation.²⁸ Prior studies have shown that rare, hypermorphic
320 missense variants in this gene cause autosomal dominant infantile enterocolitis, characterized
321 by recurrent flares of autoinflammation with elevated IL-18 and IL-1 β levels.²⁹ IL-18 has also
322 been implicated as an inflammatory mediator of several other autoimmune diseases.³⁰ We did
323 not find any significant associations between any of these four mutations and clinically relevant
324 phenotypes in our published phenome-wide association study of 470,000 UK Biobank exomes
325 (<https://azphewas.com>).⁵ These data suggest that pharmacologic inhibition of NLRC4 may be
326 safe. They also demonstrate that some rare putative gain-of-function mutations in this gene may
327 not be sufficient to cause an observable phenotype, highlighting the value of this resource in
328 clinical diagnostic settings.

330

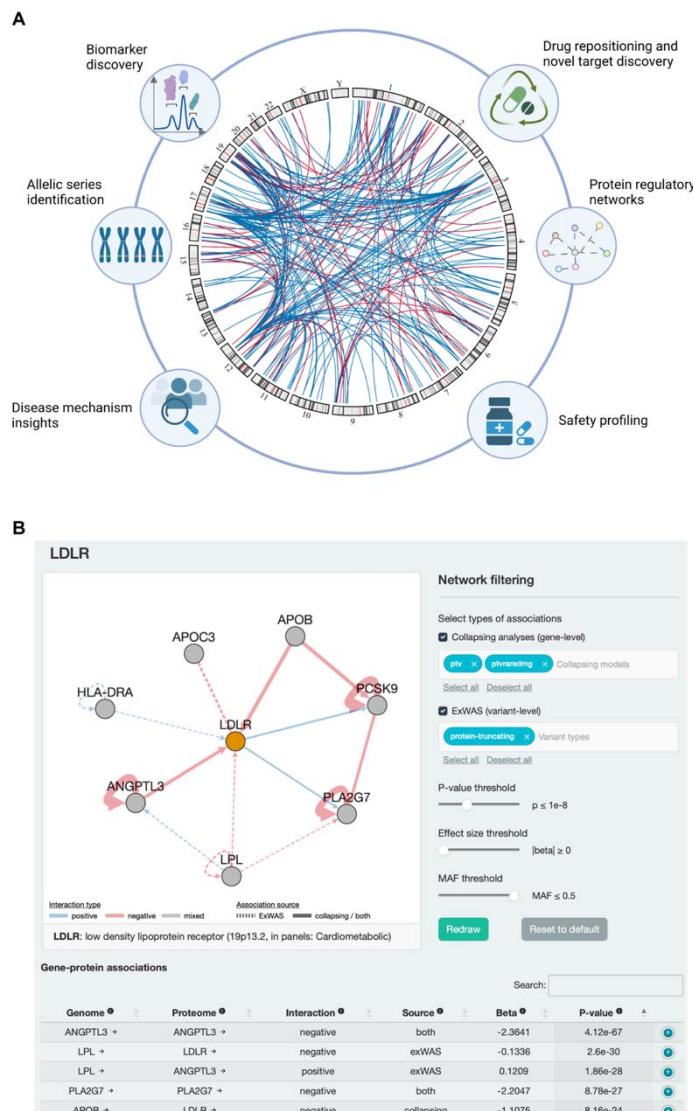
<i>NLRC4</i> variant	Consequence	IL-18 beta, [95% CI]	P-value	UKB European MAF
chr2:32252592:CA>C	Frameshift	-1.15, [-1.42, -0.89]	2.2×10^{-17}	0.05%
chr2:32238296:C>A	Missense (p.Gly786Val)	-0.74 [-0.83, -0.65]	3.2×10^{-60}	0.5%
chr2:32224523:C>A	Missense (p.Asp1009Tyr)	2.00 [1.40, 2.59]	5.0×10^{-11}	0.01%
chr2:32250993:C>T	Missense (p.Gly291Ser)	1.97 [1.20, 2.74]	5.0×10^{-7}	0.006%

331 **Table 1. *NLRC4* allelic series.** The four trans-pQTLs in *NLRC4* associated with changes in IL-18
332 levels from the ExWAS. MAF = minor allele frequency.
333

334 Beyond mapping protein regulatory pathways, this rich catalogue of protein-coding
335 pQTLs can address several components of drug development, including the identification of
336 novel genetic targets, discovering mechanisms of actions or biomarkers for drug targets, safety

337 profiling, and drug repositioning opportunities. For example, there have been recent efforts to
338 inhibit HSD17B13 based on the discovery that a splice variant (*rs72613567*) in this gene may
339 protect against chronic liver disease.³¹ Our ExWAS revealed that this splice variant also
340 associated with altered levels of HYAL1 ($P=7.4\times10^{-10}$, $\beta=-0.06$, 95% CI: [-0.07, 0.04]), SMPD1
341 ($P=2.2\times10^{-11}$, $\beta=-0.05$, 95% CI: [-0.06, -0.03]), CES3 ($P=1.5\times10^{-12}$, $\beta=0.07$, 95% CI: [0.05,
342 0.08]), GUSB ($P=7.9\times10^{-9}$, $\beta=0.04$, 95% CI: [0.03-0.05]), and PDGFC ($P=4.8\times10^{-9}$, $\beta=0.04$, 95%
343 CI: [0.03, 0.06]) (**Supplementary Table 1**). Further research into the individual and combined
344 effects of these previously undescribed relationships could help elucidate how this splice variant
345 confers the observed reduced liver disease risk.

346 These vignettes provide some examples of how this expansive pQTL resource can aid
347 many different drug discovery efforts (**Fig. 3A**). We have made the ExWAS and collapsing
348 pQTLs publicly available through a pQTL-specific interactive portal to empower the broader
349 research community (**Fig. 3B**; <https://astrazeneca-cgr-publications.github.io/pqtl-browser>).

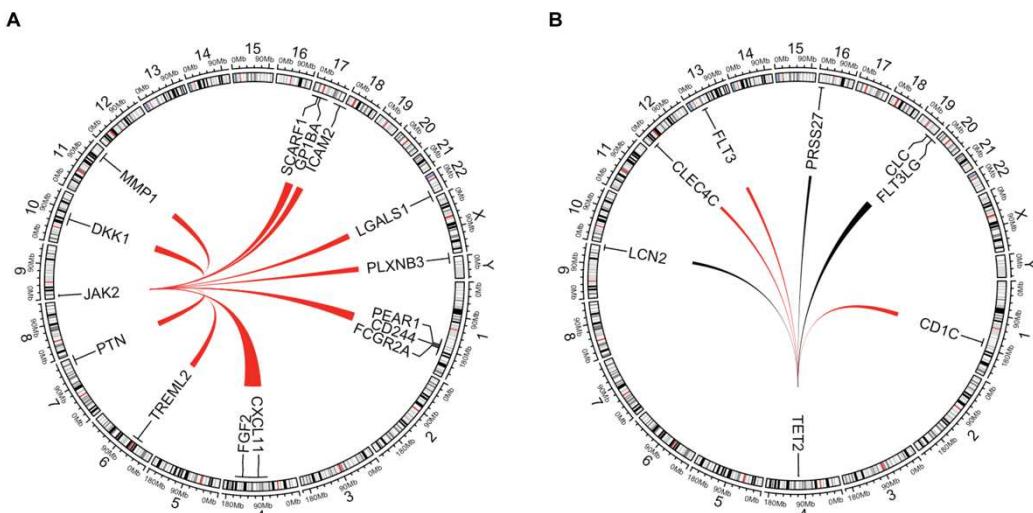


350
351
352
353
354
355
356
357
358

Figure 3. pQTL atlas and interactive browser. (A) Illustration of potential applications of this trans-pQTL atlas to drug development. The chord diagram represents *trans*-pQTLs detected in our collapsing analysis ($p \leq 1 \times 10^{-8}$). **(B)** The AstraZeneca pQTL browser, highlighting *LDLR* as an example user query. Users can browse pQTLs from both the ExWAS and gene-based collapsing analyses using an intuitive range of parameters and thresholds.

359 **Clonal haematopoiesis of indeterminate potential**
360 The age-related acquisition of somatic mutations that lead to clonal expansion of
361 haematopoietic stem cell populations (i.e., clonal haematopoiesis, or “CH”) has been associated
362 with an increased risk of haematological cancer, cardiovascular disease, infection, cytopenia,
363 and other diseases.^{32,33} To identify plasma protein changes with CH, we performed a gene-level
364 collapsing analysis in which we defined QVs as clonal somatic variants in 15 genes recurrently

365 mutated in myeloid cancers (see Methods) using a predefined list of variants and considered
366 four different variant allele frequency (VAF) cut offs (**Supplementary Table 11**). In this setting,
367 we excluded 290 individuals diagnosed with a haematological malignancy diagnosis pre-dating
368 sample collection. We observed that the most significant ($p \leq 1 \times 10^{-8}$) associations were achieved
369 with $VAF \geq 10\%$ cut-off (**Supplementary Table 12**). Under this model, we detected 13 *trans*
370 protein associations with somatic mutations in *JAK2*, five with *TET2*, four with *SRSF2*, and three
371 with *ASXL1*. Strikingly, there was no overlap between the protein abundances associated with
372 each of these four genes, suggesting distinct downstream effects of the somatic events
373 detected in each.



374
375 **Figure 4. Clonal haematopoiesis *trans*-pQTL associations.** (A) Chord diagram
376 illustrating significant ($p \leq 1 \times 10^{-8}$) *trans*-pQTLs associated with somatic mutations in
377 *JAK2*. (B) Significant *trans*-pQTLs associated with somatic mutations in *TET2*. Red lines
378 indicate positive betas and black lines indicate negative betas. Line width is proportional
379 to the absolute beta. For each gene, we plotted associations that were significant in any
380 of the four collapsing models.

381 Somatic *JAK2* mutations frequently cause Philadelphia-negative myeloproliferative
382 neoplasms (including polycythaemia vera, essential thrombocythaemia and primary
383 myelofibrosis), which are associated with thromboembolic disease.³⁴ Three of the *JAK2* *trans*-
384 pQTLs include proteins involved in the integrin $\beta 2$ pathway, including *FCGR2A*, *GP1BA*, and
385 *ICAM2*. Prior work has shown that the most common *JAK2* missense variant associated with
386 myeloproliferative disorders (V617F) can promote venous thrombosis through activation of this
387 pathway.³⁵ The largest effect size was seen with *CXCL11*, encoding a chemokine.

388 Somatic mutations in *TET2* were associated with increased levels of the cytokine
389 tyrosine kinase *FLT3* ($p=9.7 \times 10^{-15}$, $\beta=-0.50$, 95% CI: [0.38, 0.63]) and decreased levels of the

391 FLT3 ligand, FLT3LG ($p=8.0 \times 10^{-54}$, $\beta=-0.95$, 95% CI: [-1.01, -0.83]). FLT3 is a key regulator of
392 hematopoietic stem cell proliferation and dendritic cell differentiation.³⁶ Two other *TET2*
393 associations included increased abundances of CD1C and CLEC4C, which are markers of
394 conventional dendritic cells and plasmacytoid dendritic cells, respectively.³⁷ Prior work has
395 shown that roughly 30% of patients with acute myeloid leukaemia (AML) carry FLT3-activating
396 mutations, the presence of which portend poor outcomes.³⁸ There are now FLT3 inhibitors that
397 have been found to improve survival of patients with AML.^{39,40} If the relationship between CH-
398 *TET2* and FLT3 is causal, this could suggest potential repositioning and precision medicine
399 opportunities.

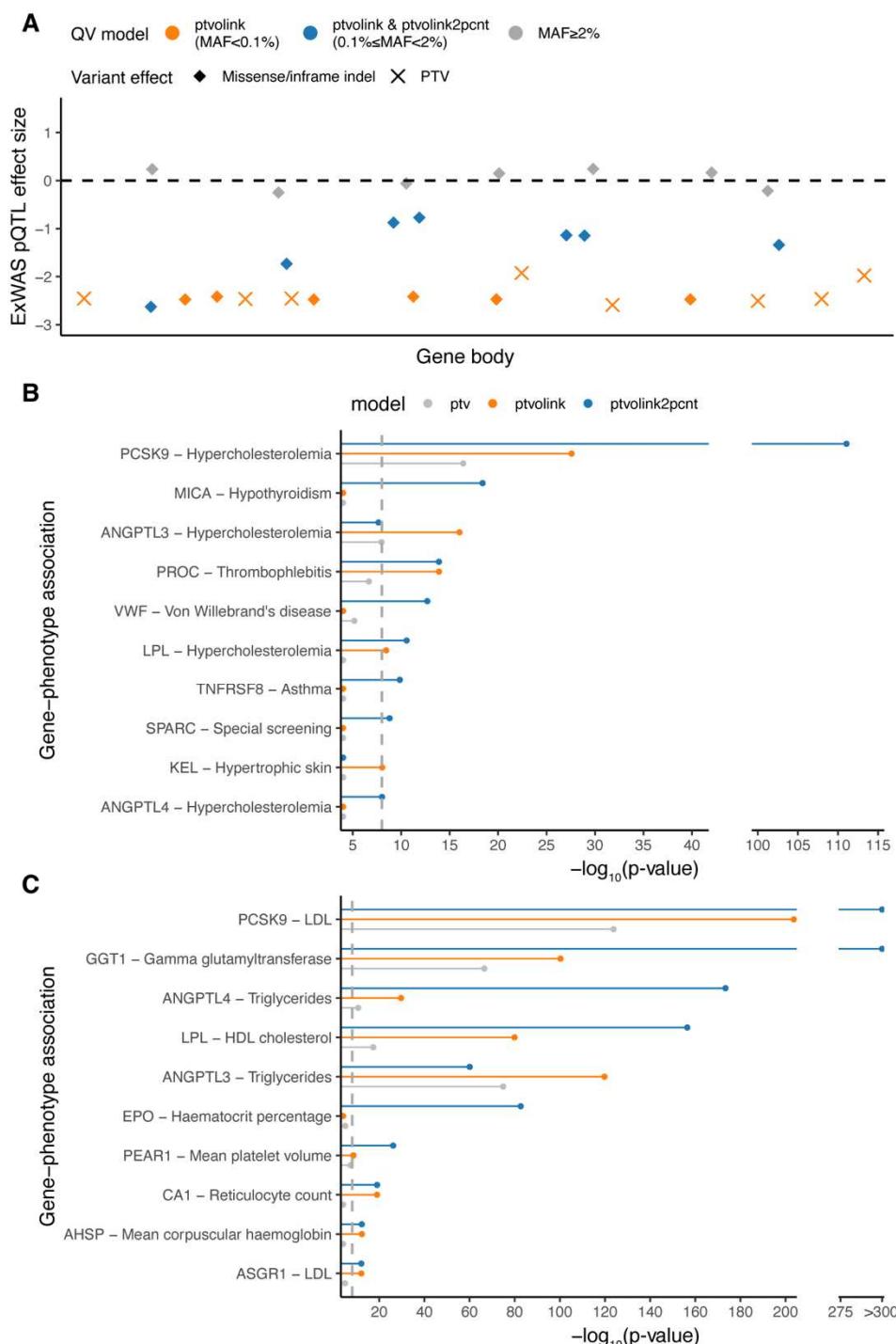
400

401 **Augmenting PTV-driven PheWAS associations with proteomics**

402 Understanding the functional consequences of protein-coding variants is critical to uncovering
403 the genetic underpinnings of diseases. In the setting of gene discovery studies, it can be
404 especially challenging to distinguish between putatively pathogenic and benign missense
405 variants. In rare-variant aggregated collapsing analyses, researchers typically prioritise rare
406 missense variants based on *in silico* predictions of how damaging that variant might be to the
407 structure or function of a protein. While *in silico* scores help distinguish between neutral and
408 potentially damaging missense variants, even the most well-performing scores only modestly
409 correlate with experimental measures of protein function.⁴¹ There has thus been considerable
410 interest in performing *in vitro* mutagenesis screens to determine the effects of many possible
411 variants within a gene. However, the availability of protein measurements across tens of
412 thousands of individuals can be considered a human *in vivo* mutagenesis screen since we have
413 direct measurements of how individual observed variants impact protein levels among those
414 carriers. We thus sought to leverage this conceptual framework in the setting of a phenome-
415 wide association study.

416 In our previous rare-variant collapsing phenome-wide association study on 281,104 UKB
417 exomes, we observed that the PTV collapsing models accounted for the greatest number of
418 significant gene-phenotype relationships.⁵ Here, using a more extensive set of 419,387 UK
419 Biobank exomes, we augmented our standard PTV model with missense variants associated
420 with reduced protein abundance (i.e., ExWAS cis-pQTLs with $P<0.0001$; see Methods). We
421 defined two new collapsing models: “ptvolink,” in which we included PTVs and missense pQTLs
422 with a MAF < 0.1%, and “ptvolink2pcnt,” in which we relaxed the MAF threshold of missense
423 variants to <2% (Methods, **Fig. 5A, Supplementary Table 5**). We tested for associations

424 between genes encoding the Olink measured proteins and 10,017 binary and 584 quantitative
 425 phenotypes (Supplementary Tables 13 and 14).



426
 427
 428
 429
 430
 431
 432

Figure 5. pQTL-informed collapsing analyses. (A) Schematic representing the pQTL-informed collapsing framework. Blue diamonds represent missense pQTLs that would be included as qualifying variants in the ptvolink model and ptvolink2pcnt model. PTVs, illustrated as X's, are included in both models. (B) The p-values of gene-level associations with binary traits that improved when including PTVs and missense *cis*-pQTLs ($p_{\text{ExWAS}} < 0.0001$, ptvolink (orange) – MAF < 0.1%, ptvolink2pcnt (blue) MAF < 2%). (C) Same as (A) but for quantitative trait associations. The x-axis is

433 capped at 10^{-300} . LDL = low density lipoprotein; HDL = high density lipoprotein. The dashed line
434 indicates the study-wide significance threshold of $p \leq 1 \times 10^{-8}$.
435

436 The standard ptv collapsing model detected significant associations for five genes that
437 encoded proteins measured on the Olink platform, including *ACVRL1* and *ENG* with hereditary
438 haemorrhagic telangiectasia, *GRN* with dementia, *NOTCH1* with chronic lymphocytic leukemia,
439 and *PCSK9* with hypercholesterolemia ($P=4.0 \times 10^{-17}$, OR=0.35; 95% CI: 0.27-0.46) (**Fig. 5B**,
440 **Supplementary Table 15**). The significance of the well-known association between the loss of
441 *PCSK9* and protection from hypercholesterolemia markedly improved in the pQTL-informed
442 model (ptvolink2pcnt: $P=8.7 \times 10^{-112}$, OR= 0.63, 95% CI: [0.60, 0.65]). Including these missense
443 variants, which tended to have more modest effects on protein abundance than PTVs, resulted
444 in a weaker effect size but also clearly increased statistical power. Meanwhile, the signal of the
445 four other gene-phenotype associations was diluted in the pQTL-informed missense models
446 (**Supplementary Table 15**).

447 Impressively, nine genes that did not achieve genome-wide significance in the standard
448 ptv collapsing model achieved significance in at least one of the pQTL-informed models (**Fig.**
449 **5B**). The p-value of the association between *ANGPTL3* and dyslipidemia improved from 1.1×10^{-8}
450 (OR= 0.58, 95%CI: 0.48-0.71) to 9.6×10^{-17} ("ptvolink"; OR=0.57, 95% CI: 0.50-0.66). The
451 association between *VWF* and Von Willebrand's disease also improved from 6.9×10^{-6} to 2.0×10^{-13} . Other examples included *KEL* with hypertrophic skin disorders; *PROC* with thrombophlebitis;
452 *LPL* with hypercholesterolemia; *MICA* with hypothyroidism, *ANGPTL4* with
453 hypercholesterolemia; *TNFRSF8* and protection from asthma, and *SPARC* with special
454 screening examinations (**Fig. 5B** and **Supplementary Table 15**). The second strongest
455 association for *SPARC* was with basal cell carcinoma, suggesting that this signal arose from
456 screening for skin cancer (ptvolink2pcnt $P=4.5 \times 10^{-6}$, $\beta=2.9$, 95% CI: [2.0, 4.4]).

458 We also identified several quantitative trait associations that increased in significance
459 using these new collapsing models (**Fig. 5C** and **Supplementary Table 16**). Consistent with the
460 improved p-values for related binary phenotypes, the associations between *PCSK9*, *ANGPTL4*,
461 *LPL*, and *ANGPTL3* with lipid-related traits all improved under the ptvolink and ptvolink2pcnt
462 models. We also found that the association between *EPO* and increased haematocrit only
463 achieved significance in the ptvolink2pcnt model ($P=2.2 \times 10^{-83}$, $\beta=-0.24$, 95% CI: [-0.27, -0.22]).
464 PTVs in this gene are a well-established cause of erythrocytosis.⁴² We also detected newly
465 significant associations between *PEAR1* (endothelial aggregation receptor) and decreased
466 mean platelet volume (ptvolink2pcnt $P=6.8 \times 10^{-27}$, $\beta=-0.26$, 95% CI: [-0.31, -0.21]) and between
467 *CA1* (carbonic anhydrase) and increased reticulocyte count ($P=9.5 \times 10^{-20}$, $\beta=0.40$, 95% CI:

468 [0.32, 0.49]). Collectively, these results illustrate how including *cis* pQTLs missense variants
469 detected through an orthogonal proteomics approach can enhance conventional loss-of-function
470 gene collapsing analyses.

471

472 **Discussion**

473 We performed the most extensive rare variant proteogenomics studies to date, including 1,472
474 plasma protein abundances measured in 50,829 UK Biobank human exomes. Our results
475 highlight the importance of exome sequencing for rare variant associations, as most rare variant
476 pQTLs (MAF < 0.1%) were not detected in prior GWAS. Rare *cis*- and *trans*- pQTLs conferred
477 significantly larger effect sizes than common variant pQTLs. In the ExWAS and gene-level
478 collapsing analysis, *cis*-pQTLs corresponding to PTVs nearly always were associated with
479 decreased protein levels, highlighting the robustness of these associations as well as the Olink
480 platform. Rare *trans*-pQTLs had weaker and more variable effect sizes with respect to
481 directionality than rare *cis*-pQTLs.

482 We highlighted several examples of how this protein-coding pQTL atlas can address
483 challenges in drug discovery and clinical pipelines, such as the description of an allelic series in
484 *NLRP4* and previously undescribed plasma biomarkers for *HSD17B13*. Beyond our proof-of-
485 concept examples, we anticipate that this resource will provide novel insights into protein
486 regulatory networks, discovery of upstream *trans* regulators of target genes whose inhibition
487 could increase target protein levels, performing target safety assessments, and identifying drug
488 repositioning opportunities (Fig. 3A). Through our pQTL browser and our previously published
489 UKB genome-wide association study (PheWAS) browser (azphewas.com), researchers can
490 now readily identify genetically anchored disease-protein abundance associations.

491 We additionally identified associations between somatic mutations in known CH genes
492 and different protein abundances. Consistent with prior findings that the risks of different
493 diseases are differentially associated across CH gene mutations, we found that each CH gene
494 was associated with a distinct proteomic fingerprint. *TET2* associations were enriched for genes
495 involved in dendritic cell biology, consistent with the literature association between *TET2*-CH
496 and inflammation.

497 We also introduced a new gene discovery framework that incorporated missense variant
498 *cis*-pQTLs with classical PTVs. We found that inclusion of these missense *cis*-pQTLs increased
499 our power to detect gene-phenotype associations, particularly for genes expressed in tissues
500 known to contribute to the plasma proteome, such as the liver. Although the p-values improved
501 by many orders of magnitude, the effect sizes tended to be smaller in the pQTL-informed

502 models compared to the PTV-only models, suggesting that the missense variants had less
503 severe effects than PTVs in the corresponding genes. This collapsing framework was limited to
504 the genes that encoded proteins included in the Olink assay. This framework could be extended
505 to proteomics studies of other tissues or broader plasma proteome assessments in future
506 studies.

507

508 **Methods**

509 **UKB Cohort**

510 The UKB is a prospective study of approximately 500,000 participants 40–69 years of age at
511 recruitment. Participants were recruited in the UK between 2006 and 2010 and are continuously
512 followed.⁴³ The average age at recruitment for sequenced individuals was 56.5 years and 54%
513 of the sequenced cohort comprises those of the female sex. Participant data include health
514 records that are periodically updated by the UKB, self-reported survey information, linkage to
515 death and cancer registries, collection of urine and blood biomarkers, imaging data,
516 accelerometer data, genetic data, and various other phenotypic endpoints.⁴⁴ All study
517 participants provided informed consent.

518

519 **Olink Proteogenomics Study Cohort**

520 Olink proteomic profiling was conducted on blood plasma samples collected from 54,273 UKB
521 participants using the Olink Explore 1536 platform. This platform measured 1,472 protein
522 analytes, reflecting 1,463 unique proteins measured across the four Olink panels that comprise
523 the 1536 panel (Cardiometabolic, Inflammation, Neurology, and Oncology). The data were
524 processed in 7 batches by Olink. Details of UKB Proteomics participant selection (across the
525 46,673 randomized, the 6,365 consortia selected and the 1,268 individuals participating in the
526 COVID-19 repeat imaging study) alongside the sample handling have been thoroughly
527 documented in Supplementary Information in Sun, et al.²

528 For WES-based proteogenomic analyses, we analysed the (95%) samples with
529 available paired-exome sequence data. Next, we required that samples pass Olink NPX quality
530 control as described in Sun et al. resulting in a test cohort reduction to 51,359 (95%). Given the
531 increased variability described in Sun et al., we excluded samples in the pilot batch or with only
532 post-COVID imaging study sampling to obtain a combined cohort of 51,291 (95%) participants.
533 We then pruned this cohort for up to second-degree genetic relatedness (no pair with a kinship
534 coefficient exceeding 0.1769, n= 462), resulting in 50,829 (94%) participants available for the
535 multi-ancestry analyses performed in this paper. Europeans are the most well-represented
536 genetic ancestry in the UKB. We identified the participants with European genetic ancestry
537 based on Peddy⁴⁵ Pr(EUR)>0.98 (n=47,464). We then performed finer-scale ancestry pruning of
538 these individuals, retaining those within four standard deviations from the mean across the first
539 four principal components, resulting in a final cohort of 47,345 (87%) individuals for the
540 proteogenomic analyses.

541

542 **Sequencing**

543 Whole-exome sequencing data for UKB participants were generated at the Regeneron Genetics
544 Center (RGC) as part of a pre-competitive data generation collaboration between AbbVie,
545 Alnylam Pharmaceuticals, AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer, Regeneron, and
546 Takeda. Genomic DNA underwent paired-end 75-bp whole-exome sequencing at Regeneron
547 Pharmaceuticals using the IDT xGen v1 capture kit on the NovaSeq6000 platform. Conversion
548 of sequencing data in BCL format to FASTQ format and the assignments of paired-end
549 sequence reads to samples were based on 10-base barcodes, using bcl2fastq v2.19.0. Exome
550 sequences from 469,809 UKB participants were made available to the Exome Sequencing
551 consortium in May 2022. Initial quality control was performed by Regeneron and included sex
552 discordance, contamination, unresolved duplicate sequences, and discordance with microarray
553 genotyping data checks.⁴⁶

554

555 **AstraZeneca Centre for Genomics Research (CGR) bioinformatics pipeline**

556 The 469,809 UKB exome sequences were processed at AstraZeneca from their unaligned
557 FASTQ state. A custom-built Amazon Web Services (AWS) cloud computing platform running
558 Illumina DRAGEN Bio-IT Platform Germline Pipeline v3.0.7 was used to align the reads to the
559 GRCh38 genome reference and perform single-nucleotide variant (SNV) and insertion and
560 deletion (indel) calling. SNVs and indels were annotated using SnpEFF v4.3⁴⁷ against Ensembl
561 Build 38.92.⁴⁸ We further annotated all variants with their genome Aggregation Database
562 (gnomAD) MAFs (gnomAD v2.1.1 mapped to GRCh38).⁴⁹ We also annotated missense variants
563 with MTR and REVEL scores.^{19,20} The AstraZeneca pipeline output files including the VCFs are
564 available through UKB Showcase (<https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=172>).

565

566 **ExWAS**

567 We tested the 626,929 variants identified in at least four individuals from the 47,345 European
568 ancestry UKB exomes that passed both exome and Olink sample quality checks. Variants were
569 required to pass the following quality control criteria: minimum coverage 10X; percent of
570 alternate reads in heterozygous variants ≥ 0.2 ; binomial test of alternate allele proportion
571 departure from 50% in heterozygous state $P > 1 \times 10^{-6}$; genotype quality score (GQ) ≥ 20 ;
572 Fisher's strand bias score (FS) ≤ 200 (indels) ≤ 60 (SNVs); mapping quality score (MQ) ≥ 40 ;
573 quality score (QUAL) ≥ 30 ; read position rank sum score (RPRS) ≥ -2 ; mapping quality rank
574 sum score (MQRS) ≥ -8 ; DRAGEN variant status = PASS; the variant site is not missing (that is,
575 less than 10X coverage) in 10% or more of sequences; the variant did not fail any of the

576 aforementioned quality control in 5% or more of sequences; the variant site achieved tenfold
577 coverage in 30% or more of gnomAD exomes, and if the variant was observed in gnomAD
578 exomes, 50% or more of the time those variant calls passed the gnomAD quality control filters
579 (gnomAD exome AC/AC_raw $\geq 50\%$). In our previous UK biobank exome sequencing study we
580 also created dummy phenotypes to correspond to each of the four exome sequence delivery
581 batches to identify and exclude from analyses genes and variants that reflected sequencing
582 batch effects; we provided these as a cautionary list resource for other UKB exome researchers
583 as Supplementary Tables 25–27 in Wang et al.⁵ Since then, an additional fifth batch of exomes
584 was released, for which we identified an additional 382 cautionary variants (**Supplementary**
585 **Table 17**) on top of the original 8,365 previously described. We report the filtered-out ExWAS
586 results from all 8,747 cautionary variants in **Supplementary Table 17**.

587 Variant-level pQTL p-values were generated adopting a linear regression (correcting for
588 age, sex, age*sex, age*age, age*age*sex, PC1, PC2, PC3, PC4, batch2, batch3, batch4,
589 batch5, batch6, batch7 and a panel specific measure of time between measurement and
590 sampling). Three distinct genetic models were studied: genotypic (AA versus AB versus BB),
591 dominant (AA + AB versus BB), and recessive (AA versus AB + BB), where A denotes the
592 alternative allele and B denotes the reference allele. For ExWAS analysis, we used a
593 significance cut-off of $P \leq 1 \times 10^{-8}$. To support the use of this threshold, we performed an n-of-1
594 permutation on the full ExWAS pQTL analysis. 24 of 2.8 billion permuted tests had $P \leq 1 \times 10^{-8}$
595 (**Supplementary Table 2**). At this $P \leq 1 \times 10^{-8}$ threshold, the expected number of ExWAS pQTL
596 false positives is 24 out of the 207,409 observed significant associations (0.01%).

597

598 **Collapsing analysis**

599 As previously described, to perform collapsing analyses we aggregated variants within each
600 gene that fit a given set of criteria, identified as qualifying variants.^{5,50,51} In total, we performed
601 nine non-synonymous collapsing analyses, including eight dominant and one recessive model,
602 plus a 10th synonymous variant model that serves as an empirical negative control. In each
603 model, for each gene, the proportion of cases was compared to the proportion of controls for
604 individuals carrying one or more qualifying variants in that gene. The exception is the recessive
605 model, where a participant must have two qualifying alleles, either in homozygous or potential
606 compound heterozygous form. Hemizygous genotypes for the X chromosome were also
607 qualified for the recessive model. The qualifying variant criteria for each collapsing analysis
608 model adopted in this study are in **Supplementary Table 5**. These models vary in terms of
609 allele frequency (from private up to a maximum of 1%), predicted consequence (for example,

610 PTV or missense), and REVEL and MTR scores. Based on SnpEff annotations, we defined
611 synonymous variants as those annotated as 'synonymous_variant'. We defined PTVs as
612 variants annotated as exon_loss_variant, frameshift_variant, start_lost, stop_gained, stop_lost,
613 splice_acceptor_variant, splice_donor_variant, gene_fusion, bidirectional_gene_fusion,
614 rare_amino_acid_variant, and transcript_ablation. We defined missense as:
615 missense_variant_splice_region_variant, and missense_variant. Non-synonymous variants
616 included: exon_loss_variant, frameshift_variant, start_lost, stop_gained, stop_lost,
617 splice_acceptor_variant, splice_donor_variant, gene_fusion, bidirectional_gene_fusion,
618 rare_amino_acid_variant, transcript_ablation, conservative_inframe_deletion,
619 conservative_inframe_insertion, disruptive_inframe_insertion, disruptive_inframe_deletion,
620 missense_variant_splice_region_variant, missense_variant, and protein_altering_variant.

621 Collapsing analysis P-values were generated by using linear regression, correcting for
622 age and sex. For all models, we applied the following quality control filters: minimum coverage
623 10X; annotation in CCDS transcripts (release 22; approximately 34 Mb); at most 80% alternate
624 reads in homozygous genotypes; percent of alternate reads in heterozygous variants ≥ 0.25 and
625 ≤ 0.8 ; binomial test of alternate allele proportion departure from 50% in heterozygous state $P >$
626 1×10^{-6} ; GQ ≥ 20 ; FS ≤ 200 (indels) ≤ 60 (SNVs); MQ ≥ 40 ; QUAL ≥ 30 ; read position rank
627 sum score ≥ -2 ; MQRS ≥ -8 ; DRAGEN variant status = PASS; the variant site achieved tenfold
628 coverage in $\geq 25\%$ of gnomAD exomes, and if the variant was observed in gnomAD exomes,
629 the variant achieved exome z-score ≥ -2.0 and exome MQ ≥ 30 .

630 The list of 18,885 studied genes and corresponding coverage statistics of how well each
631 protein-coding gene is represented across all individuals by the exome sequence data is
632 available in **Supplementary Table 19**. Moreover, we had previously created dummy
633 phenotypes to correspond to each of the five exome sequence delivery batches to identify and
634 exclude from analyses 46 genes that were enriched for exome sequencing batch effects; these
635 cautionary lists were made available in Supplementary Tables 25–27 of Wang et al 2021.⁵
636 Gene-based pQTL p-values were generated adopting a linear regression (correcting for age,
637 sex, age*sex, age*age, age*age*sex, PC1, PC2, PC3, PC4, batch1, batch2, batch3, batch4,
638 batch5, batch6, and batch7). For the pan-ancestry analysis we included additional categorical
639 covariates to capture broad ancestry (European, African, East Asian, and South Asian).

640 For gene-based collapsing analyses, we used a significance cut-off of $P \leq 1 \times 10^{-8}$. To
641 support the use of this threshold, we ran the synonymous (empirical null) collapsing model and
642 found only five events achieved a signal below this threshold. Moreover, we performed an n-of-1
643 permutation on the full collapsing pQTL analysis. Only 3 of 276 million permuted tests had

644 $P \leq 1 \times 10^{-8}$ (**Supplementary Table 7**). At this $P \leq 1 \times 10^{-8}$ threshold, the expected number of
645 collapsing pQTL false positives is 3 out of the 4,984 (0.06%) observed significant associations.

646

647 **Down-sampled analysis**

648 To test the robustness of the ExWAS and collapsing analysis pQTLs, we compared the
649 correlation between the p-values derived from the full cohort to a down-sampled subset of
650 40,567 samples and observed very strong correlations (**Supplementary Figure 3**).

651

652 **Phenotypes**

653 We studied two main phenotypic categories: binary and quantitative traits taken from the April
654 2022 data release that was accessed on 6 April 2022 as part of UKB applications 26041 and
655 65851. To parse the UKB phenotypic data, we adopted our previously described PEACOCK
656 package, located at <https://github.com/astrazeneca-cgr-publications/PEACOK>.⁵

657 The PEACOK R package implementation focuses on separating phenotype matrix
658 generation from statistical association tests. It also allows statistical tests to be performed
659 separately on different computing environments, such as on a high-performance computing
660 cluster or an AWS Batch environment. Various downstream analyses and summarizations were
661 performed using R v3.6.1 <https://cran.r-project.org>. R libraries data.table (v1.12.8;
662 <https://CRAN.R-project.org/package=data.table>), MASS (7.3-51.6;
663 <https://www.stats.ox.ac.uk/pub/MASS4/>), tidyr (1.1.0; <https://CRAN.R-project.org/package=tidyr>)
664 and dplyr (1.0.0; <https://CRAN.R-project.org/package=dplyr>) were also used.

665 For UKB tree fields, such as the ICD-10 hospital admissions (field 41202), we studied
666 each leaf individually and studied each subsequent higher-level grouping up to the ICD-10 root
667 chapter as separate phenotypic entities. Furthermore, for the tree-related fields, we restricted
668 controls to participants who did not have a positive diagnosis for any phenotype contained
669 within the corresponding chapter to reduce potential contamination due to genetically related
670 diagnoses. A minimum of 30 cases were required for a binary trait to be studied. In addition to
671 studying UKB algorithmically defined outcomes, we studied union phenotypes for each ICD-10
672 phenotype. These union phenotypes are denoted by a 'Union' prefix and the applied mappings
673 are available in Supplementary Table 1 of Wang et al. 2021.⁵

674 In total, we studied 10,017 binary and 584 quantitative phenotypes. As previously
675 described, for all binary phenotypes, we matched controls by sex when the percentage of
676 female cases was significantly different (Fisher's exact two-sided $P < 0.05$) from the percentage
677 of available female controls. This included sex-specific traits in which, by design, all controls

678 would be the same sex as cases.⁵ All phenotypes and corresponding chapter mappings for all
679 phenotypes are provided in **Supplementary Table 7**.

680

681 **Detecting clonal haematopoiesis somatic mutations**

682 To detect putative clonal haematopoiesis, somatic variants we used the same GRCh38 genome
683 reference aligned reads as for germline variant calling, and ran somatic variant calling with
684 GATK's Mutect2 (v.4.2.2.0).⁵² This analysis focused on the 74 genes previously curated as
685 being recurrently mutated in myeloid cancers.³³ To remove potential recurrent artifacts we
686 filtered variants using a panel of normals created from 200 of the youngest UKB participants
687 without a haematologic malignancy diagnosis. Subsequent filtering was performed with GATK's
688 *FilterMutectCalls*, including the filtering of read orientation artifacts using priors generated with
689 *LearnReadOrientationModel*.

690 From the variant calls, clonal somatic variants were identified using a predefined list of
691 gene-specific variant effects and specific missense variants (**Supplementary Table 20**). Only
692 PASS variant calls with $0.03 \leq \text{Variant Allele Frequency (VAF)} \leq 0.4$ and Allelic Depth (AD) ≥ 3
693 were included. For each gene we validated the identified variants collectively as somatic by
694 inspection of the age versus population prevalence profile (**Supplementary Figure 4**) and
695 limited further analysis to a set of 15 genes.

696

697 **Implementing the 470K missense pQTL-augmented PheWAS**

698 In this study, we repeated our published PheWAS here adopting the now 469,809 available UK
699 Biobank exomes and 10,017 binary endpoints alongside 584 quantitative endpoints. To
700 determine whether novel signals could be detected after augmenting our standard ptv collapsing
701 analysis model with *cis*-acting missense variants identified among the UKB Proteomics subset
702 to correlate with a reduction in corresponding protein levels. We set our *cis*-pQTL missense p-
703 value inclusion threshold to $p < 0.0001$ from the previously described exWAS analyses and
704 require a negative *cis*-acting beta. We identified 3,093 missense variants with *cis*-acting
705 negative betas ($p < 0.0001$) among the genes encoding the 1,472 Olink protein analytes. 919
706 (62%) distinct genes carried at least one of these 3,093 missense variants.⁵ To assess
707 improved signal detection over the baseline ptv collapsing model, we introduced two new
708 collapsing models "ptvolink" and "ptvolink2pcnt". ptvolink adopts the baseline ptv collapsing
709 model with the only deviation being the inclusion of the 3,093 missense variants that also qualify
710 the QC and MAF criteria as adopted for the ptv collapsing model. ptvolink2pcnt is a repeat of
711 the ptvolink collapsing model but permits missense variants with a MAF in the UK Biobank

712 population as high as 2% as long as they were among the list of 3,093 missense variants
713 identified to have a $p < 0.0001$ negative beta *cis*-pQTL signals in the Olink ExWAS analyses. Full
714 model descriptions are available in **Supplementary Table 5**. These new *cis*-pQTL missense ptv
715 augmented collapsing models were then compared to the standard collapsing models.

716 There may be instances where reduced protein levels reflect a disruption of antibody
717 binding rather than a true biological signal. In the setting of collapsing analysis, in which we
718 aggregate many variant effects in a gene, we expect these events to represent only a modest
719 fraction of a gene's complete allelic series. Moreover, in the context of this assessment, the
720 inclusion of missense pQTLs would be expected to act conservatively (i.e., diluting the value of
721 including such missense in the PTV proteogenomic-augmented PheWAS collapsing analyses).

722 The UK Biobank exomes cohort that was adopted for this refreshed PheWAS analysis
723 was sampled from the available 469,809 UK Biobank exome sequences. We excluded from
724 analyses 118 (0.025%) sequences that achieved a VerifyBAMID freemix (contamination) level
725 of 4% or higher,⁵³ and an additional five sequences (0.001%) where less than 94.5% of the
726 consensus coding sequence (CCDS release 22) achieved a minimum of tenfold read depth.⁵⁴

727 Using exome sequence-derived genotypes for 43,889 biallelic autosomal SNVs located
728 in coding regions as input to the kinship algorithm included in KING v2.2.3,⁵⁵ we generated
729 pairwise kinship coefficients for all remaining samples. We used the
730 ukb_gen_samples_to_remove() function from the R package ukbtools v0.11.3⁵⁶ to choose a
731 subset of individuals within which no pair had a kinship coefficient exceeding 0.1769, to exclude
732 predicted first-degree relatives. For each related pair, this function removes whichever member
733 has the highest number of relatives above the provided threshold. Through this process, an
734 additional 24,116 (5.1%) sequences were removed from downstream analyses. We predicted
735 genetic ancestries from the exome data using peddy v0.4.2 with the ancestry labeled 1,000
736 Genomes Project as reference.⁴⁵ Of the 445,570 remaining UKB sequences, 24,790 (5.3%) had
737 a Pr(European) ancestry prediction of less than 0.95. Focusing on the remaining 420,780 UKB
738 participants, we further restricted the European ancestry cohort to those within ± 4 s.d. across
739 the top four principal component means. This resulted in 419,387 (89.3%) participants of
740 European ancestry who were included in these *cis*-pQTL modified analyses.

741 To remove potential concerns of circularity we repeated the above ptvolink and
742 ptvolink2pcnt collapsing model PheWAS; however, this time we removed UK Biobank
743 participants from the PheWAS analyses if they were part of the UKB Proteomics cohort of
744 47,345 individuals adopted to select the 3,093 *cis*-pQTL missense variants. These results are
745 reflected in ptvolinknoppp and ptvolink2pcntnoppp outputs (**Supplementary Table 21**).

746 **Acknowledgments**

747 We thank the participants and investigators of the UK Biobank study who made this work
748 possible (Resource Application Number 26041 and 65851). We are grateful to the research &
749 development
750 leadership teams at the thirteen participating UKB-PPP member companies (Alnylam
751 Pharmaceuticals, Amgen, AstraZeneca, Biogen, Bristol-Myers Squibb, Calico, Genentech,
752 Glaxo Smith Klein, Janssen Pharmaceuticals, Novo Nordisk, Pfizer, Regeneron, and Takeda)
753 for funding the study. We thank the Legal and Business Development teams at each company
754 for overseeing the contracting of this complex, precompetitive collaboration, with particular
755 thanks to Erica Olson of Amgen, Andrew Walsh of GSK, and Fiona Middleton of AstraZeneca.
756 We thank the UKB Exome Sequencing Consortium (UKB-ESC) members: AbbVie, Alnylam
757 Pharmaceuticals, AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer, Regeneron and Takeda
758 for funding the generation of the data, and Regeneron Genetics Center for completing the
759 sequencing and initial quality control of the exome sequencing data. We are also grateful to the
760 AstraZeneca Centre for Genomics Research Analytics and Informatics team for processing and
761 analysis of sequencing data.
762

763 **Data availability**

764 Association statistics generated in this study are publicly available through our AstraZeneca
765 Centre for Genomics Research (CGR) PheWAS Portal (<http://azphewas.com/>) and our pQTL
766 browser (<https://astrazeneca-cgr-publications.github.io/pqtl-browser>). All whole-exome
767 sequencing data described in this paper are publicly available to registered researchers through
768 the UKB data access protocol. Exomes can be found in the UKB showcase portal:
769 <https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=170>. The Olink proteomics data are also
770 available under dataset #[dataset ID and URL on publication depending on time of official
771 publication]. Additional information about registration for access to the data is available at
772 <http://www.ukbiobank.ac.uk/register-apply/>. Data for this study were obtained under Resource
773 Application Number 26041.
774

775 **Code availability**

776 PheWAS and ExWAS association tests were performed using a custom framework, PEACOK
777 (PEACOK 1.0.7). PEACOK is available on GitHub: <https://github.com/astrazeneca-cgr-publications/PEACOK/>.
778

779

780 **Ethics declarations**

781 The protocols for the UK Biobank are overseen by The UK Biobank Ethics Advisory Committee
782 (EAC); for more information see <https://www.ukbiobank.ac.uk/ethics/> and
783 <https://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/EGF20082.pdf>.
784

785 **Competing interests**

786 R.S.D., O.S.B., B.P., D.M., E.W., J.M., E.O., V.H., K.S., K.C., S.W., A.H., D.P., M.A.F., C.V., B.C., A.P.,
787 D.V., M.N.P., Q.W., and S.P. are current employees and/or stockholders of AstraZeneca. B.S., C.W., and
788 H.R. are employees and/or stockholders of Biogen. E.A.A. is a founder of Personalis, Inc, DeepCell, Inc,
789 and Svexa Inc., a founding advisor of Nuevocor, a non-executive director at AstraZeneca, and an advisor
790 to SequenceBio, Novartis, Medical Excellence Capital, Foresite Capital, and Third Rock Ventures.

791 **REFERENCES**

792 1 Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics: perspectives for
793 large population-based studies. *Nat Rev Genet* **22**, 19-37, doi:10.1038/s41576-020-0268-
794 2 (2021).

795 2 Sun, B. B. *et al.* Genetic regulation of the human plasma proteome in 54,306 UK Biobank
796 participants. *bioRxiv* (2022).

797 3 Sun, B. B. *et al.* Genomic atlas of the human plasma proteome. *Nature* **558**, 73-79,
798 doi:10.1038/s41586-018-0175-2 (2018).

799 4 Pietzner, M. *et al.* Mapping the proteo-genomic convergence of human diseases.
800 *Science* **374**, eabj1541, doi:10.1126/science.abj1541 (2021).

801 5 Wang, Q. *et al.* Rare variant contribution to human disease in 281,104 UK Biobank
802 exomes. *Nature* **597**, 527-532, doi:10.1038/s41586-021-03855-y (2021).

803 6 Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through
804 human genetics. *Nat Rev Drug Discov* **12**, 581-594, doi:10.1038/nrd4051 (2013).

805 7 Nag, A. *et al.* Human genetic evidence supports MAP3K15 inhibition as a therapeutic
806 strategy for diabetes. *medRxiv* (2021).

807 8 Shen, X., Song, S., Li, C. & Zhang, J. Synonymous mutations in representative yeast genes
808 are mostly strongly non-neutral. *Nature* **606**, 725-731, doi:10.1038/s41586-022-04823-
809 w (2022).

810 9 Dhindsa, R. S. *et al.* A minimal role for synonymous variation in human disease. *bioRxiv*
811 (2022).

812 10 Ferkningstad, E. *et al.* Large-scale integration of the plasma proteome with genetics and
813 disease. *Nat Genet* **53**, 1712-1721, doi:10.1038/s41588-021-00978-w (2021).

814 11 Nishikawa, A. in *Handbook of Glycosyltransferases and Related Genes* (eds Naoyuki
815 Taniguchi *et al.*) 611-616 (Springer Japan, 2002).

816 12 Coutinho, M. F., Prata, M. J. & Alves, S. Mannose-6-phosphate pathway: a review on its
817 role in lysosomal function and dysfunction. *Mol Genet Metab* **105**, 542-550,
818 doi:10.1016/j.ymgme.2011.12.012 (2012).

819 13 Raas-Rothschild, A. *et al.* Molecular basis of variant pseudo-hurler polydystrophy
820 (mucolipidosis IIIC). *J Clin Invest* **105**, 673-681, doi:10.1172/JCI5826 (2000).

821 14 Ponnaiyan, S., Akter, F., Singh, J. & Winter, D. Comprehensive draft of the mouse
822 embryonic fibroblast lysosomal proteome by mass spectrometry based proteomics. *Sci
823 Data* **7**, 68, doi:10.1038/s41597-020-0399-5 (2020).

824 15 Mosen, P., Sanner, A., Singh, J. & Winter, D. Targeted Quantification of the Lysosomal
825 Proteome in Complex Samples. *Proteomes* **9**, doi:10.3390/proteomes9010004 (2021).

826 16 Platt, F. M., d'Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage
827 diseases. *Nat Rev Dis Primers* **4**, 27, doi:10.1038/s41572-018-0025-4 (2018).

828 17 Liu, L., Lee, W. S., Doray, B. & Kornfeld, S. Engineering of GlcNAc-1-Phosphotransferase
829 for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement
830 Therapy. *Mol Ther Methods Clin Dev* **5**, 59-65, doi:10.1016/j.omtm.2017.03.006 (2017).

831 18 Harlow, C. E. *et al.* Identification and single-base gene-editing functional validation of a
832 cis-EPO variant as a genetic predictor for EPO-increasing therapies. *Am J Hum Genet*
833 **109**, 1638-1652, doi:10.1016/j.ajhg.2022.08.004 (2022).

834 19 Ioannidis, N. M. *et al.* REVEL: An Ensemble Method for Predicting the Pathogenicity of
835 Rare Missense Variants. *Am J Hum Genet* **99**, 877-885, doi:10.1016/j.ajhg.2016.08.016
836 (2016).

837 20 Traynelis, J. *et al.* Optimizing genomic medicine in epilepsy through a gene-customized
838 approach to missense variant interpretation. *Genome Res* **27**, 1715-1729,
839 doi:10.1101/gr.226589.117 (2017).

840 21 Waldmann, T. A. & McIntire, K. R. Serum-alpha-fetoprotein levels in patients with ataxia-
841 telangiectasia. *Lancet* **2**, 1112-1115, doi:10.1016/s0140-6736(72)92717-1 (1972).

842 22 Kretz, K. A. *et al.* Characterization of a mutation in a family with saposin B deficiency: a
843 glycosylation site defect. *Proc Natl Acad Sci U S A* **87**, 2541-2544,
844 doi:10.1073/pnas.87.7.2541 (1990).

845 23 Baker, M. *et al.* Mutations in progranulin cause tau-negative frontotemporal dementia
846 linked to chromosome 17. *Nature* **442**, 916-919, doi:10.1038/nature05016 (2006).

847 24 Cruts, M. *et al.* Null mutations in progranulin cause ubiquitin-positive frontotemporal
848 dementia linked to chromosome 17q21. *Nature* **442**, 920-924, doi:10.1038/nature05017
849 (2006).

850 25 Smith, K. R. *et al.* Strikingly different clinicopathological phenotypes determined by
851 progranulin-mutation dosage. *Am J Hum Genet* **90**, 1102-1107,
852 doi:10.1016/j.ajhg.2012.04.021 (2012).

853 26 Zhou, X., Sullivan, P. M., Sun, L. & Hu, F. The interaction between progranulin and
854 prosaposin is mediated by granulins and the linker region between saposin B and C. *J
855 Neurochem* **143**, 236-243, doi:10.1111/jnc.14110 (2017).

856 27 Nicholson, A. M. *et al.* Prosaposin is a regulator of progranulin levels and
857 oligomerization. *Nat Commun* **7**, 11992, doi:10.1038/ncomms11992 (2016).

858 28 Miao, E. A. *et al.* Cytoplasmic flagellin activates caspase-1 and secretion of interleukin
859 1beta via Ipaf. *Nat Immunol* **7**, 569-575, doi:10.1038/ni1344 (2006).

860 29 Romberg, N. *et al.* Mutation of NLRC4 causes a syndrome of enterocolitis and
861 autoinflammation. *Nat Genet* **46**, 1135-1139, doi:10.1038/ng.3066 (2014).

862 30 Dinarello, C. A., Novick, D., Kim, S. & Kaplanski, G. Interleukin-18 and IL-18 binding
863 protein. *Front Immunol* **4**, 289, doi:10.3389/fimmu.2013.00289 (2013).

864 31 Abul-Husn, N. S. *et al.* A Protein-Truncating HSD17B13 Variant and Protection from
865 Chronic Liver Disease. *N Engl J Med* **378**, 1096-1106, doi:10.1056/NEJMoa1712191
866 (2018).

867 32 Abelson, S. *et al.* Prediction of acute myeloid leukaemia risk in healthy individuals.
868 *Nature* **559**, 400-404, doi:10.1038/s41586-018-0317-6 (2018).

869 33 Jaiswal, S. *et al.* Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular
870 Disease. *N Engl J Med* **377**, 111-121, doi:10.1056/NEJMoa1701719 (2017).

871 34 Baxter, E. J. *et al.* Acquired mutation of the tyrosine kinase JAK2 in human
872 myeloproliferative disorders. *Lancet* **365**, 1054-1061, doi:10.1016/S0140-
873 6736(05)71142-9 (2005).

874 35 Edelmann, B. *et al.* JAK2-V617F promotes venous thrombosis through beta1/beta2
875 integrin activation. *J Clin Invest* **128**, 4359-4371, doi:10.1172/JCI90312 (2018).

876 36 Small, D. *et al.* STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in
877 CD34+ human bone marrow cells and is involved in the proliferation of early

878 progenitor/stem cells. *Proc Natl Acad Sci U S A* **91**, 459-463, doi:10.1073/pnas.91.2.459
879 (1994).

880 37 Collin, M. & Bigley, V. Human dendritic cell subsets: an update. *Immunology* **154**, 3-20,
881 doi:10.1111/imm.12888 (2018).

882 38 Ravandi, F. *et al.* Outcome of patients with FLT3-mutated acute myeloid leukemia in first
883 relapse. *Leuk Res* **34**, 752-756, doi:10.1016/j.leukres.2009.10.001 (2010).

884 39 Perl, A. E. *et al.* Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated
885 AML. *N Engl J Med* **381**, 1728-1740, doi:10.1056/NEJMoa1902688 (2019).

886 40 Stone, R. M. *et al.* Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a
887 FLT3 Mutation. *N Engl J Med* **377**, 454-464, doi:10.1056/NEJMoa1614359 (2017).

888 41 Frazer, J. *et al.* Disease variant prediction with deep generative models of evolutionary
889 data. *Nature* **599**, 91-95, doi:10.1038/s41586-021-04043-8 (2021).

890 42 Zmajkovic, J. *et al.* A Gain-of-Function Mutation in EPO in Familial Erythrocytosis. *N Engl
891 J Med* **378**, 924-930, doi:10.1056/NEJMoa1709064 (2018).

892 43 Sudlow, C. *et al.* UK biobank: an open access resource for identifying the causes of a
893 wide range of complex diseases of middle and old age. *PLoS Med* **12**, e1001779,
894 doi:10.1371/journal.pmed.1001779 (2015).

895 44 Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data.
896 *Nature* **562**, 203-209, doi:10.1038/s41586-018-0579-z (2018).

897 45 Pedersen, B. S. & Quinlan, A. R. Who's Who? Detecting and Resolving Sample Anomalies
898 in Human DNA Sequencing Studies with Peddy. *Am J Hum Genet* **100**, 406-413,
899 doi:10.1016/j.ajhg.2017.01.017 (2017).

900 46 Van Hout, C. V. *et al.* Exome sequencing and characterization of 49,960 individuals in the
901 UK Biobank. *Nature* **586**, 749-756, doi:10.1038/s41586-020-2853-0 (2020).

902 47 Cingolani, P. *et al.* A program for annotating and predicting the effects of single
903 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster*
904 strain w1118; iso-2; iso-3. *Fly (Austin)* **6**, 80-92, doi:10.4161/fly.19695 (2012).

905 48 Howe, K. L. *et al.* Ensembl 2021. *Nucleic Acids Res* **49**, D884-D891,
906 doi:10.1093/nar/gkaa942 (2021).

907 49 Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation in
908 141,456 humans. *Nature* **581**, 434-443, doi:10.1038/s41586-020-2308-7 (2020).

909 50 Petrovski, S. *et al.* An Exome Sequencing Study to Assess the Role of Rare Genetic
910 Variation in Pulmonary Fibrosis. *Am J Respir Crit Care Med* **196**, 82-93,
911 doi:10.1164/rccm.201610-2088OC (2017).

912 51 Povysil, G. *et al.* Rare-variant collapsing analyses for complex traits: guidelines and
913 applications. *Nat Rev Genet* **20**, 747-759, doi:10.1038/s41576-019-0177-4 (2019).

914 52 Cibulskis, K. *et al.* Sensitive detection of somatic point mutations in impure and
915 heterogeneous cancer samples. *Nat Biotechnol* **31**, 213-219, doi:10.1038/nbt.2514
916 (2013).

917 53 Jun, G. *et al.* Detecting and estimating contamination of human DNA samples in
918 sequencing and array-based genotype data. *Am J Hum Genet* **91**, 839-848,
919 doi:10.1016/j.ajhg.2012.09.004 (2012).

920 54 Pujar, S. *et al.* Consensus coding sequence (CCDS) database: a standardized set of
921 human and mouse protein-coding regions supported by expert curation. *Nucleic Acids*
922 *Res* **46**, D221-D228, doi:10.1093/nar/gkx1031 (2018).

923 55 Manichaikul, A. *et al.* Robust relationship inference in genome-wide association studies.
924 *Bioinformatics* **26**, 2867-2873, doi:10.1093/bioinformatics/btq559 (2010).

925 56 Hanscombe, K. B., Coleman, J. R. I., Traylor, M. & Lewis, C. M. ukbtools: An R package to
926 manage and query UK Biobank data. *PLoS One* **14**, e0214311,
927 doi:10.1371/journal.pone.0214311 (2019).

928