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Abstract 16 

Machine learning models based on DNA methylation can be used to predict the age of biological 17 

samples, but their interpretability is limited due to the lack of causal inferences. Here, we lever-18 

aged large-scale genetic data and performed epigenome-wide Mendelian Randomization to iden-19 

tify CpG sites causal to aging-related traits. We show that neither the existing epigenetic clocks 20 

nor DNA methylation changes are enriched in causal CpG sites. Causal CpGs include similar 21 

numbers of sites that contribute to aging and protect against it, yet their combined contribution 22 

negatively affects age-related traits. We developed a framework for integrating causal knowledge 23 

into epigenetic clock models and constructed DamAge and AdaptAge that measure age-related 24 

damaging and adaptive changes, respectively. DamAge acceleration is associated with various 25 

adverse conditions (e.g., mortality risk), whereas AdaptAge acceleration is related to beneficial 26 

adaptations. Only DamAge is reversed upon cell reprogramming. Our results offer a comprehen-27 

sive map of CpG sites causal to lifespan and healthspan, allowing to build causal biomarkers of 28 

aging and rejuvenation and assess longevity interventions, age reversal, and aging-accelerating 29 

events.  30 
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Introduction 31 

Aging is a complex biological process characterized by a buildup of deleterious molecular 32 

changes that result in a gradual decline of function of various organs and systems and ultimately 33 

lead to death 1. Although the underlying mechanisms of aging are not well understood, various 34 

studies indicate that aging is strongly associated with changes in the epigenome, quantified as a 35 

set of chemical modifications to DNA and histones that affect gene expression and chromatin 36 

structure 2. DNA methylation is one of the best studied epigenetic modifications. In mammals, 5-37 

methylcytosine (5mC) is the most common form of DNA methylation, which is achieved by the 38 

action of DNA methyltransferases (DNMTs) 3,4. Studies have shown that DNA methylation pat-39 

terns change with age, wherein the global level of DNA methylation decreases slightly during 40 

adulthood, while some local areas may be hypomethylated or hypermethylated 2,5–8. Furthermore, 41 

the level of methylation of some specific CpG sites shows a strong correlation with age, which 42 

can be used to build machine learning-based models that can accurately predict the age of bio-43 

logical samples 7,9. As models can quantify age with very high accuracy, researchers termed 44 

these models epigenetic aging clocks (e.g., Horvath pan tissue epigenetic clock and Hannum 45 

blood based epigenetic clock) 10,11. The predicted age based on various epigenetic aging clocks 46 

appears to have a higher association with health-related measurements than chronological age. 47 

Therefore, it is believed that they could be used to better represent the biological age of samples 48 

than chronological age 12. 49 

Although epigenetic aging clocks provide a useful tool for profiling biological aging, they should 50 

be used with caution, as they are built based on pure correlations 13. It is unclear whether the DNA 51 

methylation changes that are used to predict age are causal to aging-related phenotypes or are 52 

simply byproducts of the aging process that does not influence aging themselves. To establish a 53 

causal relationship, the gold standard approach is the application of randomized controlled trials 54 

(RCT), where participants are randomly assigned to the intervention arm that receives the treat-55 

ment or the control arm. As the randomization step balances all confounding factors between two 56 

arms, the differences observed in the outcome between two groups are purely driven by the inter-57 

vention; thus, the causal effect can be estimated 14. However, given the large number of CpG sites 58 

across the genome, it is inefficient and infeasible to perform the perturbation on each of them and 59 

assess the aging-related outcomes. 60 
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Mendelian randomization (MR) is a genetic approach to causal inference that recapitulates the 61 

principle of RCT. Instead of perturbing an exposure through treatment, the MR uses the genetic 62 

variants that are robustly associated with the exposure as instrumental variables 15,16. As genetic 63 

variants of parental DNA are naturally randomly passed on to the offspring, the effect estimated 64 

by MR is not affected by environmental confounders and thus can be considered as an estimation 65 

of a causal effect, similar to the RCTs. In recent years, several studies have shown that MR can be 66 

applied to molecular traits by using the genetic variants associated with molecular levels as instru-67 

ments (also known as molecular quantitative trait loci, molQTL) 17. These molecular QTLs include 68 

gene expression (eQTL) 18, RNA splicing (sQTL) 19, plasma protein (pQTL) 20, metabolites 69 

(mQTL) 21, as well as DNA methylation (meQTL) 22. A previous study showed that it is feasible 70 

to use meQTLs as instruments to identify causal CpG sites for diseases 23. By integrating molQTLs 71 

with genome-wide association studies for traits such as lifespan, healthspan, extreme longevity, 72 

and other measurements related to aging, it is biologically plausible to perform two-sample MR to 73 

estimate the causal effects of molecular changes on the aging process. 74 

Here, we leveraged large-scale genetic data and performed epigenome-wide Mendelian Random-75 

ization (EWMR) on 420,509 CpG sites to identify CpG sites that are causal to twelve aging-related 76 

traits. We found that none of the existing clocks are enriched for causal CpG sites. We further 77 

constructed a causality-informed clock based on this inferred causal knowledge, as well as clocks 78 

that separately measure damaging and protective changes. Their applications provide direct in-79 

sights into the aging process. Thus, our results offer a comprehensive map of human CpG sites 80 

causal to aging traits, which can be used to build causal biomarkers of aging and assess novel anti-81 

aging interventions and aging-accelerating events. 82 

Results 83 

Epigenome-wide Mendelian Randomization on aging-related phenotypes 84 

MR is an established genetic approach for causal inference that utilizes natural genetic variants 85 

as instrument variables. Since the allocation of genetic variants is a random process and is deter-86 

mined during conception, the causal effects estimated using MR are not biased by environmental 87 

confounders. Therefore, it could be used as a tool for investigating causal relationships between 88 

the DNA methylation and aging-related phenotypes (Fig. 1a). To identify CpG sites causal to 89 
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aging, we used 420,509 CpG sites with meQTLs available (GoDMC, whole blood samples from 90 

36 cohorts, 27,750 European subjects)  as exposures and selected twelve aging-related pheno-91 

types as outcomes (Fig. 1a, Methods), including two lifespan-related traits (lifespan and extreme 92 

longevity) 24, three health-related traits (healthspan, frailty index, and self-rated health) 25,26, four 93 

epigenetic age measurements (Horvath age, Hannum age, PhenoAge, and GrimAge) 25, and three 94 

summary-level aging-related traits (Aging-GIP1, socioeconomic traits-adjusted Aging-GIP1, and 95 

healthy aging) 25. Aging-GIP1 is the first genetic principal component that captures both the 96 

length of life and age-related health status 27, which can be considered as a genetic representation 97 

of healthy longevity. It also shows the strongest genetic correlation with all other traits related to 98 

lifespan 25. Therefore, we further used Aging-GIP1 as the primary aging-related trait to investi-99 

gate CpG sites causal to the aging process. A genetic correlation analysis showed that all eight 100 

lifespan- and health-related traits are genetically correlated and clustered with each other, while 101 

the four epigenetic age measurements clustered with each other. GrimAge and PhenoAge 102 

showed significant genetic correlations with other health and lifespan-related traits, while Han-103 

num age and Horvath age did not (Extended Data Fig. 1).  104 

We then applied generalized inverse-variance weighted MR (gIVW) and MR-Egger (gEgger) on 105 

each exposure-outcome pair (Fig. 1b). We only included cis-meQTLs (meQTLs located within 2 106 

MB of target CpG sites) in our analysis to avoid pleiotropic effects, as they are more likely to af-107 

fect DNA methylation via direct mechanisms. To remove additional pleiotropic effects, we used 108 

the results of gEgger, whose estimate is robust to directional pleiotropic effects if the significant 109 

intercept is detected by gEgger regression (P < 0.05). After adjusting for multiple tests using 110 

Bonferroni correction, we discovered more than 6,000 CpG sites with significant causal effects 111 

on each trait, ranging from 5,507 (for GrimAge) to 8,341 (for self-rated health) (Fig. 1c). 112 

Genetic colocalization is a Bayesian approach that estimates the probability (PP.H4) of overlap-113 

ping genetic signals between molecular traits and outcome is due to both traits sharing a causal 114 

variant 28. It is an important method to control false positive results from MR and filter out the 115 

MR signals purely driven by LD or pleiotropy. We then performed a pairwise conditional and 116 

colocalization (PWCoCo) analysis of all conditionally independent instruments against all condi-117 

tionally independent association signals for the outcome phenotypes 29. We used the conditional 118 

H4 threshold of 0.7 to identify colocalized signals and detected such signals for more than half of 119 
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the CpG sites identified by MR for each trait, ranging from 2,943 (for GrimAge) to 4,495 (for 120 

self-rated health). 121 

Since we could only perform MR and colocalization analysis on 420,509 CpG sites, the role of 122 

unmeasured CpG sites on a tested trait could not be differentiated from the measured ones. To 123 

further validate whether the effect estimated by MR can be attributed to a single CpG site, we 124 

utilized the point mutation that naturally occurs on the causal CpG sites (C to A or C to T), also 125 

known as meSNP. For the human methylation array, nearly 10% of CpG sites have an meSNP 126 

available. We found that the meSNPs that occur at causal CpG sites have lower allele frequency 127 

in the population compared to noncausal CpG sites (Extended Data Fig. 2). Furthermore, the 128 

meSNPs were significantly depleted at causal CpG sites, suggesting that there is a negative se-129 

lection against loss-of-function mutations at causal CpG sites (Extended Data Fig. 2). Among 130 

causal CpG sites with meSNPs available, we examined the correlation between the effects on the 131 

outcome trait estimated using a single meSNP and the effect estimated by MR. We observed a 132 

significant positive correlation between the two estimates (P = 1e-4, Pearson’s R = 0.4, Extended 133 

Data Fig. 2). These results suggest that the causal effect estimated by MR can be partially at-134 

tributed to a single CpG site, at least in the causal CpG sites with available meSNPs. Yet, consid-135 

ering many CpG sites do not have meSNPs available and the methylation level of individual 136 

CpG site tends to be highly correlated with neighboring CpG sites 30–32, we believe the causal 137 

CpG sites we identified also serve as tagging CpG sites for the causal regulatory region, and the 138 

causal effect size we estimated can be interpreted as the causal effect size of the tagged regula-139 

tory region. 140 

Interestingly, the Spearman correlation of the estimated effect size of CpGs across twelve traits 141 

formed two distinct clusters, with the first cluster containing eight lifespan- and health-span-related 142 

traits, and the second all four epigenetic age measurements (Fig. 1d). This observation suggests 143 

that, although all these twelve traits are genetically correlated with each other, causal CpGs do not 144 

have proportional effect sizes – the CpGs with large effects on lifespan and healthspan do not have 145 

a proportional effect size on epigenetic age measurements and vice versa.  146 

To prioritize CpG sites with the potential causal effect on Aging-GIP1, we first filtered MR signals 147 

based on the P value threshold after Bonferroni correction. The CpG sites were then ranked ac-148 

cording to the magnitude of the causal effect, adjusted by the colocalization probability (PP.H4). 149 
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The top CpG sites whose methylation was observed to promote healthy longevity (Aging-GIP1) 150 

included cg12122041 at the HTT locus, which is associated with bone mineral density and age, 151 

cg02613937 at the TOMM40 locus, which is associated with Alzheimer’s disease and age, and 152 

cg19047158 at the non-coding region, which is associated with gestational age and rheumatoid 153 

arthritis. The top CpG sites whose methylation was found to inhibit healthy longevity included 154 

cg04977528 at the HEYL locus, which is associated with sex and age, cg06286026 at the GRK4 155 

locus (associated with age), cg27161488 at the C4orf10 locus (associated with rheumatoid arthritis 156 

and age), and cg18744360 at the MAD1L1 locus (associated with hypotensive disorder, Fig. 1e). 157 

Furthermore, cg19514613 at the APOE locus is also among the top sites that limit longevity. Ge-158 

netic variants near HTT and MAML3 were also shown to significantly affect lifespan in Finnish 159 

and Japanese cohorts in a previous study 33. Both TOMM40 and APOE are known to contribute to 160 

the risk of Alzheimer’s disease and are associated with human lifespan 34,35. Our results suggest 161 

that the known lifespan-related effect at these loci may be mediated by DNA methylation. More-162 

over, we also used adjusted Aging-GIP1, where the effects on human lifespan and healthspan that 163 

are correlated with socioeconomic status are removed. We showed that after adjusting for socio-164 

economic status, the CpG site with the top pro-longevity effect is cg06636172 at the FOXO locus, 165 

which is a major longevity locus 36,37. 166 

To further understand the properties of the CpG sites identified as causal to each aging-related 167 

trait, we performed an enrichment analysis using 14 Roadmap annotations 38. We found that the 168 

causal CpGs for most traits are enriched in promoters and enhancers while depleted in quiescent 169 

regions (Fig. 2a). Furthermore, the causal CpG sites were enriched in CpG shores (Extended Data 170 

Fig. 3). We observed that the causal CpG sites for Aging-GIP1 are significantly more evolutionally 171 

conserved compared to non-causal CpGs, based on both functional genomic conservation scores 172 

(Learning Evidence of Conservation from Integrated Functional genomic annotations, LECIF) and 173 

the phastCons/phyloP scores across 100 vertebrate genomes 39 (Fig. 2b, c, Extended Data Fig. 4). 174 

Moreover, the absolute value of the estimated causal effect sizes showed significant positive cor-175 

relations between all three conservative scores. These results suggest that the CpG sites identified 176 

as causal for aging-related traits are more likely to be located in functional genomic elements and 177 

more evolutionarily conserved. 178 
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It is well known that DNA methylation status may affect the binding of transcription factors (TFs) 179 

40. To understand the relationship between causal CpG sites and TFs, we performed a transcription 180 

factor binding site enrichment analysis (Fig. 2d). The CpG sites causal to Aging-GIP1 were sig-181 

nificantly enriched in the binding sites of 63 TFs, including POLR2A, ZNF24, MYC, and HDAC1; 182 

while depleted in the binding sites of 19 TFs, including CTCF, CHD4, and BRD9 (Fig. 2d). In 183 

particular, POLR2A was among the top enriched TFs in 9 of 12 traits. POLR2A is the POLR2 184 

subunit (RNA polymerase II), and previous research shows that epigenetic modifications can mod-185 

ulate its elongation and affect alternative splicing. Our results imply that this mechanism is poten-186 

tially a major contributor that mediates the effects of DNA methylation on aging 10,11,41. We further 187 

found that there were 3 TF-binding sites (BRD4, CREB1, and E2F1) enriched with CpG sites 188 

whose methylation levels promote healthy longevity (Aging-GIP1), and 4 TF-binding sites 189 

(HDAC1, ZHX1, IKZF2, and IRF1) enriched with CpG sites whose methylation levels decrease 190 

healthy longevity (Extended Data Fig. 5). BRD4 contributes to cellular senescence and promotes 191 

inflammation 42. Therefore, our findings suggest that higher DNA methylation at BRD4 binding 192 

sites may inhibit the downstream effects of BRD4 and promote healthy longevity. Similarly, pre-193 

vious studies showed that CREB1 is related to type II diabetes and neurodegeneration 43, and me-194 

diates the effect of calorie restriction 44. However, how DNA methylation may affect CREB1 bind-195 

ing is not well studied. Our data suggest that higher methylation at CREB1-binding sites may 196 

promote its longevity effects. HDAC1 is a histone deacetylase, and its activity increases with aging 197 

and may promote age-related phenotypes 45,46. HDAC1 has been shown to specifically bind to 198 

methylated sites. Our data, therefore, support the hypothesis that HDAC1 plays a damaging role 199 

during aging, as increased DNA methylation at HDAC1 binding sites may causally inhibit healthy 200 

longevity. 201 

We also checked the enrichment of causal CpG sites in phenome-wide EWAS signals obtained 202 

from the EWAS catalog 11. The top enriched phenotypes included rheumatoid arthritis, HIV infec-203 

tion, nitrogen dioxide exposure, and maternal obesity (Fig. 2e). Interestingly, none of these condi-204 

tions is primarily caused by aging. On the contrary, both rheumatoid arthritis and HIV infection 205 

are the conditions that have been suggested to accelerate aging and immunosenescence 41. Addi-206 

tionally, maternal obesity is associated with accelerated metabolic aging in offspring 47, and nitro-207 

gen dioxide exposure is also shown to be associated with an increased risk of mortality 48. Among 208 

the 12 traits tested, only the causal CpG sites for GrimAge and Hannum age (both are epigenetic 209 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.07.511382doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511382
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 9 

biomarker traits) were significantly enriched in the change of the CpG sites with aging, both epi-210 

genetic biomarker traits (Fig. 2e). Therefore, our results suggest that the causal CpG sites for aging 211 

are enriched in conditions that cause accelerated aging, but not in conditions that are caused by 212 

aging. This is consistent with the previous study, which suggests that differentially expressed genes 213 

reflect disease-induced rather than disease-causing changes 49. 214 

MR on epigenetic age measurements successfully recovers clock sites as causal CpG sites 215 

For epigenetic age measurements, the causal CpG sites were the clock sites and the sites up-216 

stream of clock sites (Fig. 3a). To validate our EWMR approach for discovering causal CpG 217 

sites, we used clock sites for each clock as ground truth and investigated whether MR could re-218 

cover the clock sites as causal CpG sites with the correct estimated effects. 219 

We first examined the identified causal CpG sites for three epigenetic age measurements with the 220 

clock models publicly available, namely HannumAge, HorvathAge, and PhenoAge 7. We observed 221 

that the causal CpGs identified by EWMR for each epigenetic age measurement were significantly 222 

enriched with the corresponding clock sites (Fig. 3b; HannumAge P = 9.4e-9, HorvathAge P = 223 

1.2e-12, PhenoAge P = 2.7e−6). Furthermore, EWMR predicted causal effect sizes of causal CpGs 224 

with the correct direction and relative magnitude; as for the three epigenetic age measurements, 225 

the estimated causal effect of MR showed a high and significant linear relationship with the actual 226 

causal effect sizes denoted by the coefficients of the clock model (Fig. 3c-e). Notably, the enrich-227 

ment and correlation we described were also robust to the choice of threshold (Fig. 3b-e). 228 

In MR studies, the P value is not a reliable ranking metric, as it is largely related to the number of 229 

instruments available for the exposure traits 50. As the epigenetic age GWAS provided a unique 230 

opportunity where a part of the real causal CpG sites was already known, we applied four different 231 

ranking metrics to identify an ideal ranking metric to rank causal CpG sites. We calculated the 232 

area under the receiver operating curve (ROC, AUROC) using the clock sites as ground truth. The 233 

AUROC measures the accuracy of binary classification, where an AUROC of 0.5 corresponds to 234 

a random classification, and an AUROC of 1 corresponds to a perfect classification. Note that 235 

since some causal CpGs are unknown (regulatory CpGs upstream to clock sites, Fig. 3a), the AU-236 

ROC we calculated underestimated the real accuracy. However, we found that when ranking with 237 

PP-H4 weighted effect size, strikingly higher AUROCs were achieved compared to all other rank-238 

ing metrics (0.99 for HannumAge, 0.83 for HorvathAge, and 0.73 for PhenoAge, Fig. 3f, and 239 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.07.511382doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511382
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 10 

Extended Data Fig. 6). As far as we know, the colocalization probability-weighted effect size has 240 

never been used for ranking MR hits. Therefore, our findings provide novel metrics that could be 241 

reliably used to prioritize MR results of molecular traits and facilitate downstream analyses. 242 

Existing epigenetic clocks are not enriched with CpG sites causal to aging 243 

One open question for epigenetic clocks is whether their clock sites are causal to aging and age-244 

related functional decline. To answer this question, we collected six epigenetic age models in hu-245 

mans with the clock sites publicly available, namely, the Zhang clock, PhenoAge, PedBE, 246 

HorvathAge, HannumAge, and Dunedin-PACE. We then performed an enrichment analysis of 247 

causal CpGs for all eight lifespan/healthspan-related traits for each clock. After correcting for 248 

multiple testing, none of the existing clocks showed significant enrichment for causal CpGs of 249 

any of the lifespan/healthspan-related traits (Fig. 3g). PhenoAge showed a nominal significant 250 

enrichment with CpGs causal to healthspan and healthy aging, but it was not robust to the choice 251 

of thresholds. This finding suggests that, although some clocks contain CpGs causal to aging 252 

(Table 1), they, by design, favor CpG sites with a higher correlation with age and thus are not en-253 

riched with causal CpGs. 254 

In contrast, even though different clocks were trained on different datasets with different methods, 255 

the causal sites identified for one clock were usually also enriched with the clock sites for other 256 

clocks, suggesting that there is a subset of CpG sites that contribute to the epigenetic age estimate 257 

of all existing epigenetic clocks, which could potentially introduce systemic bias. 258 

Integration of MR results and age-related changes reveals protective and deleterious epige-259 

netic changes during aging 260 

Another important question in epigenetic aging is the identity and number of epigenetic changes 261 

that (i) contribute to age-related damage and (ii) respond to it. We approached this question by 262 

integrating information on the causal effect and age-related change for each CpG. The protective 263 

or damaging nature of the age-related methylation change in each CpG is indicated by the prod-264 

uct of the causal effect and age-related change (𝑏!"# × 𝑏$%, Fig. 4a). For example, if a higher 265 

methylation level of a certain CpG site leads to a longer lifespan or healthspan, then during ag-266 

ing, a decrease of the methylation level at that site would be considered as having a damaging 267 

effect, whereas an increased methylation level would be considered as having a protective effect. 268 
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The effect of DNA methylation estimated by MR is estimated through linear regression, which 269 

assumes that the relationship between DNA methylation level and lifespan-related outcome is lin-270 

ear. To annotate protective and damaging CpGs, it is important to understand whether the effect 271 

size of genetic instruments on DNA methylation levels is comparable with the effect of aging. If 272 

they are not at the same scale, the annotation could be inaccurate as age-related methylation 273 

changes may fall outside of the linear regions. We show that the effect of genetic instruments is 274 

comparable with the effect of aging by calculating the ratio between the effect of strongest meQTL 275 

and age-related methylation change (Extended Data Fig. 7). The median ratio is 21.8, suggesting 276 

that the median effect of genetic instruments is roughly equivalent to the effect of 21.8 years of 277 

aging. 278 

Therefore, using the age-related blood DNA methylation change data estimated from 7,036 indi-279 

viduals (ages of 18 and 93 years, Generation Scotland cohort)50, we separated the CpG sites causal 280 

to eight traits related to lifespan into four different categories: protective hypermethylation, dele-281 

terious hypermethylation, protective hypomethylation, and deleterious hypomethylation (Fig. 4b, 282 

Extended Data Fig. 8). Among the top 10 CpG sites whose methylation changes during aging have 283 

a relatively large impact on healthy longevity, we showed that six hypermethylated CpG sites 284 

during aging exhibit strong protective effects, including cg18327056, cg25700533, cg19095568, 285 

cg17227156, cg17113968, and cg07306253; while one hypomethylated CpG site (cg04977528) 286 

also has a protective effect. In contrast, 1 hypermethylated CpG sites (cg26669793) and 2 hypo-287 

methylated CpG sites (cg25903363 and cg26628907) show damaging effects (Fig. 4b). 288 

Contradicting the popular notion that most age-related changes are bad for the organism, our find-289 

ings revealed that, in terms of the number of CpGs, there was no enrichment for either protective 290 

or damaging methylation changes during aging (Extended Data Fig. 9). We also found that there 291 

was no significant correlation between the size of the causal effect and the magnitude of age-292 

related changes (Fig. 4b, Extended Data Fig. 9), suggesting that CpG sites with a greater effect on 293 

healthy longevity do not necessarily change their level of methylation during aging. This result is 294 

consistent with our findings discussed above and explains the lack of enrichment of causal sites in 295 

existing epigenetic clocks. 296 

As the product of the causal effect and age-related change (𝑏!"# × 𝑏$%) provides an estimate of 297 

the cumulative effect of age-related changes on aging-related phenotypes in a unit of time, we 298 
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calculated the cumulative effect of age-related changes on Aging-GIP1 (Fig. 4c). Importantly, we 299 

discovered that although the number of protective and damaging CpG sites was similar, the cumu-300 

lative effect of combined age-related DNA methylation changes was detrimental to age-related 301 

phenotypes, consistent with the overall damaging nature of aging. 302 

Algorithms for developing causality-informed epigenetic clocks 303 

Although various existing epigenetic aging clock models can accurately predict the age of bio-304 

logical samples, they are purely based on correlation. This means that the reliability of existing 305 

clock models is highly dependent on the correlation structure of DNA methylation and pheno-306 

types. This may result in unreliable estimates when extrapolating the model to predict the age of 307 

novel biological conditions (i.e., applying clocks to interventions that do not exist in the training 308 

population), as the correlation structure may be corrupted by the new intervention. 309 

To overcome this problem, we developed novel epigenetic clocks that are based on causal CpG 310 

sites identified by EWMR (Fig. 5a). Specifically, we trained an elastic net model on whole blood 311 

methylation data from 2,664 individuals 51,52, using CpG sites identified as causal to Aging-GIP1 312 

by EWMR (adjusted P < 0.05). In regular epigenetic clock models, the penalty weight is defined 313 

to be 1 for all CpG sites, which produces models that are purely based on correlation. Instead, we 314 

introduced a novel causality-informed elastic net model, where we assigned the feature-specific 315 

penalty factor based on the causality score for each CpG site (Method). The influence of the cau-316 

sality score on the feature-specific penalty factor is controlled by the causality factor 𝜏, which is 317 

an adjustable parameter. If 𝜏 = 0, the whole model is reduced to a regular elastic net regression, 318 

where the penalty factor equals one for all features. When 𝜏 becomes large, the model is more 319 

influenced by the causality score and tends to assign larger coefficients to the features with a higher 320 

causality score (Fig. 5A, Method). 321 

Using this method, we trained the model to build the causality-informed epigenetic clock CausAge 322 

using 2,664 blood samples. We show that the model’s accuracy decreased as the causality factor 323 

𝜏 increased (Fig. 5b, c). This is because the causality factor 𝜏 controls the trade-off between the 324 

correlation and causality score-weighted penalty factor, and the causality score is not always cor-325 

related with the predictive power of age. For example, a CpG site with a high correlation with age 326 

may not be causal to aging, and vice versa. To balance clock accuracy and causality, we used the 327 

CausAge with the causality factor 𝜏 of 0.3 in the downstream analysis (Fig. 5c). 328 
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To separately measure adaptive and damaging DNA methylation changes during aging, we further 329 

separated causal CpG sites into two groups based on the causal effect size from MR and the direc-330 

tion of age-related change (Fig. 4b). We then built DamAge, the damaging clock, which contains 331 

only the damaging CpG sites, and AdaptAge, the protective clock, which contains only the adap-332 

tive/protective CpG sites (Fig. 5a). We show that both DamAge and AdaptAge can predict the age 333 

of blood samples with similar accuracy. And similar to the CausAge, the accuracy of DamAge and 334 

AdaptAge decreases as the causality factor 𝜏 increases (Fig. 5c). 335 

DamAge and AdaptAge clocks uncouple aging-related damage and adaptation 336 

By design, AdaptAge contains only the CpG sites that capture protective effects against aging. 337 

Therefore, in theory, the subject predicted to be older by AdaptAge may be expected to accumu-338 

late more protective changes during aging. On the contrary, DamAge contains only the CpG sites 339 

that exhibit damaging effects, which may be considered as a biomarker of age-related damage. 340 

Therefore, we hypothesized that DamAge acceleration may be harmful and shorten life expec-341 

tancy, whereas AdaptAge acceleration would be protective or neutral, which may indicate 342 

healthy longevity. 343 

To test this hypothesis, we first analyzed the associations between human mortality and epigenetic 344 

age acceleration quantified by causality-informed clocks using 4,651 individuals from the Fram-345 

ingham Heart Study, FHS offspring cohort (n = 2,544 Caucasians, 54% females) and Women’s 346 

Health Initiative cohort (WHI, n = 2107 postmenopausal women, Methods). Among the three cau-347 

sality-informed clocks, DamAge acceleration showed the strongest positive association on mortal-348 

ity and outperformed CausAge and Hannum clock, both of which exhibited a weaker positive as-349 

sociation with mortality (Fig. 5d, e). This finding supports the notion that age-related damage con-350 

tributes to the risk of mortality. In contrast, AdaptAge acceleration showed a significant negative 351 

association with mortality, suggesting that protective adaptations during aging, measured by 352 

AdaptAge, are associated with longer lifespan. In addition, epigenetic age accelerations measured 353 

by DamAge and AdaptAge were only weakly associated (Pearson's R = 0.14, Extended Data Fig. 354 

10). These findings highlight the importance of separating adaptive and damaging age-related 355 

changes when building aging clock models. 356 

Interestingly, although the clock accuracy monotonically decreased as the causality factor 𝜏 in-357 

creased, the association between mortality and epigenetic age acceleration did not follow the same 358 
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trend (Fig. 5e). Especially for DamAge and CausAge, the mortality association increased as the 𝜏 359 

increased and peaked when 𝜏 was around 0.6. Also, DamAge consistently outperformed CausAge 360 

in predicting mortality risk, even though CausAge was more accurate in age prediction (Fig. 5b-361 

e). This suggests that although the introduction of the causality score and separation of damaging 362 

CpGs may decrease the accuracy of the clock in terms of predicting chronological age, it improves 363 

the prediction of aging-related phenotypes. 364 

Induced pluripotent stem cell (iPSC) reprogramming is one of the most robust rejuvenation mod-365 

els, which was shown to be able to strongly reverse the epigenetic age of cells 46. We applied the 366 

causality-informed clock models to iPSC reprogramming 53. For comparison, we also included 367 

three blood-based epigenetic models, namely Hannum clock, PhenoAge, and DunedinPace. The 368 

Hannum clock was trained on chronological age 54,55, PhenoAge was trained on the age adjusted 369 

by health-related phenotypes 56,57, and Dunedin-PACE was trained to predict the pace of aging 56. 370 

Consistent with Hannum clock and PhenoAge, DamAge revealed that epigenetic age decreased 371 

during iPSC reprogramming, but with a stronger negative correlation with the time of reprogram-372 

ming and higher statistical significance (Fig. 5f). This observation suggests that DamAge may 373 

better capture the damage-removal effect of iPSC reprogramming. On the contrary, AdaptAge in-374 

creased significantly during the reprogramming process, suggesting that protective age-related 375 

changes do not capture the rejuvenation effect and that in fact cells may acquire even more pro-376 

tective changes during iPSC reprogramming. 377 

Causality-informed epigenetic clocks capture damage and aging-related effects in the early 378 

stages 379 

To further examine how DamAge and AdaptAge capture age-related damage and protective adap-380 

tations, respectively, we analyzed conditions that specifically promote age-related damage. 381 

Paraoxonase 1 (PON1) is one of most studied genes associated with cardiovascular disease, oxi-382 

dative stress, inflammation, and healthy aging 58. Specifically, PON1 plays an important role in 383 

detoxifying organophosphorus compounds and removing harmful oxidized lipids 6. The genetic 384 

variant of PON1 (R192Q) significantly decreases PON1 activity and is known to be associated 385 

with an increased risk of cardiovascular disease and neurodegenerative diseases 59. Interestingly, 386 

the PON1 Q allele is significantly depleted in centenarians 60. We analyzed the relationship be-387 

tween PON1 activity and epigenetic age in 48 whole blood samples (Fig. 6a) 61. DamAge shows 388 
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a significant negative correlation with PON1 activity (R = -0.55, p = 0.0062), whereas AdaptAge 389 

showed a significant positive correlation with PON1 activity (R = 0.69, p = 0.0003). Again, this 390 

association was not observed by other epigenetic clocks, except for Horvath age, but with a less 391 

significant negative correlation. 392 

By definition, causal epigenetic changes occur prior to downstream methylation changes and the 393 

associated phenotypes (which are caused by upstream causal epigenetic changes). Therefore, we 394 

hypothesized that the causality-informed clock models may be able to capture aging-related events 395 

in the early stages, before downstream epigenetic mechanisms are triggered. Previous studies have 396 

shown that anti-aging interventions during development could prolong lifespan and healthspan in 397 

later life, including calorie restriction (CR) 62, and rapamycin treatment 63. Small for gestational 398 

age (SGA) is a condition defined as a birth weight less than the 10th percentile for gestational age 399 

64. SGA is usually caused by nutritional deficiency during pregnancy; therefore, it can be consid-400 

ered a model of early life CR. We show that children with SGA have a significantly lower DamAge 401 

and a higher AdaptAge than children with normal birth weight. This observation suggests that 402 

DamAge and AdaptAge may be able to capture early-life CR effects, which are associated with 403 

decreased damage accumulation and increased protective adaptations. These effects are not cap-404 

tured by the other epigenetic clocks tested. SGA is usually considered a pathological condition; 405 

some studies suggest that this may be because early life benefits can be reversed in later life by 406 

exposure to excessive nutrients 65. The different roles of SGA in the early and late stages of life 407 

may need to be further investigated in future studies. 408 

In vitro fertilization (IVF) is a common method of treating infertility. Yet, previous studies have 409 

shown that IVF may increase the risk of perinatal morbidity and mortality 66. It has recently been 410 

proposed that embryos undergo a rejuvenation event shortly after conception to remove age-related 411 

damage 67,68. Whether the in vitro environment of IVF affect this rejuvenation process is unknown. 412 

We analyzed the DNA methylation data from neonatal blood spots of 137 newborns conceived 413 

unassisted (NAT), through intrauterine insemination (IUI), or through IVF using fresh or cryo-414 

preserved (frozen) embryo transfer 69. We found that IVF-conceived newborns using fresh or cry-415 

opreserved embryos have significantly higher DamAge acceleration and lower AdaptAge than 416 

NAT-conceived newborns (Fig. 6b). On the other hand, IUI-conceived newborns show no 417 
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significant differences in both DamAge and AdaptAge compared to the control (Fig. 6b). This ef-418 

fect could not be observed by the other five epigenetic clocks tested, except for the Horvath age. 419 

Genomic imprinting is an epigenetic mechanism that controls the expression of parent-of-origin-420 

dependent gene, which plays an important role in embryonic development and has a lifelong im-421 

pact on health 70. Some imprinting genes are known to be associated with metabolic disorders and 422 

aging (e.g., IGF2-H19) 71,72. DNA methylation at imprinting loci is maintained during epigenetic 423 

reprogramming in embryonic development, which coincides with the period of embryonic rejuve-424 

nation 67,68. We analyzed the peripheral blood DNA methylation data from patients with single-425 

locus or Multi-loci imprinting disturbances (SLID or MLID), which is the condition of losing 426 

methylation at single or multiple imprinting centers 73. Similar to IVF, we found that patients with 427 

imprinting disorders showed significantly higher DamAge and lower AdaptAge (Fig. 6b). To-428 

gether, these results suggest that DamAge and AdaptAge can serve as better biomarkers for events 429 

affecting aging traits already during development. 430 

Causality-informed clocks could also capture the aging-related effects of short-term interventions. 431 

For example, we found that short-term treatment with cigarette smoke condensate in bronchial 432 

epithelial cells significantly accelerated DamAge but did not affect other tested clocks (Fig. 6c). 433 

Additionally, a 6-week omega-3 fatty acid supplementation in overweight subjects 74, which has 434 

been shown to be protective against age-related cardiovascular diseases, significantly increased 435 

AdaptAge and reduced DamAge (Fig. 6c). Together, our data demonstrate the importance of sep-436 

arating damage and adaptation when building biomarkers of aging and provide novel tools to quan-437 

tify aging and rejuvenation. 438 

Discussion 439 

Many existing epigenetic aging clock models accurately predict the age of samples 7, and there 440 

are numerous CpG sites that are differentially methylated during aging 50. DNA methylation lev-441 

els affect the structure of chromatin and the expression of neighboring genes 51,52, through which 442 

they can causally affect aging-related phenotypes. A recent study also suggested that DNA meth-443 

ylation may play a causal role in the rejuvenation effect observed during iPSC reprogramming 46. 444 

It is important to understand whether and which DNA methylation changes during aging cause 445 

aging-related phenotypes. A previous transcriptome-wide MR study suggests that differentially 446 
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expressed genes in human diseases reflect mainly gene expression caused by disease rather than 447 

disease-causing genes 53. Similarly, DNA methylation changes during aging may primarily re-448 

flect the downstream effects of aging phenotypes rather than causing them. Our EWMR findings 449 

further support this notion as we found no significant overlap between CpG sites causal to 450 

healthy longevity and those differentially methylated during aging. 451 

MR is a powerful method to identify causal relationships between exposure traits and phenotypes 452 

75. However, it is limited by the availability of genetic instruments for the exposure traits. In our 453 

study, we utilized the DNA meQTLs of 420,509 CpG sites from the Illumina 450K methylation 454 

array as instrumental variables to infer their causal relationship with aging-related phenotypes. 455 

However, there are many unmeasured CpG sites across the genome, and the methylation patterns 456 

of nearby CpG sites are highly correlated 51. Therefore, it is not possible to fully separate the causal 457 

effect of a single CpG and its neighbors. Analysis of point mutations at causal CpG sites (meSNPs) 458 

suggests that the epimutation of the single causal CpG site identified by MR may be sufficient to 459 

alter the phenotype (Extended Data Fig. 2). However, due to the lack of abundance of meSNPs on 460 

causal CpG sites, this hypothesis is difficult to test across all causal CpG sites we identified. There-461 

fore, we tend to reach a more conservative conclusion and believe that the causal CpG sites iden-462 

tified in our study serve as tagging CpG sites for the causal regulatory regions in aging-related 463 

phenotypes. The genome-wide meQTL studies in the future may facilitate further refining of the 464 

causal effects of CpG sites at the base-pair resolution. 465 

The genetic instruments of CpG sites were selected from the currently largest meQTL study in 466 

whole blood (GoDMC, 36 cohorts, including 27,750 European subjects). Therefore, the causal 467 

CpG sites we identified are primarily valid in blood. However, a previous study showed that up to 468 

73% cis-meQTLs are shared across tissues 76. This suggests that the identified causal CpG sites 469 

may also act in other tissues to affect lifespan and healthspan. Future large-scale meQTL studies 470 

across tissues may facilitate the identification of tissue-specific epigenetic effects on aging. 471 

We found that TF-binding sites of BRD4 and CREB1 are enriched with CpG sites whose methyl-472 

ation levels promote healthy longevity, and TF-binding sites for HDAC1 are enriched with CpG 473 

sites whose methylation levels decrease healthy longevity. BRD4 contributes to cell senescence 474 

and promotes inflammation 42. Therefore, our findings suggest that higher DNA methylation at 475 

BRD4 binding sites may inhibit the downstream effects of BRD4 and promote healthy longevity. 476 
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Similarly, previous studies showed that CREB1 is related to type II diabetes and neurodegeneration 477 

43, and mediates the effect of calorie restriction 44. However, how DNA methylation may affect 478 

CREB1 binding is not well studied. Our data suggest that higher methylation at CREB1-binding 479 

sites may support its longevity effects. HDAC1 is a histone deacetylase, and its activity increases 480 

with aging and may promote age-related phenotypes 45,46. HDAC1 has been shown to specifically 481 

bind to methylated sites. Our data, therefore, support the hypothesis that HDAC1 plays a damaging 482 

role during aging, as increased DNA methylation at HDAC1 binding sites may causally inhibit 483 

healthy longevity. 484 

One general approach for developing anti-aging interventions is to identify molecular changes 485 

during aging and use these changes as targets to modulate the aging process 54,55. A similar idea 486 

has also been applied to evaluate potential longevity interventions. However, this logic is intrinsi-487 

cally flawed, as correlation does not imply causation and age-related changes are not necessarily 488 

causal to age-associated declines. As living organisms are complex systems with various adaptive 489 

mechanisms, many molecular changes during aging are potentially neutral downstream effects of 490 

fundamental damaging changes or even adaptive mechanisms that protect against aging pheno-491 

types. This notion is usually underappreciated as age-related changes are generally assumed to be 492 

damaging. As a result, adaptive mechanisms of aging are largely understudied. However, there is 493 

evidence to suggest that at least some age-related changes are protective against aging phenotypes. 494 

An example of age-related protective changes is the Insulin and IGF-1 signaling (IIS) pathway. 495 

Attenuation of IIS signaling intensity through multiple genetic manipulations has been shown to 496 

consistently extend the lifespan of worms, flies, mice, and potentially humans 56,57. This pathway 497 

also mediates pro-longevity effects of dietary restriction 56. Growth hormone is produced by the 498 

anterior pituitary gland and can induce the production of IGF-1, thus increasing IIS signaling. Both 499 

growth hormone and IGF-1 levels decline during aging 58, which is considered to be a defensive 500 

response that extends lifespan 6. Another example of an age-related adaptation is protein aggrega-501 

tion. It has been shown in C. elegans that the protein aggregation events are increased during aging. 502 

Although it may look like a result of losing proteostasis, it turns out to be a protective mechanism 503 

that drives aberrant proteins into insoluble aggregates to improve overall proteostasis, and has been 504 

observed in long-lived mutants 59. Similar protective mechanisms are also observed in mouse 505 

nerves at the transcriptomic level 60. 506 
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Our results suggest that adaptive mechanisms at the epigenetic level are nearly as common as 507 

damaging changes and that simply following age-related changes in DNA methylation does not 508 

allow us to infer positive, neutral, or negative effects on age-related traits. However, the identified 509 

damaging and protective CpG sites are extremely useful both for understanding aging and quanti-510 

fying it, and the same applies to rejuvenation. Together, the identified CpGs represent causal epi-511 

genetic changes, and their combined effect on health-related phenotypes is negative. 512 

The framework we described for epigenetic changes in this study may be applied to any other age-513 

related change, e.g., changes in the transcriptome, metabolome, and proteome. While all age-re-514 

lated features may be used to construct aging clocks, some of them are expected to be negative, 515 

some neutral, and some protective. Neither the direction nor the degree of change of age-related 516 

changes is important, and inferring the need to bring these changes to those observed in the young 517 

state as a way to rejuvenate an organism is equally incorrect. Instead, the focus should be on the 518 

causal effects of age-related changes, as well as on the direction of their effect. 519 

The causal epigenetic clock models, CausAge, AdaptAge, and DamAge, could help separate pro-520 

tective changes from damaging events. We also showed that by preselecting the CpG sites that 521 

show protective adaptation during aging, it is possible to build an aging clock showing an inverse 522 

relationship with mortality. Specifically, subjects with elevated protective adaptation are predicted 523 

to be age-accelerated by AdaptAge and have a lower risk of mortality (Fig. 5c). Similarly, 524 

AdaptAge shows an inverse relationship with rejuvenation (e.g., iPSC reprogramming) and aging 525 

acceleration. Note that both DamAge and AdaptAge show similar accuracy in predicting chrono-526 

logical age, but their delta-age term shows an opposite biological meaning. This finding suggests 527 

that we should reconsider the way we interpret “epigenetic age acceleration” in clinical settings, 528 

especially for the clocks that are trained in a regular way, which contain a mixture of adaptative 529 

and damaging CpG sites. Together, our finding highlights the importance of pre-selecting delete-530 

rious CpG sites when building aging clock models, and our causality-informed clock models pro-531 

vide novel insights into the aging mechanisms and testing interventions that delay aging and re-532 

verse biological age. 533 
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Figure legends 711 

Fig. 1. Epigenome-wide Mendelian Randomization on various aging-related phenotypes. a. 712 

Schematic diagram shows the principle of MR using meQTLs as exposures and aging-related 713 

traits as outcomes to identify causal CpG sites. b. The flow chart shows the procedure for epige-714 

nome-wide MR and sensitivity analysis. c. Number of significant causal CpG sites identified for 715 

each trait after adjusting for multiple tests using the Bonferroni correction. The darker regions of 716 

the bars indicate the number of causal CpG sites supported by the colocalization analysis with 717 

conditional PP-H4 > 0.7. d. Spearman correlation of the estimated causal effects of CpGs in 718 

twelve traits. Only CpGs with significant MR signals across at least six traits are included in the 719 

analysis. The color scheme corresponds to the Spearman correlation coefficient, * adjusted P < 720 

0.05, ** adjusted P < 0.01, *** adjusted P < 0.001. e. The modified Mississippi plot shows sig-721 

nificant MR signals for Aging-GIP1. The X-axis corresponds to the genomic positions of CpG 722 

sites; Y-axis represents the size of the causal effect adjusted by colocalization probability (PP-723 

H4). CpG sites with top adjusted causal effects are annotated with the name and nearest gene. 724 

Only CpG sites with adjusted P < 0.05 are included in the plot. 725 

Fig. 2. CpG sites causal to aging are enriched in specific genetic regulatory regions. a. The 726 

bar plot shows the enrichment of causal CpG sites in 14 Roadmap genomic annotations. The Y 727 

axis shows -log10 (FDR) based on Fisher’s exact test, signed by log2 (Odds ratio). Causal CpG 728 

sites identified for different traits are annotated with different colors. Two dotted horizontal lines 729 

show the FDR threshold of 0.05. TssA, active transcription start site. Prom, upstream/downstream 730 

TSS promoter. Tx, actively transcribed state. TxWk, weak transcription. TxEn, transcribed and 731 

regulatory Prom/Enh. EnhA, active enhancer. EnhW, weak enhancer. DNase, primary DNase. 732 

ZNF/Rpts, state associated with zinc finger protein genes. Het, constitutive heterochromatin. 733 

PromP, Poised promoter. PromBiv, bivalent regulatory states. ReprPC, repressed polycomb states. 734 

Quies, quiescent state. b, c. The box plot shows the distribution of conservation scores in causal 735 

and non-causal CpG sites. The conservation scores are obtained by Learning Evidence of Conser-736 

vation from Integrated Functional genomic annotations (LECIF, b) and phastCons (c). * P < 0.05, 737 

** P < 0.01, *** P < 0.001, **** P < 0.0001. d, e. Enrichment of causal CpG sites for 12 aging-738 

related traits against transcription-factor-binding sites (d) and EWAS hits (e). Each horizontal bar 739 
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represents an enriched term. The X-axis shows the -log10(P-value), signed by log2 (Odds ratio). 740 

The top 10 enriched terms that passed the FDR threshold of 0.05 for each direction are annotated. 741 

Fig. 3. MR on epigenetic age successfully recovers clock sites as causal CpG sites. a. For epi-742 

genetic age measurements, true causal sites are the clock sites and the sites upstream of clock sites. 743 

We used these traits as a positive control to validate the MR approach for identifying causal CpGs. 744 

b. The forest plot shows the enrichment of clock sites for each model in causal CpG sites identified 745 

by MR for each trait. The X-axis shows the log2(Odds Ratio). P-values calculated by Fisher’s 746 

exact test are annotated. Error bars show 95% confidence intervals. Different colors represent dif-747 

ferent thresholds for causal CpGs. c-e. Correlation between ground truth causal effects (clock co-748 

efficients, X-axis) and causal effects estimated by MR (Y-axis) for Hannum age (c), Horvath age 749 

(d) and PhenoAge (e). Different colors represent different thresholds for causal CpGs. Pearson's 750 

correlation coefficients and P-values are annotated. f. The receiver operating characteristic (ROC) 751 

curves show the sensitivity (Y-axis) and the 1-specificity (X-axis) of MR in identifying causal 752 

CpG sites for clock traits, with the area under the ROC curve (AUC) annotated. g. The forest plot 753 

shows the enrichment of clock sites for six aging clock models in causal CpG sites identified by 754 

MR for each trait. The X-axis shows the log2(Odds Ratio). P-values calculated by Fisher’s exact 755 

test are annotated if P < 0.05. Error bars show 95% confidence intervals. Different colors represent 756 

the different thresholds for causal CpGs. 757 

Fig. 4. Integration of causal information and age-related changes to separate protective and 758 

damaging epigenetic changes. a. Schematic diagram showing the method to identify protective 759 

and damaging epigenetic changes by integrating MR results and age-related differential methyla-760 

tion. b. Relationship between MR-estimated causal effects (X-axis) and age-related methylation 761 

change (Y-axis) for each significant causal CpG identified in Aging-GIP1. The color scheme high-762 

lights the expected impact of age-related methylation change on aging. Error bars show the stand-763 

ard error of b. The size reflects the PP-H4. Only CpG sites with adjusted P-values < 0.05 and 764 

relative PP-H4 > 0.7 are plotted. The CpG sites with the top 10 largest effect sizes are annotated. 765 

c. Area plots show the total cumulative effect of changes in DNA methylation on Aging-GIP1. 766 

The X-axis shows the rank of the CpG sites based on the impact of age-related changes 767 

(𝑏!"#:'() × 𝑏'():$%). The Y-axis and the color scheme show the cumulative sum of impacts. 768 
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Fig. 5. Construction and application of causality-informed epigenetic clocks. a. Schematic 769 

diagram shows the procedure of constructing causality-informed epigenetic clocks. b. Scatter plots 770 

show the accuracy of causal clocks on the test set. The X-axis shows the real age of each sample, 771 

and the Y-axis shows the predicted age of the same sample based on each clock model. Median 772 

absolute error (MAE) and Pearson’s R are annotated. c. Line plot showing the relationship between 773 

causality factor (𝜏) and clock accuracy measured by MAE and Pearson’s R. d. The forest plot 774 

shows the Log2 hazard ratio of mortality risk for every 10-year increase in age for each clock 775 

model. The P values are annotated if P < 0.05. The error bars show the standard error of the log2 776 

hazard ratio. e. The line plot shows the relationship between the causality factor (𝜏) and -log10(p) 777 

for the association with mortality risk (signed by log2(hazard ratio)). The yellow dashed line shows 778 

the P threshold of 0.05. The orange dotted line shows the significance score for Hannum age ac-779 

celeration f. The scatter plots show the application of causal clocks and three other blood-based 780 

clocks to iPSC reprogramming. The X-axis shows the days after initiating reprogramming. Pear-781 

son's R and P values are annotated. 782 

Fig. 6. Causality-informed epigenetic clocks capture aging-related effects in the early stages. 783 

a. Scatter plots show the correlation between epigenetic age and blood PON1 activity. Epigenetic 784 

age prediction is rescaled to a 0-1 scale for better comparison. The color shows the PON1 genotype 785 

in subjects. Linear regression is performed, and Pearson’s R and P values are annotated. b. Box 786 

plots show the association between the epigenetic age and the conditions at early developmental 787 

stages, including the small for gestational age (SGA), the in vitro fertilization, and imprinting dis-788 

turbances. IUI, intrauterine insemination; IVF, in vitro fertilization; SLID, single locus imprinting 789 

disorder; MLID, multiple loci imprinting disorder. c. Box plots show the association between the 790 

epigenetic age and short-term treatments, including the 15 months of cigarette smoke condensate 791 

(CSC) treatment and the 6-week supplementation of omega-3 fatty acid supplementation in over-792 

weight subjects. For all box plots, the significant pairs based on the two-tail t-test are annotated 793 

with stars, and the P values from the ANOVA test are annotated. * P < 0.05, ** P < 0.01, *** P < 794 

0.001, **** P < 0.0001. 795 
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Table 1. Causal CpG sites in existing epigenetic clocks 797 

 Position Weight outcome Beta SE P H4 role 

HorvathAge (353)  

cg06557358 -0.14 Overall_health_rating -0.04 0.008 1.96E-07 0.89 Protective 

cg09509673 0.01 Healthy-aging 0.02 0.003 3.86E-13 0.85 Protective 

cg09509673 0.01 Lifespan 0.05 0.006 9.92E-20 0.83 Protective 

cg11299964 -0.16 Aging-GIP1 0.08 0.012 5.42E-12 0.86 Deleterious 

cg16744741 -0.35 Aging-GIP1 0.09 0.017 1.86E-08 0.89 Deleterious 

cg16744741 -0.35 Overall_health_rating 0.06 0.008 6.10E-14 0.86 Deleterious 

PhenoAge (513)  

cg05087948 -6.99 Aging-GIP1-adj -0.08 0.013 7.30E-10 1.00 Protective 

cg21926612 -2.15 Overall_health_rating 0.01 0.002 3.27E-11 0.94 Deleterious 

cg11896923 -1.38 Healthspan 0.17 0.024 4.64E-12 0.90 Deleterious 

cg11896923 -1.38 Healthy-aging 0.05 0.008 5.63E-10 0.86 Deleterious 

cg00862290 -0.23 Healthy-aging 0.00 0.001 1.28E-08 0.85 Protective 

cg00862290 -0.23 Lifespan -0.02 0.003 0 0.94 Protective 

Zhang (514)  

cg24987259 -1.33 Overall_health_rating -0.04 0.007 8.25E-09 0.95 Protective 

cg05310309 0.18 Aging-GIP1 0.03 0.003 1.13E-32 0.96 Protective 

cg05310309 0.18 Overall_health_rating 0.01 0.002 2.64E-12 0.92 Protective 

cg06672696 0.02 Frailty-index 0.05 0.010 1.74E-07 0.82 Protective 

PedBE (94)  

cg04221461 0.03 Frailty-index 0.04 0.008 1.25E-07 0.95 Protective 

cg19381811 -0.08 Aging-GIP1 -0.04 0.004 3.26E-21 0.929544 Protective 

cg19381811 -0.08 Overall_health_rating -0.03 0.002 8.80E-37 0.955032 Protective 
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Fig. 1  798 
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Fig. 2 799 
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Fig. 3  801 
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Fig. 4  802 
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Fig. 5  803 
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Fig. 6 804 
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