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Abstract

Combining human genomics with proteomics is becoming a powerful tool for drug discovery.
Associations between genetic variants and protein levels can uncover disease mechanisms,
clinical biomarkers, and candidate drug targets. To date, most population-level proteogenomic
studies have focused on common alleles through genome-wide association studies (GWAS).
Here, we studied the contribution of rare protein-coding variants to 1,472 plasma proteins
abundances measured via the Olink Explore 1536 assay in 50,829 UK Biobank human exomes.
Through a variant-level exome-wide association study (ExXWAS), we identified 3,674 rare and
significant protein quantitative trait loci (pQTLS), of which 76% were undetected in a prior GWAS
performed on the same cohort, and we found that rare pQTLs are less likely to be random in
their variant effect annotation. In gene-based collapsing analyses, we identified an additional
166 significant gene-protein pQTL signals that were undetected through single-variant analyses.
Of the total 456 protein-truncating variant (PTV)-driven cis-pQTLs in the gene-based collapsing
analysis, 99.3% were associated with decreased protein levels. We demonstrate how this
resource can identify allelic series and propose biomarkers for several candidate therapeutic
targets, including GRN, HSD17B13, NLRC4, and others. Finally, we introduce a new collapsing
analysis framework that combines PTVs with missense cis-pQTLs that are associated with
decreased protein abundance to bolster genetic discovery statistical power. Our results
collectively highlight a considerable role for rare variation in plasma protein abundance and
demonstrate the utility of plasma proteomics in gene discovery and unravelling mechanisms of
action.
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Introduction

Proteins are a cell's functional unit, and changes in protein abundance can profoundly affect
biological processes and human health. Genetic variation, either within or near the protein-
encoding gene (cis) or anywhere else in the genome (trans), can dramatically impact protein
expression, folding, secretion, and function. Moreover, most medicines exert their effects by
modulating protein levels or function. Identifying genetic variants that affect protein levels (i.e.,
protein quantitative trait loci, or pQTLs) has the potential to elucidate disease mechanisms,
reveal new drug targets, and enhance biomarker discovery.

Proteins circulating in the blood can originate from multiple organs and cell types and
include actively secreted proteins and those that leak from damaged cells elsewhere in the
body. The plasma proteome can thus provide a snapshot of the current state of human health.
Recent advances in high-throughput aptamer- and antibody-based proteomic platforms have
enabled population-scale measurements of plasma proteins. Studies integrating plasma protein
measurements with genotype array data have identified thousands of associations between
genetic variants and plasma protein concentrations.”* These transformational pQTL atlases
have helped prioritize candidate causal genes at genome-wide association study (GWAS) loci
and have revealed potential drug repositioning opportunities. However, because these studies
used genotype array data, the identified pQTLs were mainly common, non-coding variants, and
often confounded by correlated non-causal signals. Compared to common variants, rarer
protein-coding variants tend to confer much larger biological effect sizes, but their role in
influencing human plasma protein abundances remains largely unknown.

Here, we systematically evaluated the role of rare variation in plasma protein abundance
by analyzing exome sequence data and plasma levels of 1,472 plasma protein abundances
measured in 50,829 UK Biobank participants. We first performed variant- and gene-level
association tests to identify the cis- and trans- influences of protein-coding variation on plasma
protein levels across the allele frequency spectrum. We then demonstrated how the inclusion of
cis-acting missense variants in a traditional gene-level collapsing analyses framework augments

drug target discovery and validation studies.

Results

UKB-PPP cohort characteristics

We performed proteomic profiling on blood plasma samples collected from 54,273 UKB
participants using the Olink Explore 1536 platform, which measures 1,472 protein analytes and

1,463 unique proteins. As previously described, the UKBiobank Pharma Plasma Proteome
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80 cohort (UKB-PPP) includes plasma collections from 46,673 randomly selected participants
81 (“randomised baseline”), 6,365 individuals chosen by the UKB-PPP consortium members
82  (“consortium-selected”), and 1,268 individuals who participated in the COVID-19 repeat imaging
83 study at multiple visits’. Exome sequencing data were available for 51,545 (95%) of these
84 54,273 participants, which we processed through our previously published cloud-based
85 pipeline.® Through rigorous sample QC, we removed samples with low sequencing quality and
86 from closely related individuals as previously described (Methods). After further quality control
87 based on the proteomics data (Methods), 50,829 (94%) multi-ancestry samples were available
88  for downstream analyses. Of these, 47,345 (87%) were of European descent.
89
90 Protein QTL signals through ExXWAS
91 In our previous UKB-PPP paper, we used microarray data to perform pQTL mapping for 1,463
92  protein assays and identified 10,248 primary genetic associations.? These analyses were limited
93 to common variants and imputed rarer variants. Here, with the availability of whole-exome
94  sequencing data, we directly tested for associations between variants with minor allele
95 frequencies (MAF) as low as 0.005% in individuals of European ancestry without relying on
96 imputation. We first performed an exome-wide, variant-level pQTL association test (EXWAS)
97 between 1,472 plasma protein abundances and 626,929 exome sequencing variants identified
98 in 47,345 UK Biobank participants (Fig. 1A and Supplementary Table 1; Methods). We
99 performed an n-of-one permutation analysis (2.8 billion statistical tests) to define a variant-level
100 significance threshold as previously described.> Based on this null distribution, we identified
101 p<1x10® as an appropriate p-value threshold (Methods, Supplementary Table 2). Genomic
102 inflation was well-controlled with a median Agc of 1.04 (95% range 1.00 - 1.10)
103 (Supplementary Fig. 1, Supplementary Table 3).
104 We next compared the concordance between variant-level associations for variants
105 included in our EXWAS that were also included in our prior GWAS,? including imputed variants.
106 The effect sizes (B) of nominally significant EXWAS protein-coding pQTLs (p<1x10™) strongly
107  correlated with the microarray-derived pQTLs (r*=0.96, Supplementary Fig. 2). Furthermore,
108 98% of the study-wide significant autosomal common pQTLs (MAF > 0.1%) in our study were
109 also significant in the prior UKB-PPP GWAS (Fig. 1B). However, among the rare (MAF<0.1%)
110 autosomal pQTLs from our EXWAS analysis, only 24% were significant in the GWAS. These
111 results illustrate the importance of exome sequencing in detecting associations for well-powered

112  rarer variants.
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113 We found a total of 5,355 (16.2%) coding variants that significantly affected the
114  abundance of the encoded protein (i.e., cis-pQTLs). We also identified 10,768 (32.6%) coding
115 variants that affected the abundance of any other protein that was greater than 1 megabase pair
116  (Mbp) away from the protein directly encoded by the gene harboring the variant (i.e., trans-
117 pQTLs) (Supplementary Table 1 - ExXWAS plt1x10-6). Finally, we identified 16,887 (51.2%)
118 trans pQTLs that fell within 1 Mbp of the gene encoding the protein whose level was altered,
119  which we refer to as “trans-gene, cis-position” pQTLs. We reasoned that many trans-gene, cis-
120 position pQTLs were contaminated by linkage disequilibrium (LD). In support of this, the relative
121  proportion of cis- and trans-pQTLs differed among rare variants (MAF< 0.1%), in which 1,465
122  (47.3%) were cis-pQTLs, 592 (19.1%) were trans pQTLs, and 1,042 (33.6%) were trans-gene,
123  cis-position pQTLs.

124 As purifying selection keeps variants that negatively impact fithess at low frequencies in
125 the population, there is generally an inverse relationship between effect sizes and allele
126 frequencies for variants that influence fitness-related traits. The median absolute effect size ()
127  of rare cis-pQTLs was 1.86, whereas the median absolute effect size of common cis-pQTLs was
128 0.32 (Wilcoxon P<103%). Similarly, the absolute effect sizes of rare trans-pQTLs (median
129 |B|=1.22) were significantly larger than the effect sizes of common trans-pQTLs (median
130  |B|=0.07; Wilcoxon P<107®) (Fig. 1C). Finally, even among rare variants, the effect sizes of cis-
131 pQTLs (median |B] = 1.86) were greater than trans-pQTLs (median [B] = 1.22; Wilcoxon
132  P=6.8x10"*) (Fig. 1D).

133 We next explored the number of cis-pQTLs per variant class across the allele frequency
134  spectrum. Among the common cis-pQTLs, the proportions of PTVs, missense variants,
135 synonymous variants, and non-coding variants closely matched the proportions observed for the
136 total variants included in the EXWAS (i.e., the expected null distribution). In comparison, PTVs
137 and missense variants encompassed a significantly larger percentage of rare (MAF<0.1%) and
138  ultra-rare (MAF<0.01%) cis-pQTLs (Fig. 1D, Supplementary Table 4). These results reinforce
139 the observation that the common protein-coding pQTLs are more confounded by linkage
140  disequilibrium (LD), making it challenging to confidently ascribe causality to these variants
141 without additional experimental data.

142 This catalogue of protein-coding pQTLs allows us to compare the effects of different
143 classes of protein-coding variants on protein abundances. Of the 1,465 significant rare cis-
144  pQTLs, 345 (23.5%) were protein-truncating variants (PTVs), 983 (67.1%) were missense or
145 inframe indel variants, 63 (4.3%) were synonymous variants, and 74 (5.1%) were noncoding

146 variants (Fig 1E; Supplementary Table 4). As expected, nearly all the rare cis-pQTLs
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147  corresponding to PTVs were associated with decreased protein abundances (n=335 of 345;
148 97%). Of the remaining 10 cis-pQTL PTVs associated with increased protein abundances, five
149  (50%) occurred in the last exon of the encoding gene, suggesting these variants may result in
150 truncated transcripts that escape nonsense-mediated decay (NMD). Two of the 10 variants
151 were annotated as loss of splice donor sites. Rare cis-pQTL missense variants and inframe
152 indels had more variable effects, though most still decreased protein abundances (n=810/983;
153 82%). In comparison, among the significant rare trans-pQTLs, only 30% (26/87) of PTVs and
154 23% (159/702) of missense variants/indels were associated with decreased protein
155 abundances.

156 There has been tremendous interest in identifying allelic series, in which multiple
157 variants in a gene influence a phenotype with a range of effect sizes, to prioritise candidate drug
158 targets.®’ Missense variants are particularly valuable in discovering allelic series because they
159 can have variable biological effects, ranging from complete or partial loss-of-function, to neutral,
160 to gain-of-function. We thus explored how often missense variants within the same gene had
161 similar effects on protein abundance, focusing on 117 genes with at least five rare (MAF <
162 0.1%) missense cis-pQTLs. Most often, rare missense variants within the same gene had a
163  similar effect on protein abundance. For 100 out of these 117 genes (85%), at least 75% of the
164  significant missense pQTLs decreased protein abundance. In the remaining 17 genes, the
165 percentage of protein-lowering missense variants ranged from 17% to 60% (Supplementary
166 Table 1). However, we note that we cannot rule out epitope effects, in which a sequence variant
167 affects antibody binding either through directly altering the binding site or changing protein
168 structure. Consequently, such effects may also result in decreased protein abundance.
169 However, if epitope effects had a systematic impact on missense cis-pQTL signals, we would
170 expect to see a preferential enrichment of missense variants even among the common variant
171 cis-pQTLs. Because we see that the variant effect proportions among the common variant cis-
172  pQTL closely match the expected null distribution (Fig 1E), it suggests that it is unlikely that
173 epitope effects are a major driver of missense cis-pQTL signals. Nonetheless, this large
174  catalogue of pQTLs will enable rapid hypothesis generation and validation for the identification

175 of allelic series, which can be complemented by more targeted molecular studies.


https://doi.org/10.1101/2022.10.09.511476
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.09.511476; this version posted October 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A —log,(p) 50 100 @ 150 200 ® Cis ® Trans B Sig. in GWAS False M True
x4 = 100%
o = 7|k
16 ? / 3
5 : R < EELS s 7o
@ 104 . 2]
Q g4 -~ <
S ] >~ i % 50%
;‘__2 74 / : " &
o 9y . =
& s / 8
44 . £ 25%
34 .,/ N 5
24 o~ : @
14 ..'. . g i o~
i 2 3 4 5 6 7 8 9 1011 121314 16 18 21 X e Rare Common
n=3,674 n=91,390
pQTL position Variant Frequency
C D
1.00 1 31
== cis—position, cis-gene
== cis—position, trans-gene
= == trans-position, trans-gene
2 0751
<] 8
g 8 5]
a )
© 0.501 g
2 2
® Allele Frequency 2
=] — Common (MAF>0.1%) <
g _— — Rare (MAF<=0.1%)
B Cis vs. Trans 1
. cis—positio_r], cis-gene
0.00 — trans-position, trans-gene
0 1 2 3 4 10742 107 107%8 1078 104 1072 107
Absolute beta MAF
E W PTV I Missensefinirame indel [ Synonymous Non-coding F =
Cis ] | Trans I
100% 1
4
75% . .; i
g k-
T 50% T oo i i o 5 S I (W B S i e 5 B b
g o
” X
i W
-2 5:' foe
25% *?
-4
0% T 12 T T T - T T
Q'é & ‘\@oa 5 Q'C‘ & ss?% 52
& & £ & & 5
\\é\'\ oY < \\4“\R ¥ <
& &e"@ qaééb
+F <
%;9 _ Cis-DQTL MAF bin _  Verianteffect,
Figure 1. Exome-wide association study. (A) Summary of significant (p<1x10™) cis and trans
178 pQTLs across the genome, limited to variants with a minor allele frequency (MAF) < 0.1%. (B)
179 Percentage of significant rare (MAF<0.1%) and common (MAF>0.1%) EXWAS pQTLs that were
180 also significant in the UKB-PPP GWAS. (C) Effect size distributions of cis- versus trans-pQTLs
181 stratified by allele frequency. (D) Effect sizes of rare (MAF<0.1%) pQTLs. (E) The proportion of
182 significant cis-pQTLs per variant class across three minor allele frequency (MAF) bins. “All tested
183 variants” refers to the total number of variants occurring in the genes corresponding to the proteins
184 measured via the Olink platform that were included in the EXWAS. For all plots, if the same
185 genotype-protein association was detected in multiple EXWAS models, we retained the association
186 with the smallest p-value. (F) Effect sizes of significant rare pQTLs in each variant class (PTV =
187 protein-truncating variant).

188
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189

190 Protein QTL signals detected through gene-level collapsing analysis

191 Because the power to identify statistically significant variant-level associations decreases with
192 MAF, we next performed gene-level collapsing analyses. In this approach, we aggregate rare
193 variants that meet a pre-defined set of criteria (i.e., “qualifying variants” or “QVs”) in each gene
194  and test for the aggregate effect on protein levels. Here, we used ten QV models introduced in
195 our previous UKB phenome-wide association study (PheWAS), including one synonymous
196 variant model that serves as an empirical negative control (Supplementary Table 5). These
197 models collectively capture genetic contributions across various genetic architectures

198  (www.azphewas.com).’> Another benefit of this approach in the setting of pQTL discovery is that

199 aggregating effects across a gene should mitigate against any potential epitope effects that

200 might arise in the variant-level setting.
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205 gene across the collapsing models. (C) The effect sizes of significant gene-protein associations in
%89 each collapsing model are stratified by cis versus trans effects.
208 In total, we tested the association between 18,885 genes and 1,472 plasma protein

209 levels in 47,345 individuals of European ancestry (Supplementary Table 6). To define an
210 appropriate significance threshold for the collapsing analyses, we considered two different null
211 distributions: one from an n-of-1 permutation analysis (n=276 million permutation-based
212  statistical tests) and the other based on a synonymous variant collapsing model (i.e., empirical
213  null; n=27.6M statistical tests) (Methods, Supplementary Tables 7 and 8). Both approaches
214  converged on a p-value threshold of p<1x10?®, consistent with the EXWAS threshold (Methods).
215 We identified 4,984 significant associations across the nine non-synonymous collapsing
216 models (Fig. 2A). Of these, there were 1,330 unique gene-protein abundance associations,
217 including 693 (52%) cis associations, 582 (44%) trans associations, and 55 (4%) trans-gene,
218 cis-position signals. This relatively low percentage of cis-position, trans-gene associations
219 compared to the EXWAS (4% vs. 51%) highlights the strength of rare variant collapsing analysis
220 in mitigating contamination due to LD.

221 Notably, 166 (12.5%) of the 1,330 gene-protein abundance signals identified via
222  collapsing analysis did not achieve study-wide significance in the EXWAS, illustrating the
223 increased power of this approach. Of the associations that only reached significance in the
224  collapsing analysis, 40 (24.1%) were cis-pQTLs. (Supplementary Table 6). The greatest
225  contribution to the 2,948 cis-pQTL collapsing signals came from the flexdmg model (560/2948
226  [19%]), followed by the ptvraredmg model (524/2948 [18%]) and the ptv model (456/2948
227  [15%]). In contrast to recent claims that synonymous variants are nearly as deleterious as
228 nonsynonymous variants, we found only two significant gene-level cis-pQTL under the
229  synonymous (syn) collapsing model (Supplementary Table 8).°

230 Most pQTLs identified in the collapsing analysis were only associated with changes in
231 abundance of a single protein (Fig. 2B). Among the trans loci, 90% of genes were associated
232  with three or fewer proteins. However, certain genes appeared to be trans-pQTL “hotspots,”
233  associated with over 20 different protein abundances. This included, ASGR1 (n=153), GNPTAB
234 (n=29), STAB1 (n=47), and STAB2 (n=26). ASGR1, which encodes a subunit of the
235 asialoglycoprotein receptor, also appeared to be a trans-pQTL hotspot in our prior GWAS and
236  several other large pQTL studies.®**® GNPTAB encodes the alpha and beta subunits of
237  GIcNAc-1-phosphotransferase, which selectively adds GIcNAc-1-phosphate to mannose
238 residues of lysosomal hydrolases. The resulting mannose-6-phosphate (M6P) residues signal

239 that the lysosomal hydrolase should be transported to the lysosome.™ Untagged proteins
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240 instead are secreted into the blood and extracellular space.® Recessive loss-of-function
241 mutations in GNPTAB are associated with Mucolipidosis I, a severe, multi-system lysosomal
242  storage disorder (LSD) resulting in the accumulation of lysosomal substrates.'® Of the GNPTAB
243  trans-pQTLs detected in the collapsing model, 28 (97%) are lysosomal proteins,*** 12 of which
244 have been associated with other LSDs (Supplementary Table 9).*® Moreover, all 29 of these
245  proteins showed increased plasma levels in PTV carriers, suggestive of reduced lysosomal
246 targeting. Notably, there are efforts to therapeutically increase GNPTAB activity to enhance the
247  cellular uptake of other lysosomal proteins involved in other LSDs, which could improve the
248 efficacy of enzyme replacement therapies."’

249 Of 456 significant cis pQTL signals in the ptv model, 453 (99%) were associated with
250 decreased abundance of the encoded protein, as expected. In contrast, only 54 (20%) of the
251 267 significant trans pQTL signals from the ptv model were associated with decreased protein
252 levels. Some possible explanations for these signals include the loss of upstream regulators,
253 reduced negative feedback, or compensatory changes. For example, we found that PTVs in
254  EPOR, encoding the erythropoietin receptor, were associated with increased EPO, highlighting
255  an example of compensatory upregulation (‘flexdmg’ model; p=3.5x10"%; =0.86, 95% CI: 0.72-
256 1.01).*°

257 We observed similar patterns for the remaining collapsing models (Fig. 2C). Two of the
258 collapsing models (“UR” and “URmtr") consider ultra-rare (gnomAD MAF=0%, UKB
259  MAF<0.005%) PTVs and missense mutations predicted to be damaging via REVEL.* The only
260 difference between these two models is that “URmtr” only includes missense variants that fall in
261 constrained regions of a gene based on the missense tolerance ratio (“MTR”; Methods).”® We
262 compared the effect sizes between these two models to test the discriminative ability of MTR.
263 The median absolute beta of cis loci identified through the “URmtr” model was -1.53 compared
264  to -1.37 for the “UR” model (Wilcoxon P= 5.2x107) (Fig. 2C). Thus, this population genetics-
265 based approach can effectively prioritize functional missense variants and offers a valuable
266 layer of information on top of in silico pathogenicity predictors.

267

268 Pan-ancestry collapsing analysis

269 Including individuals of non-European ancestry in genetic studies promotes healthcare equity
270 and can boost genetic discovery. We performed a pan-ancestry collapsing analysis on 50,829
271 UK Biobank participants, including the original 47,345 European ancestry samples plus 3,484
272 individuals from African, Asian, and other ancestries. In this combined analysis, there were 550

273 unique study-wide significant gene-protein abundance associations that were not significant in
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274  the European ancestry analyses, and 163 associations that were significant in the European
275 ancestry analyses that did not reach study-wide significance in the pan-ancestry analysis
276 (Supplementary Table 6). Of the newly significant associations, 302 (55%) were cis, 240 (44%)
277  were trans, and 8 (1%) were cis-position, trans-gene (Supplementary Table 10). An example
278 of an association that only achieved significance in the pan-ancestry analysis was the trans
279 association between PTVs in HBB and increased levels of the monocarboxylic acid transporter
280 encoded by SLC16A1 (B=1.85; 95% CI: [1.33-2.37]; p=2.8x10"%). This association likely only
281 reached significance in the pan-ancestry analysis due to the relative enrichment of PTVs in HBB
282  variants in non-European ancestries, namely individuals of South Asian ancestry, as observed
283 in our prior UKB exome study.® Another well-known trans association that only became
284  significant in the pan-ancestry analysis included PTVs in ATM, associated with ataxia
285 telangiectasia and several cancers, with increased levels of alpha-fetoprotein (P=9.16x107°,
286 B=0.47, 95% CI: [0.31, 0.63]).>* These results add to the growing examples of how increased
287  genetic diversity can increase power for detecting genetic associations.

288

289 Insights into biological pathways

290 Trans associations can reflect protein-protein interactions between the encoded protein at the
291 locus and the target protein. Several trans associations from the collapsing analyses capture
292  known interactions. For example, PTVs in PSAP, encoding prosaposin, were associated with
293 increased plasma abundances of progranulin (GRN; p=6.6x10""; =2.60, 95% Cl:1.99-3.21)
294  and cathepsin B (p=1.3x10™"", B=2.10, 95% CI: 1.49-2.70) (Supplementary Table 6). There
295 was also a near-significant association between PTVs in PSAP and increased cathepsin D
296  (p=9.5x10®, B=1.61, 95% CI: 1.02-2.20). PSAP encodes a pro-protein that is cleaved by
297 cathepsin D in the lysosome into four separate saposins. Recessive variants in PSAP are
298 associated with various lysosomal storage disorders.? Likewise, haploinsufficiency of GRN is

299  associated with frontotemporal lobar degeneration (FTLD),****

and complete loss is associated
300 with a lysosomal storage disorder called neuronal ceroid lipofuscinosis.? Prior work has shown
301 that PSAP (prosaposin) heterodimerizes with progranulin to regulate transport to the lysosome
302 and regulates progranulin levels.?®?

303 Our analyses also robustly identified several trans associations between ligand-receptor
304 pairs. For example, there was a significant association between nonsynonymous variants in
305 TSHR, encoding the thyroid stimulating hormone receptor, and increased thyroid stimulating
306 hormone (TSHB) (‘flexdmg’ model; p=2.1x10%*; =0.66, 95% CI: 0.55-0.76) (Supplementary

307 Table 6). Likewise, we robustly identified a trans association between mutations in FLT3,
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308 encoding the fms-related tyrosine kinase 3, and increased levels of the FLT3 ligand (FLT3LG;
309 ‘ptvraredmg’ model; p= 6.2x10%%; B=0.82, 95% Cl: 0.65-0.99) (Supplementary Table 6).
310 Although we highlighted well-known ligand-receptor pairs here, we anticipate that this trans-

311 pQTL atlas could also help identify or suggest ligands for orphan receptors (https://astrazeneca-

312  car-publications.github.io/patl-browser).

313 This resource also enables the discovery of functional biological networks. For example,
314  we observed four rare NLRC4 protein-coding variants in the EXWAS that were associated with
315 substantial changes in plasma levels of the proinflammatory cytokine IL-18 (Supplementary
316 Table 1). These included one frameshift variant and one missense variant associated with
317 reduced protein levels, and two putatively gain-of-function missense variants associated with
318 higher levels (Table 1). Only one of these variants was detected in our previous GWAS of the
319 same cohort.? NLRC4 encodes the NLR family CARD domain-containing protein 4 that is
320 involved in inflammasome activation.”® Prior studies have shown that rare, hypermorphic
321 missense variants in this gene cause autosomal dominant infantile enterocolitis, characterized
322 by recurrent flares of autoinflammation with elevated IL-18 and IL-1B levels.?® IL-18 has also
323  been implicated as an inflammatory mediator of several other autoimmune diseases.*® We did
324  not find any significant associations between any of these four mutations and clinically relevant
325 phenotypes in our published phenome-wide association study of 470,000 UK Biobank exomes
326 (https://azphewas.com).® These data suggest that pharmacologic inhibition of NLRC4 may be
327 safe. They also demonstrate that some rare putative gain-of-function mutations in this gene may
328 not be sufficient to cause an observable phenotype, highlighting the value of this resource in

329 clinical diagnostic settings.

330
NLRC4 variant Consequence IL-18 beta, [95% CI] | P-value UKB European
MAF
chr2:32252592:CA>C Frameshift -1.15, [-1.42, -0.89] 2.2x10™ 0.05%
chr2:32238296:C>A Missense -0.74 [-0.83, -0.65] 3.2x10™% 0.5%
(p-Gly786Val)
chr2:32224523:C>A Missense 2.00 [1.40, 2.59] 5.0x10™* 0.01%
(p.Asp1009Tyr)
chr2:32250993:C>T Missense 1.97 [1.20, 2.74] 5.0x10” 0.006%
(p.Gly291Ser)
331 Table 1. NLRC4 allelic series. The four trans-pQTLs in NLRC4 associated with changes in IL-18
332 levels from the EXWAS. MAF = minor allele frequency.
333
334 Beyond mapping protein regulatory pathways, this rich catalogue of protein-coding

335 pQTLs can address several components of drug development, including the identification of

336 novel genetic targets, discovering mechanisms of actions or biomarkers for drug targets, safety
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337  profiling, and drug repositioning opportunities. For example, there have been recent efforts to
338 inhibit HSD17B13 based on the discovery that a splice variant (rs72613567) in this gene may
339 protect against chronic liver disease.** Our EXWAS revealed that this splice variant also
340 associated with altered levels of HYAL1 (P=7.4x10™"°, B=-0.06, 95% ClI: [-0.07, 0.04]), SMPD1
341 (P=2.2x10™, B=-0.05, 95% CI: [-0.06, -0.03]), CES3 (P=1.5x10"?, B=0.07, 95% ClI: [0.05,
342  0.08]), GUSB (P=7.9x10°, B=0.04, 95% CI: [0.03-0.05]), and PDGFC (P=4.8x10"°, B=0.04, 95%
343 CI: [0.03, 0.06]) (Supplementary Table 1). Further research into the individual and combined
344  effects of these previously undescribed relationships could help elucidate how this splice variant
345  confers the observed reduced liver disease risk.

346 These vignettes provide some examples of how this expansive pQTL resource can aid
347 many different drug discovery efforts (Fig. 3A). We have made the EXWAS and collapsing
348 pQTLs publicly available through a pQTL-specific interactive portal to empower the broader

349 research community (Fig. 3B; https://astrazeneca-cqgr-publications.github.io/pgtl-browser).
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Figure 3. pQTL atlas and interactive browser. (A) lllustration of potential
applications of this trans-pQTL atlas to drug development. The chord diagram
represents trans-pQTLs detected in our collapsing analysis (p<1x10®). (B) The
AstraZeneca pQTL browser, highlighting LDLR as an example user query. Users
can browse pQTLs from both the EXWAS and gene-based collapsing analyses
using an intuitive range of parameters and thresholds.

Clonal haematopoiesis of indeterminate potential

The age-related acquisition of somatic mutations that lead to clonal expansion of
haematopoietic stem cell populations (i.e., clonal haematopoiesis, or “CH") has been associated
with an increased risk of haematological cancer, cardiovascular disease, infection, cytopenia,
and other diseases.*** To identify plasma protein changes with CH, we performed a gene-level

collapsing analysis in which we defined QVs as clonal somatic variants in 15 genes recurrently
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365 mutated in myeloid cancers (see Methods) using a predefined list of variants and considered
366 four different variant allele frequency (VAF) cut offs (Supplementary Table 11). In this setting,
367 we excluded 290 individuals diagnosed with a haematological malignancy diagnosis pre-dating
368 sample collection. We observed that the most significant (p<1x10®) associations were achieved
369 with VAF= 10% cut-off (Supplementary Table 12). Under this model, we detected 13 trans
370 protein associations with somatic mutations in JAK2, five with TETZ2, four with SRSF2, and three
371  with ASXL1. Strikingly, there was no overlap between the protein abundances associated with
372 each of these four genes, suggesting distinct downstream effects of the somatic events
373  detected in each.

374

375 Figure 4. Clonal haematopoiesis trans-pQTL associations. (A) Chord diagram
376 illustrating significant (p<1x10®) trans-pQTLs associated with somatic mutations in
377 JAK2. (B) Significant trans-pQTLs associated with somatic mutations in TET2. Red lines
378 indicate positive betas and black lines indicate negative betas. Line width is proportional
379 to the absolute beta. For each gene, we plotted associations that were significant in any
380 of the four collapsing models.

381

382 Somatic JAK2 mutations frequently cause Philadelphia-negative myeloproliferative

383 neoplasms (including polycythaemia vera, essential thrombocythemia and primary
384  myelofibrosis), which are associated with thromboembolic disease.** Three of the JAK2 trans-
385 pQTLs include proteins involved in the integrin B2 pathway, including FCGR2A, GP1BA, and
386 ICAM2. Prior work has shown that the most common JAK2 missense variant associated with
387  myeloproliferative disorders (V617F) can promote venous thrombosis through activation of this
388 pathway.*® The largest effect size was seen with CXCL11, encoding a chemokine.

389 Somatic mutations in TET2 were associated with increased levels of the cytokine
390 tyrosine kinase FLT3 (p=9.7x10™, B=-0.50, 95% ClI: [0.38, 0.63]) and decreased levels of the
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391 FLT3 ligand, FLT3LG (p=8.0x10"* B=-0.95, 95% ClI: [-1.01, -0.83]). FLT3 is a key regulator of
392 hematopoietic stem cell proliferation and dendritic cell differentiation.®® Two other TET2
393 associations included increased abundances of CD1C and CLECA4C, which are markers of
394  conventional dendritic cells and plasmacytoid dendritic cells, respectively.>” Prior work has
395  shown that roughly 30% of patients with acute myeloid leukaemia (AML) carry FLT3-activating
396 mutations, the presence of which portend poor outcomes.*® There are now FLT3 inhibitors that
397 have been found to improve survival of patients with AML.**“° If the relationship between CH-
398 TET2 and FLT3 is causal, this could suggest potential repositioning and precision medicine
399  opportunities.

400

401 Augmenting PTV-driven PheWAS associations with proteomics

402  Understanding the functional consequences of protein-coding variants is critical to uncovering
403 the genetic underpinnings of diseases. In the setting of gene discovery studies, it can be
404  especially challenging to distinguish between putatively pathogenic and benign missense
405 variants. In rare-variant aggregated collapsing analyses, researchers typically prioritise rare
406 missense variants based on in silico predictions of how damaging that variant might be to the
407  structure or function of a protein. While in silico scores help distinguish between neutral and
408 potentially damaging missense variants, even the most well-performing scores only modestly
409  correlate with experimental measures of protein function.** There has thus been considerable
410 interest in performing in vitro mutagenesis screens to determine the effects of many possible
411 variants within a gene. However, the availability of protein measurements across tens of
412  thousands of individuals can be considered a human in vivo mutagenesis screen since we have
413 direct measurements of how individual observed variants impact protein levels among those
414  carriers. We thus sought to leverage this conceptual framework in the setting of a phenome-
415  wide association study.

416 In our previous rare-variant collapsing phenome-wide association study on 281,104 UKB
417 exomes, we observed that the PTV collapsing models accounted for the greatest number of
418 significant gene-phenotype relationships.” Here, using a more extensive set of 419,387 UK
419 Biobank exomes, we augmented our standard PTV model with missense variants associated
420  with reduced protein abundance (i.e., EXWAS cis-pQTLs with P<0.0001; see Methods). We
421  defined two new collapsing models: “ptvolink,” in which we included PTVs and missense pQTLs
422  with a MAF < 0.1%, and “ptvolink2pcnt,” in which we relaxed the MAF threshold of missense
423 variants to <2% (Methods, Fig. 5A, Supplementary Table 5). We tested for associations
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between genes encoding the Olink measured proteins and 10,017 binary and 584 quantitative

phenotypes (Supplementary Tab
A
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Figure 5. pQTL-informed collapsing analyses. (A) Schematic representing the pQTL-informed
collapsing framework. Blue diamonds represent missense pQTLs that would be included as
qualifying variants in the ptvolink model and ptvolink2pcnt model. PTVs, illustrated as X's, are
included in both models. (B)The p-values of gene-level associations with binary traits that improved
when including PTVs and missense cis-pQTLS (pPexwas<0.0001, ptviolink (orange) — MAF<0.1%,
ptvolink2pvnt (blue) MAF<2%). (C) Same as (A) but for quantitative trait associations. The x-axis is
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433 capped at 10°%. LDL = low density lipoprotein; HDL = high density lipoprotein. The dashed line

434 indicates the study-wide significance threshold of ps1x10®.

435

436 The standard ptv collapsing model detected significant associations for five genes that

437  encoded proteins measured on the Olink platform, including ACVRL1 and ENG with hereditary
438 haemorrhagic telangiectasia, GRN with dementia, NOTCH21 with chronic lymphocytic leukemia,
439 and PCSK9 with hypercholesterolemia (P=4.0x10"’, OR=0.35; 95% CI: 0.27-0.46) (Fig. 5B,
440 Supplementary Table 15). The significance of the well-known association between the loss of
441 PCSK9 and protection from hypercholesterolemia markedly improved in the pQTL-informed
442  model (ptvolink2pcnt: P=8.7x10™"*?, OR= 0.63, 95% ClI: [0.60, 0.65]). Including these missense
443  variants, which tended to have more modest effects on protein abundance than PTVs, resulted
444  in a weaker effect size but also clearly increased statistical power. Meanwhile, the signal of the
445  four other gene-phenotype associations was diluted in the pQTL-informed missense models
446  (Supplementary Table 15).

447 Impressively, nine genes that did not achieve genome-wide significance in the standard
448  ptv collapsing model achieved significance in at least one of the pQTL-informed models (Fig.
449  5B). The p-value of the association between ANGPTL3 and dyslipidemia improved from 1.1x10°
450 ® (OR= 0.58, 95%Cl: 0.48-0.71) to 9.6x10™" (“ptvolink”; OR=0.57, 95% Cl: 0.50-0.66). The
451  association between VWF and Von Willebrand’s disease also improved from 6.9x10° to 2.0x10"
452 . Other examples included KEL with hypertrophic skin disorders; PROC with thrombophlebitis;
453 LPL with  hypercholesterolemia; MICA  with  hypothyroidism, ANGPTL4  with
454  hypercholesterolemia; TNFRSF8 and protection from asthma, and SPARC with special
455 screening examinations (Fig. 5B and Supplementary Table 15). The second strongest
456  association for SPARC was with basal cell carcinoma, suggesting that this signal arose from
457  screening for skin cancer (ptvolink2pcnt P=4.5x10°, B=2.9, 95% ClI: [2.0, 4.4]).

458 We also identified several quantitative trait associations that increased in significance
459  using these new collapsing models (Fig. 5C and Supplementary Table 16). Consistent with the
460 improved p-values for related binary phenotypes, the associations between PCSK9, ANGPTL4,
461 LPL, and ANGPTL3 with lipid-related traits all improved under the ptvolink and ptvolink2pcnt
462 models. We also found that the association between EPO and increased haematocrit only
463  achieved significance in the ptvolink2pcnt model (P=2.2x10%3, B=-0.24, 95% CI: [-0.27, -0.22).
464  PTVs in this gene are a well-established cause of erythrocytosis.** We also detected newly
465 significant associations between PEAR1 (endothelial aggregation receptor) and decreased
466 mean platelet volume (ptvolink2pcnt P=6.8x10%', 3=-0.26, 95% ClI: [-0.31, -0.21]) and between
467 CAl (carbonic anhydrase) and increased reticulocyte count (P=9.5x10°, 8=0.40, 95% CI:
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468 [0.32, 0.49]). Collectively, these results illustrate how including cis pQTLs missense variants
469 detected through an orthogonal proteomics approach can enhance conventional loss-of-function
470 gene collapsing analyses.

471

472 Discussion

473  We performed the most extensive rare variant proteogenomics studies to date, including 1,472
474  plasma protein abundances measured in 50,829 UK Biobank human exomes. Our results
475  highlight the importance of exome sequencing for rare variant associations, as most rare variant
476  pQTLs (MAF < 0.1%) were not detected in prior GWAS. Rare cis- and trans- pQTLs conferred
477  significantly larger effect sizes than common variant pQTLs. In the EXWAS and gene-level
478  collapsing analysis, cis-pQTLs corresponding to PTVs nearly always were associated with
479  decreased protein levels, highlighting the robustness of these associations as well as the Olink
480 platform. Rare trans-pQTLs had weaker and more variable effect sizes with respect to
481 directionality than rare cis-pQTLs.

482 We highlighted several examples of how this protein-coding pQTL atlas can address
483 challenges in drug discovery and clinical pipelines, such as the description of an allelic series in
484  NLRC4 and previously undescribed plasma biomarkers for HSD17B13. Beyond our proof-of-
485 concept examples, we anticipate that this resource will provide novel insights into protein
486 regulatory networks, discovery of upstream trans regulators of target genes whose inhibition
487  could increase target protein levels, performing target safety assessments, and identifying drug
488  repositioning opportunities (Fig. 3A). Through our pQTL browser and our previously published
489 UKB phenome-wide association study (PheWAS) browser (azphewas.com), researchers can
490 now readily identify genetically anchored disease-protein abundance associations.

491 We additionally identified associations between somatic mutations in known CH genes
492 and different protein abundances. Consistent with prior findings that the risks of different
493 diseases are differentially associated across CH gene mutations, we found that each CH gene
494  was associated with a distinct proteomic fingerprint. TET2 associations were enriched for genes
495 involved in dendritic cell biology, consistent with the literature association between TET2-CH
496  and inflammation.

497 We also introduced a new gene discovery framework that incorporated missense variant
498  cis-pQTLs with classical PTVs. We found that inclusion of these missense cis-pQTLs increased
499  our power to detect gene-phenotype associations, particularly for genes expressed in tissues
500 known to contribute to the plasma proteome, such as the liver. Although the p-values improved

501 by many orders of magnitude, the effect sizes tended to be smaller in the pQTL-informed
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502 models compared to the PTV-only models, suggesting that the missense variants had less
503 severe effects than PTVs in the corresponding genes. This collapsing framework was limited to
504 the genes that encoded proteins included in the Olink assay. This framework could be extended
505 to proteomics studies of other tissues or broader plasma proteome assessments in future
506 studies.

507


https://doi.org/10.1101/2022.10.09.511476
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.09.511476; this version posted October 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

508 Methods

509 UKB Cohort

510 The UKB is a prospective study of approximately 500,000 participants 40-69 years of age at
511  recruitment. Participants were recruited in the UK between 2006 and 2010 and are continuously
512 followed.* The average age at recruitment for sequenced individuals was 56.5 years and 54%
513 of the sequenced cohort comprises those of the female sex. Participant data include health
514 records that are periodically updated by the UKB, self-reported survey information, linkage to
515 death and cancer registries, collection of urine and blood biomarkers, imaging data,
516 accelerometer data, genetic data, and various other phenotypic endpoints.** All study
517 participants provided informed consent.

518

519 Olink Proteogenomics Study Cohort

520 Olink proteomic profiling was conducted on blood plasma samples collected from 54,273 UKB
521 participants using the Olink Explore 1536 platform. This platform measured 1,472 protein
522  analytes, reflecting 1,463 unique proteins measured across the four Olink panels that comprise
523 the 1536 panel (Cardiometabolic, Inflammation, Neurology, and Oncology). The data were
524  processed in 7 batches by Olink. Details of UKB Proteomics participant selection (across the
525 46,673 randomized, the 6,365 consortia selected and the 1,268 individuals participating in the
526 COVID-19 repeat imaging study) alongside the sample handling have been thoroughly
527 documented in Supplementary Information in Sun, et al.?

528 For WES-based proteogenomic analyses, we analysed the (95%) samples with
529 available paired-exome sequence data. Next, we required that samples pass Olink NPX quality
530 control as described in Sun et al. resulting in a test cohort reduction to 51,359 (95%). Given the
531 increased variability described in Sun et al., we excluded samples in the pilot batch or with only
532  post-COVID imaging study sampling to obtain a combined cohort of 51,291 (95%) participants.
533  We then pruned this cohort for up to second-degree genetic relatedness (no pair with a kinship
534  coefficient exceeding 0.1769, n= 462), resulting in 50,829 (94%) participants available for the
535 multi-ancestry analyses performed in this paper. Europeans are the most well-represented
536 genetic ancestry in the UKB. We identified the participants with European genetic ancestry
537 based on Peddy” Pr(EUR)>0.98 (n=47,464). We then performed finer-scale ancestry pruning of
538 these individuals, retaining those within four standard deviations from the mean across the first
539 four principal components, resulting in a final cohort of 47,345 (87%) individuals for the
540 proteogenomic analyses.

541
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542  Sequencing

543  Whole-exome sequencing data for UKB patrticipants were generated at the Regeneron Genetics
544  Center (RGC) as part of a pre-competitive data generation collaboration between AbbVie,
545 Alnylam Pharmaceuticals, AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer, Regeneron, and
546  Takeda. Genomic DNA underwent paired-end 75-bp whole-exome sequencing at Regeneron
547  Pharmaceuticals using the IDT xGen v1 capture kit on the NovaSeq6000 platform. Conversion
548 of sequencing data in BCL format to FASTQ format and the assignments of paired-end
549  sequence reads to samples were based on 10-base barcodes, using bcl2fastq v2.19.0. Exome
550 sequences from 469,809 UKB participants were made available to the Exome Sequencing
551 consortium in May 2022. Initial quality control was performed by Regeneron and included sex
552  discordance, contamination, unresolved duplicate sequences, and discordance with microarray
553  genotyping data checks.*

554

555 AstraZeneca Centre for Genomics Research (CGR) bioinformatics pipeline

556 The 469,809 UKB exome sequences were processed at AstraZeneca from their unaligned
557 FASTQ state. A custom-built Amazon Web Services (AWS) cloud computing platform running
558  lllumina DRAGEN Bio-IT Platform Germline Pipeline v3.0.7 was used to align the reads to the
559 GRCh38 genome reference and perform single-nucleotide variant (SNV) and insertion and
560 deletion (indel) calling. SNVs and indels were annotated using SnpEFF v4.3*" against Ensembl
561 Build 38.92.* We further annotated all variants with their genome Aggregation Database
562 (gnomAD) MAFs (gnomAD v2.1.1 mapped to GRCh38).*® We also annotated missense variants
563 with MTR and REVEL scores.'®® The AstraZeneca pipeline output files including the VCFs are
564  available through UKB Showcase (https://biobank.ndph.ox.ac.uk/showcase/label.cqi?id=172).
565

566 ExWAS

567 We tested the 626,929 variants identified in at least four individuals from the 47,345 European

568 ancestry UKB exomes that passed both exome and Olink sample quality checks. Variants were
569 required to pass the following quality control criteria: minimum coverage 10X; percent of
570 alternate reads in heterozygous variants = 0.2; binomial test of alternate allele proportion
571 departure from 50% in heterozygous state P > 1 x 10™° genotype quality score (GQ) = 20;
572  Fisher's strand bias score (FS) < 200 (indels) < 60 (SNVs); mapping quality score (MQ) = 40;
573 quality score (QUAL) = 30; read position rank sum score (RPRS) = -2; mapping quality rank
574  sum score (MQRS) = -8; DRAGEN variant status = PASS; the variant site is not missing (that is,

575 less than 10X coverage) in 10% or more of sequences; the variant did not fail any of the
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576 aforementioned quality control in 5% or more of sequences; the variant site achieved tenfold
577 coverage in 30% or more of gnomAD exomes, and if the variant was observed in gnomAD
578 exomes, 50% or more of the time those variant calls passed the gnomAD quality control filters
579 (gnomAD exome AC/AC_raw = 50%). In our previous UK biobank exome sequencing study we
580 also created dummy phenotypes to correspond to each of the four exome sequence delivery
581 batches to identify and exclude from analyses genes and variants that reflected sequencing
582 batch effects; we provided these as a cautionary list resource for other UKB exome researchers
583 as Supplementary Tables 25-27 in Wang et al.® Since then, an additional fifth batch of exomes
584 was released, for which we identified an additional 382 cautionary variants (Supplementary
585 Table 17) on top of the original 8,365 previously described. We report the filtered-out EXWAS
586 results from all 8,747 cautionary variants in Supplementary Table 17.

587 Variant-level pQTL p-values were generated adopting a linear regression (correcting for
588 age, sex, age*sex, age*age, age*age*sex, PC1l, PC2, PC3, PC4, batch2, batch3, batch4,
589 batch5, batch6, batch7 and a panel specific measure of time between measurement and
590 sampling). Three distinct genetic models were studied: genotypic (AA versus AB versus BB),
591 dominant (AA + AB versus BB), and recessive (AA versus AB + BB), where A denotes the
592 alternative allele and B denotes the reference allele. For EXWAS analysis, we used a
593  significance cut-off of P<1x10®. To support the use of this threshold, we performed an n-of-1
594  permutation on the full EXWAS pQTL analysis. 24 of 2.8 billion permuted tests had P<1x10®
595  (Supplementary Table 2). At this P<1 x 10 threshold, the expected number of EXWAS pQTL
596 false positives is 24 out of the 207,409 observed significant associations (0.01%).

597

598 Collapsing analysis

599 As previously described, to perform collapsing analyses we aggregated variants within each

55951 n total, we performed

600 gene that fit a given set of criteria, identified as qualifying variants.
601 nine non-synonymous collapsing analyses, including eight dominant and one recessive model,
602 plus a 10™ synonymous variant model that serves as an empirical negative control. In each
603 model, for each gene, the proportion of cases was compared to the proportion of controls for
604 individuals carrying one or more qualifying variants in that gene. The exception is the recessive
605 model, where a participant must have two qualifying alleles, either in homozygous or potential
606 compound heterozygous form. Hemizygous genotypes for the X chromosome were also
607 qualified for the recessive model. The qualifying variant criteria for each collapsing analysis
608 model adopted in this study are in Supplementary Table 5. These models vary in terms of

609 allele frequency (from private up to a maximum of 1%), predicted consequence (for example,
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610 PTV or missense), and REVEL and MTR scores. Based on SnpEff annotations, we defined
611 synonymous variants as those annotated as ‘synonymous_variant’. We defined PTVs as
612 variants annotated as exon_loss_variant, frameshift_variant, start_lost, stop_gained, stop_lost,
613 splice_acceptor_variant, splice_donor_variant, gene_fusion, bidirectional_gene_fusion,
614 rare_amino_acid_variant, and transcript_ablation. We  defined missense  as:
615 missense_variant_splice_region_variant, and missense_variant. Non-synonymous variants
616 included: exon_loss variant, frameshift variant, start lost, stop_gained, stop_lost,
617 splice_acceptor_variant,  splice_donor_variant, gene_fusion, bidirectional_gene_fusion,
618 rare_amino_acid_variant, transcript_ablation, conservative_inframe_deletion,
619 conservative_inframe_insertion,  disruptive_inframe_insertion,  disruptive_inframe_deletion,
620 missense_variant_splice_region_variant, missense_variant, and protein_altering_variant.

621 Collapsing analysis P-values were generated by using linear regression, correcting for
622 age and sex. For all models, we applied the following quality control filters: minimum coverage
623 10X; annotation in CCDS transcripts (release 22; approximately 34 Mb); at most 80% alternate
624  reads in homozygous genotypes; percent of alternate reads in heterozygous variants = 0.25 and
625 < 0.8; binomial test of alternate allele proportion departure from 50% in heterozygous state P >
626 1 x 10-6; GQ = 20; FS =< 200 (indels) = 60 (SNVs); MQ = 40; QUAL = 30; read position rank
627 sum score = -2; MQRS = -8; DRAGEN variant status = PASS; the variant site achieved tenfold
628 coverage in = 25% of gnomAD exomes, and if the variant was observed in gnomAD exomes,
629 the variant achieved exome z-score = —2.0 and exome MQ = 30.

630 The list of 18,885 studied genes and corresponding coverage statistics of how well each
631 protein-coding gene is represented across all individuals by the exome sequence data is
632 available in Supplementary Table 19. Moreover, we had previously created dummy
633  phenotypes to correspond to each of the five exome sequence delivery batches to identify and
634 exclude from analyses 46 genes that were enriched for exome sequencing batch effects; these
635 cautionary lists were made available in Supplementary Tables 25-27 of Wang et al 2021.°
636 Gene-based pQTL p-values were generated adopting a linear regression (correcting for age,
637 sex, age*sex, age*age, age*age*sex, PC1, PC2, PC3, PC4, batchl, batch2, batch3, batch4,
638 batch5, batch6, and batch7). For the pan-ancestry analysis we included additional categorical
639 covariates to capture broad ancestry (European, African, East Asian, and South Asian).

640 For gene-based collapsing analyses, we used a significance cut-off of P<1x10®. To
641 support the use of this threshold, we ran the synonymous (empirical null) collapsing model and
642 found only five events achieved a signal below this threshold. Moreover, we performed an n-of-1

643  permutation on the full collapsing pQTL analysis. Only 3 of 276 million permuted tests had
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644 P<1x10® (Supplementary Table 7). At this P<1x10® threshold, the expected number of
645 collapsing pQTL false positives is 3 out of the 4,984 (0.06%) observed significant associations.
646

647 Down-sampled analysis

648 To test the robustness of the EXWAS and collapsing analysis pQTLs, we compared the
649 correlation between the p-values derived from the full cohort to a down-sampled subset of
650 40,567 samples and observed very strong correlations (Supplementary Figure 3).

651

652 Phenotypes

653 We studied two main phenotypic categories: binary and quantitative traits taken from the April
654 2022 data release that was accessed on 6 April 2022 as part of UKB applications 26041 and
655 65851. To parse the UKB phenotypic data, we adopted our previously described PEACOCK
656 package, located at https://github.com/astrazeneca-cgr-publications/PEACOK.°

657 The PEACOK R package implementation focuses on separating phenotype matrix
658 generation from statistical association tests. It also allows statistical tests to be performed
659 separately on different computing environments, such as on a high-performance computing
660 cluster or an AWS Batch environment. Various downstream analyses and summarizations were
661 performed using R v3.6.1 https://cran.r-project.org. R libraries data.table (v1.12.8;
662  https://CRAN.R-project.org/package=data.table), MASS (7.3-51.6;
663  https://www.stats.ox.ac.uk/pub/MASS4/), tidyr (1.1.0; https://CRAN.R-project.org/package=tidyr)
664 and dplyr (1.0.0; https://CRAN.R-project.org/package=dplyr) were also used.

665 For UKB tree fields, such as the ICD-10 hospital admissions (field 41202), we studied
666 each leaf individually and studied each subsequent higher-level grouping up to the ICD-10 root
667 chapter as separate phenotypic entities. Furthermore, for the tree-related fields, we restricted
668 controls to participants who did not have a positive diagnosis for any phenotype contained
669 within the corresponding chapter to reduce potential contamination due to genetically related
670 diagnoses. A minimum of 30 cases were required for a binary trait to be studied. In addition to
671 studying UKB algorithmically defined outcomes, we studied union phenotypes for each ICD-10
672 phenotype. These union phenotypes are denoted by a ‘Union’ prefix and the applied mappings
673 are available in Supplementary Table 1 of Wang et al. 2021.°

674 In total, we studied 10,017 binary and 584 quantitative phenotypes. As previously
675 described, for all binary phenotypes, we matched controls by sex when the percentage of
676 female cases was significantly different (Fisher's exact two-sided P < 0.05) from the percentage

677 of available female controls. This included sex-specific traits in which, by design, all controls
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678 would be the same sex as cases.” All phenotypes and corresponding chapter mappings for all
679 phenotypes are provided in Supplementary Table 7.

680

681 Detecting clonal haematopoiesis somatic mutations

682  To detect putative clonal haematopoiesis, somatic variants we used the same GRCh38 genome
683 reference aligned reads as for germline variant calling, and ran somatic variant calling with
684 GATK's Mutect?2 (v.4.2.2.0).> This analysis focused on the 74 genes previously curated as
685 being recurrently mutated in myeloid cancers.®* To remove potential recurrent artifacts we
686 filtered variants using a panel of normals created from 200 of the youngest UKB participants
687  without a haematologic malignancy diagnosis. Subsequent filtering was performed with GATK's
688  FilterMutectCalls, including the filtering of read orientation artifacts using priors generated with
689 LearnReadOrientationModel.

690 From the variant calls, clonal somatic variants were identified using a predefined list of
691 gene-specific variant effects and specific missense variants (Supplementary Table 20). Only
692 PASS variant calls with 0.03 < Variant Allele Frequency (VAF) < 0.4 and Allelic Depth (AD) = 3
693 were included. For each gene we validated the identified variants collectively as somatic by
694 inspection of the age versus population prevalence profile (Supplementary Figure 4) and
695 limited further analysis to a set of 15 genes.

696

697 Implementing the 470K missense pQTL-augmented PheWAS

698 In this study, we repeated our published PheWAS here adopting the now 469,809 available UK
699 Biobank exomes and 10,017 binary endpoints alongside 584 quantitative endpoints. To
700 determine whether novel signals could be detected after augmenting our standard ptv collapsing
701  analysis model with cis-acting missense variants identified among the UKB Proteomics subset
702  to correlate with a reduction in corresponding protein levels. We set our cis-pQTL missense p-
703  value inclusion threshold to p<0.0001 from the previously described exWAS analyses and
704  require a negative cis-acting beta. We identified 3,093 missense variants with cis-acting
705 negative betas (p<0.0001) among the genes encoding the 1,472 Olink protein analytes. 919
706  (62%) distinct genes carried at least one of these 3,093 missense variants.” To assess
707 improved signal detection over the baseline ptv collapsing model, we introduced two new
708 collapsing models “ptvolink” and “ptvolink2pcnt”. ptvolink adopts the baseline ptv collapsing
709  model with the only deviation being the inclusion of the 3,093 missense variants that also qualify
710 the QC and MAF criteria as adopted for the ptv collapsing model. ptvolink2pcnt is a repeat of

711  the ptvolink collapsing model but permits missense variants with a MAF in the UK Biobank
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712  population as high as 2% as long as they were among the list of 3,093 missense variants
713 identified to have a p<0.0001 negative beta cis-pQTL signals in the Olink EXWAS analyses. Full
714 model descriptions are available in Supplementary Table 5. These new cis-pQTL missense ptv
715 augmented collapsing models were then compared to the standard collapsing models.

716 There may be instances where reduced protein levels reflect a disruption of antibody
717  binding rather than a true biological signal. In the setting of collapsing analysis, in which we
718 aggregate many variant effects in a gene, we expect these events to represent only a modest
719 fraction of a gene’s complete allelic series. Moreover, in the context of this assessment, the
720 inclusion of missense pQTLs would be expected to act conservatively (i.e., diluting the value of
721  including such missense in the PTV proteogenomic-augmented PheWAS collapsing analyses).
722 The UK Biobank exomes cohort that was adopted for this refreshed PheWAS analysis
723 was sampled from the available 469,809 UK Biobank exome sequences. We excluded from
724  analyses 118 (0.025%) sequences that achieved a VerifyBAMID freemix (contamination) level
725  of 4% or higher,®® and an additional five sequences (0.001%) where less than 94.5% of the
726  consensus coding sequence (CCDS release 22) achieved a minimum of tenfold read depth.>*
727 Using exome sequence-derived genotypes for 43,889 biallelic autosomal SNVs located
728 in coding regions as input to the kinship algorithm included in KING v2.2.3,> we generated
729 pairwise  kinship  coefficients for all remaining samples. We used the
730 ukb_gen_samples_to_remove() function from the R package ukbtools v0.11.3%° to choose a
731  subset of individuals within which no pair had a kinship coefficient exceeding 0.1769, to exclude
732  predicted first-degree relatives. For each related pair, this function removes whichever member
733  has the highest number of relatives above the provided threshold. Through this process, an
734  additional 24,116 (5.1%) sequences were removed from downstream analyses. We predicted
735 genetic ancestries from the exome data using peddy v0.4.2 with the ancestry labeled 1,000
736  Genomes Project as reference.* Of the 445,570 remaining UKB sequences, 24,790 (5.3%) had
737  a Pr(European) ancestry prediction of less than 0.95. Focusing on the remaining 420,780 UKB
738 participants, we further restricted the European ancestry cohort to those within +4 s.d. across
739 the top four principal component means. This resulted in 419,387 (89.3%) participants of
740  European ancestry who were included in these cis-pQTL modified analyses.

741 To remove potential concerns of circularity we repeated the above ptvolink and
742  ptvolink2pcnt  collapsing model PheWAS; however, this time we removed UK Biobank
743  participants from the PheWAS analyses if they were part of the UKB Proteomics cohort of
744 47,345 individuals adopted to select the 3,093 cis-pQTL missense variants. These results are

745  reflected in ptvolinknoppp and ptvolink2pcntnoppp outputs (Supplementary Table 21).
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